+ All Categories
Home > Documents > The kinetochore–microtubule interface at a glanceetal., 2009; Welburn et al., 2009), although the...

The kinetochore–microtubule interface at a glanceetal., 2009; Welburn et al., 2009), although the...

Date post: 16-Oct-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
7
CELL SCIENCE AT A GLANCE The kinetochoremicrotubule interface at a glance Julie K. Monda 1,2 and Iain M. Cheeseman 1,2, * ABSTRACT Accurate chromosome segregation critically depends on the formation of attachments between microtubule polymers and each sister chromatid. The kinetochore is the macromolecular complex that assembles at the centromere of each chromosome during mitosis and serves as the link between the DNA and the microtubules. In this Cell Science at a Glance article and accompanying poster, we discuss the activities and molecular players that are involved in generating kinetochoremicrotubule attachments, including the initial stages of lateral kinetochoremicrotubule interactions and maturation to stabilized end-on attachments. We additionally explore the features that contribute to the ability of the kinetochore to track with dynamic microtubules. Finally, we examine the contributions of microtubule-associated proteins to the organization and stabilization of the mitotic spindle and the control of microtubule dynamics. KEY WORDS: Chromosome, Kinetochore, Microtubule, Mitosis Introduction Cell division is a fundamental process that is carried out by all organisms. During mitosis, the genetic material of each cell must be evenly distributed between both resulting daughter cells. The loss or gain of even a single chromosome can result in catastrophic consequences for the organism (Schukken and Foijer, 2018). To ensure the accurate distribution of the DNA in eukaryotes, a large macromolecular complex termed the kinetochore assembles onto the centromere of each chromosome during mitosis. The architecture of the kinetochore will not be extensively discussed in this Cell Science at a Glance article, but has been the topic of several recent review articles (Hara and Fukagawa, 2018; Hinshaw and Harrison, 2018; Joglekar and Kukreja, 2017; Musacchio and Desai, 2017; Nagpal and Fukagawa, 2016; Pesenti et al., 2016). Instead, we will focus on the interface between the kinetochore and microtubules, dynamic polymers of tubulin heterodimers. This kinetochoremicrotubule 1 Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA. 2 Department of Biology, MIT, Cambridge, MA 02142, USA. *Author for correspondence ([email protected]) I.M.C., 0000-0002-3829-5612 1 © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs214577. doi:10.1242/jcs.214577 Journal of Cell Science
Transcript
Page 1: The kinetochore–microtubule interface at a glanceetal., 2009; Welburn et al., 2009), although the Ska1 complex does not form a ring-like structure (Monda et al., 2017; Schmidt et

CELL SCIENCE AT A GLANCE

The kinetochore–microtubule interface at a glanceJulie K. Monda1,2 and Iain M. Cheeseman1,2,*

ABSTRACTAccurate chromosome segregation critically depends on theformation of attachments between microtubule polymers and eachsister chromatid. The kinetochore is the macromolecular complexthat assembles at the centromere of each chromosome duringmitosis and serves as the link between the DNA and themicrotubules. In this Cell Science at a Glance article andaccompanying poster, we discuss the activities and molecularplayers that are involved in generating kinetochore–microtubuleattachments, including the initial stages of lateral kinetochore–microtubule interactions and maturation to stabilized end-onattachments. We additionally explore the features that contributeto the ability of the kinetochore to track with dynamic microtubules.Finally, we examine the contributions of microtubule-associated

proteins to the organization and stabilization of the mitotic spindleand the control of microtubule dynamics.

KEY WORDS: Chromosome, Kinetochore, Microtubule, Mitosis

IntroductionCell division is a fundamental process that is carried out by allorganisms. During mitosis, the genetic material of each cell must beevenly distributed between both resulting daughter cells. The loss orgain of even a single chromosome can result in catastrophicconsequences for the organism (Schukken and Foijer, 2018). Toensure the accurate distribution of the DNA in eukaryotes, a largemacromolecular complex termed the kinetochore assembles onto thecentromere of each chromosome during mitosis. The architecture ofthe kinetochorewill not be extensively discussed in this Cell Science ata Glance article, but has been the topic of several recent review articles(Hara and Fukagawa, 2018; Hinshaw and Harrison, 2018; Joglekarand Kukreja, 2017; Musacchio and Desai, 2017; Nagpal andFukagawa, 2016; Pesenti et al., 2016). Instead, we will focus on theinterface between the kinetochore and microtubules, dynamicpolymers of tubulin heterodimers. This kinetochore–microtubule

1Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge,MA 02142, USA. 2Department of Biology, MIT, Cambridge, MA 02142, USA.

*Author for correspondence ([email protected])

I.M.C., 0000-0002-3829-5612

1

© 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs214577. doi:10.1242/jcs.214577

Journal

ofCe

llScience

Page 2: The kinetochore–microtubule interface at a glanceetal., 2009; Welburn et al., 2009), although the Ska1 complex does not form a ring-like structure (Monda et al., 2017; Schmidt et

interface is critically important, as depolymerization of kinetochore-associated microtubules ultimately provides the driving force forchromosome segregation (Musacchio and Desai, 2017).Successfully harnessing the force released by microtubule

depolymerization and transducing that force to the DNA requiresa sufficiently stable kinetochore–microtubule attachment. Thegeneration of a stable microtubule attachment is not a trivial task.Within the vast expanse of the cytoplasm, the kinetochore mustlocate and bind to microtubules. If even a single kinetochore lacksmicrotubule attachments, the spindle assembly checkpoint willprevent anaphase onset (Rieder et al., 1995). Furthermore, thekinetochores of each sister chromatid must bind to microtubules thatemanate from opposing poles of the bipolar spindle to achieve astate termed bi-orientation. Kinetochore–microtubule interactionsare therefore initially highly dynamic to facilitate correction oferroneous attachments. Once bi-orientation is achieved, thekinetochore–microtubule attachment must be stabilized for forcetransduction, yet also remain sufficiently dynamic so as tomaintain itsassociation even as the microtubule polymerizes and depolymerizes.In this article and accompanying poster, we discuss the features andmolecular players that have key roles in overcoming these challengesin order to facilitate the formation of robust kinetochore–microtubuleinteractions. We focus on the kinetochore-localized proteins that bindmicrotubules, as well as proteins that alter the dynamics andorganization of kinetochore-bound microtubules.

