+ All Categories
Home > Documents > The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB)...

The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB)...

Date post: 11-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
22
1 The Global Potential for CO 2 Emissions Reduction from Jet Engine Passenger Aircraft Paper 18-04002 Lynnette Dray, Andreas Schäfer and Kinan Al Zayat Air Transportation Systems Laboratory, UCL Energy Institute, University College London 97 th TRB Annual Meeting Washington DC, 7-11 January 2018
Transcript
Page 1: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

1

The Global Potential for CO2 Emissions Reduction from Jet Engine Passenger Aircraft

Paper 18-04002

Lynnette Dray, Andreas Schäfer and Kinan Al Zayat

Air Transportation Systems Laboratory, UCL Energy Institute, University College London

97th TRB Annual MeetingWashington DC, 7-11 January 2018

Page 2: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

2

Background• Assessingemissionsmitigationpolicyrequiresassessmentof

themeasuresthatareavailablewithin-sector• CORSIAoffsetsemissions,butitsimpactwilldependonfueluse,which

dependsoncost-effectivefuelburnreductionmechanisms• ChangesintechnologywillalsoaffectaviationNOx,contrails,PM,noise

etc.• StartfromSchäferetal.(2016)

• MarginalabatementcostsforUSnarrowbody aircraft• Showed2%/yearcost-effectivereductioninfueluse/RPKto2050is

plausible• Butfeweropportunitiesexistforotheraircraft

• Extendanalysistootheraircrafttypesandregions• Useaglobalaviationsystemsmodel(AIM)tocheckhow

adoptionwouldlookinpractice• Alsoassesshowthischangeswithincreasingcarbonprice

Page 3: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

2

Typesofwithin-sectormitigationmeasures• Incrementalupdatestoconventionaltechnology• E.gA320neo,737MAX

• Radicalnewtechnologies• E.g.CRPengines,blendedwingbodyaircraft

• Retrofits• E.g.Re-engining,lightweighting

• Operational• E.g.CDM,optimisedrouting,reducedtankering

• Biofuels• Directemissionsmayremainthesame,reductioninfuel

lifecycleemissions

Page 4: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

2

Updatestoconventionaltechnology- 1• Fuel/RPKwillstill

decreaseforconventionaltechnology:• Fleetturnoverremoves

olderaircraftfromthefleet

• Newaircraftbecomingavailable(e.g.A320neo,A330neo,E-JetE2,737MAX,777-X...)

• Furtherfutureimprovementsexpected• Moreuseofcomposites• Higherbypassratio

engines• Greaterlift/drag

(a) Small RJ350 km73% LF0.00

0.02

0.04

0.06

0.08

0.10

Fuel

per

RPK

, kg

HistoricalFuture projection

(b) Large RJ550 km75% LF

(c) Small SA750 km76% LF

(d) Medium SA750 km76% LF0.00

0.02

0.04

0.06

0.08

Fuel

per

RPK

, kg

(e) Large SA1000 km75% LF

(f) Small TA1750 km70% LF

(g) Medium TA1750 km70% LF0.00

0.01

0.02

0.03

0.04

0.05Fu

el p

er R

PK, k

g

1960

1980

2000

2020

2040

2060

Year

(h) Large TA5500 km77% LF

1960

1980

2000

2020

2040

2060

Year

(i) VLA5500 km77% LF

1960

1980

2000

2020

2040

2060

Year

[Data:Piano-X(Lissys 2016);ownprojections]

Page 5: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

2

Updatestoconventionaltechnology- 2• Forthispaper:

• Assumepublishedcharacteristicsfornextgeneration• Forsubsequentgenerations,20(15-25)yeargap,0.7(0.5-1)%/year

reductioninfuelburnTechnology Sizeclass

AvailablefromCapitalcost,millionUS$(2015)

Changeinnon-fuelyearlycost,millionUS$(2015)

Changeinblockfueluse,%

References

Nextgenerationconventional

SmallRJ 2020(2018-2025) 40.9(35.7-46.1) -0.35(- 0.3- -0.47) 16(15-21) Embraer (2016);AlZayat &Schäfer (2017);Airbus(2017);Schäfer etal.(2016);Vera-Moralesetal.(2011);Leahy(2013);Reuters(2013);Airbus(2017)

