+ All Categories
Home > Documents > The evolution of high energy neutrino telescopescsspier/www/talks/History-of-Nutel.pdf · The...

The evolution of high energy neutrino telescopescsspier/www/talks/History-of-Nutel.pdf · The...

Date post: 09-Apr-2018
Category:
Upload: ngonhu
View: 216 times
Download: 2 times
Share this document with a friend
76
The evolution of high energy neutrino telescopes Christian Spiering DESY
Transcript

The evolution of high energy neutrinotelescopes

Christian SpieringDESY

The evolution of high energy neutrinotelescopes

…a long marchwhich has notyet reachedits end.

under-ground

optical:- deep water- deep ice

- air showers- radio- acoustics

Ann.Rev.Nucl.Sci10 (1960) 63

Ann.Rev.Nucl.Sci10 (1960) 1

Moisej Markov Bruno Pontecorvo

M.Markov,1960: „We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the helpof Cherenkov radiation“ Proc. 1960 ICHEP, Rochester, p. 578.

Central interest: cross sections, W-mass… one of the main motivations for Reines‘ South Africa detector, the Kolar Gold Field Detector (India) and the Baksan scintillation detector. Early sixties: doesthe neutrino cross section saturate beyond 1 GeV (i.e. one would never measureatm. neutrinos with energies higher than a few GeV). The question was relaxed in the mid seventies:

First measurement of atmosphericneutrinos

Beside several ideas like e.g.H. Uberall and C. Cowan, 1965 CERN Conf. on Experimental Neutrino Physics, p. 231– Downward looking PM observing a

10 m thick water target, „possibly in ocean or a lake“

V. Bogatyrev, Yad.Fiz 13 (1971) 336– Three detectors each 107 tons of distilled

water a several km depth, widely spacedSN triangulation

in 1965 detection of nearlyhorizontal atmospheric neutrinosby F. Reines in a South African Gold mine.

DUMAND

1973 ICRC, Reines, Learned, Shapiro, Zatsepin, Miyake: a deep water detector to clarify puzzles in muon depth-intensitycurvesPuzzles faded away, but there remained the awareness that such a detector could also work as neutrino detectorThe name: DUMAND (Deep Underwater Muon And Neutrino Detector), proposed by Fred Reines1975: First DUMAND Workshop in Washington State CollegeDUMAND Steering Committee, chaied by F.Reines, J. Learned, . A.Roberts

See also: A.Roberts: The birth of high-energy neutrinoastronomy: a personal history of the DUMAND project,Rev. Mod. Phys. 64 (1992) 259.

ν

μ

Principle and capabilities

Angular resolution of 1° possible

astrononomy

Energy resolution formuons is 50% at best, for 1 km tracklength

The DUMAND Workshops

An unbelievable source of basic ideas(including crazy ones which are sometimes the most exciting)

1976 Honolulu1978 Scripps1979 Khabarovsk/Baikal1978 HonoluluPlus dedicated workshops on deployment, acousticdetection, signal procressing and oceanengineering

Which physics?

UNDINE: UNderwater Detection of Interstellar Neutrino Emission– i.e. Supernova too rarely to optimize an ocean detector for it ( IMB)

ATHENE: ATmospheric High-Energy Neutrino Experiment– Better with underground experiments

UNICORN: UNderwater Interstellar COsmic Ray Neutrinos– The high energy option– preferred option, but: how large are the fluxes ?– think as big as possible !

A. Roberts:

1978: 1.26 km³22,698 OMs

1980: 0.60 km³6,615 OMs

1982: 0.015 km³756 OMs

1988: 0.002 km³

216 OMs

DUMAND-II

Financial and technological reality !

DUMAND-II (The Octagon)

9 strings216 OMs100 diameter, 240 m heightDepth of bottom: 4.8 kmLowest OM 100 m abovebottom

γγνμππγ

νν

νμπ

μ

μ

+→+→+→+→+

++→

+→+→+

+ 0

....

pnp

e

pp

e

or

Point sources, DUMAND-II (0.002 km³) expectations in the eighties !!!