Microtubule capture and lateral-to-end-on conversionAccurate chromosome segregation depends on the generation ofend-on kinetochore–microtubule interactions where the plus-end ofthe microtubule is embedded within the kinetochore. However,some kinetochores will initially associate with the side of themicrotubule, rather than the end (Barisic et al., 2014; Kapoor et al.,2006; Magidson et al., 2011; Tanaka et al., 2005). These lateralassociations are mediated by one of two kinetochore-localized,microtubule-based motors – cytoplasmic dynein and centromere-associated protein E (CENP-E). As a minus-end-directed motor,dynein transports chromosomes towards the spindle pole (Li et al.,2007; Vorozhko et al., 2008; Yang et al., 2007) and thereby towardsa region of high microtubule density. Chromosome congression isthen promoted by the plus-end directed activity of CENP-E(McEwen et al., 2001) (see poster). During mitosis, microtubuleplus-ends are located at both the cell cortex and equator (Prosser andPelletier, 2017). The directionality of CENP-E-driven chromosometransport is guided by tubulin detyrosination (Barisic et al., 2015), amodification that is found to be enriched in the equator-orientedmicrotubules of the mitotic spindle and depleted in the corticalmicrotubules (Gundersen and Bulinski, 1986). In this way, thecombined actions of dynein and CENP-E help to ensure timelychromosome alignment, and also promote the formation of end-onattachments by ensuring incorporation of the chromosomes into thespindle (Itoh et al., 2018) (see poster).To generate the initial lateral microtubule interactions,

kinetochores expand their reach by forming a structure that istermed the fibrous corona (Jokelainen, 1967; Magidson et al., 2015;McEwen et al., 1993; Rieder, 1982). A subset of outer kinetochoreproteins, including dynein (Wordeman et al., 1991), CENP-E(Cooke et al., 1997), CENP-F (Rattner et al., 1993; Zhu et al., 1995)and the Rod–ZW10–Zwilch (RZZ) complex (Rod is also known askinetochore-associated protein 1; KNTC1) (Basto et al., 2004; Starret al., 1998), form an extended crescent-shaped structure thatsurrounds the kinetochore in the absence of microtubules (Donget al., 2007; Echeverri et al., 1996; Hoffman et al., 2001; Thrower

et al., 1996), thereby creating a large platform to capturemicrotubules. In Xenoups oocytes, an even larger expansion thatincludes more kinetochore proteins has also been recently described(Wynne and Funabiki, 2015).

The eventual conversion from a lateral to an end-on attachment isregulated by the counteracting functions of Aurora B kinase andprotein phosphatase 2A (PP2A), and facilitated by the complexbetween Astrin (also known as SPAG5) and small kinetochore-associated protein (SKAP; also known as KNSTRN) (Shresthaet al., 2017) (Astrin–SKAP complex; see poster). Althoughgeometrically distinct from the final goal of end-on microtubuleattachments, the early establishment of kinetochore–microtubuleinteractions sets the stage for the subsequent mitotic events andhelps facilitate chromosome alignment at the metaphase plate.

Core kinetochore–microtubule interactionsMature end-on microtubule attachments are required forchromosome bi-orientation and satisfaction of the spindleassembly checkpoint (Kuhn and Dumont, 2017). The centralplayer in the formation of these stable attachments is the Ndc80complex, a component of the kinetochore scaffold 1 (KNL1)/Mis12/Ndc80 (KMN) network. The KMN network serves as thekey link between the microtubules and the DNA (see poster), as italso binds the DNA-associated inner kinetochore proteins CENP-Cand CENP-T (Gascoigne et al., 2011; Huis In ‘t Veld et al., 2016;Kim and Yu, 2015; Malvezzi et al., 2013; Nishino et al., 2013;Przewloka et al., 2011; Rago et al., 2015; Schleiffer et al., 2012;Screpanti et al., 2011). CENP-T further acts as a platform to expandthe microtubule-binding capacity of the kinetochore, as a singleCENP-T protein can recruit two Ndc80 complexes in addition to anentire complement of the KMN network (Huis In‘t Veld et al., 2016;Pekgoz Altunkaya et al., 2016; Rago et al., 2015). The precisestoichiometry of Ndc80 and the other components of thekinetochore–microtubule interface are likely to be central to thestructure, organization and functionality of these interactions.However, for simplicity, the accompanying poster primarilyfocuses on the core concepts, rather than attempting to define therelative and absolute molecular numbers.

To ensure proper microtubule interactions, the KMN network isregulated by a variety of mechanisms. For example, Ndc80 bindingto microtubules is negatively regulated by the RZZ complex in earlymitosis, and that inhibition is relieved by recruitment of dynein tothe kinetochore (Cheerambathur et al., 2013). The RZZ complexand dynein show dynamic localization to kinetochores, with RZZlocalization being highest at nuclear envelope breakdown, anddynein localization being highest later in prometaphase (Itoh et al.,2018). In this way, RZZ-mediated inhibition of Ndc80 likelyprevents the formation of stable end-on attachments early in mitosiswhen there is a high frequency of incorrect kinetochore–microtubule interactions (Cheerambathur et al., 2013), such assyntelic attachments –where both sister kinetochores are attached tothe same pole or merotelic attachments –where a single kinetochoreattaches to microtubules from both spindle poles (see poster).

In addition to regulation by RZZ, Ndc80 is also negativelyregulated by phosphorylation by mitotic kinases, including AuroraA and Aurora B (Cheeseman et al., 2002; Chmatal et al., 2015;DeLuca et al., 2006; Shrestha et al., 2017; Ye et al., 2015). Aurora-mediated phosphorylation decreases the affinity of Ndc80 formicrotubules (Cheeseman et al., 2006), thereby allowing forcorrection of aberrant kinetochore–microtubule interactions.Consistent with this, Ndc80 phosphorylation is highest inprometaphase and decreases in metaphase through the combined

2

CELL SCIENCE AT A GLANCE Journal of Cell Science (2018) 131, jcs214577. doi:10.1242/jcs.214577

Journal

ofCe

llScience

Page 3: The kinetochore–microtubule interface at a glanceetal., 2009; Welburn et al., 2009), although the Ska1 complex does not form a ring-like structure (Monda et al., 2017; Schmidt et

actions of two phosphatases, PP1 and the PP2A-B56 holoenzyme(Liu et al., 2010; Posch et al., 2010; Schleicher et al., 2017).However, recent work has also suggested that a subset ofphosphorylation sites are maintained by Aurora A throughoutmitosis to ensure proper microtubule dynamics (DeLuca et al.,2017). Thus, the proper segregation of the DNA relies on precisecontrol of the microtubule-binding activity of the KMN network.

Dynamic microtubule tip trackingDuring mitosis, the kinetochore needs to not only establish end-onmicrotubule attachments, but also maintain those attachments whilethe microtubule grows and shrinks. Indeed, associations withdynamic microtubules contribute to multiple aspects of mitosis. Forexample, in addition to motor-driven chromosome congression,as discussed above, depolymerization-coupled pulling onkinetochores also contributes to chromosome congression andrelies on the ability of the kinetochore to maintain its associationwith a depolymerizing microtubule (Auckland and McAinsh,2015). Additionally, chromosomes undergo oscillations duringmetaphase (Jaqaman et al., 2010; Skibbens et al., 1993), therebyrequiring one sister chromatid to associate with depolymerizingmicrotubules while the other sister chromatid associates withelongating microtubules. Finally, chromosome segregation duringanaphase is driven by the association of kinetochores withdepolymerizing microtubules (Musacchio and Desai, 2017).Although critically required for the formation of stablemicrotubule

attachments, the role of Ndc80 in microtubule tip tracking is lessclear. In vitro, Ndc80 complexes are unable to track depolymerizingmicrotubules (Schmidt et al., 2012) unless the complex is artificiallyoligomerized (McIntosh et al., 2008; Powers et al., 2009; Volkovet al., 2018). It is unclear how well this oligomerization mimics theorganization of the ∼14 Ndc80 complexes that bind to eachkinetochore microtubule in human cells (Suzuki et al., 2015), but itsuggests that Ndc80 contributes to the associations with dynamicmicrotubules. Indeed, the phosphorylation state of the Ndc80complex tunes the association of kinetochores with elongatingmicrotubules in vivo (Long et al., 2017).In fungi, the ring-like Dam1 complex facilitates processive

microtubule interactions by binding both Ndc80 and themicrotubule, and sliding along the microtubule as protofilamentspeel away during depolymerization (Grishchuk et al., 2008;Lampert et al., 2010; Miranda et al., 2005; Tien et al., 2010;Westermann et al., 2005). Interestingly, this mechanism is notwidely conserved, as metazoans do not contain homologs of theDam1 complex (van Hooff et al., 2017). Instead, in species lackingthe Dam1 complex, the spindle and kinetochore-associated protein1 (Ska1) complex likely serves as a functional analog (Gaitanoset al., 2009; Welburn et al., 2009), although the Ska1 complex doesnot form a ring-like structure (Monda et al., 2017; Schmidt et al.,2012; Welburn et al., 2009).Ska1 is recruited to the kinetochore by the Ndc80 complex

