+ All Categories
Home > Documents > The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472...

The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472...

Date post: 25-Feb-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
54
The Greeks: Derivatives of Option Prices MATH 472 Financial Mathematics J. Robert Buchanan 2018
Transcript
Page 1: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

The Greeks: Derivatives of Option PricesMATH 472 Financial Mathematics

J. Robert Buchanan

2018

Page 2: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Sensitivity Analysis

I In calculus a derivative gives you a measure of the rate ofchange of a dependent variable as an independentvariable is changed.

I In the world a finance an option is an example of aderivative, any financial instrument whose value is derivedfrom that of an underlying security.

I Here we will calculate the partial derivatives (in the senseof calculus) of option value formulas. These partialderivatives will allow us to determine how sensitive thevalues of options are to changes in independent variablesand parameters.

I In finance these partial derivatives are referred to as “theGreeks”.

I Unless otherwise specified, all results discussed are validonly for non-dividend paying securities.

Page 3: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Black-Scholes Option Pricing Formulas

w =ln(S/K ) + (r + σ2/2)(T − t)

σ√

T − t

Ce(S, t) = S Φ (w)− K e−r(T−t)Φ(

w − σ√

T − t)

Pe(S, t) = K e−r(T−t)Φ(σ√

T − t − w)− S Φ (−w)

Page 4: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Cumulative Distribution Function

The function Φ (w) is the cumulative distribution function

Φ (w) =1√2π

∫ w

−∞e−x2/2 dx

which by the Fundamental Theorem of Calculus has derivative

Φ′ (w) = φ (w) =1√2π

e−w2/2.

Page 5: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Partial Derivatives of w

w =ln(S/K ) + (r + σ2/2)(T − t)

σ√

T − t∂w∂t

=1

2σ√

T − t

(ln(S/K )

T − t− r − σ2

2

)∂w∂S

=1

σS√

T − t∂w∂r

=

√T − tσ

∂w∂σ

=√

T − t − wσ

Page 6: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Important Identity

Claim:

S φ (w) = Ke−r(T−t) φ(

w − σ√

T − t)

Page 7: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Theta Θ (1 of 3)

Theta Θ is the partial derivative with respect to time t .

Time is the only independent variable we are certain willchange before expiry. It is also the only deterministicindependent variable.

Page 8: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Theta Θ (2 of 3)

Ce = SΦ (w)− Ke−r(T−t)Φ(

w − σ√

T − t)

∂Ce

∂t= Sφ (w)

∂w∂t− rKe−r(T−t)Φ

(w − σ

√T − t

)− Ke−r(T−t)φ

(w − σ

√T − t

)[∂w∂t

2√

T − t

]

= Sφ (w)∂w∂t− rKe−r(T−t)Φ

(w − σ

√T − t

)− Sφ (w)

[∂w∂t

2√

T − t

]

= − σS2√

T − tφ (w)− r K e−r(T−t)Φ

(w − σ

√T − t

)< 0

Page 9: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Theta Θ (2 of 3)

Ce = SΦ (w)− Ke−r(T−t)Φ(

w − σ√

T − t)

∂Ce

∂t= Sφ (w)

∂w∂t− rKe−r(T−t)Φ

(w − σ

√T − t

)− Ke−r(T−t)φ

(w − σ

√T − t

)[∂w∂t

2√

T − t

]= Sφ (w)

∂w∂t− rKe−r(T−t)Φ

(w − σ

√T − t

)− Sφ (w)

[∂w∂t

2√

T − t

]

= − σS2√

T − tφ (w)− r K e−r(T−t)Φ

(w − σ

√T − t

)< 0

Page 10: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Theta Θ (2 of 3)

Ce = SΦ (w)− Ke−r(T−t)Φ(

w − σ√

T − t)

∂Ce

∂t= Sφ (w)

∂w∂t− rKe−r(T−t)Φ

(w − σ

√T − t

)− Ke−r(T−t)φ

(w − σ

√T − t

)[∂w∂t

2√

T − t

]= Sφ (w)

∂w∂t− rKe−r(T−t)Φ

(w − σ

√T − t

)− Sφ (w)

[∂w∂t

2√

T − t

]= − σS

2√

T − tφ (w)− r K e−r(T−t)Φ

(w − σ

√T − t

)< 0

Page 11: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Illustration

The value of a European Call decreases as expiry approaches(all other variables and parameters being constant).