Note: in 1989, the only proven TeV γ source was the Crab SNR!With these assumptions, a km³ detector would have discovered 5-50 (worst scenario) up to several ten thousand events (best scenario) per source

Diffuse sources, DUMAND-II (0.002 km³) expectations in the eighties

Technology boostsOptical fibers with < 12 dbattenuation over 40-km lengthand data rates of hundreds of MBaud (Nobel prize 2009!)

Appearance of 16“ Hamamatsu PMT

Appearance of 14“ „smart“ Philips PMT

JOMJapanese Optical Module

EOMEuropean Optical Module

1987: The SPS

1982-87: a series of 14 cruises, with two lost strings1987: success !– depth-intensity curve– angular distributions– attenuation lenght (47±22 m)

„Short Prototype String“

DUMAND after the SPS:

1989: HEPAP supports DUMAND-II1990: DOE allocates funds for DUMAND-IIFurther financial cuts TRIAD (3 strings)1993: shore cable laidDecember 1993: deployment of first string and connection to junction box. Failure after severalhours1995: DUMAND project is terminated

RussiaVery active during early DUMAND workshops(Chudakov, Berezinsky, Bezrukov, Zhelesnykh, Petrukhin)Kicked out of DUMAND after Russian Afghanistan invasionA. Roberts:

1980: Chudakov proposes exploration of Lake Baikal as possible site for a neutrino telescope1981: start of site investigations at Lake Baikal (Domogatksy, Bezrukov)

Exploration of Atlantic, Black Sea, Indian Ocean, Pacific and Mediterranean sites (Zheleznyk, Petrukhin)

A. Roberts: „Communication among these groups is not very good“

The Lake BAIKAL experiment

G. Domogatsky

Bezrukov, Domogatsky, Berezinsky, Zatsepin

Largest fresh water reservoir in the worldDeepest Lake (1.7 km)1981: first site explorations & R&DChoosen site 3.6 km from shore, 1.3 km depth

Ice as a natural deployment platform

… and its mis-interpretation:

A. Roberts:

Lake Baikal: the eighties

1984: first stationary string– Muon flux measurement

1986: second stationary string(Girlyanda 86)– Limits on GUT

magnetic monopolesAll that with 15-cm flat-window PMT FEU-49

Development of a Russiansmart phototube (Quasar)

Towards NT-2001988: Germany joins

1989/90: design of NT-200

1993 + 1994: NT-36 - 18 channels at 3 strings- first underwater array- first 2 neutrino candidates

1995: NT-72- 38 channels at 4 strings

1996: NT-96- 48 channels at 4 strings- clear neutrinos

1998: NT-200- 96 channels at 8 strings

4-string stage (1996)

J. Learned:„Congratulations for winningthe 3-string race!“(Baikal vs Dumand vs AMANDA)

NT-200

NT-200

3600 m

1366

m

2 PMTs in coincidenceto surpress background

NT200 results

Atmospheric neutrinos

WIMP searchDiffuse neutrino fluxes

Skymap

GRB coincidencesMagnetic monopoles

396 ν candidates

Amanda 4 years

Baikal 5 years

NT200+

NT200

3600 m

1366

m

140 mNT200+

- upgrade 2005/06- 4 times better sensitivity thanNT200 for PeV cascades

- basic cell for km3 scale detector

construction1993-1998

For searches of diffuse neutrino fluxes, the small NT200 could compete with the much larger Amanda by monitoring

a large volume below the detector. NT200+ fences this volume.

Gigaton Volume Detector, GVD

Sacrifice low energies (muon threshold ~ 10 TeV)Protoype strings being testedModular clusters, stepwise installation > 2012~ 2000 optical modules (conventional PMs)

12 clusters of strings

NT1000: top view

R ~ 60 m

L~ 350

 m

All other deep water/ice detector projects startedaround 1990 or later.