(Cheerambathur et al., 2017; Janczyk et al., 2017), and thephosphatases PP1 and PP2A also promote accumulation of Ska1at aligned kinetochores (Sivakumar and Gorbsky, 2017) (seeposter). Indeed, the levels of kinetochore-localized Ska1 increasethroughout congression, thereby enhancing the ability of maturekinetochore–microtubule attachments to sustain load-bearing forces(Auckland et al., 2017). In vitro, Ska1 autonomously tracks bothdepolymerizing and elongating microtubules (Monda et al., 2017;Schmidt et al., 2012), supporting the model that Ska1 contributes tothe ability of the kinetochore to generally associate with dynamicmicrotubules (Helgeson et al., 2018).

In addition to Ska1, other factors may contribute to dynamicmicrotubule interactions. For example, CENP-F also tracksdepolymerizing microtubules in vitro (Volkov et al., 2015).Taken together, the integrated microtubule-binding activities ofSka1, the Ndc80 complex and perhaps other proteins createthe dynamic interface required for persistent association withmicrotubules (see poster).

Stabilization of end-on attachmentsCycles of microtubule polymerization and depolymerizationgenerate forces that can be transmitted through the kinetochore todrive chromosome movement. Withstanding and harnessing thatforce requires the kinetochore–microtubule attachment to besufficiently robust and stable. Although the Ndc80 complex iscritical for the formation of microtubule attachments (Cheesemanet al., 2006; DeLuca et al., 2006), other microtubule-bindingproteins play key roles in stabilizing and strengthening thosemicrotubule interactions. First, the microtubule-bound Ska1complex strengthens Ndc80-mediated microtubule interactionsand is capable of bearing load (Cheerambathur et al., 2017;Helgeson et al., 2018), in addition to its role in tracking dynamicmicrotubules (Monda et al., 2017; Schmidt et al., 2012). Second,the Astrin–SKAP complex specifically localizes to microtubule-attached and bi-oriented kinetochores, where it binds tomicrotubules synergistically with Ndc80 (Kern et al., 2017) (seeposter). Thus, the activities of Ndc80, Ska1, Astrin–SKAP andpotentially other proteins, create a stable kinetochore–microtubuleinterface that is capable of withstanding the significant force exertedby the mitotic spindle.

Kinetochore-fiber organizationIn most organisms, each kinetochore binds a bundle of multiplemicrotubules (∼17 in human cells; McEwen et al., 2001; Wendellet al., 1993), collectively referred to as a kinetochore fiber (denotedk-fiber). In contrast to other populations of mitotic microtubules,k-fibers are uniquely stable, as evidenced by their persistence aftercold treatment (Salmon and Begg, 1980). This enhanced stability isthe result of their plus-ends being embedded within kinetochores,and the cross-linking and bundling of adjacent microtubules. Thecomplex comprising transforming complex acidic coiled-coil-containing protein 3 (TACC3), colonic and hepatic tumoroverexpressed gene protein (ch-TOG; also known as CKAP5) andclathrin, stabilized by phosphatidylinositol 4-phosphate 3-kinaseC2 domain-containing subunit α (PI3K-C2α; encoded byPIK3C2A) (Gulluni et al., 2017), crosslinks microtubules andcontributes to the organization of the mitotic spindle (Booth et al.,2011; Nixon et al., 2017). K-fiber stabilization is also achievedthrough the microtubule-bundling activity of hepatoma up-regulated protein (HURP; also known as DLGAP5) (Koffa et al.,2006; Silljé et al., 2006; Wong and Fang, 2006) (see poster).Together, the stabilization and organization of k-fibers by theseproteins ultimately allows for the generation of sufficient force todrive accurate chromosome segregation.

Control of microtubule dynamicsChromosome congression, bi-orientation and segregation dependon precise regulation of the stability and dynamics of themicrotubules in the mitotic spindle. This balance is achievedthough the combined actions of numerous proteins that bothpositively and negatively regulate microtubule growth throughdiverse mechanisms. Regulators that localize at or near kinetochoresinclude the kinesin-like protein Kif18A (Mayr et al., 2007), mitotic

3

CELL SCIENCE AT A GLANCE Journal of Cell Science (2018) 131, jcs214577. doi:10.1242/jcs.214577

Journal

ofCe

llScience

Page 4: The kinetochore–microtubule interface at a glanceetal., 2009; Welburn et al., 2009), although the Ska1 complex does not form a ring-like structure (Monda et al., 2017; Schmidt et

centromere-associated kinesin (MCAK; also known as KIF2C)(Wordeman and Mitchison, 1995), ch-TOG (Gergely et al., 2003),cytoplasmic linker protein 170 (CLIP-170; also known as CLIP1)(Dujardin et al., 1998), and the CLIP-associating protein (CLASP)(Maiato et al., 2003) and end-binding (EB or MAPRE) (Juwanaet al., 1999) families of microtubule-binding proteins (see poster).Metaphase chromosome oscillations are regulated by thekinetochore-localized kinesin Kif18A, which suppressesmicrotubule dynamics (Du et al., 2010; Stumpff et al., 2008,2012). At anaphase onset, Kif18A and other factors must bedephosphorylated to allow for a switch from oscillations to robustpoleward movement of the separated sister chromatids (Su et al.,2016). MCAK is a kinesin-13 family member (Lawrence et al.,2004) and a microtubule depolymerase (Desai et al., 1999; Hunteret al., 2003). By promoting microtubule depolymerization atkinetochores that are not yet bi-oriented and stably associatedwith the microtubule, MCAK facilitates the correction of erroneouskinetochore–microtubule attachments and thereby increase thelikelihood of achieving bi-orientation (Kline-Smith et al., 2004).The activity of MCAK is counteracted by ch-TOG, a highlyprocessive microtubule polymerase (Brouhard et al., 2008). CLIP-170 and CLASPs also promote microtubule growth, with CLIP-170promoting the transition from microtubule depolymerization tomicrotubule polymerization (Komarova et al., 2002) and CLASPspromoting the incorporation of tubulin subunits into k-fibers(Maiato et al., 2005). The EB family of proteins, comprising EB1,EB2 and EB3 (also known as MAPRE1, MAPRE2 and MAPRE3,respectively) in mammals (Su and Qi, 2001), are autonomous plus-end-tracking proteins (Bieling et al., 2007) that recruit a variety ofother proteins that contain cytoskeleton-associated proteins (CAP)-Gly domains or SxIP motifs (Kumar and Wittmann, 2012) to affectmicrotubule growth or organization (Browning et al., 2003;Komarova et al., 2005; Mimori-Kiyosue et al., 2005; Niethammeret al., 2007; Su et al., 1995) (see poster).The functions of these regulators of microtubule dynamics are also

