+ All Categories
Home > Documents > The genome of Ectocarpus subulatus highlights unique...

The genome of Ectocarpus subulatus highlights unique...

Date post: 24-Oct-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
36
This is a repository copy of The genome of Ectocarpus subulatus highlights unique mechanisms for stress tolerance in brown algae. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/132406/ Version: Other Monograph: (2018) The genome of Ectocarpus subulatus highlights unique mechanisms for stress tolerance in brown algae. Working Paper. https://doi.org/10.1101/307165 [email protected] https://eprints.whiterose.ac.uk/ Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
Transcript
  • This is a repository copy of The genome of Ectocarpus subulatus highlights unique mechanisms for stress tolerance in brown algae.

    White Rose Research Online URL for this paper:http://eprints.whiterose.ac.uk/132406/

    Version: Other

    Monograph:(2018) The genome of Ectocarpus subulatus highlights unique mechanisms for stress tolerance in brown algae. Working Paper.

    https://doi.org/10.1101/307165

    [email protected]://eprints.whiterose.ac.uk/

    Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

    Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.

  • 1

    The genome of Ectocarpus subulatus1

    highlights unique mechanisms for2

    stresstoleranceinbrownalgae3

    4

    Simon M. Dittami1*, Erwan Corre

    2, Loraine Brillet-Guéguen

    1,2, Noé Pontoizeau

    1,2, Meziane Aite

    3,5

    Komlan Avia1, Christophe Caron

    2, Chung Hyun Cho

    4, Jonas Collén

    1, Alexandre Cormier

    1, Ludovic6

    Delage1,SylvieDoubleau

    5,ClémenceFrioux

    3,AngéliqueGobet

    1, IreneGonzález-Navarrete

    6,Agnès7

    Groisillier1,CécileHervé

    1,DidierJollivet

    7,HettyKleinJan

    1,CatherineLeblanc

    1,AgnieszkaP.Lipinska

    1,8

    Xi Liu2, Dominique Marie

    7, Gabriel V. Markov

    1, André E. Minoche

    6,8, Misharl Monsoor

    2, Pierre9

    Pericard2,Marie-Mathilde Perrineau

    1, Akira F. Peters

    9, Anne Siegel

    3, Amandine Siméon

    1, Camille10

    Trottier3,HwanSuYoon

    4,HeinzHimmelbauer

    6,8,10,CatherineBoyen

    1,ThierryTonon

    1,1111

    1SorbonneUniversité,CNRS,IntegrativeBiologyofMarineModels(LBI2M),StationBiologiquede12

    Roscoff,29680Roscoff,France13

    2CNRS,SorbonneUniversité,FR2424,ABiMSplatform,StationBiologiquedeRoscoff,29680,Roscoff,14

    France15

    3InstituteforResearchinITandRandomSystems-IRISA,UniversitédeRennes1,France16

    4DepartmentofBiologicalSciences,SungkyunkwanUniversity,Suwon16419,Korea17

    5IRD,UMRDIADE,911AvenueAgropolis,BP64501,34394Montpellier,France18

    6 Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr.19

    Aiguader88,Barcelona,08003Spain20

    7SorbonneUniversité,CNRS,AdaptationandDiversityintheMarineEnvironment(ADME),Station21

    BiologiquedeRoscoff(SBR),29680Roscoff,France22

    8MaxPlanckInstituteforMolecularGenetics,14195Berlin,Germany23

    9BezhinRosko,40RuedesPêcheurs,29250Santec,France24

    10DepartmentofBiotechnology,UniversityofNaturalResourcesandLifeSciences(BOKU),Vienna,25

    1190Vienna,Austria26

    11CentreforNovelAgriculturalProducts,DepartmentofBiology,UniversityofYork,Heslington,York,27

    YO105DD,UnitedKingdom.28

    29

    *Correspondence:[email protected],phone+33298292362,fax+33298292324.30

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 2

    Abstract31

    32

    Brownalgaearemulticellularphotosyntheticorganismsbelongingtothestramenopilelineage.They33

    aresuccessfulcolonizersofmarinerockyshoresworld-wide.ThegenusEctocarpus,andespecially34

    strainEc32,hasbeenestablishedasageneticandgenomicmodelforbrownalgae.Arelatedspecies,35

    EctocarpussubulatusKützing,ischaracterizedbyitshightoleranceofabioticstress.Herewepresent36

    the genome andmetabolic network of a haploidmale strain ofE. subulatus, establishing it as a37

    comparative model to study the genomic bases of stress tolerance in Ectocarpus. Our analyses38

    indicatethatE.subulatushasseparatedfromEctocarpussp.Ec32viaallopatricspeciation.Sincethis39

    event,itsgenomehasbeenshapedbytheactivityofvirusesandlargeretrotransposons,whichin40

    thecaseofchlorophyll-bindingproteins,mayberelatedtotheexpansionofthisgenefamily.We41

    have identifiedanumberof furthergenes thatwesuspect tocontribute tostress tolerance inE.42

    subulatus,includinganexpandedfamilyofheatshockproteins,thereductionofgenesinvolvedin43

    the production of halogenated defense compounds, and the presence of fewer cell wall44

    polysaccharide-modifyingenzymes.However,96%ofgenesthatdifferedbetweenthetwoexamined45

    Ectocarpus species, aswell as 92% of genes under positive selection,were found to be lineage-46

    specificandencodeproteinsofunknownfunction.Thisunderlinestheuniquenessofbrownalgae47

    with respect to their stress tolerance mechanisms as well as the significance of establishing E.48

    subulatusasacomparativemodelforfuturefunctionalstudies. 49

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 3

    Introduction50

    Brown algae (Phaeophyceae) are multicellular photosynthetic organisms that are successful51

    colonizersofrockyshoresoftheworld’soceans,inparticularintemperateandpolarregions.Inmany52

    placestheyconstitutethedominantvegetationintheintertidalzone,wheretheyhaveadaptedto53

    multiple stressors includingstrongvariations in temperature, salinity, irradiation,andmechanical54

    stress(waveaction)overthetidalcycle(DavisonandPearson,1996).Inthesubtidalenvironment,55

    brownalgaeformlargekelpforeststhatharborhighlydiversecommunities.Theyarealsoharvested56

    asfoodorforindustrialpurposes,suchastheextractionofalginates(McHugh,2003).Theworldwide57

    annualharvestofbrownalgaehasreached10milliontonsby2014andisconstantlygrowing(FAO,58

    2016).Brownalgaesharesomebasicphotosyntheticmachinerywithlandplants,buttheirplastids59

    derivedfromasecondaryortertiaryendosymbiosiseventwitharedalga,andtheybelongtoan60

    independent lineage of Eukaryotes, the Stramenopiles (Archibald, 2009). This phylogenetic61

    background, together with their distinct habitat, contributes to the fact that brown algae have62

    evolvednumerousuniquemetabolicpathways,lifecyclefeatures,andstresstolerancemechanisms.63

    Toenablefunctionalstudiesofbrownalgae,strainEc32ofthesmallfilamentousalgaEctocarpussp.64

    hasbeenestablishedasageneticandgenomicmodelorganism(Petersetal.,2004;Cocketal.,2010;65

    Heeschetal.,2010).ThisstrainwasformerlydescribedasEctocarpussiliculosus,buthassincebeen66

    showntobelongtoanindependentcladebymolecularmethods(Stache-Crainetal.,1997;Peterset67

    al.,2015).Morerecentlytwoadditionalbrownalgalgenomes,thatofthekelpspeciesSaccharina68

    japonica (Yeetal.,2015)andthatofCladosiphonokamuranus(Nishitsujietal.,2016),havebeen69

    characterized.Comparisonsbetweenthesethreegenomeshaveallowedresearcherstoobtainafirst70

    overviewoftheuniquegenomicfeaturesofbrownalgae,aswellasaglimpseofthegeneticdiversity71

    withinthisgroup.However,giventheevolutionarydistancebetweenthesealgae,itisdifficulttolink72

    genomicdifferences tophysiologicaldifferencesandpossibleadaptations to their lifestyle.Tobe73

    abletogeneratemoreaccuratehypothesesontheroleofparticulargenesandgenomicfeaturesfor74

    adaptivetraits,acommonstrategyistocomparecloselyrelatedstrainsandspeciesthatdifferonly75

    ina fewgenomic features. ThegenusEctocarpus isparticularlywell suited for such comparative76

    studiesbecauseitcomprisesawiderangeofmorphologicallysimilarbutgeneticallydistinctstrains77

    andspeciesthathaveadaptedtodifferentmarineandbrackishwaterenvironments(Stache-Crain78

    etal.,1997;Montecinosetal.,2017).Onespecieswithinthisgroup,EctocarpussubulatusKützing79

    (Petersetal.,2015)hasseparatedfromEctocarpussp.Ec32approximately16millionyearsago(Mya;80

    Dittamietal.,2012). Itcomprises isolateshighlyresistanttoelevatedtemperature(Bolton,1983)81

    andlowsalinity.Astrainofthisspecieswasevenisolatedfromfreshwater(WestandKraft,1996),82

    constitutingoneofthehandfulofknownmarine-freshwatertransitionsinbrownalgae(Dittamiet83

    al.,2017).84

    HerewepresentthedraftgenomeandmetabolicnetworkofastrainofE.subulatus,establishing85

    thegenomicbasisforitsuseasacomparativemodeltostudystresstolerancemechanisms,andin86

    particular of low salinity tolerance, in brown algae. Similar strategies have previously been87

    successfullyemployedinterrestrialplants,where“extremophile”relativesofmodel-oreconomically88

    relevant specieshavebeen sequenced toexplorenewstress tolerancemechanisms in thegreen89

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 4

    lineage(Ohetal.,2012;DittamiandTonon,2012;Dassanayakeetal.,2011;Amtmann,2009;Maet90

    al.,2013;Zengetal.,2015).Thestudyof theE.subulatusgenome,andsubsequentcomparative91

    analysiswithotherbrownalgalgenomes,inparticularthatofEctocarpussp.Ec32,providesinsights92

    into the dynamics of Ectocarpus genome evolution and divergence, and highlights important93

    adaptive processes, such as a potentially retrotransposon driven expansion of the family of94

    chlorophyll-binding proteins with subsequent diversification. Most importantly, our analyses95

    underline that most of the observed differences between the examined species of Ectocarpus96

    correspondtolineage-specificproteinswithyetunknownfunctions.97

    Results98

    SequencingandassemblyoftheE.subulatusgenome99

    Atotalof34.7Gbofpaired-endreaddataandof28.8Gbofmatepairreads(correspondingto45100

    millionnon-redundantmate-pairs)wereobtainedandusedtogenerateaninitialassemblywitha101

    total length of 350 Mb, an N50 length of 159 kb, and 8% undefined bases (Ns). However, as102

    sequencingwascarriedoutonDNAfromalgalmaterialthathadnotbeentreatedwithantibiotics,a103

    substantialpartoftheassembledscaffoldswasofbacterialorigin.Removalofthesesequencesfrom104

    thefinalassemblyresultedinthefinal227MbgenomeassemblywithanaverageGCcontentof54%105

    (Table 1). After all cleaning and filtering steps, and considering only algal scaffolds, the average106

    sequencingcoveragewas67Xforthepairendlibraryandthegenomiccoverage(numberofunique107

    algalmatepairs*spansize/assemblysize)was6.9,14.4,and30.4Xforthe3kb,5kb,and10kb108

    mate pair libraries, respectively. The bacterial sequences corresponded predominantly to109

    Alphaproteobacteria (50%, with the dominant genera Roseobacter 8% and Hyphomonas 5%)110

    followedbyGammaproteobacteria(18%)andFlavobacteria(13%).RNA-seqexperimentsyieldeda111

    total of 4.2 Gb of sequence data for a culture of E. subulatus Bft15b cultivated in seawater.112

    Furthermore,4.5Gband4.3GbwereobtainedfortwolibrariesofafreshwaterstrainofE.subulatus113

    fromHopkinsRiverFallsaftergrowth in seawaterand indilutedmedium, respectively.Of these,114

