+ All Categories
Home > Documents > The LaBr3(:Ce) large prototype · The LaBr3(:Ce) Large Prototype: The Photosensors • The high LY...

The LaBr3(:Ce) large prototype · The LaBr3(:Ce) Large Prototype: The Photosensors • The high LY...

Date post: 23-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
24
The LaBr3(:Ce) large prototype Angela Papa Developments of Researches in Lepton Flavour Physics with Muons April 5-6, 2018 Tokyo, Japan 1
Transcript
  • The LaBr3(:Ce) large prototype

    Angela Papa

    Developments of Researches in Lepton Flavour Physics with Muons

    April 5-6, 2018 Tokyo, Japan

    1

  • Overview

    • Introduction: The framework

    • LaBr3(:Ce) properties: A reminder

    • The LaBr3(:Ce) large prototype for MEGII

    • MC simulation: Preliminary

    • Technical drawings: Preliminary

    • To do’s list

    • Schedule2

  • Introduction

    • The aim: performing a gamma calorimetry R&D for future experiments (cLFV etc.)

    • If successful: Upgrading the current CEX AUX detector

    • Appealing characteristics: Simultaneous high energy and timing resolutions (similar to LXe without requiring cryogenic)

    • Grant: RLM funding

    3

  • The LaBr3(:Ce) properties

    • Very attractive medium due to: ultra high light yield, fast response, high density (relative compact size)

    • Comparison with other scintillators via the figure of merite F.o.M. = p(⇢ · LY

    ⌧)

    4

  • The LaBr3(:Ce) optical properties

    • Good coupling to photosensors via quartz window: Emission spectrum at 380 nm, refractive index ~1.9

    • Handling precaution: hydroscopic

    B = borosilicate W = UV glass Q = quartz face plate

    i.e. PMT i.e. sensL MPPC i.e. Hamamatsu MPPCSensor: MicroFC-30035-SMT Sensor: S13360-xx50PE/CS

    5

  • The LaBr3(:Ce) for high energy gamma calorimetry

    • Well established low energy gamma calorimetry with detector sizes of 1”x1”, 2”x2” and 3”x3”

    • In rapid development for PET applications

    • Challenge for high energy [O(50 MeV)] gamma calorimetry: big size crystals. Ideal 5” x 8-10”, tested 3.5” x 9”, proved 3.5” x 8”i.e. 2” x 2” M. Ciema!a et al. NIMA 608 (2009) 76–79

    i.e. 3” x 3” Our medium detector

    6

  • The LaBr3(:Ce) for high energy gamma calorimetry

    • Well established low energy gamma calorimetry with detector sizes of 1”x1”, 2”x2” and 3”x3”

    • In rapid development for PET applications

    • Challenge for high energy [O(50 MeV)] gamma calorimetry: big size crystals. Ideal 5” x 8-10”, tested 3.5” x 9”, available 3.5” x 8”

    i.e. 5” x 10” vs 3.5” x 8”

    RM ⇡ 0.0265 ·X0 · (Z + 1)= 2.3 cm

    X0 ⇡716.4 ·A

    Z(Z + 1) · ln(287/pZ)

    = 2.1 cm9.7Xo - 1.9 RM 11Xo - 3 RM

    7

  • The LaBr3(:Ce) Large Prototype: Ideal case

    • Ideal and reference case: LaBr3(:Ce) 5” x 8”, both faces coupled to MPPC Hamamatsu S13360-6025PE

    • MC simulation predictions: Excellent/Very promising (sigma_E refers to the sigma_right) �E/E = 1.6± 0.1% �t = 30� 40 ps

    E_gamma = 55 MeV, LaBr3(:Ce) vs NaI Patrick’s master thesis

    8

  • The LaBr3(:Ce) Large Prototype: What we can build

    • Crystal size: LaBr3(:Ce) 3.5” x 8”

    • Double readout with a phase approaching: phase I - Front single readout [O(115-175 ch)]; phase II - Double readout [O(230-350 ch)]

    • Photosensors: Hamamatsu S13360-6025 vs sensL MicroFJ-60035TSV

    • MCX Connectors and either K_01152-07 Huber+Suhner or RG174 cables

    • FR4 PCB based feedthroughs, Al2O3 PCB boards for the photosensors

    • DAQ: At the beginning sharing available channels from AUX devices (i.e. SciFi channels etc.)