subject to regulatory control themselves. For example, MCAK isphosphorylated by numerous mitotic kinases (Andrews et al., 2004;Lan et al., 2004; Ohi et al., 2004; Sanhaji et al., 2010; Zhang et al.,2007, 2011). Recent work has demonstrated that CDK1-mediatedphosphorylation of a single threonine residue in the MCAK motordomain is sufficient to block the ability of MCAK to distinguish theend of themicrotubule from the lattice, and thereby reducemicrotubuledepolymerization (Belsham and Friel, 2017). Additionally, MCAKundergoes significant structural rearrangements upon binding amicrotubule that allow for optimal depolymerase activity (Burnset al., 2014; Ems-McClung et al., 2013; Talapatra et al., 2015).Collectively, these diverse microtubule-associated proteins facilitatecell division by ensuring a dynamic mitotic spindle.

Conclusions and perspectivesDuring every cell division, numerous kinetochore-localizedmicrotubule-binding proteins must act to ensure the accuratesegregation of the DNA to the daughter cells. A stable, bipolarspindle must be built, the kinetochore of each sister chromatid mustattach to microtubules emanating from one of the spindle poles, andeach kinetochore must be capable of maintaining its microtubuleattachment, despite elongation and depolymerization of themicrotubule. Recent work has defined numerous molecularplayers that are involved in each of these key aspects of mitosis.Given the complexity of the kinetochore, it is perhaps unsurprisingthat many of these proteins have opposing activities: dynein andCENP-E transport chromosomes in opposite directions, Astrin–

SKAP must stabilize the kinetochore–microtubule attachmentsyet also allow for dynamic interactions and Ska1-mediated tip-tracking, and MCAK destabilizes microtubules, whereas ch-TOG,CLIP-170 and CLASPs promote microtubule growth. A key goalfor future studies will therefore be to uncover how the diverseactivities of these molecules are integrated to ensure faithfulchromosome segregation.

AcknowledgementsWe thank Leah Bury, Nolan Maier, Lily McKay and Gunter Sissoko for criticallyreading and providing comments on this manuscript. We apologize to the manyauthors whose work we could not include due to space restrictions.

Competing interestsThe authors declare no competing or financial interests.

FundingWork in the Cheeseman laboratory is supported by grants from G. Harold and LeilaY. Mathers Charitable Foundation and the National Institute of General MedicalSciences (GM088313 and GM108718). Deposited in PMC for release after 12months.

Cell science at a glanceA high-resolution version of the poster and individual poster panels are available fordownloading at http://jcs.biologists.org/lookup/doi/10.1242/jcs.214577.supplemental

ReferencesAndrews, P. D., Ovechkina, Y., Morrice, N., Wagenbach, M., Duncan, K.,

Wordeman, L. and Swedlow, J. R. (2004). Aurora B regulates MCAK at themitotic centromere. Dev. Cell 6, 253-268.

Auckland, P. and McAinsh, A. D. (2015). Building an integrated model ofchromosome congression. J. Cell Sci. 128, 3363-3374.

Auckland, P., Clarke, N. I., Royle, S. J. and McAinsh, A. D. (2017). Congressingkinetochores progressively load Ska complexes to prevent force-dependentdetachment. J. Cell Biol. 216, 1623-1639.

Barisic, M., Aguiar, P., Geley, S. and Maiato, H. (2014). Kinetochore motors drivecongression of peripheral polar chromosomes by overcoming random arm-ejection forces. Nat. Cell Biol. 16, 1249-1256.

Barisic, M., Silva e Sousa, R., Tripathy, S. K., Magiera, M. M., Zaytsev, A. V.,Pereira, A. L., Janke, C., Grishchuk, E. L. and Maiato, H. (2015). Mitosis.Microtubule detyrosination guides chromosomes during mitosis. Science 348,799-803.

Basto, R., Scaerou, F., Mische, S., Wojcik, E., Lefebvre, C., Gomes, R., Hays, T.and Karess, R. (2004). In vivo dynamics of the rough deal checkpoint proteinduring Drosophila mitosis. Curr. Biol. 14, 56-61.

Belsham, H. R. and Friel, C. T. (2017). A Cdk1 phosphomimic mutant of MCAKimpairs microtubule end recognition. PeerJ 5, e4034.

Bieling, P., Laan, L., Schek, H., Munteanu, E. L., Sandblad, L., Dogterom, M.,Brunner, D. and Surrey, T. (2007). Reconstitution of a microtubule plus-endtracking system in vitro. Nature 450, 1100-1105.

Booth, D. G., Hood, F. E., Prior, I. A. and Royle, S. J. (2011). A TACC3/ch-TOG/clathrin complex stabilises kinetochore fibres by inter-microtubule bridging.EMBO J. 30, 906-919.

Brouhard, G. J., Stear, J. H., Noetzel, T. L., Al-Bassam, J., Kinoshita, K.,Harrison, S. C., Howard, J. and Hyman, A. A. (2008). XMAP215 is a processivemicrotubule polymerase. Cell 132, 79-88.

Browning, H., Hackney, D. D. and Nurse, P. (2003). Targeted movement of cellend factors in fission yeast. Nat. Cell Biol. 5, 812-818.

Burns, K. M., Wagenbach, M., Wordeman, L. and Schriemer, D. C. (2014).Nucleotide exchange in dimeric MCAK induces longitudinal and lateral stress atmicrotubule ends to support depolymerization. Structure 22, 1173-1183.

Cheerambathur, D. K., Gassmann, R., Cook, B., Oegema, K. and Desai, A.(2013). Crosstalk between microtubule attachment complexes ensures accuratechromosome segregation. Science 342, 1239-1242.

Cheerambathur, D. K., Prevo, B., Hattersley, N., Lewellyn, L., Corbett, K. D.,Oegema, K. and Desai, A. (2017). Dephosphorylation of the Ndc80 tail stabilizeskinetochore-microtubule attachments via the Ska complex. Dev. Cell 41, 424-437e424.

Cheeseman, I. M., Anderson, S., Jwa, M., Green, E. M., Kang, J., Yates, J. R., III,Chan, C. S., Drubin, D. G. and Barnes, G. (2002). Phospho-regulation ofkinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111,163-172.

Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. and Desai, A. (2006).The conserved KMN network constitutes the core microtubule-binding site of thekinetochore. Cell 127, 983-997.

4

CELL SCIENCE AT A GLANCE Journal of Cell Science (2018) 131, jcs214577. doi:10.1242/jcs.214577

Journal

ofCe

llScience

Page 5: The kinetochore–microtubule interface at a glanceetal., 2009; Welburn et al., 2009), although the Ska1 complex does not form a ring-like structure (Monda et al., 2017; Schmidt et

Chmatal, L., Yang, K., Schultz, R. M. and Lampson, M. A. (2015). Spatialregulation of kinetochore microtubule attachments by destabilization at spindlepoles in meiosis I. Curr. Biol. 25, 1835-1841.