LargeRJ 2020(2018-2025) 53.6(46.8-60.4) -0.4(-0.35- -0.55) 16(15-21)SmallSA 2019(2018-2020) 69.6(64.7-74.6) - 20(15– 22)MedSA 2016 75.8(70.4-81.3) - 20(15– 22LargeSA 2018(2017-2019) 88.9(82.5-95.2) - 20(15– 22)SmallTA Noupdate;referenceaircraftisalreadybasedonthe787-800MedTA 2020(2018-2022) 211(189– 233) -0.026 12(10– 14)LargeTA 2020(2018-2022) 251(233-270) -0.35(0– 0.07) 21(17.5– 23.7)VLA 2020(2017-2022) 305(284-323) -0.2(0– 0.4) 4

Subsequentgenerationconventional

SmallRJ 2040(2033-2050) 41(36-46) -0.35(- 0.3- -0.47) 28(25– 32)LargeRJ 2040(2033-2050) 54(47-60) -0.4(-0.35- -0.55) 28(25– 32)SmallSA 2039(2031-2045) 75(68– 82) - 30(26– 34)MedSA 2036(2031-2041) 83(75– 90) - 30(26– 34)LargeSA 2038(2032-2044) 97(87– 106) - 30(26– 34)SmallTA 2032(2027-2037) 123(114– 132) - 14(12– 14)MedTA 2040(2033-2047) 211(188– 233) -0.026 24(22– 24)LargeTA 2040(2032-2047) 251(233– 270 -0.35(0– 0.07) 31(29– 33)VLA 2042(2039-2045) 306(284– 324) -0.2(0– 0.4) 17(15– 17)

Page 6: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

2

Alternativetechnologies- 1• Potentiallyupcoming

aircrafttechnologiesinclude:• Contra-rotating

propellorengines(CRP)

• Blendedwingbody(BWB)aircraft

• NASAN+3designs(includingdoublebubble)

• Batteryand/orturboelectricaircraft

• Hydrogenfuelledaircraft

• Advanced/optimisedturbopropdesigns

• Characteristicsandtimelineuncertain

[Images:NASA;Wikimediacommons]

BWB

CRP

AdvancedTP

DoublebubbleTurboelectric

Batteryelec.

(Approximate)EISestimate

Page 7: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

2

Alternativetechnologies- 2• Forthispaper:

• Concentrateonrelativelywell-establisheddesigns:• Costestimatesavailable• Wouldrequirelittle/noadjustmenttocurrentinfrastructure• Assumeglobalavailability,aircraftchoicebasedoncostonly

• Excludes:NASAN+3,batteryelectric/turboelectricdesigns,hydrogenaircraft,nextgenerationsupersonicetc.

Technology Sizeclass Availablefrom Capitalcost,millionUS$(2015)

Changeinnon-fuelyearlycost,millionUS$(2015)

Changeinblockfueluse,%

References

AdvancedTurboprop

SmallRJ 2030(2025-2035) 22(19– 24) 1.7(0.9– 2.6) 43(37– 46) Vera-Morales etal.(2011);Liebeck (2004);Schäfer etal.(2016)

LargeRJ 2030(2025-2035) 28(24– 31) 1.7(0.9– 2.6) 43(37– 46)

OptimisedCRP

SmallSA 2035(2030-2040) 73(61– 85) 0.4(0.2– 0.5) 41(40– 45)MedSA 2035(2030-2040) 98(82– 115) 0.4(0.2– 0.6) 41(40– 45)LargeSA 2035(2030-2040) 99(83– 116) 0.4(0.2– 0.6) 41(40– 45)

Blended-WingBody

SmallTA 2040(2035-2045) 217(180– 289) -0.3(-0.2- -0.5) 30(15– 40)MedTA 2040(2035-2045) 233(194– 310) -0.3(-0.2- -0.5) 30(15– 40)LargeTA 2040(2035-2045) 249(207– 332) -0.3(-0.2- -0.5) 30(15– 40)VLA 2040(2035-2045) 364(303– 485) -0.3(-0.2- -0.5) 30(15– 40)

Page 8: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

2

Retrofits

Technology Sizeclass Availablefrom

Capitalcost,millionUS$(2015)

Changeinnon-fuelyearlycost,millionUS$(2015)

Changeinfueluse,%

References

Blendedwinglets SmallSA– MedTA 2015 0.85– 1.9 - 3(2– 4) Schäfer etal.(2016);Morrisetal.(2009)

SurfacePolish SmallRJ– MedTA 2015 0.03– 0.13 0.03– 0.16 1(0.5– 1.5)CarbonBrakes SmallRJ– VLA 2015 - 0.015– 0.045 0.15(0.1– 0.2)