    9

  • The LaBr3(:Ce) Large Prototype: The Crystal

    • R&D in collaboration with Saint Gobain

    • The first large crystal with double quartz window sealed inside a thin Al case

    • The advent of the MPPC open the door to a more performing detector with either a front single face readout vs standard back single readout or a double readout

    Impinging radiation 10

  • The LaBr3(:Ce) Large Prototype: The Photosensors

    • The high LY and the short X_0 point towards relative small pixel size (< 50 um)

    • Controlled number of DAQ channels: relative large sensor size (> 3x3 mm2)

    • Two candidates: Hamamatsu S13360-6025 and sensL MicroFJ-60035TSV; active area 6 x 6 mm2, pixel size respectively 25 um and 35 um

    Package [mm2]

    Active area [mm2]

    No. Of pixels

    Fill factor [%]

    PDE [%]

    PCB cov.[%]

    F.o.M

    Hamamatsu 7.35 x 6.85 6.0 x 6.0 57600 47 18-20 69 4.5E+03

    sensL 6.13 x 6.13 6.07 x 6.07 22292 75 33-43 91 4.1E+03

    F.o.M. = No pixel x PDE x PCB cov. / price

    11

  • The LaBr3(:Ce) Large Prototype: The Photosensors• Planned direct measurements to compare the two photosensors

    • Samples from both companies already received

    • Dedicated tool for the soldering procedure: Mask (pitch~150 um, height 1mm). If sensL will be selected the soldering will be done by the company

    12

  • The LaBr3(:Ce) Large Prototype: The Edep

    0 10 20 30 40 50 60 (in MeV)depE

    0

    50

    100

    150

    200

    250

    300

    = 52.44(7) MeV/cµ_1 = 1.26(5) MeV/cσ

    Resolution: 0.0241(10)

    Hamamatsu, Front Readout

    0 10000 20000 30000 40000 50000 60000 70000 80000phN

    020406080

    100120140160180200220

    = 64868(134) µ_1 = 3655(78) σ

    Resolution: 0.0563(12)

    Hamamatsu, Front Readout

    0 10 20 30 40 50 60 (in MeV)depE

    0

    50

    100

    150

    200

    250

    300

    = 52.30(8) MeV/cµ_1 = 1.36(6) MeV/cσ

    Resolution: 0.0261(11)

    sensL, Front Readout

    0 20 40 60 80 100 120 140 160 180310×

    phN0

    50

    100

    150

    200

    250

    = 138876(320) µ_1 = 6007(174) σ

    Resolution: 0.0433(13)

    sensL, Front Readout

    • The energy deposit histogram and the relative energy resolution (right)

    13

    Patrick’s task

    Preliminary

  • The Reconstructed energy: Double readout

    0 10000 20000 30000 40000 50000 60000 70000phN

    0

    50

    100

    150

    200

    250

    300

    = 53871(89) µ_1 = 3906(69) σ

    Resolution: 0.0725(13)

    Hamamatsu, Single Readout

    0 20 40 60 80 100 120 140310×

    phN0

    50

    100

    150

    200

    250

    300

    = 137472(161) µ_1 = 3325(86) σ

    Resolution: 0.0242(6)

    Hamamatsu, Double Readout

    0 20 40 60 80 100 120 140310×

    phN0

    50

    100

    150

    200

    250

    = 113688(199) µ_1 = 8749(164) σ

    Resolution: 0.0770(14)

    sensL, Single Readout

    0 50 100 150 200 250 300310×

    phN0

    50

    100

    150

    200

    250

    300

    = 302179(393) µ_1 = 7248(215) σ

    Resolution: 0.0240(7)

    sensL, Double Readout

    0 10000 20000 30000 40000 50000 60000 70000phN

    0

    50

    100

    150

    200

    250

    300

    = 53871(89) µ_1 = 3906(69) σ

    Resolution: 0.0725(13)