Cooke, C. A., Schaar, B., Yen, T. J. and Earnshaw, W. C. (1997). Localization ofCENP-E in the fibrous corona and outer plate of mammalian kinetochores fromprometaphase through anaphase. Chromosoma 106, 446-455.

DeLuca, J. G., Gall, W. E., Ciferri, C., Cimini, D., Musacchio, A. and Salmon,E. D. (2006). Kinetochore microtubule dynamics and attachment stability areregulated by Hec1. Cell 127, 969-982.

DeLuca, K. F., Meppelink, A., Broad, A. J., Mick, J. E., Peersen, O. B., Pektas, S.,Lens, S. M. A. and DeLuca, J. G. (2017). Aurora A kinase phosphorylates Hec1to regulate metaphase kinetochore-microtubule dynamics. J. Cell Biol. 217,163-177.

Desai, A., Verma, S., Mitchison, T. J. andWalczak, C. E. (1999). Kin I kinesins aremicrotubule-destabilizing enzymes. Cell 96, 69-78.

Dong, Y., Vanden Beldt, K. J., Meng, X., Khodjakov, A. and McEwen, B. F.(2007). The outer plate in vertebrate kinetochores is a flexible network withmultiple microtubule interactions. Nat. Cell Biol. 9, 516-522.

Du, Y., English, C. A. and Ohi, R. (2010). The kinesin-8 Kif18A dampensmicrotubule plus-end dynamics. Curr. Biol. 20, 374-380.

Dujardin, D., Wacker, U. I., Moreau, A., Schroer, T. A., Rickard, J. E. and DeMey,J. R. (1998). Evidence for a role of CLIP-170 in the establishment of metaphasechromosome alignment. J. Cell Biol. 141, 849-862.

Echeverri, C. J., Paschal, B. M., Vaughan, K. T. and Vallee, R. B. (1996).Molecular characterization of the 50-kD subunit of dynactin reveals function for thecomplex in chromosome alignment and spindle organization during mitosis.J. Cell Biol. 132, 617-633.

Ems-McClung, S. C., Hainline, S. G., Devare, J., Zong, H., Cai, S., Carnes, S. K.,Shaw, S. L. andWalczak, C. E. (2013). Aurora B inhibits MCAK activity through aphosphoconformational switch that reduces microtubule association. Curr. Biol.23, 2491-2499.

Gaitanos, T. N., Santamaria, A., Jeyaprakash, A. A., Wang, B., Conti, E. andNigg, E. A. (2009). Stable kinetochore-microtubule interactions depend on theSka complex and its new component Ska3/C13Orf3. EMBO J. 28, 1442-1452.

Gascoigne, K. E., Takeuchi, K., Suzuki, A., Hori, T., Fukagawa, T. andCheeseman, I. M. (2011). Induced ectopic kinetochore assembly bypasses therequirement for CENP-A nucleosomes. Cell 145, 410-422.

Gergely, F., Draviam, V. M. and Raff, J. W. (2003). The ch-TOG/XMAP215 proteinis essential for spindle pole organization in human somatic cells. Genes Dev. 17,336-341.

Grishchuk, E. L., Efremov, A. K., Volkov, V. A., Spiridonov, I. S., Gudimchuk, N.,Westermann, S., Drubin, D., Barnes, G., McIntosh, J. R. and Ataullakhanov,F. I. (2008). The Dam1 ring binds microtubules strongly enough to be a processiveas well as energy-efficient coupler for chromosome motion. Proc. Natl. Acad. Sci.USA 105, 15423-15428.

Gulluni, F., Martini, M., De Santis, M. C., Campa, C. C., Ghigo, A., Margaria, J. P.,Ciraolo, E., Franco, I., Ala, U., Annaratone, L. et al. (2017). Mitotic spindleassembly and genomic stability in breast cancer require PI3K-C2alpha scaffoldingfunction. Cancer Cell 32, 444-459 e447.

Gundersen, G. G. and Bulinski, J. C. (1986). Distribution of tyrosinated andnontyrosinated alpha-tubulin during mitosis. J. Cell Biol. 102, 1118-1126.

Hara, M. and Fukagawa, T. (2018). Kinetochore assembly and disassembly duringmitotic entry and exit. Curr. Opin. Cell Biol. 52, 73-81.

Helgeson, L. A., Zelter, A., Riffle, M., MacCoss, M. J., Asbury, C. L. and Davis,T. N. (2018). Human Ska complex and Ndc80 complex interact to form a load-bearing assembly that strengthens kinetochore-microtubule attachments. Proc.Natl. Acad. Sci. USA. 115, 2740-2745.

Hinshaw, S. M. and Harrison, S. C. (2018). Kinetochore function from the bottomup. Trends Cell Biol. 28, 22-33.

Hoffman, D. B., Pearson, C. G., Yen, T. J., Howell, B. J. and Salmon, E. D. (2001).Microtubule-dependent changes in assembly of microtubule motor proteins andmitotic spindle checkpoint proteins at PtK1 kinetochores. Mol. Biol. Cell 12,1995-2009.

Huis In ‘t Veld, P. J., Jeganathan, S., Petrovic, A., Singh, P., John, J., Krenn, V.,Weissmann, F., Bange, T. and Musacchio, A. (2016). Molecular basis of outerkinetochore assembly on CENP-T. eLife 5, e21007.

Hunter, A. W., Caplow, M., Coy, D. L., Hancock, W. O., Diez, S., Wordeman, L.and Howard, J. (2003). The kinesin-related protein MCAK is a microtubuledepolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol.Cell 11, 445-457.

Itoh, G., Ikeda,M., Iemura, K., Amin, M. A., Kuriyama, S., Tanaka, M., Mizuno, N.,Osakada, H., Haraguchi, T. and Tanaka, K. (2018). Lateral attachment ofkinetochores to microtubules is enriched in prometaphase rosette and facilitateschromosome alignment and bi-orientation establishment. Sci. Rep. 8, 3888.

Janczyk, P. L., Skorupka, K. A., Tooley, J. G., Matson, D. R., Kestner, C. A.,West, T., Pornillos, O. and Stukenberg, P. T. (2017). Mechanism of Skarecruitment by Ndc80 complexes to kinetochores. Dev. Cell 41, 438-449 e434.

Jaqaman, K., King, E. M., Amaro, A. C., Winter, J. R., Dorn, J. F., Elliott, H. L.,McHedlishvili, N., McClelland, S. E., Porter, I. M., Posch, M. et al. (2010).

Kinetochore alignment within the metaphase plate is regulated by centromerestiffness and microtubule depolymerases. J. Cell Biol. 188, 665-679.

Joglekar, A. P. andKukreja, A. A. (2017). How kinetochore architecture shapes themechanisms of its function. Curr. Biol. 27, R816-R824.

Jokelainen, P. T. (1967). The ultrastructure and spatial organization of themetaphase kinetochore in mitotic rat cells. J. Ultrastruct. Res. 19, 19-44.

Juwana, J.-P., Henderikx, P., Mischo, A., Wadle, A., Fadle, N., Gerlach, K.,Arends, J. W., Hoogenboom, H., Pfreundschuh, M. and Renner, C. (1999).EB/RP gene family encodes tubulin binding proteins. Int. J. Cancer 81, 275-284.