    96.6% (Bft15b strain in seawater), 87.6% (freshwater strain in seawater), and 85.3% (freshwater115

    strainindilutedmedium)weresuccessfullymappedagainstthefinalgenomeassemblyoftheBft15b116

    strain.117

    Genepredictionandannotation118

    GenepredictionwascarriedoutfollowingtheprotocolemployedforEctocarpussp.Ec32(Cocket119

    al.,2010)usingEugene.Thenumberofpredictedproteinswas60%higherthanthatpredictedfor120

    Ec32(Table1),butthisdifferencecanbeexplainedtoalargepartbythefactthatmono-exonicgenes121

    (manyofwhichcorrespondingtotransposases)werenotremovedfromourpredictions,butwere122

    manually removed fromtheEc32genome.This isalsocoherentwith the lowermeannumberof123

    introns per gene observed in the Bft15b strain. For 10,395 (40 %) of these predicted proteins124

    automaticannotationsweregeneratedbasedonBlastPsearchesagainsttheSwiss-Protdatabase;125

    furthermore724proteinsweremanuallyannotated.Thecomplete setofpredictedproteinswas126

    used to evaluate the completeness of the genome based on the presence of conserved core127

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 5

    eukaryotegenesusingBUSCO(Simãoetal.,2015).ThisrevealedtheE.subulatusgenometobe86%128

    completeusingthefullsetofconservedeukaryoticgenes,and91%whennotconsideringproteins129

    alsoabsentfromallsequencedknownbrownalgae.130

    Repeatedelements131

    Using theREPETpipeline,wedetermined that, similar to results obtained for strain Ec32, theE.132

    subulatus genome consistedof 30% repeatedelements, i.e. 10% less thanS. japonica. Themost133

    abundantgroupsofrepeatedelementswerelargeretrotransposonderivatives(LARDs),followedby134

    long terminal repeats (LTRs, predominantly Copia and Gypsy), and long and short interspersed135

    nuclearelements (LINEs).Theoveralldistributionofsequence identity levelswithinsuperfamilies136

    showedtwopeaks,oneatanidentitylevelof78-80%,andoneat96-100%(Figure1),indicatingtwo137

    periodsofhightransposonactivityinthepast.Terminalrepeatretrotransposonsinminiature(TRIM)138

    and LARDs, both non-autonomous groups of retrotransposons,were among themost conserved139

    families (Figure 1B). In line with previous observations carried out in Ectocarpus sp. Ec32, no140

    methylationwasdetectedintheE.subulatusgenomicDNA,anindicationthatmethylationwasmost141

    likelynotamechanismtosilencetransposonsinthisspecies.142

    Organellargenomes143

    PlastidandmitochondrialgenomesfromE.subulatushave95.5%and91.5%sequenceidentitywith144

    their Ectocarpus sp. Ec32 counterparts, respectively, in the conserved regions (Figure 2). The145

    mitochondrial genome ofE. subulatus differed from that ofEctocarpus sp. Ec32 essentiallywith146

    respecttothepresenceofthreeadditionalmaturasegenes,aswellasoneandtwointronswithin147

    the16Sand23S rRNAgenes, respectively.A largestructuraldifferencewasobservedonly in the148

    plastidgenomewhereone inversionofca. 50 kb in the small single copy (SSC) regionmayhave149

    occurred.Furthermore,smalldifferencesingenecontentsoftheE.subulatusplastidwithrespectto150

    Ectocarpussp.Ec32weredetectedaroundtwoinvertedrepeat(IR)regionsconcerningthefollowing151

    genes:psbC(genetruncated),psbD(IRregionnexttogene),rpoB(largegap,frameshift),andtRNA-152

    ArgandtRNA-Glu(duplicatedinthetRNAregion).PseudogenizationofgenesattheedgeofIRsis153

    indeedacommonphenomenon(Leeetal.,2016).154

    Globalcomparisonofpredictedproteomes155

    GO-basedcomparisons156

    OrthoFinderwasusedtodefineclustersofpredictedorthologsaswellasspecies-specificproteins.157

    AsshowninFigure3,11,177predictedBft15bproteinshadnoorthologinEc32,whilethereverse158

    was true for only 3,605 proteins of strain Ec32. Furthermore, among the clusters of genes, we159

    observeddifferencesincopynumberforseveraloftheproteinsbetweenthetwospecies.Usinggene160

    setenrichmentanalyses,weattempted toautomatically identify functional groupsof genes that161

    wereover-representedeitheramongtheproteinsspecifictooneortheothergenome,orthatwere162

    expandedinoneofthetwogenomes.Theresultsoftheseanalysespointtowardsseveralfunctional163

    groupsofproteinsthatweresubjecttorecentvariationsbetweenE.subulatusandEctocarpussp.164

    Ec32(Figure3).Categoriesidentifiedasover-representedamongthegenesuniquetoE.subulatus165

    includeDNAintegration,chlorophyllbinding,andDNAbinding,butalsofalsepositivessuchasred166

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 6

    light signaling, which arise from the presence of transposable elements in the genome (see167

    Supporting InformationFileS1).However,nosignificantlyenrichedGOtermswere foundamong168

    protein familiesexpanded in theE. subulatus genome. In contrast, several categorieswereover-169

    representedamongthegenesandgenefamiliesspecifictoorexpandedintheEctocarpussp.Ec32170

    strain,manyofwhichwererelatedeithertosignalingpathwaysortothemembraneandtransporters171

    (Figure3), althoughdifferenceswith respect tomembraneand transporterswerenot confirmed172

    aftermanualcuration.173

    Domain-basedcomparisons174

    Domain-basedcomparisonswerecarriedouttoavoidapossibleimpactofmoderateorpoor-quality175

    annotationsonthegenomiccomparisons.Intotal,5,728differentInterProdomainsweredetected176

    in both Ectocarpus genomes, with 133,448 and 133,052 instances in E. subulatus Bft15b and177

    Ectocarpussp.Ec32strainsrespectively.ThemostcommondomainsinE.subulatuswereZincfinger,178

    CCHC-type(IPR001878,3,861instances),andRibonucleaseH-like(IPR012337,3,742instances).Both179

    werepresentlessthan200timesinEc32.ThemostcommondomainsinEctocarpussp.Ec32were180

    theankyrinrepeatandankyrinrepeat-containingdomains(IPR002110,IPR020683:4,138and4,062181

    occurrencesvsca.3,000inBft15b).Twohundredandninety-sixdomainswerespecifictoBft15b,182

    while582werespecifictoEc32(seeSupportingInformationTableS2).183

    Metabolicnetwork-basedcomparisons184

    Intotal,theE.subulatusmetabolicnetworkreconstructioncomprised2,445genesassociatedwith185

    2,074metabolic reactions and 2,173metabolites in 464 pathways, 259 ofwhichwere complete186

    (Figure3).TheseresultsaresimilartodatapreviouslyobtainedforEctocarpussp.Ec32(Prigentet187

    al., 2014; see http://gem-aureme.irisa.fr/ectogem for the most recent version; 1,977 reactions,188

    2,132metabolites,2,281genes,459pathways,272completepathways).Comparisonsbetweenboth189

    networks were carried out on a pathway level (Supporting Information Table S3), focusing on190

    pathwayspresent(i.e.completetomorethan50%)inoneofthespecies,butwithnoreactionsin191

    theother.This ledtotheidentificationof16pathwayspotentiallyspecifictoE.subulatusBft15b,192

    and 11 specific to Ectocarpus sp. Ec32, which were further manually investigated. In all of the193

    examined cases, the observed differences were due to protein annotation, but not due to the194

    presence/absence of proteins associatedwith these pathways in both species. For instance, the195

    pathways “spermine and spermidinedegradation III" (PWY-6441)was only found inE. subulatus196

    becausethecorrespondinggeneshadbeenmanuallyannotatedinthisspecies,whilethiswasnot197

    thecaseinEctocarpussp.Ec32.Ontheotherhand,threepathwaysrelatedtomethanogenesis(PWY-198

    5247,PWY-5248,andPWY-5250)werefalselyincludedinthemetabolicnetworkofE.subulatusdue199

    toanoverlypreciseautomaticGOannotationofthegeneBft140_7.Allinall,basedonournetwork200

    comparisons,weconfirmednodifferencesregardingthepresenceorabsenceofknownmetabolic201

    pathwaysinthetwoexaminedspeciesofEctocarpus.202

    Genesunderpositiveselection203

    In total, 7,147 pairs of orthologs were considered to search for genes under positive selection204

    between the two examined strains of Ectocarpus, and we identified 83 gene pairs (1.2%) that205

    exhibiteddN/dSratios>1(SupportingInformationTableS4).Thisproportionwaslowcomparedto206

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 7

    the12%ofgenesunderpositiveselectionfoundinastudycomprisingalsokelpanddiatomspecies207

    (Tengetal., 2017).Notehowever, thatouranalysis focusedon theglobaldN/dS ratiopergene,208

    ratherthanthelocaldN/dSratiopercodonsite(implementedincodeml,PAML)usedbyTengetal.209

    (2017).Thegenepairsunderpositiveselectionmayberelatedtotheadaptationtothedifferent210

    environmental niches occupied by the strains investigated. These gene pairs were examined211

    manually,butonlyoneofthem(Ec-11_002330,EsuBft305_15)couldbeassignedafunction,i.e.a212

    putativemannosyl-oligosaccharide1,2-alpha-mannosidaseactivity,possiblyinvolvedinglycoprotein213

    modification.Twelveadditionalpairscontainedknownproteindomains(twoZincfingerdomains,214

    one TIP49 domain, oneDnaJ domain, oneNADH-ubiquinone oxidoreductase domain, one SWAP215

    domain, and six ankyrin repeat domains). Ankyrin repeat domains were significantly over-216

    represented among the genes under positive selection (p < 0.05, Fisher exact test), and the217

    correspondinggenesweremanuallyexaminedbybestreciprocalblastsearchtoensurethatthey218

    correspondedtotrueorthologs.Onlyonepairwaspartofaproteinfamilythathadundergonerecent219

    expansion(Ec-27_003170,EsuBft1157_2),andinthiscasephylogeneticanalysisincludingtheother220

    members of the family (EsuBft255_4, EsuBft2264_2, Ec-05_004510, Ec-08_002010) showed Ec-221

    27_003170andEsuBft1157_2toformabranchwith100%bootstrapsupport(datanotshown).The222

    remaining70pairsofproteinshadentirelyunknownfunctions,althoughfourgeneswerelocatedin223

    thepseudoautosomalregionofthesexchromosomeofEctocarpussp.Ec32.Outofthe83genes224

    underpositiveselection72werefoundonlyinbrownalgaeandanotherfouronlyinstramenopiles225

    (e-value cutoff of 1e-10 against the nr database). They can thus be considered as taxonomically226

    restricted genes. Furthermore, 75 of these genes were expressed in at least one of the two227

    Ectocarpusspecies,andonly10ofthe83genesencodedshortproteinswithlessthan100amino228

    acidresidues,suggestingthatthemajorityofthesegenesmaybefunctional.Noneofthemwere229

    highlyvariable,asindicatedbythefactthatthedN/dSratioexhibitedaweaknegativecorrelation230

    withtherateofsynonymousmutationsdS(PearsonCorrelationcoefficientr=-0.05,p<0.001;Figure231