In the eighties /early nineties, shallow detectorshave been proposed but never built.

On the other hand, deep underground detectorsreached their full blossom:- solar neutrinos- supernova neutrinos- limits on proton decay- first hints to neutrino oscillations- sky maps

Shallow detector projects

Advantages: easy access, less challenging environmentDisadvantages: huge background, not expandable

GRANDE– Shallow water, Lake, Arkansas, H. Sobel (Irvine)

LENA– Artificial water pool, Gran Sasso, M.Koshiba

SINGAO– Resistive Plate Chambers, Italy/UK

Swedish lakes– Early nineties, before Sweden joined Amanda

Underground Detectors

KGF

Baksan

FREJUS

Soudan

IMB

KamiokandeSuperkamiokande

MACRO

e.g. MACRO, 1356 upgoing muons

~ 1000 m²

Neu

trin

o os

cilla

tions

, pro

ton

deca

y

Def

icit

of s

olar

neu

trino

s(s

eeK

ai Z

uber

‘sta

lk)

Def

icit

of a

tmos

pher

icne

utrin

osas

func

tion

of d

ista

nce

and

ener

gy

Stri

ngen

t lim

its o

n pr

oton

life

time

|Δm

2 32| =

(2.6

±0.2

) ·10

-3 e

V2

|Δm

2 21| =

(8.3

±0.3

) ·10

-5 e

V2

θ 12

= 33

.9º±

1.6º

θ 23

= 45

º±3º

θ 13

< 9º

1990

-200

0: re

visi

ting

the

expe

ctat

ions

Und

ergr

ound

det

ecto

rs, 1

000

m²,

only

fory

oung

Sup

erno

vae

in o

urG

alax

y(B

erez

insk

y)

New

est

imat

eson

neu

trino

sfro

mS

uper

nova

rem

nant

san

d ot

herg

alac

ticso

urce

sba

sed

on o

bser

vatio

nsw

ithW

hipp

lean

d H

EG

RA

For s

uper

nova

rem

nant

s, m

icro

quas

ars,

ext

raga

lact

icso

urce

s: n

eed

dete

ctor

of o

rder

1 k

m³.

The

Wax

man

-Bah

call

boun

d

The

Man

nhei

m-P

roth

eroe

boun

d

GR

B a

s so

urce

sof

cos

mic

rays

and

neut

rinos

γbo

und

WB

bou

nd

MP

R b

ound

Diff

use

Flux

es20

02Th

ism

odel

was

dow

n-co

rrec

ted

bya

fact

orof

20

in 2

005.

The

ice

optio

n

1988

: Pom

eran

tzw

orks

hop,

NS

F S

cien

ce a

nd T

echn

olog

y C

ente

r for

the

S

outh

Pol

e (A

. Wes

tpha

l, T.

Mill

er, D

. Low

der,

B. P

rice)

E. Z

elle

r (K

ansa

s) s

ugge

sts

to F

. Hal

zen

radi

odet

ectio

nof

ne

utrin

os in

Ant

arct

ic ic

e

1989

: atte

mpt

of W

estp

hala

nd L

owde

rto

mea

sure

ice

trans

pare

ncy

in e

xist

ing

bore

hole

s

Jan.

89,

ICR

C, A

dela

ide:

Dec

ide

to p

ropo

se A

man

da (B

. Pric

e,

D. L

owde

r, S

. Bar

wic

k, B

. Mor

se, F

. Hal

zen,

A. W

atso

n)

1990

: Mor

se e

t al.

depl

oy P

MTs

in G

reen

land

ice

F. H

alze

n

Natu

reSe

pt91

Sou

th P

ole

1991

/91

first

smal

lPM

Tsde

ploy

edR

esul

tsco

nsis

tent

with

25 m

abs

orpt

ion

leng

th

Hea

ters

and

pum

psto

mel

tthe

hole

s

1 km

2 km

93/9

4

Cat

astr

opha

ldel

ay

of li

ght b

etw

een

strin

gs 2

0 m

aw

ay!