Tt

Ce

Θ

Page 12: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Theta Θ (3 of 3)

For a European Put:

∂Pe

∂t= r K e−r(T−t)Φ

(σ√

T − t − w)

+ S φ (−w)∂w∂t

− K e−r(T−t)φ(σ√

T − t − w)[ σ

2√

T − t+∂w∂t

]= r K e−r(T−t)Φ

(σ√

T − t − w)− σS

2√

T − tφ (w)

Page 13: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Illustration

The value of a European Put decreases as expiry approaches(all other variables and parameters being constant).

Tt

Pe

Θ

Page 14: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Delta ∆ (1 of 2)

∆ was involved in the derivation of the Black-Scholes PDE andis defined to be the partial derivative with respect to the price ofthe security.

Ce = S Φ (w)− K e−r(T−t)Φ(

w − σ√

T − t)

∂Ce

∂S= Φ (w) + S φ (w)

∂w∂S− K e−r(T−t)φ

(w − σ

√T − t

)∂w∂S

= Φ (w) > 0

Question: what is the range of Delta for a European calloption?

Page 15: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Illustration

Consider a European Call with K = 50, T = 1, r = 0.10, andσ = 0.50.

20 40 60 80 100

0.

20.

40.

60.

0.

0.32

0.64

0.97

S

Ce Δ

Page 16: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Delta ∆ (2 of 2)

Recall the Put-Call Parity formula:

Pe + S = Ce + K e−r(T−t)

∂S[Pe + S] =

∂S[Ce + K e−r(T−t)]

∂Pe

∂S+ 1 =

∂Ce

∂S∂Pe

∂S= Φ (w)− 1 < 0

Question: what is the range of Delta for a European putoption?

Page 17: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Illustration

Consider a European Put with K = 50, T = 1, r = 0.10, andσ = 0.50.

20 40 60 80 100

0.

10.

20.

30.

40.

-1.

-0.75

-0.5

-0.25

-0.006

S

Pe Δ

Page 18: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (1 of 2)

The current price of a non-dividend-paying stock is $77 and itsvolatility is 35% per year. The risk-free interest rate is 3.25%per year. A portfolio is constructed consisting of one six-monthEuropean call option with a strike price of $80 and the cashobtained from shorting ∆ shares of the stock. The portfolio’svalue is non-random. What is ∆?

Page 19: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (2 of 2)The assumption the portfolio’s value is non-random is theassumption

(∆)S − Ce =

(∂Ce

∂S

)S − Ce = 0

made in deriving the Black-Scholes equation.

S = 77 σ = 0.35 T =6

12r = 0.0325 K = 80 t = 0

Using these values

w =ln(S/K ) + (r + σ2/2)(T − t)

σ√

T − t

≈ 0.0349666

∂Ce

∂S= ∆ = Φ (w)

≈ 0.513947

Page 20: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (2 of 2)The assumption the portfolio’s value is non-random is theassumption

(∆)S − Ce =

(∂Ce

∂S

)S − Ce = 0

made in deriving the Black-Scholes equation.

S = 77 σ = 0.35 T =6

12r = 0.0325 K = 80 t = 0

Using these values

w =ln(S/K ) + (r + σ2/2)(T − t)

σ√

T − t≈ 0.0349666

∂Ce

∂S= ∆ = Φ (w) ≈ 0.513947

Page 21: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (1 of 2)

Suppose a portfolio consists of a share of stock worth $75 anda European Put option on that stock with a strike price of $73and expiry in 3 months. Assume the risk-free interest rate is10% and the volatility of the stock price is 30%.

Find the Delta of the portfolio consisting of the stock and theoption.

Page 22: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (2 of 2)

The Delta of the portfolio is

∂S[S + Pe] = 1 + Φ (w)− 1 = Φ (w)

calculated using the variables and parameters below.

S = 75 σ = 0.30 T = 3/12r = 0.10 K = 73 t = 0

w =ln(S/K ) + (r + σ2/2)(T − t)

σ√

T − t

≈ 0.421858

Φ (w) ≈ 0.663436

Page 23: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (2 of 2)

The Delta of the portfolio is

∂S[S + Pe] = 1 + Φ (w)− 1 = Φ (w)

calculated using the variables and parameters below.

S = 75 σ = 0.30 T = 3/12r = 0.10 K = 73 t = 0

w =ln(S/K ) + (r + σ2/2)(T − t)

σ√

T − t≈ 0.421858

Φ (w) ≈ 0.663436

Page 24: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Gamma Γ

Gamma is the second partial derivative with respect to S, thus

Γ =∂

∂S[Φ (w)]

= φ (w)∂w∂S

∂2Ce

∂S2 =∂2Pe

∂S2 =e−w2/2

σS√

2π(T − t)> 0.