    4).ThissuggeststhatthesplitofEctocarpussp.Ec32andE.subulatuswastheresultofallopatric232

    separationwithsubsequentspeciationduetogradualadaptationtothelocalenvironment.Indeed,233

    in cases of sympatric or parapatric speciation, genes under positive selection are predominant234

    among rapidly evolving genes (Swanson and Vacquier, 2002). There was no trend for positively235

    selected genes tobe located in specific regionsof the genome (dispersion indexof genesunder236

    positiveselectionclosetoarandomdistributionwithvaluesrangingbetween0.7and0.8depending237

    onthewindowsize).238

    Manualexaminationoflineage-specificandofexpandedgenesandgenefamilies239

    ThefocusofourworkisonthegenesspecifictoandexpandedinE.subulatusandweonlygivea240

    briefoverviewofthesituationregardingEctocarpussp.Ec32.ItisimportanttoconsiderthattheE.241

    subulatusBft15bgenomeislikelytobelesscompletethantheEc32genome,whichhasbeencurated242

    andimprovedforover10yearsnow(Cormieretal.,2017).Hence,regardinggenesthatarepresent243

    in Ec32 but absent in Bft15b, it is difficult to distinguish between the effects of a potentially244

    incompletegenomeassemblyandtruegenelossesinBft15b.Tofurtherreducethisbiasduringthe245

    manual examination of lineage-specific genes, the list of genes to be examinedwas reduced by246

    additionalrestrictions.First,onlygenesthatdidnothaveorthologsinS.japonicawereconsidered.247

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 8

    This eliminated several predictedproteins thatmayhave appeared to be lineage-specific due to248

    incomplete genome sequencing, but also proteins that have been recently lost in one of the249

    Ectocarpus species. Secondly, the effect of possible differences in gene prediction, notably the250

    manualremovalofmonoexonicgenemodelsinEctocarpussp.Ec32,wasminimizedbyincludingan251

    additional validation step: onlyproteinswithout correspondingnucleotide sequences (tblastn, e-252

    value<1e-10) intheotherEctocarpusgenomewereconsideredformanualexamination.Thirdly,253

    onlyproteinswitha lengthofat least50aawere retained.This reduced thenumberof lineage-254

    specificproteinstobeconsideredinstrainBft15bto1,629,andinstrainEc32to689(Supporting255

    InformationTableS5).256

    InE.subulatus,amongthe1,629lineage-specificgenes,1,436geneshadnohomologs(e-value<1e-257

    5)intheUniProtdatabase:theyarethustrulylineage-specificandhaveunknownfunctions.Among258

    the remaining 193 genes, 145 had hits (e-value < 1e-5) in Ectocarpus sp. Ec32. The majority259

    corresponds tomulti-copy genes that had diverged prior to the separation of Ectocarpus and S.260

    japonica,andforwhichtheEctocarpussp.Ec32andS.japonicaorthologswereprobablylost.The261

    remaining48 genesweremanually examined (genetic context,GC content, EST coverage); 18of262

    them corresponded to probable bacterial contaminations and the corresponding scaffolds were263

    removed.Finally,theremaining30genesweremanuallyannotatedandclassified:13hadhomology264

    onlywithuncharacterizedproteinsorwere toodissimilar fromcharacterizedproteins todeduce265

    hypotheticalfunctions;anothereightprobablycorrespondedtoshortviralsequencesintegratedinto266

    the algal genome (EsuBft1730_2, EsuBft4066_3, EsuBft4066_2, EsuBft284_15, EsuBft43_11,267

    EsuBft551_12, EsuBft1883_2, EsuBft4066_4), and one (EsuBft543_9) was related to a268

    retrotransposon.Twoadjacentgenes(EsuBft1157_4,EsuBft1157_5)werealsofoundindiatomsand269

    may be related to the degradation of cellobiose and the transport of the corresponding sugars.270

    Furthermore,twogenes,EsuBft1440_3andEsuBft1337_8,containedconservedmotifs(IPR023307271

    andSSF56973) typically found in toxin families. Finally, twoadditionalproteins,EsuBft36_20and272

    EsuBft440_20, consisted almost exclusively of short repeated sequences of unknown function273

    (“ALEW”and“GAAASGVAGGAVVVNG”,respectively). 274

    InEctocarpussp.Ec32,97proteinscorrespondedtotheE.siliculosusvirus-1insertedintotheEc32275

    genome–no similar insertionwasdetected inE. subulatus. The largemajorityof proteins (511)276

    correspondedtoproteinsofunknownfunctionwithoutmatchesinpublicdatabases.Theremaining277

    81proteinsweregenerallypoorlyannotated,usuallyonlyviathepresenceofadomain.Examples278

    are ankyrin repeat-containing domain proteins (12), Zinc finger domain proteins (6), proteins279

    containingwallsensingcomponent(WSC)domains(3),proteinkinase-likeproteins(3),andNotch280

    domainproteins(2)(seeSupportingInformationTableS5).281

    Regarding expanded gene families, OrthoFinder indicated 232 clusters of orthologous genes282

    (corresponding to4,064proteins)expanded in thegenomeofE. subulatus,and450expanded in283

    Ectocarpus sp. Ec32 (corresponding to 1,685proteins; Supporting Information Table S5).Manual284

    examinationoftheE.subulatusexpandedgeneclustersrevealed48ofthem(2,623proteins)tobe285

    falsepositives,whichcanbeexplainedessentiallybysplitgenemodelsorgenemodelsassociated286

    withtransposableelementspredictedintheE.subulatusbutnotintheEctocarpussp.Ec32genome.287

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 9

    Theremaining184clusters(1,441proteins)correspondedtoproteinswithunknownfunction(139288

    clusters,1,064proteins),98%ofwhichwerefoundonlyinbothEctocarpusgenomes.Furthermore,289

    nine clusters (202 proteins) represented sequences related to transposons predicted in both290

    genomes,andeightclusters(31proteins)weresimilartoknownviralsequences.Only28clusters291

    (135proteins)couldberoughlyassignedtobiologicalfunctions(Table2).Theycomprisedproteins292

    potentiallyinvolvedinmodificationofthecell-wallstructure(includingsulfation),intranscriptional293

    regulationandtranslation,incell-cellcommunicationandsignaling,aswellasafewstressresponse294

    proteins, notably a set of HSP20s, and several proteins of the light-harvesting complex (LHC)295

    potentiallyinvolvedinnon-photochemicalquenching.296

    AmongthemoststrikingexamplesofexpansioninEctocarpussp.Ec32,wefounddifferentfamilies297

    ofserine-threonineproteinkinasedomainproteinspresentin16to25copiesinEc32comparedto298

    only5or6(numbersofdifferentfamilies)inE.subulatus,Kinesinlightchain-likeproteins(34vs.13299

    copies),twoclustersofNotchregioncontainingproteins(11and8vs.2and1copies),afamilyof300

    unknownWSCdomaincontainingproteins(8copiesvs.1),putativeregulatorsofG-proteinsignaling301

    (11vs.4copies),aswellasseveralexpandedclustersofunknownandofviralproteins.302

    Targetedmanualannotationofspecificpathways303

    Basedontheresultsofautomaticanalysisbutalsoonliteraturestudiesofgenesthatmaybeableto304

    explainphysiologicaldifferencesbetweenE.subulatusandEctocarpussp.Ec32,severalgenefamilies305

    andpathwaysweremanuallyexaminedandannotated.306

    Cellwallmetabolism307

    Cellwallsarekeycomponentsofbothplantsandalgaeand,asa firstbarrier to thesurrounding308

    environment, important for many processes including development and the acclimation to309

    environmental changes. Synthesis and degradation of cell wall oligo- and polysaccharides is310

    facilitatedbycarbohydrate-activeenzymes(CAZymes)(http://www.cazy.org/;Cantareletal.2009).311

    Thesecompriseseveralfamiliesincludingglycosidehydrolases(GHs)andpolysaccharidelyases(PLs),312

    both involved in the cleavage of glycosidic linkages, glycosyltransferases (GTs), which create313

    glycosidiclinkages,andadditionalenzymessuchasthecarbohydrateesterases(CEs)whichremove314

    methyloracetylgroupsfromsubstitutedpolysaccharides.315

    ThegenomeofthebrownalgaE.subulatusencodes37GHs(belongingto17GHfamilies),94GTs316

    (belongingto28GTfamilies),ninesulfatases(familyS1-2),and13sulfotransferases,butlacksgenes317

    homologoustoknownPLsandCEs (Figure5). Inparticular, theconsistent lackofknownalginate318

    lyasesandcellulasesintheE.subulatusandtheotherbrownalgalgenomessuggeststhatother,yet319

    unknowngenes,maybe responsible for cellwallmodificationsduringdevelopment.Overall, the320

    genecontentofE.subulatusissimilartoEctocarpussp.Ec32andS.japonicaintermsofthenumber321

    ofCAZYfamilies,butslightly lower intermsofabsolutegenenumber(Cock,etal.2010;Yeetal.322

    2015;Figure5).EspeciallyS.japonicafeaturesanexpansionofcertainCAZYfamiliesprobablyrelated323

    totheestablishmentofmorecomplextissuesinthiskelp(i.e.82GHsbelongingto17GHfamilies,324

    131GTsbelongingto31GTfamilies).325

    E. subulatus is frequently found inbrackish-andeven freshwaterenvironments (WestandKraft,326

    1996)whereitscellwallexhibitslittleornosulfation(Torodeetal.,2015).Hence,wealsoassessed327

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 10

    whetherE.subulatushadreducedthegenefamiliesresponsibleforthisprocess.Itsgenomeencodes328

    onlyeightsulfatasesandsixsulfotransferasescomparedtotenandseven,respectively,inEctocarpus329

    sp.Ec32.WealsodocumentedvariationsintheGTfamilies,somebeingpresentinoneortwoofthe330

    brown algal genomes considered,while absent in other(s) (e.g. GH30, GT15, GT18, GT24, GT25,331

    GT28,GT50,GT54,GT65,GT66,GT74,GT77).However,asgenenumbersforthesefamiliesarevery332

    low(e.g.theGT24familyhasonememberinEctocarpussp.Ec32,twoinE.subulatus,andnoneinS.333

    japonica),theresultsmustbetakenwithcaution.Finally,Ectocarpussp.Ec32haspreviouslybeen334

    reportedtopossessnumerousproteinswithWSCdomains(Cocketal.,2010;Micheletal.,2010).335

    These were initially found in yeasts (Verna et al., 1997) where they act as cell surface336

    mechanosensors andactivate the intracellular cellwall integrity signaling cascade in response to337

    hypo-osmoticshock(Gualtierietal.,2004).Inbrownalgae,theseWSCdomainsmayalsoregulate338

    wall rigidity, through the control of the activity of appended enzymes, such asmannuronan C5-339

    epimerases, which act on alginates (Hervé et al., 2016). Surprisingly, the total number of WSC340

    domains is reduced in E. subulatus compared to Ectocarpus sp. Ec32 with around 320 vs. 444341

    domains, respectively, based on InterProScan (Supporting Information Table S2). Additional342

    informationregardingE.subulatusCAZYmescanbefoundinSupportingInformationFileS1.343

    Centralandstoragecarbohydratemetabolism344

    Acharacteristicfeatureofbrownalgaeisthattheystorecarbohydratesnotasglycogenorstarch,345

    like most animals and plants, but as laminarin (Read et al., 1996). Brown algae also have the346

    particularityofusingthephotoassimilateD-fructose6-phosphatetoproducethealcoholsugarD-347

    mannitolinsteadofsucroselikelandplants.TheE.subulatusgenomecontainssimilarsetsofgenes348

    forcarbonstoragecomparedtoEctocarpussp.Ec32:all thegenesencodingenzymes involved in349

    sucrosemetabolism and starch biosynthesis are completely absentwhile all genes necessary for350

    trehalosesynthesis,aswellas laminarinsynthesisandrecyclingwerefound.Also,threecopiesof351

    M1PDHgeneswerefoundinbothEctocarpusspeciescomparedtotwoinS.japonica,probablydue352

    toa recentduplicationofM1PDH1/M1PDH2 in theEctocarpales (Tononetal.,2017) (Supporting353