(µse

c in

stea

d of

100

nse

c)

40 m

Exp

lana

tion

rem

nant

bubb

les

whi

char

edi

sapp

pear

ing

with

incr

easi

ngde

pth.

Am

anda

B4

1995

: DE

SY

and

Sto

ckho

lm b

uild

~ 10

0 m

odul

es, 8

6 de

ploy

edin

the

seas

on95

/96

at 1

450-

1950

m d

epth

The

DE

SY

cre

w

B4:

firs

t2 n

eutri

nos

Dril

ling

Hot

wat

erdr

illin

gH

ot w

ater

drill

ing

1 km

2 km

IceC

ube

will

wor

k !

96/9

7A

MA

ND

A -

B10

120

m

AM

AN

DA

B10

NATU

RE 2

001

Sky

plot

of th

eve

ryfir

st17

Nu

cand

idat

esin

B10 B10

sky

plot

publ

ishe

din

Nat

ure

2001

1 km

2 km

120

m

•3

long

stri

ngs

•st

udy

deep

and

sha

llow

ice

for f

utur

e Ic

eCub

e

97/9

8

0.02

0.1

0.5

Sca

tterin

gco

effic

ient

(1/m

)vs

. dep

th

1 km

2 km

AM

AN

DA

-II

99/0

020

0 m

Nea

rly h

oriz

onta

l μ

Oce

an W

ater

AM

AN

DA

resu

lts

δ=90

º

24h

0h

Max

Sig

nific

ance

δ=54

º, α=

11.4

h3.

38σ

No

sign

ifica

nt e

xces

s fo

und

Diff

use

fluxe

sPo

int s

ourc

esN

eutr

inos

from

GR

BW

IMP

sear

ches

Mag

netic

Mon

opol

esC

osm

icra

ysSN

mon

itorin

g…

.S

kym

apfro

m7y

ears

AM

AN

DA

: no

sign

ifica

ntex

cess

The

one

intr

igui

ngco

inci

denc

e…

.

Yea

r2

00

02

00

12

00

22

00

3

May

Jun

eJu

ly

Flux

ofTe

V p

hoto

ns(a

rb. u

nits

) 0123

νν

WHIPPLE

Arr

ival

tim

e of

ne

utrin

osfro

mth

edi

rect

ion

of th

eA

GN

E

S19

59+6

50

05/0

6: 8

Rem

aini

ng:

22 Ic

eCub

e S

tring

s5

Dee

pCor

eS

tring

s

com

plet

ein

Jan

uary

2011

04/0

5: 1

07/0

8: 1

806

/07:

13

08/0

9: 1

9 st

rings

IceC

ube

Obs

erva

tory

Sha

dow

of t

he M

oon

Sha

dow

of t

he M

oon

Cos

mic

Ray

sC

osm

ic R

ays

Abs

olut

e po

intin

g ≤

1°A

ngul

ar re

solu

tion ≤

0.5°

8 m

onth

sIc

eCub

e 40

str

ings

Dow

nwar

dm

uons

, max

. 28°

abo

veho

rizon

, med

ian

ener

gyof

prim

ary

pare

nt~

30 T

eV

Larg

e-sc

ale

anis

otro

pyof

dow

ngoi

ngm

uons

IceC

ube

(40

strin

gs20

08)

anis

otro

pies

on th

epe

r-m

ille

scal

e

(sky

map

in e

quat

oria

lco

ordi

nate

s)

90

‐90

24h

0024

h

90 ‐90

12 TeV

126 TeV

MIL

AG

RO

Com

pare

to

Nor

ther

n

hem

isph

ere

Tibe

t air

show

erar

ray

Sim

ulat

ion

(Lal

lem

ente

t al.

Sci

ence

200

5)

Com

pton

-Get

ting

effe

ct?

Hel

iosp

here

effe

ct?

Nea

rby

puls

ar?