Page 25: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Gamma vs. S0

50 100 150 200S0

0.005

0.010

0.015

Γ

K = 100, σ = 0.25 T = 1 r = 0.0325

Page 26: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Gamma and Delta

For options far in-the-money or out-of-the-money, there is littlechange in ∆ and thus Γ is nearly zero.

50 100 150

0.

0.0025

0.005

0.0075

0.01

0.

0.21

0.42

0.63

0.85

S

Γ Δ

Page 27: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Gamma and At-the-Money Options

Consider an at-the-money option (S = K ), how does Gammabehave as expiry approaches?

0.0 0.2 0.4 0.6 0.8 1.0T

0.02

0.04

0.06

0.08

0.10Γ

S0<K

S0=K

S0>K

Page 28: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Solution

When S = K ,

limt→T−

Γ = limt→T−

e−((r+σ2/2)(T−t))2/(2σ2(T−t))

σK√

2π(T − t)

= limt→T−

e−(r+σ2/2)2(T−t)/(2σ2)

σK√

2π(T − t)= ∞.

Page 29: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Gamma vs. K and T

60 80 100 120 1400.0

0.2

0.4

0.6

0.8

1.0

K

T

S0 = 100, σ = 0.25 r = 0.0325

Page 30: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Relationships Between ∆, Θ, and Γ

Remember the Black-Scholes PDE:

r F = Ft + r S FS +12σ2S2FSS

Since Ft = Θ, ∆ = FS, and FSS = Γ then the Black-Scholesequation can be thought of as

r F = Θ + r S ∆ +12σ2S2Γ.

Page 31: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Changes in Option Values

Using differentials we can approximate changes in the prices ofoptions as underlying variables and parameters change.

Let F (S, t) be the value of an option at time t when the value ofthe underlying security is S, then we have the followingapproximations.

F (S, t + δt) ≈ F (S, t) + (Θ)δtF (S + δS, t) ≈ F (S, t) + (∆)δS

F (S + δS, t) ≈ F (S, t) + (∆)δS +12

(Γ)(δS)2

F (S + δS, t + δt) ≈ F (S, t) + (Θ)δt + (∆)δS +12

(Γ)(δS)2

Page 32: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (1 of 3)

A six-month call option with a strike price of $100 on a stockcurrently valued at $99 and having a volatility of σ = 0.40 costs$12.4911. The risk-free interest rate is r = 0.08. Estimate thevalue of the option at five months to expiry.

Ce(S, t + δt) ≈ Ce(S, t) + (Θ)δtCe(S, δt) ≈ Ce(S,0) + (Θ)δt

Ce(99,1/12) ≈ Ce(99,0) + (Θ)(1/12)

= 12.4911 +−14.5686

12= 11.2771

For comparison, the exact value is Ce(99,1/12) = $11.2322.

Page 33: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (1 of 3)

A six-month call option with a strike price of $100 on a stockcurrently valued at $99 and having a volatility of σ = 0.40 costs$12.4911. The risk-free interest rate is r = 0.08. Estimate thevalue of the option at five months to expiry.

Ce(S, t + δt) ≈ Ce(S, t) + (Θ)δtCe(S, δt) ≈ Ce(S,0) + (Θ)δt

Ce(99,1/12) ≈ Ce(99,0) + (Θ)(1/12)

= 12.4911 +−14.5686

12= 11.2771

For comparison, the exact value is Ce(99,1/12) = $11.2322.

Page 34: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (1 of 3)

A six-month call option with a strike price of $100 on a stockcurrently valued at $99 and having a volatility of σ = 0.40 costs$12.4911. The risk-free interest rate is r = 0.08. Estimate thevalue of the option at five months to expiry.

Ce(S, t + δt) ≈ Ce(S, t) + (Θ)δtCe(S, δt) ≈ Ce(S,0) + (Θ)δt

Ce(99,1/12) ≈ Ce(99,0) + (Θ)(1/12)

= 12.4911 +−14.5686

12= 11.2771

For comparison, the exact value is Ce(99,1/12) = $11.2322.

Page 35: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (2 of 3)

A six-month call option with a strike price of $100 on a stockcurrently valued at $99 and having a volatility of σ = 0.40 costs$12.4911. The risk-free interest rate is r = 0.08. Estimate thevalue of the option using Delta if the value of the stockincreases to $101.