Kapoor, T. M., Lampson, M. A., Hergert, P., Cameron, L., Cimini, D., Salmon,E. D., McEwen, B. F. and Khodjakov, A. (2006). Chromosomes can congress tothe metaphase plate before biorientation. Science 311, 388-391.

Kern, D. M., Monda, J. K., Su, K. C.,Wilson-Kubalek, E. M. andCheeseman, I. M.(2017). Astrin-SKAP complex reconstitution reveals its kinetochore interactionwith microtubule-bound Ndc80. eLife 6, e26866.

Kim, S. and Yu, H. (2015). Multiple assembly mechanisms anchor the KMN spindlecheckpoint platform at human mitotic kinetochores. J. Cell Biol. 208, 181-196.

Kline-Smith, S. L., Khodjakov, A., Hergert, P. and Walczak, C. E. (2004).Depletion of centromeric MCAK leads to chromosome congression andsegregation defects due to improper kinetochore attachments. Mol. Biol. Cell15, 1146-1159.

Koffa, M. D., Casanova, C. M., Santarella, R., Kocher, T., Wilm, M. and Mattaj,I. W. (2006). HURP is part of a Ran-dependent complex involved in spindleformation. Curr. Biol. 16, 743-754.

Komarova, Y. A., Akhmanova, A. S., Kojima, S., Galjart, N. and Borisy, G. G.(2002). Cytoplasmic linker proteins promote microtubule rescue in vivo. J. CellBiol. 159, 589-599.

Komarova, Y., Lansbergen, G., Galjart, N., Grosveld, F., Borisy, G. G. andAkhmanova, A. (2005). EB1 and EB3 control CLIP dissociation from the ends ofgrowing microtubules. Mol. Biol. Cell 16, 5334-5345.

Kuhn, J. and Dumont, S. (2017). Spindle assembly checkpoint satisfaction occursvia end-on but not lateral attachments under tension. J. Cell Biol. 216, 1533-1542.

Kumar, P. and Wittmann, T. (2012). +TIPs: SxIPping along microtubule ends.Trends Cell Biol. 22, 418-428.

Lampert, F., Hornung, P. andWestermann, S. (2010). The Dam1 complex confersmicrotubule plus end-tracking activity to the Ndc80 kinetochore complex. J. CellBiol. 189, 641-649.

Lan, W., Zhang, X., Kline-Smith, S. L., Rosasco, S. E., Barrett-Wilt, G. A.,Shabanowitz, J., Hunt, D. F., Walczak, C. E. and Stukenberg, P. T. (2004).Aurora B phosphorylates centromeric MCAK and regulates its localization andmicrotubule depolymerization activity. Curr. Biol. 14, 273-286.

Lawrence, C. J., Dawe, R. K., Christie, K. R., Cleveland, D. W., Dawson, S. C.,Endow, S. A., Goldstein, L. S., Goodson, H. V., Hirokawa, N., Howard, J. et al.(2004). A standardized kinesin nomenclature. J. Cell Biol. 167, 19-22.

Li, Y., Yu, W., Liang, Y. and Zhu, X. (2007). Kinetochore dynein generates apoleward pulling force to facilitate congression and full chromosome alignment.Cell Res. 17, 701-712.

Liu, D., Vleugel, M., Backer, C. B., Hori, T., Fukagawa, T., Cheeseman, I. M. andLampson, M. A. (2010). Regulated targeting of protein phosphatase 1 to the outerkinetochore by KNL1 opposes Aurora B kinase. J. Cell Biol. 188, 809-820.

Long, A. F., Udy, D. B. and Dumont, S. (2017). Hec1 tail phosphorylationdifferentially regulates mammalian kinetochore coupling to polymerizing anddepolymerizing microtubules. Curr. Biol. 27, 1692-1699 e1693.

Magidson, V., O’Connell, C. B., Loncarek, J., Paul, R., Mogilner, A. andKhodjakov, A. (2011). The spatial arrangement of chromosomes duringprometaphase facilitates spindle assembly. Cell 146, 555-567.

Magidson, V., Paul, R., Yang, N., Ault, J. G., O’Connell, C. B., Tikhonenko, I.,McEwen, B. F., Mogilner, A. and Khodjakov, A. (2015). Adaptive changes in thekinetochore architecture facilitate proper spindle assembly. Nat. Cell Biol. 17,1134-1144.

Maiato, H., Fairley, E. A. L., Rieder, C. L., Swedlow, J. R., Sunkel, C. E. andEarnshaw,W. C. (2003). HumanCLASP1 is an outer kinetochore component thatregulates spindle microtubule dynamics. Cell 113, 891-904.

Maiato, H., Khodjakov, A. and Rieder, C. L. (2005). Drosophila CLASP is requiredfor the incorporation of microtubule subunits into fluxing kinetochore fibres. Nat.Cell Biol. 7, 42-47.

Malvezzi, F., Litos, G., Schleiffer, A., Heuck, A., Mechtler, K., Clausen, T. andWestermann, S. (2013). A structural basis for kinetochore recruitment of theNdc80 complex via two distinct centromere receptors. EMBO J. 32, 409-423.

Mayr, M. I., Hummer, S., Bormann, J., Gruner, T., Adio, S., Woehlke, G. andMayer, T. U. (2007). The human kinesin Kif18A is a motile microtubuledepolymerase essential for chromosome congression. Curr. Biol. 17, 488-498.

McEwen, B. F., Arena, J. T., Frank, J. and Rieder, C. L. (1993). Structure of thecolcemid-treated PtK1 kinetochore outer plate as determined by high voltageelectron microscopic tomography. J. Cell Biol. 120, 301-312.

McEwen, B. F., Chan, G. K. T., Zubrowski, B., Savoian, M. S., Sauer, M. T. andYen, T. J. (2001). CENP-E is essential for reliable bioriented spindle attachment,but chromosome alignment can be achieved via redundant mechanisms inmammalian cells. Mol. Biol. Cell 12, 2776-2789.

5

CELL SCIENCE AT A GLANCE Journal of Cell Science (2018) 131, jcs214577. doi:10.1242/jcs.214577

Journal

ofCe

llScience

Page 6: The kinetochore–microtubule interface at a glanceetal., 2009; Welburn et al., 2009), although the Ska1 complex does not form a ring-like structure (Monda et al., 2017; Schmidt et

McIntosh, J. R., Grishchuk, E. L., Morphew, M. K., Efremov, A. K., Zhudenkov,K., Volkov, V. A., Cheeseman, I. M., Desai, A., Mastronarde, D. N. andAtaullakhanov, F. I. (2008). Fibrils connect microtubule tips with kinetochores: amechanism to couple tubulin dynamics to chromosome motion. Cell 135,322-333.

Mimori-Kiyosue, Y., Grigoriev, I., Lansbergen, G., Sasaki, H., Matsui, C.,Severin, F., Galjart, N., Grosveld, F., Vorobjev, I., Tsukita, S. et al. (2005).CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamicsat the cell cortex. J. Cell Biol. 168, 141-153.

Miranda, J. J. L., De Wulf, P., Sorger, P. K. and Harrison, S. C. (2005). The yeastDASH complex forms closed rings on microtubules. Nat. Struct. Mol. Biol. 12,138-143.