    InformationFileS1).354

    Sterolmetabolism355

    Sterols are important modulators of membrane fluidity among eukaryotes, and provide the356

    backbone for signaling molecules (Desmond and Gribaldo, 2009). Fucosterol, cholesterol, and357

    ergosterolare themostabundant sterols inEctocarpussp.Ec32,where their relativeabundance358

    variesaccordingtosexandtemperature(Mikamietal.,2018).Allthreemoleculesarethoughttobe359

    synthesizedfromsqualenebyasuccessionof12to14steps,relyingonaroughlyconservedsetof360

    twelveenzymes(DesmondandGribaldo,2009).TheE.subulatusandEctocarpussp.Ec32genomes361

    eachencodehomologsof twelveof them(SQE,CAS,CYP51,FK,SMO,HSD3B,EBP,CPI1,DHCR7,362

    SC5DL,and twoSMTs).The remaining two,adelta-24-reductase (DHCR24)andaC22desaturase363

    (CYP710),wereprobablylostsecondarily.Inlandplants,theselatterenzymesareinvolvedinthetwo364

    stepstransformingfucosterol intostigmasterol.Fucosterol is themainsterol inbrownalgae,and365

    providesasubstrateforsaringosterol,abrown-algaspecificC24-hydroxylatedfucosterol-derivative366

    withantibacterialactivity(Wächteretal.,2001).367

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 11

    Algaldefense:metabolismofphenolicsandhalogens368

    Polyphenolsareagroupofdefensecompoundsinbrownalgaethatarelikelytobeimportantboth369

    forabiotic(Paviaetal.,1997)andbioticstresstolerance(GeiselmanandMcConnell,1981).Brown370

    algaeproducespecificpolyphenolscalledphlorotannins,whichareanalogoustolandplanttannins.371

    These products are polymers of phloroglucinol, which are synthesized via the activity of a372

    phloroglucinolsynthase,atypeIIIpolyketidesynthasecharacterizedinEctocarpussp.Ec32(Meslet-373

    Cladièreetal.,2013).Inanalogytotheflavonoidpathwayoflandplants,thefurthermetabolismof374

    phlorotannins is thought to be driven by members of chalcone isomerase-like (CHIL), aryl375

    sulfotransferase (AST), flavonoid glucosyltransferase (FGT), flavonoidO-methyltransferase (OMT),376

    polyphenol oxidase (POX), and tyrosinase (TYR) families (Cocket al., 2010).While copynumbers377

    betweenthetwoEctocarpusspeciesandS. japonicaare identical forPKS III,CHIL,FGT,OMTand378

    POX,E.subulatusencodesfewerASTsandTYRs(Figure5).InthecaseofASTs,thismayberelatedto379

    thelowerconcentrationofsulfateinlowsalinityenvironmentsfrequentlycolonizedbyE.subulatus.380

    Asecondimportantandoriginaldefensemechanisminbrownalgaeistheproductionofhalogenated381

    compoundsviatheactivityofhalogenatingenzymes,e.g.thevanadium-dependenthaloperoxidase382

    (vHPO).While S. japonica has recently been reported to possess 17 potential bromoperoxidases383

    (vBPO)and59putativeiodoperoxidases(vIPO)(Yeetal.,2015),Ectocarpussp.Ec32andE.subulatus384

    possessonlyasinglevBPOeachandnovIPO,buthaveinturnslightlyexpandedahaloperoxidase385

    familyclosertovHPOcharacterizedinseveralmarinebacteria(Fournieretal.,2014)(Figure5).One386

    differencebetweenthetwoEctocarpusspeciesisthatE.subulatusBft15bpossessesonlythreevHPO387

    genescomparedtothefivecopiesfoundinthegenomeofEc32.Inaddition,homologsofthyroid388

    peroxidases (TPOs)may alsobe involved in halide transfer and stress response.Again, Ec32 and389

    Bft15bshowareducedsetofthesegenescomparedtoS.japonica,andEc32containsmorecopies390

    thanBft15b.Finally,asinglehaloalkanedehalogenase(HLD)wasfoundexclusivelyinEctocarpussp.391

    Ec32.392

    Transporters393

    Transporters are key actors driving salinity tolerance in terrestrial plants (Volkov, 2015). We394

    therefore carefully assessed potential differences in this group of proteins that may explain395

    physiologicaldifferencesbetweenEc32andBft15bbasedonthefivemaincategoriesoftransporters396

    described in the Transporter Classification Database (TCDB) (Saier et al., 2016): channels/pores,397

    electrochemicalpotential-driventransporters,primaryactivetransporters,grouptranslocators,and398

    transmembraneelectroncarriers.Atotalof292geneswereidentifiedinE.subulatus(Supporting399

    InformationTableS1).Theyconsistmainlyof transportersbelonging to the three first categories400

    listedabove.All27annotatedtransportersofthechannels/porescategorybelongtothealpha-type401

    channel (1.A.) and are likely to be involved in movements of solutes by energy-independent402

    processes.Onehundredandforty-fiveproteinswerefoundtocorrespondtothesecondcategory403

    (electrochemical potential-driven transporters) containing transporters using a carrier-mediated404

    process to catalyze uniport, antiport, or symport. The most represented superfamilies are APC405

    (Amino Acid-Polyamine-Organocation, 24), DMT (Drug/Metabolite Transporter, 16), MFS (Major406

    FacilitatorSuperfamily,32),andMC(MitochondrialCarrier,34).Primaryactivetransporters(third407

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 12

    category) use a primary source of energy to drive the active transport of a solute against a408

    concentrationgradient.Eightyproteinsrepresentingthiscategorywerefound intheE.subulatus409

    genome, including 59 ABC transporters and 15 belonging to the P-type ATPase superfamily. No410

    homologs of group translocators or transmembrane electron carriers were identified, but 14411

    transporterswereclassifiedascategory9,whichispoorlycharacterized.A1:1ratiooforthologous412

    genescoding forallof the transportersdescribedabovewasobservedbetweenbothEctocarpus413

    genomes,exceptforEsuBft583_3,ananion-transportingATPase,whichisalsopresentindiatoms414

    andS.japonica,butmayhavebeenrecentlylostinEctocarpussp.Ec32.415

    Abioticstress-relatedgenes416

    Reactive oxygen species (ROS) scavenging enzymes, including ascorbateperoxidases, superoxide417

    dismutases, catalases, catalase peroxidases, glutathione reductases, (mono)dehydroascorbate418

    reductases,andglutathioneperoxidasesareimportantfortheredoxequilibriumoforganisms(see419

    DasandRoychoudhury2014 fora review).An increasedreactiveoxygenscavengingcapacityhas420

    beencorrelatedwithstresstoleranceinbrownalgae(CollénandDavison,1999).Inthesamevein,421

    chaperoneproteinsincludingheatshockproteins(HSPs),calnexin,calreticulin,T-complexproteins,422

    andtubulin-foldingco-factorsareimportantforproteinre-foldingunderstress.Thetranscriptionof423

    thesegenesisverydynamicandgenerallyincreasesinresponsetostressinbrownalgae(Roederet424

    al.,2005;Motaetal.,2015). In total,104genesencodingmembersof theprotein families listed425

    aboveweremanuallyannotatedintheE.subulatusBft15bgenome(SupportingInformationTable426

    1).However,withtheexceptionofHSP20proteinswhichwerepresentinthreecopiesinBft15bvs.427

    onecopyinEc32andhadalreadybeenidentifiedintheautomaticanalysis,nocleardifferencein428

    genenumberwasobservedbetweenthetwoEctocarpusspecies.429

    Differentfamiliesofchlorophyll-bindingproteins(CBPs),suchastheLI818/LHCXfamily,havebeen430

    suspected to be involved in non-photochemical quenching (Peers et al., 2009). CBPs have been431

    reportedtobeup-regulatedinresponsetoabioticstressinstramenopiles(e.g.ZhuandGreen2010;432

    Dongetal.2016),includingEctocarpus(Dittamietal.,2009),probablyasawaytodealwithexcess433

    lightenergywhenphotosynthesisisaffected.Theyhavealsopreviouslybeenshowntobeamong434

    themost variable functional groups of genes between Ectocarpus sp. Ec32 and E. subulatus by435

    comparativegenomehybridizationexperiments(Dittamietal.,2011).Wehaveaddedtheputative436

    E. subulatusCBPs toapreviousphylogenyofEctocarpussp.Ec32CBPs (Dittamietal.,2010)and437

    foundbothasmallgroupofLHCXCBPsaswellasalargergroupbelongingtotheLHCF/LHCRfamily438

    that have probably undergone a recent expansion (Figure 6). Although some of the proteins439

    appearedtobetruncated(markedwithasterisks),allofthemwereassociatedwithatleastsome440

    RNA-seqreads,suggestingthattheymaybefunctional.AnumberofLHCRfamilyproteinswerealso441

    flankedbyLTR-likesequencesaspredictedbytheLTR-harvestpipeline(Ellinghausetal.,2008).442

    Discussion443

    HerewepresentthedraftgenomeandmetabolicnetworkofE.subulatusstrainBft15b,abrownalga444

    which,comparedtoEctocarpussp.Ec32, ischaracterizedbyhighabioticstresstolerance(Bolton,445

    1983;Petersetal.,2015).Basedontime-calibratedmoleculartrees,bothspeciesseparatedroughly446

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 13

    16Mya (Dittamiet al., 2012), i.e. slightly beforee.g. the split betweenArabidopsis thaliana and447

    Thellungiella salsuginea 7-12Mya (Wuetal., 2012).According toouranalysis, the splitbetween448

    Ectocarpus sp. Ec32 andE. subulatuswasprobablydue to allopatric separationwith subsequent449

    adaptationofE.subulatustohighlyfluctuatingandlowsalinityhabitatsleadingtospeciation.450

    GenomeevolutionofEctocarpusspeciesdrivenbytransposonsandviruses451

    ComparedtotheextremophileplantmodelsT.salsugineaorArabidopsislyratawhichhavealmost452

    doubledingenomesizewithrespecttoA.thaliana,theE.subulatusgenomeisonlyapproximately453

    23%largerthanthatofEctocarpussp.Ec32.InT.salsugineaandA.lyrata,theobservedexpansion454

    wasattributedmainlytotheactivityoftransposons(Wuetal.,2012;Huetal.,2011).Inthecaseof455

    Ectocarpus,wealsoobservedtracesofrecenttransposonactivity,especiallyfromLTRtransposons,456

    whichisinlinewiththeabsenceofDNAmethylation,andburstsintransposonactivityhaveindeed457

    been identifiedasonepotentialdriverof localadaptationandspeciation inothermodelsystems458

    such as salmon (de Boer et al., 2007). Furthermore, LTRs are known to mediate the459

    retrotranspositionofindividualgenes,leadingtotheduplicationofthelatter(Tanetal.,2016).In460

    theE.subulatusgenome,onlyafewcasesofgeneduplicationwereobservedsincetheseparation461

    fromEctocarpussp.Ec32,andinmostofthemnoindicationoftheinvolvementofLTRswasfound.462

    TheonlyexceptionwasarecentexpansionoftheLHCRfamily,inwhichproteinswereflankedbya463

    pair of LTR-like sequences. These elements lacked both the group antigen (GAG) and reverse464

    transcriptase(POL)proteins,whichimpliesthat,ifretro-transpositionwasthemechanismunderlying465

    the expansion of this group of proteins, it would have depended on other active transposable466

    elementstoprovidetheseactivities.467

    ThesecondmajorfactorthatimpactedtheEctocarpusgenomeswereviruses.Viralinfectionsarea468

    common phenomenon in Ectocarpales (Müller et al., 1998), and a well-studied example is the469

    Ectocarpussiliculosusvirus-1(EsV-1)(Delaroqueetal.,2001).Itwasfoundtobepresentlatentlyin470

    hostcellsofseveralstrainsofEctocarpussp.closelyrelatedtostrainEc32,andhasalsobeenfound471

    integrated in thegenomeof the latter strain, although it isnotexpressed (Cocketal., 2010).As472

    previouslyindicatedbycomparativegenomehybridizationexperiments(Dittamietal.,2011),theE.473

    subulatusgenomedoesnotcontainacompleteEsV-1likeinsertion,althoughafewshorterEsV-1-474

    like proteinswere found. Thus, the EsV-1 integration observed in Ectocarpus sp. Ec32 has likely475

    occurredafterthesplitwithE.subulatus.This,togetherwiththepresenceofotherviralsequences476

    specifictoE.subulatus,indicatesthat,inadditiontotransposableelements,viruseshaveshapedthe477