Ce(S + δS, t) ≈ Ce(S, t) + (∆)δSCe(101,0) ≈ Ce(99,0) + (∆)(2)

= 12.4911 + (0.597666)(2)

= 13.6865

For comparison, the exact value is Ce(101,0) = $13.7137.

Page 36: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (2 of 3)

A six-month call option with a strike price of $100 on a stockcurrently valued at $99 and having a volatility of σ = 0.40 costs$12.4911. The risk-free interest rate is r = 0.08. Estimate thevalue of the option using Delta if the value of the stockincreases to $101.

Ce(S + δS, t) ≈ Ce(S, t) + (∆)δSCe(101,0) ≈ Ce(99,0) + (∆)(2)

= 12.4911 + (0.597666)(2)

= 13.6865

For comparison, the exact value is Ce(101,0) = $13.7137.

Page 37: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (2 of 3)

A six-month call option with a strike price of $100 on a stockcurrently valued at $99 and having a volatility of σ = 0.40 costs$12.4911. The risk-free interest rate is r = 0.08. Estimate thevalue of the option using Delta if the value of the stockincreases to $101.

Ce(S + δS, t) ≈ Ce(S, t) + (∆)δSCe(101,0) ≈ Ce(99,0) + (∆)(2)

= 12.4911 + (0.597666)(2)

= 13.6865

For comparison, the exact value is Ce(101,0) = $13.7137.

Page 38: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (3 of 3)

A six-month call option with a strike price of $100 on a stockcurrently valued at $99 and having a volatility of σ = 0.40 costs$12.4911. The risk-free interest rate is r = 0.08. Estimate thevalue of the option using Delta and Gamma if the value of thestock increases to $101.

Ce(S + δS, t) ≈ Ce(S, t) + (∆)δS +12

(Γ)(δS)2

Ce(101,0) ≈ Ce(99,0) + (∆)(2) +12

(Γ)(4)

= 12.4911 + (0.597666)(2) +12

(0.0138181)(4)

= 13.7141

For comparison, the exact value is Ce(101,0) = $13.7137.

Page 39: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (3 of 3)

A six-month call option with a strike price of $100 on a stockcurrently valued at $99 and having a volatility of σ = 0.40 costs$12.4911. The risk-free interest rate is r = 0.08. Estimate thevalue of the option using Delta and Gamma if the value of thestock increases to $101.

Ce(S + δS, t) ≈ Ce(S, t) + (∆)δS +12

(Γ)(δS)2

Ce(101,0) ≈ Ce(99,0) + (∆)(2) +12

(Γ)(4)

= 12.4911 + (0.597666)(2) +12

(0.0138181)(4)

= 13.7141

For comparison, the exact value is Ce(101,0) = $13.7137.

Page 40: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (3 of 3)

A six-month call option with a strike price of $100 on a stockcurrently valued at $99 and having a volatility of σ = 0.40 costs$12.4911. The risk-free interest rate is r = 0.08. Estimate thevalue of the option using Delta and Gamma if the value of thestock increases to $101.

Ce(S + δS, t) ≈ Ce(S, t) + (∆)δS +12

(Γ)(δS)2

Ce(101,0) ≈ Ce(99,0) + (∆)(2) +12

(Γ)(4)

= 12.4911 + (0.597666)(2) +12

(0.0138181)(4)

= 13.7141

For comparison, the exact value is Ce(101,0) = $13.7137.

Page 41: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Vega V (1 of 2)

Vega is the partial derivative with respect to volatility σ.

Ce = S Φ (w)− K e−r(T−t)Φ(

w − σ√

T − t)

∂Ce

∂σ= S φ (w)

∂w∂σ− K e−r(T−t)φ

(w − σ

√T − t

)[∂w∂σ−√

T − t]

= S φ (w)∂w∂σ− S φ (w)

[∂w∂σ−√

T − t]

=S√

T − t√2π

e−w2/2 > 0

Page 42: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Vega V (2 of 2)

According to the Put-Call Parity formula:

Pe + S = Ce + K e−r(T−t)

∂σ[Pe + S] =

∂σ

[Ce + K e−r(T−t)

]∂Pe

∂σ=

∂Ce

∂σ

∂Pe

∂σ=

S√

T − t√2π

e−w2/2

Remark: vega is identical for puts and calls.

Page 43: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (1 of 2)

Consider a three-month European put option on anon-dividend-paying stock whose current value is $200 andwhose volatility is 30%. The option has a strike price of $195and the risk-free interest rate is 6.25%.

1. Find the vega of the option.2. If the volatility of the stock increases to 31%, approximate

the change in the value of the put.