Monda, J. K., Whitney, I. P., Tarasovetc, E. V., Wilson-Kubalek, E., Milligan,R. A., Grishchuk, E. L. and Cheeseman, I. M. (2017). Microtubule tip tracking bythe spindle and kinetochore protein ska1 requires diverse tubulin-interactingsurfaces. Curr. Biol. 27, 3666-3675 e3666.

Musacchio, A. and Desai, A. (2017). A molecular view of kinetochore assemblyand function. Biology 6, 5.

Nagpal, H. and Fukagawa, T. (2016). Kinetochore assembly and function throughthe cell cycle. Chromosoma 125, 645-659.

Niethammer, P., Kronja, I., Kandels-Lewis, S., Rybina, S., Bastiaens, P. andKarsenti, E. (2007). Discrete states of a protein interaction network governinterphase and mitotic microtubule dynamics. PLoS Biol. 5, e29.

Nishino, T., Rago, F., Hori, T., Tomii, K., Cheeseman, I. M. and Fukagawa, T.(2013). CENP-T provides a structural platform for outer kinetochore assembly.EMBO J. 32, 424-436.

Nixon, F. M., Honnor, T. R., Clarke, N. I., Starling, G. P., Beckett, A. J., Johansen,A. M., Brettschneider, J. A., Prior, I. A. and Royle, S. J. (2017). Microtubuleorganization within mitotic spindles revealed by serial block face scanningelectron microscopy and image analysis. J. Cell Sci. 130, 1845-1855.

Ohi, R., Sapra, T., Howard, J. and Mitchison, T. J. (2004). Differentiation ofcytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol. Biol. Cell 15, 2895-2906.

Pekgoz Altunkaya, G., Malvezzi, F., Demianova, Z., Zimniak, T., Litos, G.,Weissmann, F., Mechtler, K., Herzog, F. and Westermann, S. (2016). CCANassembly configures composite binding interfaces to promote cross-linking ofNdc80 complexes at the kinetochore. Curr. Biol. 26, 2370-2378.

Pesenti, M. E., Weir, J. R. andMusacchio, A. (2016). Progress in the structural andfunctional characterization of kinetochores. Curr. Opin. Struct. Biol. 37, 152-163.

Posch, M., Khoudoli, G. A., Swift, S., King, E. M., Deluca, J. G. and Swedlow,J. R. (2010). Sds22 regulates aurora B activity and microtubule-kinetochoreinteractions at mitosis. J. Cell Biol. 191, 61-74.

Powers, A. F., Franck, A. D., Gestaut, D. R., Cooper, J., Gracyzk, B., Wei, R. R.,Wordeman, L., Davis, T. N. and Asbury, C. L. (2009). The Ndc80 kinetochorecomplex forms load-bearing attachments to dynamic microtubule tips via biaseddiffusion. Cell 136, 865-875.

Prosser, S. L. and Pelletier, L. (2017). Mitotic spindle assembly in animal cells: afine balancing act. Nat. Rev. Mol. Cell Biol. 18, 187-201.

Przewloka, M. R., Venkei, Z., Bolanos-Garcia, V. M., Debski, J., Dadlez, M. andGlover, D. M. (2011). CENP-C is a structural platform for kinetochore assembly.Curr. Biol. 21, 399-405.

Rago, F., Gascoigne, K. E. andCheeseman, I. M. (2015). Distinct organization andregulation of the outer kinetochore KMN network downstream of CENP-C andCENP-T. Curr. Biol. 25, 671-677.

Rattner, J. B., Rao, A., Fritzler, M. J., Valencia, D.W. andYen, T. J. (1993). CENP-F is a.ca 400 kDa kinetochore protein that exhibits a cell-cycle dependentlocalization. Cell Motil. Cytoskelet. 26, 214-226.

Rieder, C. L. (1982). The formation, structure, and composition of the mammaliankinetochore and kinetochore fiber. Int. Rev. Cytol. 79, 1-58.

Rieder, C. L., Cole, R. W., Khodjakov, A. and Sluder, G. (1995). The checkpointdelaying anaphase in response to chromosome monoorientation is mediated byan inhibitory signal produced by unattached kinetochores. J. Cell Biol. 130,941-948.

Salmon, E. D. and Begg, D. A. (1980). Functional implications of cold-stablemicrotubules in kinetochore fibers of insect spermatocytes during anaphase.J. Cell Biol. 85, 853-865.

Sanhaji, M., Friel, C. T., Kreis, N.-N., Kramer, A., Martin, C., Howard, J.,Strebhardt, K. and Yuan, J. (2010). Functional and spatial regulation of mitoticcentromere-associated kinesin by cyclin-dependent kinase 1. Mol. Cell. Biol. 30,2594-2607.

Schleicher, K., Porter, M., Ten Have, S., Sundaramoorthy, R., Porter, I. M. andSwedlow, J. R. (2017). The Ndc80 complex targets Bod1 to human mitotickinetochores. Open Biol. 7, 170099.

Schleiffer, A., Maier, M., Litos, G., Lampert, F., Hornung, P., Mechtler, K. andWestermann, S. (2012). CENP-T proteins are conserved centromere receptors ofthe Ndc80 complex. Nat. Cell Biol. 14, 604-613.

Schmidt, J. C., Arthanari, H., Boeszoermenyi, A., Dashkevich, N. M., Wilson-Kubalek, E. M., Monnier, N., Markus, M., Oberer, M., Milligan, R. A., Bathe, M.et al. (2012). The kinetochore-bound Ska1 complex tracks depolymerizingmicrotubules and binds to curved protofilaments. Dev. Cell 23, 968-980.

Schukken, K. M. and Foijer, F. (2018). CIN and aneuploidy: different concepts,different consequences. BioEssays 40, 1700147.

Screpanti, E., De Antoni, A., Alushin, G. M., Petrovic, A., Melis, T., Nogales, E.and Musacchio, A. (2011). Direct binding of Cenp-C to the Mis12 complex joinsthe inner and outer kinetochore. Curr. Biol. 21, 391-398.

Shrestha, R. L., Conti, D., Tamura, N., Braun, D., Ramalingam, R. A., Cieslinski,K., Ries, J. and Draviam, V. M. (2017). Aurora-B kinase pathway controls thelateral to end-on conversion of kinetochore-microtubule attachments in humancells. Nat. Commun. 8, 150.

Sillje, H. H., Nagel, S., Korner, R. and Nigg, E. A. (2006). HURP is a Ran-importinbeta-regulated protein that stabilizes kinetochore microtubules in the vicinity ofchromosomes. Curr. Biol. 16, 731-742.

Sivakumar, S. and Gorbsky, G. J. (2017). Phosphatase-regulated recruitment ofthe spindle- and kinetochore-associated (Ska) complex to kinetochores. Biol.Open 6, 1672-1679.

Skibbens, R. V., Skeen, V. P. and Salmon, E. D. (1993). Directional instability ofkinetochore motility during chromosome congression and segregation in mitoticnewt lung cells: a push-pull mechanism. J. Cell Biol. 122, 859-875.

Starr, D. A., Williams, B. C., Hays, T. S. and Goldberg, M. L. (1998). ZW10 helpsrecruit dynactin and dynein to the kinetochore. J. Cell Biol. 142, 763-774.