EngineUpgradeKit SmallRJ– MedTA 2015 0.5– 1.8 - 1(0.5– 1.5)Re-engining SmallRJ– MedTA 2015 7.1– 16.6 - 12.5(10– 15)ElectricTaxi SmallRJ– VLA 2018 0.3– 4 - 2.8(1.8-3.8)CabinWeightReduction

SmallRJ– VLA 2015 0.2– 2.3 - 1.2(1.2– 2.1)

• Canbeappliedtoexistingaircraft,souptakedoesnotdependonfleetturnover• SomemaybeapplicableonlyatD-check• Manyareapplicabletoonlypartofthefleet,e.g.aircraftwithout

wingletsorwitholderengines

Page 9: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

2

Operationalmeasures- 1

Measure Sizeclass Availablefrom

Cost,millionUS$(2015)

Changeinfueluse,%,foraffectedflightphase

References

Surfacecongestionmanagement

SmallRJ– VLA 2015 0.015– 0.06 15(10– 20) Marais etal.(2013);Schäfer etal.(2016)

Singleenginetaxi SmallRJ– VLA 2015 0– 0.06 30(20– 40)

Optimizedepartures SmallRJ– VLA 2015 0.2– 0.6 20(10– 30)

Reducecruiseinefficiency

SmallRJ– VLA 2015 0.07– 0.13 5.5(2.8– 8)

Optimizeapproach SmallRJ– VLA 2015 0.2– 0.6 40(15– 50)

• Strategiestoreduceroutinginefficiencyand/orairportcongestion

• Manyoptions,e.g.CDAs,CDM,routeoptimization

• WegroupmeasuresintobundlesasinMaraisetal.(2013)

Page 10: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

2

Operationalmeasures- 2• Canalsoconsiderchangesinairlinebehaviour,e.g.

• Tankeringand/orusingfuelreservesabovetheminimumrequired• Maintenanceinterval• Changesinfrequency,loadfactororaircrafttypeuse• Will(probably)beadoptedif/whencost-effective,butcostsmaybe

difficulttoestimate

Measure Sizeclass Availablefrom

Cost,millionUS$(2015)

Changeinfueluse,% References

Reducedfuelreserves SmallRJ– VLA 2015 0– 0.5 0.01– 0.4 Schäfer etal.(2016);Morrisetal.(2009);Henderson(2005)

Reducedtankering SmallRJ– LargeSA 2015 0 0.26(0.34– 0.27)

Increasedenginemaintenance

SmallRJ– VLA 2015 0.001– 0.002 2.4(1– 4)

Increasedaerodynamicmaintenance

SmallRJ– VLA 2015 0.001– 0.002 1(0.2– 1.5)

Enginewash SmallRJ– VLA 2015 -0.1– 0.09 0.75(0.25– 1)

IncreasedLF/reducedfrequency

SmallRJ– LargeSA 2015 0.2– 7.6 0

Increasedturbopropuse SmallRJ– LargeRJ 2015 2.6 30(25– 32)

Page 11: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

2

Alternativefuels- 1• Manydifferentoptions(e.g.Hileman&Stratton2014)• Fuelsrequiringchangesinaircraftdesign(e.g.hydrogen)would

needalongtimetopercolateintothefleet• Drop-infuel(e.g.F-Tbiomassfuels)uptakecanbefaster,but

limitedbyinfrastructure,supply,certificationrequirements• Manyfeedstockoptions,e.g.algae,cellulosicbiomass

• Drop-inbiofuelshavealreadybeentrialled,butnowidespreaduse

• Aviationbiofuelsupplywilldependontheamountofbiomassusedbyothersectors• Potentialfordouble-countingemissionsreductions• E.g.manyfuturescenarios assumebiomassisusedinpower

generation

Page 12: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

2

Alternativefuels- 2• Inthispaper:

• Assumeadrop-incellulosicbiomassfuel• Relativelylowprojectedcosts,loweruncertaintythanalgaefuels• Doesnotcompetewithfoodproduction

North America

0

5

10

15

Biof

uel d

eman

d, G

J

Europe

0

5

10

15

20

25

30

Biof

uel d

eman

d, G

J

0 1 2 3 4 5 6Biofuel price, $(2015)/gal

Asia/Pacific

05

101520253035

Biof

uel d

eman

d, G

J

0 1 2 3 4 5 6Biofuel price, $(2015)/gal

Year2020202520302035

204020452050

• Costdependsondemand• UseHoogwijketal.(2009)/

Searle&Malins(2014)/DoE(2011)togeneratebiomasscostcurvescenarios

• Plantandtransportcostsassumedtoadd$3.6/galin2020,fallingto$1.8(1.3–2.3)/galin2050