    Ectocarpusgenomesoverthelast16millionyears.478

    Few classical stress response genes but no transporters involved in479

    adaptation480

    Amainaimofthisstudywastoidentifygenefunctionsthatmaypotentiallyberesponsibleforthe481

    highabioticstressandsalinitytoleranceofE.subulatus.Similarstudiesongenomicadaptationto482

    changes in salinityor todrought in terrestrial plantshavepreviouslyhighlighted genes generally483

    involved in stress tolerance to be expanded in “extremophile” organisms. Examples are the484

    expansionofcatalase,glutathionereductase,andheatshockproteinfamiliesindesertpoplar(Ma485

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 14

    etal.,2013),argininemetabolisminjujube(Liuetal.,2014),orgenesrelatedtocationtransport,486

    abscisicacidsignaling,andwaxproductioninT.salsuginea(Wuetal.,2012).Inourstudy,wefound487

    a few genomic differences thatmatch these expectations.E. subulatus possesses two additional488

    HSP20 proteins and has an expanded family of CBPs probably involved in non-photochemical489

    quenching,whichmaycontribute to itshighstress tolerance. Italsohasaslightly reducedsetof490

    genesinvolvedintheproductionofhalogenateddefensecompoundswhichmayberelatedtoits491

    habitatpreference:E.subulatusisfrequentlyfoundinbrackishandevenfreshwaterenvironments492

    withlowavailabilityofhalogens.Italsospecializesinhighlyabioticstressfulhabitatsforbrownalgae493

    andmaythusinvestlessenergyinhalogen-baseddefense.494

    Another anticipated adaptation to life in varying salinities lies in modifications of the cell wall.495

    Notably, the content of sulfated polysaccharides is expected to play a crucial role as these496

    compounds are present in all marine plants and algae, but absent in their freshwater relatives497

    (KloaregandQuatrano,1988;Popperetal.,2011).Thefactthatwefoundonlysmalldifferencesin498

    thenumberofencodedsulfatasesandsulfotransferasesindicatesthattheabsenceofsulfatedcell-499

    wall polysaccharides previously observed inE. subulatus in low salinities (Torodeet al., 2015) is500

    probablyaregulatoryeffectorsimplyrelatedtotheavailabilityofsulfatedependingonthesalinity.501

    This isalsocoherentwiththewidedistributionofE.subulatus,whichcomprisesmarine,brackish502

    water,andfreshwaterenvironments.503

    Finally,transportershavepreviouslybeendescribedasakeyelementinplantadaptationtodifferent504

    salinities(seeRaoetal.,2016forareview).SimilarresultshavealsobeenobtainedforEctocarpusin505

    astudyofquantitativetraitloci(QTLs)associatedwithsalinityandtemperaturetolerance(Aviaet506

    al., 2017). In our study, however, we found no indication of genomic differences related to507

    transporters between the two species. This observation corresponds to previous physiological508

    experimentsindicatingthatEctocarpus,unlikemanyterrestrialplants,respondstostrongchanges509

    in salinity as anosmoconformer rather thananosmoregulator, i.e. it allows the intracellular salt510

    concentrationtoadjusttovaluesclosetotheexternalmediumratherthankeepingtheintracellular511

    ioncompositionconstant(Dittamietal.,2009).512

    Genesrelatedtocell-cellcommunicationareunderpositiveselection513

    Inadditiontogenesthatmaybedirectlyinvolvedintheadaptationtotheenvironment,wefound514

    several gene clusters containing domains potentially involved in cell-cell signaling that were515

    expandedintheEctocarpussp.Ec32genome(Table2),notablyafamilyofankyrinrepeat-containing516

    domainproteins(Mosavietal.,2004)wasmoreabundantinEc32.Furthermore,weidentifiedsix517

    ankyrinrepeat-containingdomainproteinsamongthegenesunderpositiveselectionbetweenthe518

    twospecies.Theexactfunctionoftheseproteins,however,isstillunknown.Theonlywell-annotated519

    gene under positive selection, a mannosyl-oligosaccharide 1,2-alpha-mannosidase, is probably520

    involved in the modification of glycoproteins which are also important for cell-cell interactions521

    (Tulsianietal.,1982).AlthoughthesegenesarenotrapidlyevolvinginEctocarpus,theseobserved522

    differencesmaybe,inpart,responsiblefortheexistingpre-zygoticreproductivebarrierbetweenthe523

    twoexaminedspeciesofEctocarpus(Lipinskaetal.,2016).524

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 15

    Genesofunknownfunctionandlineage-specificgenesarelikelytoplaya525

    dominantroleinadaptation526

    Despitethegenefunctionsidentifiedaspotentiallyinvolvedinadaptationandspeciationabove,itis527

    importanttokeepinmindthatthevastmajorityofgenomicdifferencesbetweenthetwospeciesof528

    Ectocarpuscorrespondstoproteinsofentirelyunknownfunctions.Amongthe83genepairsunder529

    positive selection, 84% were also entirely unknown, and 92% represented genes taxonomically530

    restrictedtobrownalgae.Inaddition,weidentified1,629lineage-specificgenes,ofwhich88%were531

    entirelyunknown.Thesegeneswereforthemostpartexpressedandarethuslikelytocorrespond532

    to true genes. For the lineage-specific genes, their absence from theEctocarpus sp. Ec32 andS.533

    japonicagenomeswasalsoconfirmedonthenucleotidelevel.Alargepartofthemechanismsthat534

    underlietheadaptationtodifferentecologicalnichesinEctocarpusmay,therefore,lieinthesegenes535

    ofunknownfunction.Thiscanbeexplainedinpartbythefactthatstillonlyfewbrownalgalgenomes536

    areavailableandthatcurrentlymostofourknowledgeonthefunctionsoftheirproteinsisbasedon537

    studies in model plants, animals, yeast, or bacteria. Brown algae, however, are part of the538

    stramenopilelineagethathasevolvedindependentlyfromtheformerforover1billionyears(Yoon539

    etal.,2004).Theydifferfromlandplantseveninotherwisehighlyconservedaspects,forinstancein540

    theirlifecycles,theircellwalls,andtheirprimarymetabolism(Charrieretal.,2008).Furthermore,541

    substantial contributions of lineage-specific genes to the evolution of organisms and the542

    developmentofinnovationshavealsobeendescribedforanimalmodels(seeTautzandDomazet-543

    Lošo,2011forareview)andstudiesinbasalmetazoansfurthermoreindicatethattheyareessential544

    forspecies-specificadaptiveprocesses(Khalturinetal.,2009).545

    Despite the probable importance of unknown and lineage-specific genes for local adaptation,546

    Ectocarpusmaystillheavilyrelyonclassicalstressresponsegenesforabioticstresstolerance.Many547

    ofthegenefamiliesknowntoberelatedtostressresponseinlandplants(includingtransportersand548

    genesinvolvedincellwallmodification)forwhichnosignificantdifferencesingenecontentswere549

    observed, have previously been reported to be strongly regulated in response to environmental550

    stress in Ectocarpus (Dittami et al., 2009; Dittami et al., 2012; Ritter et al., 2014). This high551

    transcriptomicplasticity isprobablyoneof the features thatallowEctocarpus to thrive inawide552

    range of environments and may form the basis for its capacity to further adapt to “extreme553

    environments”suchasfreshwater(WestandKraft,1996).554

    Conclusionandfuturework555

    WehaveshownthatE.subulatushasseparatedfromEctocarpussp.Ec32probablyviaamechanism556

    of allopatric speciation. Its genome has since been shapedmainly by the activity of viruses and557

    transposons,particularlylargeretrotransposons.Overthisperiodoftime,E.subulatushasadapted558

    toenvironmentswithhighabioticvariabilityincludingbrackishwaterandevenfreshwater.Wehave559

    identified a number of genes that likely contribute to this adaptation, including HSPs, CBPs, a560

    reduction of genes involved in halogenated defense compounds, or some changes in cell wall561

    polysaccharidemodifyingenzymes.However,thevastmajorityofgenesthatdifferbetweenthetwo562

    examinedEctocarpusspeciesorthathaverecentlybeenunderpositiveselectionarelineage-specific563

    andencodeproteinsofunknownfunction.Thisunderlinesthefundamentaldifferencesthatexist564

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 16

    betweenbrownalgaeandterrestrialplantsorotherlineagesofalgae.Studiesasthepresentone,565

    i.e.withoutstrongaprioriassumptionsaboutthemechanismsinvolvedinadaptation,aretherefore566

    essentialtostartelucidatingthespecificitiesofthislineageaswellasthevariousfunctionsofthe567

    unknowngenes.Finally,E.subulatushasbecomeanimportantbrownalgalmodeltostudytherole568

    of algal-bacterial interactions in response to environmental changes. This is due mainly to its569

    dependenceonspecificbacterialtaxaforfreshwatertolerance(KleinJanetal.,2017;Dittamietal.,570

    2016).Thepresentedalgalgenomeandmetabolicnetworkareindispensabletoolsinthiscontextas571

    well,astheywillallowfortheseparationofalgalandbacterialresponsesincultureexperiments,and572

    facilitate the implementation of global approaches based on the use of metabolic network573

    reconstructions(Dittamietal.,2014;Levyetal.,2015).574

    MaterialsandMethods575

    Biological material. Haploid male parthenosporophytes of E. subulatus strain Bft15b (Culture576

    CollectionofAlgaeandProtozoaCCAPaccession1310/34),isolatedin1978byDieterG.Müllerin577

    Beaufort,NorthCarolina,USA,weregrownin14cm(ca.100ml)PetriDishesinProvasoli-enriched578

    seawater (Starr and Zeikus, 1993) under a 14/10daylight cycle at 14°C. Approximately 1 g fresh579

    weightofalgalculturewasdriedonapapertoweland immediatelyfrozenin liquidnitrogen.For580

    RNA-seq experiments, in addition to Bft15b, a second strain, the diploid freshwater strain CCAP581

    1310/196 isolated fromHopkins River Falls, Australia (West and Kraft, 1996),was included.One582

    culturewasgrownasdescribedaboveforBft15b,andforasecondculture,seawaterwasdiluted20-583

    foldwithdistilledwaterpriortotheadditionofProvasolinutrients(Dittamietal.,2012).584

    Flow cytometry experiments to measure nuclear DNA contents were carried out as described585

    (Bothwelletal.,2010),exceptthatyoungsporophytetissuewasusedinsteadofgametes.Samples586

    of the genome-sequenced Ectocarpus sp. strain Ec32 (CCAP accession 1310/4 from San Juan de587

    Marcona,Peru),wereruninparallelasasizereference.588

    Nucleicacidextractionandsequencing.DNAandRNAwereextractedusingaphenol-chloroform-589

    basedmethodaccordingtoLeBailetal. (2008).ForDNAsequencing,four Illumina librarieswere590

    preparedandsequencedonaHiSeq2000:onepaired-endlibrary(IlluminaTruSeqDNAPCR-freeLT591

    SamplePrepkit#15036187,sequencedwith2x100bpread length),andthreemate-pair libraries592

    with span sizes of 3kb, 5kb, and 10kb respectively (Nextera Mate Pair Sample Preparation Kit;593

    sequencedwith2x50bpreadlength).Onepoly-AenrichedRNA-seqlibrarywasgeneratedforeach594

    ofthethreeaforementionedculturesaccordingtotheIlluminaTruSeqStrandedmRNASamplePrep595

    kit#15031047protocolandsequencedwith2x50bpreadlength.596

    Methylation.ThedegreeofDNAmethylationwasexaminedbyHPLConCsCl-gradientpurifiedDNA597

    (LeBailetal.,2008)fromthreeindependentculturesperstrainaspreviouslydescribed(Rivaletal.,598

    2013).599

    Sequenceassembly.Redundancyofmatepairs(MPs)wasreducedbymappingMPstoapreliminary600

    assembly,tomitigatethenegativeeffectofredundantchimericMPsduringscaffolding.CleanDNA601