    Hamamatsu, Single Readout

    0 20 40 60 80 100 120 140310×

    phN0

    50

    100

    150

    200

    250

    300

    = 137472(161) µ_1 = 3325(86) σ

    Resolution: 0.0242(6)

    Hamamatsu, Double Readout

    0 20 40 60 80 100 120 140310×

    phN0

    50

    100

    150

    200

    250

    = 113688(199) µ_1 = 8749(164) σ

    Resolution: 0.0770(14)

    sensL, Single Readout

    0 50 100 150 200 250 300310×

    phN0

    50

    100

    150

    200

    250

    300

    = 302179(393) µ_1 = 7248(215) σ

    Resolution: 0.0240(7)

    sensL, Double Readout

    • Collected photon with sensL double wrt hamamatsu

    • Similar resolutions with both sensors: No limitation from photon statistics statistics, No saturation

    14

  • The Reconstructed energy: Single readout

    0 10 20 30 40 50 60 (in MeV)depE

    0

    50

    100

    150

    200

    250

    300

    = 52.44(7) MeV/cµ_1 = 1.26(5) MeV/cσ

    Resolution: 0.0241(10)

    Hamamatsu, Front Readout

    0 10000 20000 30000 40000 50000 60000 70000 80000phN

    020406080

    100120140160180200220

    = 64868(134) µ_1 = 3655(78) σ

    Resolution: 0.0563(12)

    Hamamatsu, Front Readout

    0 10 20 30 40 50 60 (in MeV)depE

    0

    50

    100

    150

    200

    250

    300

    = 52.30(8) MeV/cµ_1 = 1.36(6) MeV/cσ

    Resolution: 0.0261(11)

    sensL, Front Readout

    0 20 40 60 80 100 120 140 160 180310×

    phN0

    50

    100

    150

    200

    250

    = 138876(320) µ_1 = 6007(174) σ

    Resolution: 0.0433(13)

    sensL, Front Readout

    0 10 20 30 40 50 60 (in MeV)depE

    0

    50

    100

    150

    200

    250

    300

    = 52.44(7) MeV/cµ_1 = 1.26(5) MeV/cσ

    Resolution: 0.0241(10)

    Hamamatsu, Front Readout

    0 10000 20000 30000 40000 50000 60000 70000 80000phN

    020406080

    100120140160180200220

    = 64868(134) µ_1 = 3655(78) σ

    Resolution: 0.0563(12)

    Hamamatsu, Front Readout

    0 10 20 30 40 50 60 (in MeV)depE

    0

    50

    100

    150

    200

    250

    300

    = 52.30(8) MeV/cµ_1 = 1.36(6) MeV/cσ

    Resolution: 0.0261(11)

    sensL, Front Readout

    0 20 40 60 80 100 120 140 160 180310×

    phN0

    50

    100

    150

    200

    250

    = 138876(320) µ_1 = 6007(174) σ

    Resolution: 0.0433(13)

    sensL, Front Readout

    • Phase I: Photosensors & DAQ only on the front (incident) face

    • sensL option performs better than hamamatsu option: 4.3 +- 0.1 vs 5.6 +-0.1

    • For completeness: Single readout (only back face): 7.3% [Hamamatsu], 7.7% [sensL]

    15

  • Shower inside the crystal

    50− 40− 30− 20− 10− 0 10 20 30 40 50 X [in mm]

    50−

    40−

    30−

    20−

    10−

    0

    10

    20

    30

    40

    50

    Y [in

    mm

    ]

    2−10

    1−10

    1

    10

    Edep

    [a.u

    .]

    Frontal, 16 mm Diameter

    50− 40− 30− 20− 10− 0 10 20 30 40 50 X [in mm]

    50−

    40−

    30−

    20−

    10−

    0

    10

    20

    30

    40

    50

    Y [in

    mm

    ]

    2−10

    1−10

    1

    10

    210

    Edep

    [a.u

    .]