• Priorityaccessforaviationassumed,butalsorunwithoutbiofuels

Page 13: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

3

IntegratedModelling

• Toestimatetheachievablebenefitsfromthesemeasuresweneedtoestimate:• Uptakebyairlinesindifferentfutureconditions

• Requiresmodeloffleetandfleetturnover• Uptakecriteria(e.g.NPVwith10%discountrate)• Modelofearly/lateadopters(Kar etal.2009)

• Anyinteractionsbetweenmeasures• Themagnitudeoffeedbackeffects

• E.g.bettertechnologylowerscosts,airlinesreducefares,demandincreases,emissionsgoup

• Earlyadoptionofonemeasureaffectslateradoptionofanothermeasure

• Toaccountfortheseeffectsweuseaglobalaviationsystemsmodel(AIM)

Page 14: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

3

AviationIntegratedModelling(AIM)

• Global,open-sourceaviationsystemsmodel

• Recentlyupdatedto2015baseyear

• SeeDrayetal.(2017)forvalidationstudy

Page 15: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

10

Futurescenarios

• Needprojectionsof:• Population• GDP/capita• Oilprice• Carbonprice

• UseIPCCSSPscenarios

• Basecasenocarbonprice• Useasa

sensitivityvariable

[Data:O’Neilletal.,2013;DECC,2015]

(a) Population

0.6

0.8

1.0

1.2

1.4

Popu

latio

n,ra

tio w

ith 2

015

SSP1SSP2SSP4

(b) GDP per capita

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cons

tant−p

rice

MER

GDP

per c

apita

, rat

io w

ith 2

015

DECC LowDECC MidDECC High

(c) Oil price

0

50

100

150

200

250

300

Oil p

rice,

year

201

5 do

llars

/bbl

2000

2010

2020

2030

2040

2050

2060

Year

Level 1Level 2Level 3

(d) Carbon price

0

50

100

150

200

Carb

on p

rice,

yea

r20

15 d

olla

rs/tC

O2

2000

2010

2020

2030

2040

2050

2060

Year

Page 16: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

10

Modeluncertainty

SSP1pessimistic

SSP1central

SSP1optimistic

SSP2pessimistic

SSP4pessimistic

SSP4optimistic

SSP2central

SSP2optimistic

SSP4central

Earlier/better/cheapertechnology

Higherdem

andgrow

th

• Manysourcesofuncertainty• Wearemostinterestedin:

q Uncertaintyindemand§ RunthreescenariosforGDP/population/fuelprice

q Uncertaintyintechnologycharacteristics§ Runthreelenses§ E.g.centralcaseusesmostlikelyestimates

§ Optimisticcaseassumesearlyavailability,lowcostandfueluse

§ Pessimisticcaselateavailability,etc.

Page 17: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

11

Futureprojections- 1

• RPKgrowthof3.0– 5.5%/year2015-2035byscenarioq MainlyduetodifferentGDPand

fuelpriceprojectionsq Technologyscenario+/- 0.1%/yearq CentralSSP2scenariogrowsat

4.4%/yearto2036q ComparabletoAirbus(2016),

Boeing(2016)4.5and4.8%/year,nexttwentyyears

• Uncertaintyintechnologycharacteristicshasalargeimpactonfleetcomposition

• Relativelysmalldifferenceswith/withoutbiofuel [Pastdata:FlightGlobal,2016]

20

40

60

80

100

120

Flee

t, th

ousa

nd

SSP1

Pessimistic Central Optimistic

20

40

60

80

100

120

Flee

t, th

ousa

nd

SSP2

20

40

60

80

100

120

Flee

t, th

ousa

nd

2000

2010

2020

2030

2040

2050

2060

Year

SSP4

2000

2010

2020

2030

2040

2050

2060

Year

2000

2010

2020

2030

2040

2050

2060

Year

Current (Jet)NEO (Jet)NextGen (Jet)