Stumpff, J., von Dassow, G., Wagenbach, M., Asbury, C. and Wordeman, L.(2008). The kinesin-8motor Kif18A suppresses kinetochoremovements to controlmitotic chromosome alignment. Dev. Cell 14, 252-262.

Stumpff, J., Wagenbach, M., Franck, A., Asbury, C. L. andWordeman, L. (2012).Kif18A and chromokinesins confine centromeremovements viamicrotubule growthsuppression and spatial control of kinetochore tension. Dev. Cell 22, 1017-1029.

Su, L.-K. and Qi, Y. (2001). Characterization of human MAPRE genes and theirproteins. Genomics 71, 142-149.

Su, L.-K., Burrell, M., Hill, D. E., Gyuris, J., Brent, R., Wiltshire, R., Trent, J.,Vogelstein, B. and Kinzler, K. W. (1995). APC binds to the novel protein EB1.Cancer Res. 55, 2972-2977.

Su, K.-C., Barry, Z., Schweizer, N., Maiato, H., Bathe, M. andCheeseman, I. M. P.(2016). A regulatory switch alters chromosome motions at the metaphase-to-anaphase transition. Cell Reports 17, 1728-1738.

Suzuki, A., Badger, B. L. and Salmon, E. D. (2015). A quantitative description ofNdc80 complex linkage to human kinetochores. Nat. Commun. 6, 8161.

Talapatra, S. K., Harker, B. andWelburn, J. P. (2015). The C-terminal region of themotor protein MCAK controls its structure and activity through a conformationalswitch. eLife 4, e06421.

Tanaka, K., Mukae, N., Dewar, H., van Breugel, M., James, E. K., Prescott, A. R.,Antony, C. and Tanaka, T. U. (2005). Molecular mechanisms of kinetochorecapture by spindle microtubules. Nature 434, 987-994.

Thrower, D. A., Jordan, M. A. and Wilson, L. (1996). Modulation of CENP-Eorganization at kinetochores by spindle microtubule attachment. Cell Motil.Cytoskelet. 35, 121-133.

Tien, J. F., Umbreit, N. T., Gestaut, D. R., Franck, A. D., Cooper, J., Wordeman,L., Gonen, T., Asbury, C. L. and Davis, T. N. (2010). Cooperation of the Dam1and Ndc80 kinetochore complexes enhances microtubule coupling and isregulated by aurora B. J. Cell Biol. 189, 713-723.

van Hooff, J. J. E., Snel, B. and Kops, G. J. P. L. (2017). Unique phylogeneticdistributions of the Ska and Dam1 complexes support functional analogy andsuggest multiple parallel displacements of Ska by Dam1. Genome Biol. Evol. 9,1295-1303.

Volkov, V. A., Grissom, P. M., Arzhanik, V. K., Zaytsev, A. V., Renganathan, K.,McClure-Begley, T., Old, W. M., Ahn, N. and McIntosh, J. R. (2015).Centromere protein F includes two sites that couple efficiently to depolymerizingmicrotubules. J. Cell Biol. 209, 813-828.

Volkov, V. A., Huis In ‘t Veld, P. J., Dogterom, M. and Musacchio, A. (2018).Multivalency of NDC80 in the outer kinetochore is essential to track shorteningmicrotubules and generate forces. eLife 7, e36764.

Vorozhko, V. V., Emanuele, M. J., Kallio, M. J., Stukenberg, P. T. and Gorbsky,G. J. (2008). Multiple mechanisms of chromosome movement in vertebrate cellsmediated through the Ndc80 complex and dynein/dynactin. Chromosoma 117,169-179.

Welburn, J. P. I., Grishchuk, E. L., Backer, C. B., Wilson-Kubalek, E. M., Yates,J. R., III and Cheeseman, I. M. (2009). The human kinetochore Ska1 complexfacilitates microtubule depolymerization-coupled motility. Dev. Cell 16, 374-385.

Wendell, K. L., Wilson, L. and Jordan, M. A. (1993). Mitotic block in HeLa cells byvinblastine: ultrastructural changes in kinetochore-microtubule attachment and incentrosomes. J. Cell Sci. 104, 261-274.

Westermann, S., Avila-Sakar, A., Wang, H.-W., Niederstrasser, H., Wong, J.,Drubin, D. G., Nogales, E. and Barnes, G. (2005). Formation of a dynamickinetochore- microtubule interface through assembly of the Dam1 ring complex.Mol. Cell 17, 277-290.

Wong, J. and Fang, G. (2006). HURP controls spindle dynamics to promote properinterkinetochore tension and efficient kinetochore capture. J. Cell Biol. 173,879-891.

Wordeman, L. and Mitchison, T. J. (1995). Identification and partialcharacterization of mitotic centromere-associated kinesin, a kinesin-relatedprotein that associates with centromeres during mitosis. J. Cell Biol. 128, 95-104.

6

CELL SCIENCE AT A GLANCE Journal of Cell Science (2018) 131, jcs214577. doi:10.1242/jcs.214577

Journal

ofCe

llScience

Page 7: The kinetochore–microtubule interface at a glanceetal., 2009; Welburn et al., 2009), although the Ska1 complex does not form a ring-like structure (Monda et al., 2017; Schmidt et

Wordeman, L., Steuer, E. R., Sheetz, M. P. and Mitchison, T. (1991). Chemicalsubdomains within the kinetochore domain of isolated CHO mitoticchromosomes. J. Cell Biol. 114, 285-294.

Wynne, D. J. and Funabiki, H. (2015). Kinetochore function is controlled by aphospho-dependent coexpansion of inner and outer components. J. Cell Biol.210, 899-916.

Yang, Z., Tulu, U. S., Wadsworth, P. and Rieder, C. L. (2007). Kinetochore dyneinis required for chromosome motion and congression independent of the spindlecheckpoint. Curr. Biol. 17, 973-980.

Ye, A. A., Deretic, J., Hoel, C. M., Hinman, A. W., Cimini, D., Welburn, J. P. andMaresca, T. J. (2015). Aurora a kinase contributes to a pole-based errorcorrection pathway. Curr. Biol. 25, 1842-1851.

Zhang, X., Lan, W., Ems-McClung, S. C., Stukenberg, P. T. and Walczak, C. E.(2007). Aurora B phosphorylates multiple sites on mitotic centromere-associatedkinesin to spatially and temporally regulate its function. Mol. Biol. Cell 18,3264-3276.

Zhang, L., Shao, H., Huang, Y., Yan, F., Chu, Y., Hou, H., Zhu, M., Fu, C.,Aikhionbare, F., Fang, G. et al. (2011). PLK1 phosphorylatesmitotic centromere-associated kinesin and promotes its depolymerase activity. J. Biol. Chem. 286,3033-3046.

Zhu, X., Mancini, M. A., Chang, K. H., Liu, C. Y., Chen, C. F., Shan, B., Jones, D.,Yang-Feng, T. L. and Lee, W. H. (1995). Characterization of a novel 350-kilodalton nuclear phosphoprotein that is specifically involved in mitotic-phaseprogression. Mol. Cell. Biol. 15, 5017-5029.

CELL SCIENCE AT A GLANCE Journal of Cell Science (2018) 131, jcs214577. doi:10.1242/jcs.214577

7

Journal

ofCe

llScience


Recommended