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 17

    readswereassembledusingSOAPDenovo2(Luoetal.,2012).Scaffoldingwasthencarriedoutusing602

    SSPACEbasic2.0(Boetzeretal.,2011)(trimlengthupto5bases,min3linkstoscaffoldcontigs,min603

    15readstocallabaseduringanextension)followedbyarunofGapCloser(partoftheSOAPDenovo604

    package, default settings). Alternative assemblers (CLC and Velvet)were also tested but yielded605

    significantlylowerfinalcontigandscaffoldlengths.RNA-seqreadswerecleanedusingTrimmomatic606

    (defaultsettings),firstassembleddenovousingTrinity2.1.1(Grabherretal.,2011)andfilteredby607

    coveragewithanFPKMcutoffof1.Later,asecondgenome-guidedassemblywasperformedwith608

    Tophat2andwithCufflinks.609

    Removal of bacterial sequences: As cultures were not treated with antibiotics prior to DNA610

    extraction,bacterial scaffoldswere removed fromthe finalassemblyusing the taxoblastpipeline611

    (DittamiandCorre,2017).Everyscaffoldwascutintofragmentsof500bp,andthesefragmentswere612

    aligned(blastn,e-valuecutoff0.01)againsttheGenBanknon-redundantnucleotide(nt)database.613

    Scaffoldsforwhichmorethan90%oftheir500bp-fragmentshadbacterialsequencesasbestblast614

    hitswereremovedfromtheassembly(varyingthisthresholdbetween30and95%resultedinonly615

    veryminordifferencesinthefinalassembly).“Bacterial”scaffoldsweresubmittedtotheMG-Rast616

    servertoobtainanoverviewofthetaxapresentinthesample(Meyeretal.,2008).617

    RepeatedelementsweresearchedfordenovousingTEdenovoandannotatedusingTEannotwith618

    defaultparameters.BothtoolsarepartoftheREPETpipeline(Flutreetal.,2011),ofwhichversion619

    2.5wasusedforourdataset.620

    Assessmentof genomecompleteness:BUSCO2.0analyses (Simãoetal., 2015)were runon the621

    servers of the IPlant Collaborative (Goff et al., 2011) with the general eukaryote database as a622

    referenceanddefaultparameters.BUSCOinternallyusesAugustus(Stankeetal.,2004)topredict623

    protein coding sequences. As the latter tool performed poorly on both Ectocarpus strains in624

    preliminarytests,predictedproteinswereusedasinputinsteadofDNAsequences.625

    Organellargenomes, i.e.plastidandmitochondrion,weremanuallyassembledbasedonscaffolds626

    416and858respectively,usingthepublishedgenomeofEctocarpussp.Ec32asaguide(Delageet627

    al.,2011;LeCorguilléetal.,2009;Cocketal.,2010).Inthecaseofthemitochondrialgenome,the628

    correctnessofthemanualassemblywasverifiedbyPCRwheremanualandautomaticassemblies629

    diverged. Both organellar genomeswere visualized usingOrganellarGenomeDRAW (Lohse et al.,630

    2013)andalignedwiththeEctocarpussp.Ec32organellesusingMauve2.3.1(Darlingetal.,2004).631

    Geneprediction.Putativeprotein-codingsequenceswereidentifiedusingEugene4.1c(Foissacet632

    al., 2008). RNA-seq reads weremapped against the assembled genome using GenomeThreader633

    1.6.5, and all available proteins from the Swiss-Prot database (Dec. 2014) as well as predicted634

    proteinsfromtheEctocarpussp.Ec32genome(Cocketal.,2010)werealignedtothegenomeusing635

    KLAST(NguyenandLavenier,2009).Bothaligneddenovo-assembledtranscriptsandproteinswere636

    providedtoEugeneforgeneprediction,whichwasrunwiththeparametersetpreviouslyoptimized637

    fortheEctocarpussp.Ec32genome(Cocketal.,2010).638

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 18

    Functional annotation. Predicted proteins were compared to the Swiss-Prot database by BlastP639

    search(e-valuecutoff1e-5),andtheresultsimportedtoBlast2GO(Götzetal.,2008),whichwasused640

    to run InterPro domain searches and automatically annotate proteins with a description, GO641

    numbers,andECcodes.ThegenomeandallautomaticannotationswereimportedintoApollo(Lee642

    etal.,2013;Dunnetal.,2017)formanualcuration.643

    Metabolic network reconstruction. The E. subulatus genome-scale metabolic model (GEM)644

    reconstruction was carried out as previously described by Prigent et al. (2014) by merging an645

    annotation-basedreconstructionobtainedwithPathwayTools(Karpetal.,2016)andanorthology-646

    based reconstruction based on theArabidopsis thalianametabolic networkAraGEM (deOliveira647

    Dal’Molinetal.,2010)usingPantograph(Loiraetal.,2015).Afinalstepofgap-fillingwasthencarried648

    outusingtheMenecotool(Prigentetal.,2017).Theentirereconstructionpipelineisavailablevia649

    the AuReMe workspace (Aite et al., 2018; http://aureme.genouest.org/). For pathway-based650

    analyses,pathwaysthatcontainedonlyasinglereactionorthatwerelessthan50%completewere651

    notconsidered.652

    Genome comparisons. Functional comparisons of gene contents were based primarily on653

    orthologousclustersofgenessharedwithversion2oftheEctocarpussp.Ec32genome(Cormieret654

    al., 2017) as well as the Saccharina japonica (Areschoug) genome (Ye et al., 2015). They were655

    determinedbytheOrthoFindersoftwareversion0.7.1(EmmsandKelly,2015).Foranypredicted656

    proteins thatwere not part of amulti-species cluster,we verified the absence in the other two657

    genomesalsobytblastnsearches.Proteinswithouthit(thresholde-valueof1e-10)wereconsidered658

    lineage-specific proteins. Blast2GO 3.1 (Götz et al., 2008)was then used to identify significantly659

    enrichedGOtermsamongthelineage-specificgenesortheexpandedgenefamilies(Fischer’sexact660

    testwithFDRcorrectionFDR1weremanuallyexamined.Thedistributionofthesegenesacross671

    thegenomewasexaminedbycalculatingvariancetomeanratiosbasedonwindowsizesof50to672

    500genes.673

    Phylogenetic analyses. Phylogenetic analyses were carried out for gene families of particular674

    interest. For chlorophyll-binding proteins (CBPs), reference sequences were obtained from a675

    previousstudy(Dittamietal.,2010),andalignedtogetherwithE.subulatusandS. japonicaCBPs676

    using MAFFT (G-INS-i) (Katoh et al., 2002). Alignments were then manually curated, conserved677

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 19

    positionsselectedinJalview(Waterhouseetal.,2009),andmaximumlikelihoodanalysescarriedout678

    usingPhyML3.0(GuindonandGascuel,2003),theLGsubstitutionmodel,100bootstrapreplicates,679

    and an estimation of the gamma distribution parameter. The resulting phylogenetic tree was680

    visualized usingMEGA7 (Kumar et al., 2016). The same procedurewas also used in the case of681

    selectedAnkyrinRepeatdomain-containingproteins.682

    Data availability: Raw sequence data (genomic and transcriptomic reads) as well as assembled683

    scaffolds and predicted proteins and annotations were submitted to the European Nucleotide684

    Archive(ENA)underprojectaccessionnumberPRJEB25230usingtheEMBLmyGFF3script (Dainat685

    andGourlé,2018).AJBrowse(Skinneretal.,2009)instancecomprisingthemostrecentannotations686

    is available via the server of the Station Biologique de Roscoff (http://mmo.sb-687

    roscoff.fr/jbrowseEsu/?data=data/public/ectocarpus/subulatus_bft). The reconstructed metabolic688

    networkofE.subulatusisavailableathttp://gem-aureme.irisa.fr/sububftgem.Additionalresources689

    and annotations including a blast server are available at http://application.sb-690

    roscoff.fr/project/subulatus/index.html. The complete set of manual annotations is provided in691

    SupportingInformationTableS1.692

    Acknowledgements693

    Wewould like to thankPhilippePotin,MarkCock, SusannaCoelho, FlorianMaumus, andOlivier694

    Panaud for helpful discussions, as well as Gwendoline Andres for help setting up the Jbrowse695

    instance.ThisworkwasfundedpartiallybyANRprojectIDEALG(ANR-10-BTBR-04)“Investissements696

    d’Avenir, Biotechnologies-Bioressources”, the European Union’s Horizon 2020 research and697

    innovationProgrammeundertheMarieSklodowska-Curiegrantagreementnumber624575(ALFF),698

    andtheCNRSMomentumcall.SequencingwasperformedattheGenomicsUnitoftheCentrefor699

    GenomicRegulation(CRG),Barcelona,Spain.700

    References701

    Abascal,F.,Zardoya,R.andTelford,M.J.(2010)TranslatorX:multiplealignmentofnucleotide702sequencesguidedbyaminoacidtranslations.NucleicAcidsRes.,38,W7–W13.Availableat:703https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkq291.704

    Aite,M.,Chevallier,M.,Frioux,C.,etal.(2018)Traceability,reproducibilityandwiki-exploration705for“à-la-carte”reconstructionsofgenome-scalemetabolicmodels.PLoSComput.Biol.,in706press.707

    Amtmann,A.(2009)Learningfromevolution:Thellungiellageneratesnewknowledgeonessential708andcriticalcomponentsofabioticstresstoleranceinplants.Mol.Plant,2,3–12.Availableat:709http://www.ncbi.nlm.nih.gov/pubmed/19529830.710

    Archibald,J.M.(2009)Thepuzzleofplastidevolution.Curr.Biol.,19,R81-8.Availableat:711http://www.ncbi.nlm.nih.gov/pubmed/19174147.712

    Avia,K.,Coelho,S.M.,Montecinos,G.J.,etal.(2017)High-densitygeneticmapandidentification713ofQTLsforresponsestotemperatureandsalinitystressesinthemodelbrownalga714

    Ectocarpus.Sci.Rep.,7,43241.Availableat:715http://www.ncbi.nlm.nih.gov/pubmed/28256542.716

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 20

    Bail,A.Le,Dittami,S.M.,Franco,P.O.de,Rousvoal,S.,Cock,J.M.,Tonon,T.andCharrier,B.717(2008)NormalisationgenesforexpressionanalysesinthebrownalgamodelEctocarpus718

    siliculosus.BMCMol.Biol.,9,75.Availableat:http://www.biomedcentral.com/1471-7192199/9/75.720

    Boer,J.G.de,Yazawa,R.,Davidson,W.S.andKoop,B.F.(2007)Burstsandhorizontalevolutionof721DNAtransposonsinthespeciationofpseudotetraploidsalmonids.BMCGenomics,8,422.722Availableat:http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-8-422.723

    Boetzer,M.,Henkel,C.V,Jansen,H.J.,Butler,D.andPirovano,W.(2011)Scaffoldingpre-724assembledcontigsusingSSPACE.Bioinformatics,27,578–9.Availableat:725http://www.ncbi.nlm.nih.gov/pubmed/21149342.726

    Bolton,J.J.(1983)EcoclinalvariationinEctocarpussiliculosus(Phaeophyceae)withrespectto727temperaturegrowthoptimaandsurvivallimits.Mar.Biol.,73,131–138.Availableat:728http://www.springerlink.com/index/10.1007/BF00406880.729

    Bothwell,J.H.,Marie,D.,Peters,A.F.,Cock,J.M.andCoelho,S.M.(2010)Roleof730endoreduplicationandapomeiosisduringparthenogeneticreproductioninthemodelbrown731

    algaEctocarpus.NewPhytol.,188,111–21.Availableat:732http://www.ncbi.nlm.nih.gov/pubmed/20618911.733

    Cantarel,B.L.,Coutinho,P.M.,Rancurel,C.,Bernard,T.,Lombard,V.andHenrissat,B.(2009)The734Carbohydrate-ActiveEnZymesdatabase(CAZy):anexpertresourceforglycogenomics.Nucleic735