FutureGen (Jet)NextGen (OR)BWB

TurbopropAdv. Turboprop

Page 18: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

RPK over time

0

10000

20000

30000

40000

50000

60000

RPK,

billi

on SSP1SSP2SSP4Past data

2050 RPK by carbon price

0

10000

20000

30000

40000

RPK

in 2

050,

billi

on

Lifecycle CO2 over time

OptimisticCentralPessimistic

0

1000

2000

3000

4000

Fuel

lifec

ycle

CO

2, M

t

1980

2000

2020

2040

2060

Year

2050 CO2 by carbon price

0

500

1000

1500

2000

2500

3000

Fuel

lifec

ycle

CO

2 in

205

0, M

t

0 50 100 150Carbon price in 2050, year 2015 USD

11

Futureprojections- 2

• Year-2050fuellifecycleCO2variesbetween620and1690Mt

q Withoutbiofuels,1630– 3400Mt

• 1.9-3.0%/yearreductioninlifecyclefuel/RPKto2050

q Withoutbiofuels,0.8– 1.6%/year

q USdomesticnarrowbody similartoSchäfer etal.(2016)

• CarbonpriceprimarilyaffectsemissionsviaRPKatlevelsmodelled

q Relativelysmallimpactontechnologiesused

q Higherimpactifnobiofuel[Pastdata:ICAO,2016;IEA,2017]

Withbiofuels

Page 19: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

11

Futureprojections- 2

• Year-2050fuellifecycleCO2variesbetween620and1690Mt

q Withoutbiofuels,1630– 3400Mt

• 1.9-3.0%/yearreductioninlifecyclefuel/RPKto2050

q Withoutbiofuels,0.8– 1.6%/year

q USdomesticnarrowbody similartoSchäfer etal.(2016)

• CarbonpriceprimarilyaffectsemissionsviaRPKatlevelsmodelled

q Relativelysmallimpactontechnologiesused

q Higherimpactifnobiofuel[Pastdata:ICAO,2016;IEA,2017]

RPK over time

0

10000

20000

30000

40000

50000

60000

RPK,

billi

on SSP1SSP2SSP4Past data

2050 RPK by carbon price

0

10000

20000

30000

40000

RPK

in 2

050,

billi

on

Lifecycle CO2 over time

OptimisticCentralPessimistic

0

1000

2000

3000

4000

Fuel

lifec

ycle

CO

2, M

t

1980

2000

2020

2040

2060

Year

2050 CO2 by carbon price

0

500

1000

1500

2000

2500

3000

Fuel

lifec

ycle

CO

2 in

205

0, M

t

0 50 100 150Carbon price in 2050, year 2015 USD

Withoutbiofuels

Page 20: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

12

Conclusions• Therearesignificantemissionsreductionopportunitieswithin

theaviationsectorq Cost-effectivereductionsof1.9– 3.0%peryearinfuellifecycleCO2/RPK

to2050possible,dependingonfuelpriceandtechnologycharacteristicsq Abouthalfofthisisbiofuel-dependent

§ 0.8– 1.6%/yearwithnobiofuelatall

§ Outcomessensitivetobiofuelavailabilityandpricescenario

• Absoluteemissionsstillgoupto2050inallscenariosq However,GDPscenariohasalargeimpactontotalRPK,CO2

• Likelywithin-sectorimpactofCORSIAatprojectedcarbonpricesissmall(atleastinitially)

Page 21: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

11

Extraslides

Page 22: The Global Potential for CO2 Emissions Reduction from Jet ... · • Blended wing body (BWB) aircraft • NASA N+3 designs (including double bubble) • Battery and/or turboelectric

11

Futureprojections– Contributionbytype

• Influenceofdifferentmeasuresdependsontimescaleq Initialbenefitsfromoperationalmeasuresandretrofitswhichcanbe

appliedquicklyq Technologyimpactisslowerasitdependsonfleetturnoverq Biofueluptakedependsondevelopmentofproductionand

distributioncapacity

BiofuelAlt. Tech.Conv. Tech.RetrofitsOperational

Contributionof differentmeasure types,SSP2 central

20

40

60

80

Cont

ribut

ion

to L

ifecy

cleCO

2/RP

K re

duct

ion,

per

cent

1980

2000

2020

2040

2060

Year

2050 contribution bycarbon price, SSP2 central

20

40

60

80

Cont

ribut

ion

to L

ifecy

cleCO

2/RP

K re

duct

ion,

per

cent

0 20 40 60 80 120Carbon price in 2050, year 2015 USD

• Applyingacarbonpricedoesnothavemucheffectonrelativecontributionq Slightlyincreases

contributionofalternativetechnologyinno-biofuelscase


Recommended