    Frontal, 5 mm Diameter

    50− 40− 30− 20− 10− 0 10 20 30 40 50 X [in mm]

    50−

    40−

    30−

    20−

    10−

    0

    10

    20

    30

    40

    50

    Y [in

    mm

    ]

    2−10

    1−10

    1

    10

    210

    Edep

    [a.u

    .]

    Frontal, pointlike

    100− 50− 0 50 100 Z [in mm]

    50−

    40−

    30−

    20−

    10−

    0

    10

    20

    30

    40

    50

    Y [in

    mm

    ]

    2−10

    1−10

    1

    10

    Edep

    [a.u

    .]

    Lateral, 16 mm Diameter

    100− 50− 0 50 100 Z [in mm]

    50−

    40−

    30−

    20−

    10−

    0

    10

    20

    30

    40

    50

    Y [in

    mm

    ]

    2−10

    1−10

    1

    10

    210

    Edep

    [a.u

    .]

    Lateral, 5 mm Diameter

    100− 50− 0 50 100 Z [in mm]

    50−

    40−

    30−

    20−

    10−

    0

    10

    20

    30

    40

    50

    Y [in

    mm

    ]

    2−10

    1−10

    1

    10

    210

    Edep

    [a.u

    .]

    Lateral, Pointlike

    • i.e. Hamamatsu double readout; 55 MeV gamma with different impinging conditions. No difference in energy resolution

    16

  • Detector assembly: Option 1

    • Very thin entrance window: Carbon fiber (1 mm) vs Tedlar foil (35 um)

    • Light tight only

    17

  • Detector assembly: Option 1

    18

  • Detector assembly: Option 2

    • Very thin entrance window: Carbon fiber (1 mm)

    • Vacuum tight ( and consequently light tight)

    19

  • Detector assembly: Option 2

    20

  • To do’s list

    • Test and select the photosensors

    • Sensor PCB production (delicate part: sensor soldering)

    • Test and select the assembly options

    • Feedthrough production and test

    • Detector assembly

    • Detector commissioning with MEGII calib. tools (intrinsic radioactivity, 4.4, 9., 11.6, 17.6)

    • CEX reaction

    • …

    • Charge collection optimization

    • Timing algorithm

    • Position algorithm21

  • Schedule 2018

    22

    CrystalPhotosensor selectionPhotosensor delivery

    Photosensor char.PCB assembly

    Case productionFeedthrought production

    Detector assemblyDetector commissioning

    Text with CEX

    A M J J A S O N D

  • Back-up

    23

  • Shower inside the crystal• Hamamatsu double readout; 55 MeV gamma with different impinging conditions. No difference in energy resolution

    0 5 10 15 20 25 30 35 40 45 50 R [in mm]

    2−10

    1−10

    1

    10

    210

    310

    Edep

    [a.u

    .]

    Radius, 16 mm Diameter

    0 5 10 15 20 25 30 35 40 45 50 R [in mm]

    2−10

    1−10

    1

    10

    210

    310

    Edep

    [a.u

    .]

    Radius, 5 mm Diameter

    0 5 10 15 20 25 30 35 40 45 50 R [in mm]

    3−10

    2−10

    1−10

    1

    10

    210

    310

    Edep

    [a.u

    .]

    Radius, pointlike

    100− 50− 0 50 100 Z [in mm]

    2−10

    1−10

    1

    10

    210

    310

    Edep

    [a.u

    .]

    Depth, 16 mm Diameter

    100− 50− 0 50 100 Z [in mm]

    2−10

    1−10

    1

    10

    210

    310

    Edep

    [a.u

    .]

    Depth, 5 mm Diameter

    100− 50− 0 50 100 Z [in mm]

    2−10

    1−10

    1

    10

    210

    310

    Edep

    [a.u

    .]

    Depth, Pointlike

    24


Recommended