Page 44: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (2 of 2)

S = 200 σ = 0.30 T = 3/12K = 195 r = 0.0625 t = 0

Using these values

w =ln(S/K ) + (r + σ2/2)(T − t)

σ√

T − t

≈ 0.347952

V =S√

T − t√2π

e−w2/2

≈ 37.5509

Using the linear approximation,

dP = V dσ = (37.5509)(0.01) = 0.375509.

Page 45: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (2 of 2)

S = 200 σ = 0.30 T = 3/12K = 195 r = 0.0625 t = 0

Using these values

w =ln(S/K ) + (r + σ2/2)(T − t)

σ√

T − t≈ 0.347952

V =S√

T − t√2π

e−w2/2 ≈ 37.5509

Using the linear approximation,

dP = V dσ = (37.5509)(0.01) = 0.375509.

Page 46: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (2 of 2)

S = 200 σ = 0.30 T = 3/12K = 195 r = 0.0625 t = 0

Using these values

w =ln(S/K ) + (r + σ2/2)(T − t)

σ√

T − t≈ 0.347952

V =S√

T − t√2π

e−w2/2 ≈ 37.5509

Using the linear approximation,

dP = V dσ = (37.5509)(0.01) = 0.375509.

Page 47: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Rho ρ (1 of 2)

Rho is the partial derivative with respect to the risk-free interestrate r .

Ce = S Φ (w)− K e−r(T−t)Φ(

w − σ√

T − t)

∂Ce

∂r= S φ (w)

∂w∂r

+ K (T − t)e−r(T−t)Φ(

w − σ√

T − t)

− K e−r(T−t)φ(

w − σ√

T − t)∂w∂r

= K (T − t)e−r(T−t)Φ(

w − σ√

T − t)> 0

Page 48: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Rho ρ (2 of 2)

Starting with the Put-Call Parity formula:

Pe + S = Ce + K e−r(T−t)

∂r[Pe + S] =

∂r

[Ce + K e−r(T−t)

]∂Pe

∂r=

∂Ce

∂r− K (T − t)e−r(T−t)

∂Pe

∂r= −K (T − t)e−r(T−t)Φ

(σ√

T − t − w)< 0

Page 49: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (1 of 2)

Consider a three-month European put option on a stock whosecurrent value is $200 and whose volatility is 30%. The optionhas a strike price of $195 and the risk-free interest rate is6.25%.

1. Find the rho of the option.2. If the interest rate increases to 7.00%, approximate the

change in the value of the put.

Page 50: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (2 of 2)

S = 200 σ = 0.30 T = 3/12K = 195 r = 0.0625 t = 0

Using these values

w =ln(S/K ) + (r + σ2/2)(T − t)

σ√

T − t

≈ 0.347952

ρ = −K (T − t)e−r(T−t)Φ(σ√

T − t − w)

≈ −20.2315

Using the linear approximation,

dP = ρdr = (−20.2315)(0.0075) = −0.151737.

Page 51: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (2 of 2)

S = 200 σ = 0.30 T = 3/12K = 195 r = 0.0625 t = 0

Using these values

w =ln(S/K ) + (r + σ2/2)(T − t)

σ√

T − t≈ 0.347952

ρ = −K (T − t)e−r(T−t)Φ(σ√

T − t − w)≈ −20.2315

Using the linear approximation,

dP = ρdr = (−20.2315)(0.0075) = −0.151737.

Page 52: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Example (2 of 2)

S = 200 σ = 0.30 T = 3/12K = 195 r = 0.0625 t = 0

Using these values

w =ln(S/K ) + (r + σ2/2)(T − t)

σ√

T − t≈ 0.347952

ρ = −K (T − t)e−r(T−t)Φ(σ√

T − t − w)≈ −20.2315

Using the linear approximation,

dP = ρdr = (−20.2315)(0.0075) = −0.151737.

Page 53: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Homework

I Read Chapter 9.I Exercises: 1–11.

Page 54: The Greeks: Derivatives of Option Pricesbanach.millersville.edu/~bob/math472/greeks/main.pdfMATH 472 Financial Mathematics J. Robert Buchanan 2018 Sensitivity Analysis I In calculus

Credits

These slides are adapted from the textbook,An Undergraduate Introduction to Financial Mathematics,3rd edition, (2012).author: J. Robert Buchananpublisher: World Scientific Publishing Co. Pte. Ltd.address: 27 Warren St., Suite 401–402, Hackensack, NJ07601ISBN: 978-9814407441


Recommended