    AcidsRes.,37,D233–D238.Availableat:http://www.ncbi.nlm.nih.gov/pubmed/18838391.736Charrier,B.,Coelho,S.M.,Bail,A.Le,etal.(2008)Developmentandphysiologyofthebrownalga737

    Ectocarpussiliculosus:twocenturiesofresearch.NewPhytol.,177,319–32.Availableat:738http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&l739

    ist_uids=18181960.740

    Cock,J.M.,Sterck,L.,Rouzé,P.,etal.(2010)TheEctocarpusgenomeandtheindependent741evolutionofmulticellularityinbrownalgae.Nature,465,617–21.Availableat:742http://www.ncbi.nlm.nih.gov/pubmed/20520714.743

    Collén,J.andDavison,I.R.(1999)ReactiveoxygenmetabolisminintertidalFucusspp.744(Phaeophyceae).J.Phycol.,35,62–69.745

    Corguillé,G.Le,Pearson,G.,Valente,M.,etal.(2009)Plastidgenomesoftwobrownalgae,746EctocarpussiliculosusandFucusvesiculosus:furtherinsightsontheevolutionofred-algal747

    derivedplastids.BMCEvol.Biol.,9,253.Availableat:748http://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-9-253.749

    Cormier,A.,Avia,K.,Sterck,L.,etal.(2017)Re-annotation,improvedlarge-scaleassemblyand750establishmentofacatalogueofnoncodinglociforthegenomeofthemodelbrownalga751

    Ectocarpus.NewPhytol.,214,219–232.Availableat:752http://doi.wiley.com/10.1111/nph.14321.753

    Dainat,J.andGourlé,H.(2018)NBISweden/EMBLmyGFF3:EMBLmyGFF3-1.2.2.Zenodo.Available754at:https://zenodo.org/record/1208446#.WtSToNNubIE.755

    Darling,A.C.E.,Mau,B.,Blattner,F.R.andPerna,N.T.(2004)Mauve:multiplealignmentof756conservedgenomicsequencewithrearrangements.GenomeRes.,14,1394–1403.Available757at:http://www.genome.org/cgi/doi/10.1101/gr.2289704.758

    Das,K.andRoychoudhury,A.(2014)Reactiveoxygenspecies(ROS)andresponseofantioxidants759asROS-scavengersduringenvironmentalstressinplants.Front.Environ.Sci.,2,53.Available760at:http://journal.frontiersin.org/article/10.3389/fenvs.2014.00053/abstract.761

    Dassanayake,M.,Oh,D.-H.,Haas,J.S.,etal.(2011)Thegenomeoftheextremophilecrucifer762Thellungiellaparvula.Nat.Genet.,43,913–918.Availableat:763http://dx.doi.org/10.1038/ng.889.764

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 21

    Davison,I.R.andPearson,G.A.(1996)Stresstoleranceinintertidalseaweeds.J.Phycol.,32,197–765211.766

    Delage,L.,Leblanc,C.,NyvallCollén,P.,Gschloessl,B.,Oudot,M.-P.,Sterck,L.,Poulain,J.,Aury,767J.-M.andCock,J.M.(2011)Insilicosurveyofthemitochondrialproteinuptakeand768maturationsystemsinthebrownalgaEctocarpussiliculosusE.Newbigin,ed.PLoSOne,6,769e19540.Availableat:http://dx.plos.org/10.1371/journal.pone.0019540.770

    Delaroque,N.,Müller,D.G.,Bothe,G.,Pohl,T.,Knippers,R.andBoland,W.(2001)Thecomplete771DNAsequenceoftheEctocarpussiliculosusvirusEsV-1genome.Virology,287,112–132.772

    Desmond,E.andGribaldo,S.(2009)Phylogenomicsofsterolsynthesis:insightsintotheorigin,773evolution,anddiversityofakeyeukaryoticfeature.GenomeBiol.Evol.,1,364–81.Available774at:http://www.ncbi.nlm.nih.gov/pubmed/20333205.775

    Dittami,S.M.andCorre,E.(2017)Detectionofbacterialcontaminantsandhybridsequencesinthe776genomeofthekelpSaccharinajaponicausingTaxoblast.PeerJ,5,e4073.Availableat:777https://peerj.com/articles/4073.778

    Dittami,S.M.,Duboscq-Bidot,L.,Perennou,M.,Gobet,A.,Corre,E.,Boyen,C.andTonon,T.779(2016)Host–microbeinteractionsasadriverofacclimationtosalinitygradientsinbrownalgal780

    cultures.ISMEJ.,10,51–63.Availableat:781http://www.nature.com/doifinder/10.1038/ismej.2015.104.782

    Dittami,S.M.,Eveillard,D.andTonon,T.(2014)Ametabolicapproachtostudyalgal-bacterial783interactionsinchangingenvironments.Mol.Ecol.,23,1656–60.Availableat:784http://www.ncbi.nlm.nih.gov/pubmed/24447216.785

    Dittami,S.M.,Gravot,A.,Goulitquer,S.,Rousvoal,S.,Peters,A.F.,Bouchereau,A.,Boyen,C.and786Tonon,T.(2012)Towardsdecipheringdynamicchangesandevolutionarymechanisms787involvedintheadaptationtolowsalinitiesinEctocarpus(brownalgae).PlantJ.,71,366–377.788Availableat:http://doi.wiley.com/10.1111/j.1365-313X.2012.04982.x.789

    Dittami,S.M.,Heesch,S.,Olsen,J.L.andCollén,J.(2017)Transitionsbetweenmarineand790freshwaterenvironmentsprovidenewcluesabouttheoriginsofmulticellularplantsandalgae791

    O.DeClerck,ed.J.Phycol.,53,731–745.Availableat:792http://doi.wiley.com/10.1111/jpy.12547.793

    Dittami,S.M.,Michel,G.,Collén,J.,Boyen,C.andTonon,T.(2010)Chlorophyll-bindingproteins794revisited--amultigenicfamilyoflight-harvestingandstressproteinsfromabrownalgal795

    perspective.BMCEvol.Biol.,10,365.Availableat:796http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3008699&tool=pmcentrez&rend797

    ertype=abstract.798

    Dittami,S.M.,Proux,C.,Rousvoal,S.,Peters,A.F.,Cock,J.M.,Coppee,J.-Y.,Boyen,C.andTonon,799T.(2011)Microarrayestimationofgenomicinter-strainvariabilityinthegenusEctocarpus800(Phaeophyceae).BMCMol.Biol.,12,2.Availableat:801http://www.ncbi.nlm.nih.gov/pubmed/21226968.802

    Dittami,S.M.,Scornet,D.,Petit,J.-L.,etal.(2009)Globalexpressionanalysisofthebrownalga803Ectocarpussiliculosus(Phaeophyceae)revealslarge-scalereprogrammingofthe804

    transcriptomeinresponsetoabioticstress.GenomeBiol.,10,R66.Availableat:805http://genomebiology.com/2009/10/6/R66.806

    Dittami,S.M.andTonon,T.(2012)Genomesofextremophilecrucifers:newplatformsfor807comparativegenomicsandbeyond.GenomeBiol.,13,166.Availableat:808http://www.ncbi.nlm.nih.gov/pubmed/22897896.809

    Dong,H.-P.,Dong,Y.-L.,Cui,L.,Balamurugan,S.,Gao,J.,Lu,S.-H.andJiang,T.(2016)Highlight810stresstriggersdistinctproteomicresponsesinthemarinediatomThalassiosirapseudonana.811

    BMCGenomics,17,994.Availableat:812

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 22

    http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-016-3335-5.813

    Dunn,N.,Diesh,C.,Deepak,etal.(2017)GMOD/Apollo:Apollo2.0.8(JB#d3827c).Zenodo.814Availableat:https://zenodo.org/record/1063658#.WsTyndNubIE.815

    Edgar,R.C.(2004)MUSCLE:multiplesequencealignmentwithhighaccuracyandhighthroughput.816NucleicAcidsRes.,32,1792–7.Availableat:817http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=390337&tool=pmcentrez&rende818

    rtype=abstract.819

    Ellinghaus,D.,Kurtz,S.andWillhoeft,U.(2008)LTRharvest,anefficientandflexiblesoftwarefor820denovodetectionofLTRretrotransposons.BMCBioinformatics,9,18.Availableat:821http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-18.822

    Emms,D.M.andKelly,S.(2015)OrthoFinder:solvingfundamentalbiasesinwholegenome823comparisonsdramaticallyimprovesorthogroupinferenceaccuracy.GenomeBiol.,16,157.824Availableat:http://genomebiology.com/2015/16/1/157.825

    Flutre,T.,Duprat,E.,Feuillet,C.andQuesneville,H.(2011)Consideringtransposableelement826diversificationindenovoannotationapproachesY.Xu,ed.PLoSOne,6,e16526.Availableat:827http://dx.plos.org/10.1371/journal.pone.0016526.828

    Foissac,S.,Gouzy,J.,Rombauts,S.,Mathe,C.,Amselem,J.,Sterck,L.,Peer,Y.V.de,Rouze,P.829andSchiex,T.(2008)Genomeannotationinplantsandfungi:EuGeneasamodelplatform.830Curr.Bioinform.,3,11.Availableat:831http://www.ingentaconnect.com/content/ben/cbio/2008/00000003/00000002/art00003?tok832

    en=004f12e9145a666f3a7b6c7a407b425b6b414c7d666749264f655d375c6b68763050211ce9833

    d7c2a.834

    FoodandAgricultureOrganizationoftheUnitedNations,F.(2016)Globalproductionstatistics8351950-2014.Availableat:http://www.fao.org/fishery/statistics/global-production/en.836

    Fournier,J.-B.,Rebuffet,E.,Delage,L.,etal.(2014)TheVanadiumIodoperoxidasefromthe837marineflavobacteriaceaespeciesZobelliagalactanivoransrevealsnovelmolecularand838

    evolutionaryfeaturesofhalidespecificityinthevanadiumhaloperoxidaseenzymefamily.839

    Appl.Environ.Microbiol.,80,7561–73.Availableat:840http://www.ncbi.nlm.nih.gov/pubmed/25261522.841

    Geiselman,J.A.andMcConnell,O.J.(1981)PolyphenolsinbrownalgaeFucusvesiculosusand842Ascophyllumnodosum:Chemicaldefensesagainstthemarineherbivoroussnail,Littorina843

    littorea.J.Chem.Ecol.,7,1115–1133.Availableat:844http://link.springer.com/10.1007/BF00987632.845

    Goff,S.A.,Vaughn,M.,McKay,S.,etal.(2011)TheiPlantcollaborative:cyberinfrastructurefor846plantbiology.Front.PlantSci.,2,34.Availableat:847http://journal.frontiersin.org/article/10.3389/fpls.2011.00034/abstract.848

    Götz,S.,García-Gómez,J.M.,Terol,J.,etal.(2008)High-throughputfunctionalannotationand849dataminingwiththeBlast2GOsuite.NucleicAcidsRes.,36,3420–35.Availableat:850http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2425479&tool=pmcentrez&rend851

    ertype=abstract.852

    Grabherr,M.G.,Haas,B.J.,Yassour,M.,etal.(2011)Full-lengthtranscriptomeassemblyfrom853RNA-Seqdatawithoutareferencegenome.Nat.Biotechnol.,29,644–652.Availableat:854http://www.nature.com/doifinder/10.1038/nbt.1883.855

    Gualtieri,T.,Ragni,E.,Mizzi,L.,Fascio,U.andPopolo,L.(2004)ThecellwallsensorWsc1pis856involvedinreorganizationofactincytoskeletoninresponsetohypo-osmoticshockin857

    Saccharomycescerevisiae.Yeast,21,1107–1120.Availableat:858http://www.ncbi.nlm.nih.gov/pubmed/15484288.859