Inte

rste

llar m

agne

ticfie

ld?

Firs

t obs

erva

tion

on

Sou

ther

n he

mi-

sphe

read

dsim

porta

ntpi

ece

of in

form

atio

n.

Firs

t loo

kab

ove

horiz

on(Ic

eCub

e 20

07, 2

2 st

rings

)

PeV

-EeV

rang

e

Southe

rn hem

isph

ere

Northern he

misph

ere

Poin

t Sou

rces

: The

Prog

ress

fact

or

1000

in 1

5 ye

ars

!

Ano

ther

fact

or

1000

!

Diff

use

Flux

es: T

hePr

ogre

ss

Med

itera

nnea

npr

ojec

ts

NES

TOR

(s

ince

1991

) „A

man

da-s

ized

“--

unde

rcon

stru

ctio

n(?

)

AN

TAR

ES(s

ince

1996

)„A

man

da s

ized

“ --

data

taki

ng

NEM

O:

R&

D fo

rkm

3 pr

ojec

t

Sin

ce20

03: k

m3

initi

ativ

e K

M3N

eT

4100

m

2400

m

3400

mA

NT

AR

ES

NE

MO

NE

STO

R

NES

TOR

1991

:fir

stsi

test

udie

s19

92:

first

muo

n co

unt

1992

-200

1:m

any

ocea

nte

sts,

bu

ildla

b an

d in

frast

ruct

ure

2000

:ca

ble

to s

ite20

03:

depl

oyfir

stflo

or.

Cab

lefa

ilure

afte

ra

few

wee

ks

Com

pare

to 2

000

decl

ared

plan

:–

depl

oyfu

llto

wer

2003

–de

ploy

6 m

ore

tow

ers

2005

AN

TAR

ES

Instal

lation

:Ju

nctio

nBox

-De

c200

2Lin

e 1-M

arch

2006

Line 5

-1-D

ec20

07Lin

e 11-

12-M

ay 20

08

Ant

ares

resu

lts

NEM

O

R

&D

forK

M3N

eT-4

-floo

r tow

erin

200

6-f

ullt

ower

end

of 2

009

KM

3NeT

Rec

omm

enda

tions

KM

3NeT

2001

/02:

Hig

h E

nerg

y N

eutri

no A

stro

phys

ics

Pan

el–

Hig

h ph

ysic

sin

tere

st–

Nee

dkm

³ sca

le–

Nee

dbo

thhe

mis

pher

es–

No

mor

eth

an1

Nor

ther

n de

tect

or–

Tim

ely

form

atio

nof

Nor

ther

n he

mis

pher

ede

epw

ater

dete

ctor

isen

cour

aged

2008

: ApP

EC

–Th

e pr

iorit

y pr

ojec

t for

hig

h en

ergy

neu

trino

ast

rono

my

is K

M3N

eT.

–E

ncou

rage

d by

the

sign

ifica

nt te

chni

cal p

rogr

ess

of re

cent

yea

rs, t

he s

uppo

rt fo

r wor

king

tow

ards

KM

3NeT

is c

onfir

med

. –

Res

ourc

es fo

r a M

edite

rrane

an d

etec

tor s

houl

d be

poo

led

into

a s

ingl

e op

timis

ed d

esig

n fo

r a la

rge

rese

arch

infra

stru

ctur

e, w

ith in

stal

latio

n st

artin

g in

20

12.

–Th

e se

nsiti

vity

of K

M3N

eT m

ust s

ubst

antia

lly e

xcee

d th

at o

f all

exis

ting

neut

rino

dete

ctor

s in

clud

ing

IceC

ube.

KM

3NeT

Mar 2012

Des

ign

deci

sion

Con

stru

ctio

n

2013

2017

2011

Dat

a ta

king

2015

2 km

Site

S

ize

Con

figur

atio

nTe

chno

logy

Dep

loym

ent

…a

long

mar

chw

hich

has

not

yetr

each

edits

end.


Recommended