    Guindon,S.andGascuel,O.(2003)Asimple,fast,andaccuratealgorithmtoestimatelarge860

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 23

    phylogeniesbymaximumlikelihood.Syst.Biol.,52,696–704.Availableat:861http://www.ncbi.nlm.nih.gov/pubmed/14530136.862

    Heesch,S.,Cho,G.Y.,Peters,A.F.,etal.(2010)Asequence-taggedgeneticmapforthebrownalga863Ectocarpussiliculosusprovideslarge-scaleassemblyofthegenomesequence.NewPhytol.,864

    188,42–51.Availableat:http://www.ncbi.nlm.nih.gov/pubmed/20456050.865Hervé,C.,Siméon,A.,Jam,M.,etal.(2016)Arabinogalactanproteinshavedeeprootsin866

    eukaryotes:identificationofgenesandepitopesinbrownalgaeandtheirroleinFucus867

    serratusembryodevelopment.NewPhytol.,209,1428–1441.Availableat:868http://www.ncbi.nlm.nih.gov/pubmed/26667994.869

    Hu,T.T.,Pattyn,P.,Bakker,E.G.,etal.(2011)TheArabidopsislyratagenomesequenceandthe870basisofrapidgenomesizechange.Nat.Genet.,43,476–81.Availableat:871http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3083492&tool=pmcentrez&rend872

    ertype=abstract.873

    Karp,P.D.,Latendresse,M.,Paley,S.M.,etal.(2016)PathwayToolsversion19.0update:software874forpathway/genomeinformaticsandsystemsbiology.Brief.Bioinform.,17,877–890.875Availableat:http://www.ncbi.nlm.nih.gov/pubmed/26454094.876

    Katoh,K.,Misawa,K.,Kuma,K.andMiyata,T.(2002)MAFFT:anovelmethodforrapidmultiple877sequencealignmentbasedonfastFouriertransform.NucleicAcidsRes.,30,3059–66.878Availableat:http://www.ncbi.nlm.nih.gov/pubmed/12136088.879

    Khalturin,K.,Hemmrich,G.,Fraune,S.,Augustin,R.andBosch,T.C.G.(2009)Morethanjust880orphans:aretaxonomically-restrictedgenesimportantinevolution?TrendsGenet.,25,404–881413.Availableat:http://linkinghub.elsevier.com/retrieve/pii/S0168952509001450.882

    KleinJan,H.,Jeanthon,C.,Boyen,C.andDittami,S.M.(2017)ExploringthecultivableEctocarpus883microbiome.Front.Microbiol.,8,2456.Availableat:884https://www.frontiersin.org/articles/10.3389/fmicb.2017.02456/abstract.885

    Kloareg,B.andQuatrano,R.S.(1988)Structureofthecell-wallsofmarine-algaeand886ecophysiologicalfunctionsofthematrixpolysaccharides.Ocean.MarBiol,26,259–315.887

    Kumar,S.,Stecher,G.andTamura,K.(2016)MEGA7:MolecularEvolutionaryGeneticsAnalysis888Version7.0forBiggerDatasets.Mol.Biol.Evol.,33,1870–1874.Availableat:889http://www.ncbi.nlm.nih.gov/pubmed/27004904.890

    Lee,E.,Helt,G.A.,Reese,J.T.,etal.(2013)WebApollo:aweb-basedgenomicannotationediting891platform.GenomeBiol.,14,R93.Availableat:892http://genomebiology.biomedcentral.com/articles/10.1186/gb-2013-14-8-r93.893

    Lee,J.,Cho,C.H.,Park,S.I.,Choi,J.W.,Song,H.S.,West,J.A.,Bhattacharya,D.andYoon,H.S.894(2016)Parallelevolutionofhighlyconservedplastidgenomearchitectureinredseaweedsand895

    seedplants.BMCBiol.,14,75.Availableat:896http://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0299-5.897

    Levy,R.,Carr,R.,Kreimer,A.,Freilich,S.andBorenstein,E.(2015)NetCooperate:anetwork-898basedtoolforinferringhost-microbeandmicrobe-microbecooperation.BMCBioinformatics,899

    16,164.Availableat:http://www.ncbi.nlm.nih.gov/pubmed/25980407.900Lipinska,A.P.,Damme,E.J.M.VanandClerck,O.De(2016)Molecularevolutionofcandidatemale901

    reproductivegenesinthebrownalgalmodelEctocarpus.BMCEvol.Biol.,16,5.Availableat:902http://www.ncbi.nlm.nih.gov/pubmed/26728038.903

    Liu,M.-J.,Zhao,J.,Cai,Q.-L.,etal.(2014)Thecomplexjujubegenomeprovidesinsightsintofruit904treebiology.Nat.Commun.,5,5315.Availableat:905http://www.nature.com/doifinder/10.1038/ncomms6315.906

    Lohse,M.,Drechsel,O.,Kahlau,S.andBock,R.(2013)OrganellarGenomeDRAW--asuiteoftools907forgeneratingphysicalmapsofplastidandmitochondrialgenomesandvisualizingexpression908

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 24

    datasets.NucleicAcidsRes.,41,W575-81.Availableat:909http://www.ncbi.nlm.nih.gov/pubmed/23609545.910

    Loira,N.,Zhukova,A.andSherman,D.J.(2015)Pantograph:Atemplate-basedmethodfor911genome-scalemetabolicmodelreconstruction.J.Bioinform.Comput.Biol.,13,1550006.912Availableat:http://www.worldscientific.com/doi/abs/10.1142/S0219720015500067.913

    Luo,R.,Liu,B.,Xie,Y.,etal.(2012)SOAPdenovo2:anempiricallyimprovedmemory-efficient914short-readdenovoassembler.Gigascience,1,18.Availableat:915http://gigascience.biomedcentral.com/articles/10.1186/2047-217X-1-18.916

    Ma,T.,Wang,J.,Zhou,G.,etal.(2013)Genomicinsightsintosaltadaptationinadesertpoplar.917Nat.Commun.,4,2797.Availableat:http://www.ncbi.nlm.nih.gov/pubmed/24256998.918

    McHugh,D.J.(2003)Aguidetotheseaweedindustry.FAOFish.Tech.Pap.(FAO,Rome,Italy).919Meslet-Cladière,L.,Delage,L.,Leroux,C.J.-J.,etal.(2013)Structure/Functionanalysisofatypeiii920

    polyketidesynthaseinthebrownalgaEctocarpussiliculosusrevealsabiochemicalpathwayin921

    phlorotanninmonomerbiosynthesis.PlantCell,25,3089–103.Availableat:922http://www.plantcell.org/content/early/2013/08/27/tpc.113.111336.923

    Meyer,F.,Paarmann,D.,D’Souza,M.,etal.(2008)ThemetagenomicsRASTserver-apublic924resourcefortheautomaticphylogeneticandfunctionalanalysisofmetagenomes.BMC925

    Bioinformatics,9,386.Availableat:http://www.ncbi.nlm.nih.gov/pubmed/18803844.926Michel,G.,Tonon,T.,Scornet,D.,Cock,J.M.andKloareg,B.(2010)Thecellwallpolysaccharide927

    metabolismofthebrownalgaEctocarpussiliculosus.Insightsintotheevolutionof928

    extracellularmatrixpolysaccharidesineukaryotes.NewPhytol.,188,82–97.Availableat:929http://www.ncbi.nlm.nih.gov/pubmed/20618907[.930

    Mikami,K.,Ito,M.,Taya,K.,Kishimoto,I.,Kobayashi,T.,Itabashi,Y.andTanaka,R.(2018)931ParthenosporophytesofthebrownalgaEctocarpussiliculosusexhibitsex-dependent932

    differencesinthermotoleranceaswellasfattyacidandsterolcomposition.Mar.Environ.Res.933

    Availableat:http://linkinghub.elsevier.com/retrieve/pii/S0141113617306979.934

    Montecinos,A.E.,Couceiro,L.,Peters,A.F.,Desrut,A.,Valero,M.andGuillemin,M.-L.(2017)935SpeciesdelimitationandphylogeographicanalysesintheEctocarpussubgroupsiliculosi936

    (Ectocarpales,Phaeophyceae)M.Cock,ed.J.Phycol.,53,17–31.Availableat:937http://www.ncbi.nlm.nih.gov/pubmed/27454456.938

    Mosavi,L.K.,Cammett,T.J.,Desrosiers,D.C.andPeng,Z.(2004)Theankyrinrepeatasmolecular939architectureforproteinrecognition.ProteinSci.,13,1435–1448.Availableat:940http://doi.wiley.com/10.1110/ps.03554604.941

    Mota,C.F.,Engelen,A.H.,Serrão,E.A.andPearson,G.A.(2015)Somedon’tlikeithot:942microhabitat-dependentthermalandwaterstressesinatrailingedgepopulationJ.Watling,943

    ed.Funct.Ecol.,29,640–649.Availableat:http://doi.wiley.com/10.1111/1365-2435.12373.944Müller,D.G.,Kapp,M.andKnippers,R.(1998)Virusesinmarinebrownalgae.InAcademicPress,945

    pp.49–67.Availableat:946

    http://www.sciencedirect.com/science/article/pii/S0065352708608052.947

    Nguyen,V.H.andLavenier,D.(2009)PLAST:parallellocalalignmentsearchtoolfordatabase948comparison.BMCBioinformatics,10,329.Availableat:http://www.biomedcentral.com/1471-9492105/10/329.950

    Nishitsuji,K.,Arimoto,A.,Iwai,K.,etal.(2016)Adraftgenomeofthebrownalga,Cladosiphon951okamuranus,S-strain:aplatformforfuturestudiesof“mozuku”biology.DNARes.,dsw039.952

    Availableat:http://dnaresearch.oxfordjournals.org/lookup/doi/10.1093/dnares/dsw039.953

    Oh,D.-H.,Dassanayake,M.,Bohnert,H.J.andCheeseman,J.M.(2012)Lifeattheextreme:lessons954fromthegenome.GenomeBiol.,13,241.Availableat:955http://www.ncbi.nlm.nih.gov/pubmed/22390828.956

    .CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under aThe copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/307165doi: bioRxiv preprint first posted online Apr. 25, 2018;

  • 25

    OliveiraDal’Molin,C.G.de,Quek,L.-E.,Palfreyman,R.W.,Brumbley,S.M.andNielsen,L.K.(2010)957AraGEM,agenome-scalereconstructionoftheprimarymetabolicnetworkinArabidopsis.958

    PlantPhysiol.,152,579–89.Availableat:959http://www.plantphysiol.org/content/152/2/579.full.960

    Pavia,H.,Cervin,G.,Lindgren,A.andÅberg,P.(1997)EffectsofUV-Bradiationandsimulated961herbivoryonphlorotanninsinthebrownalgaAscophyllumnodosum.Mar.Ecol.Prog.Ser.,962

    157,139–146.Availableat:http://www.int-res.com/abstracts/meps/v157/p139-146/.963Peers,G.,Truong,T.B.,Ostendorf,E.,Busch,A.,Elrad,D.,Grossman,A.R.,Hippler,M.andNiyogi,964

    K.K.(2009)Anancientlight-harvestingproteiniscriticalfortheregulationofalgal965photosynthesis.Nature,462,518–21.Availableat:966http://www.ncbi.nlm.nih.gov/pubmed/19940928.967

    Peters,A.F.,Coucerio,L.,Tsiamis,K.,Küpper,F.C.andValero,M.(2015)Barcodingofcryptic968stagesofmarinebrownalgaeisolatedfromincubatedsubstratumrevealshighdiversity.969

    Cryptogam.Algol.,36,3–29.970Peters,A.F.,Marie,D.,Scornet,D.,Kloareg,B.andCock,J.M.(2004)ProposalofEctocarpus971

    siliculosus(Ectocarpales,Phaeophyceae)asamodelorganismforbrownalgalgeneticsand972

    genomics.J.Phycol.,40,1079–1088.973Popper,Z.A.,Michel,G.,Hervé,C.,Domozych,D.S.,Willats,W.G.T.,Tuohy,M.G.,Kloareg,B.and974

    Stengel,D.B.(2011)


Recommended