+ All Categories
Home > Documents > The load flow problem - Washington Stateee521/Material/20121105 midterm2/Problem4/01... · The load...

The load flow problem - Washington Stateee521/Material/20121105 midterm2/Problem4/01... · The load...

Date post: 06-Feb-2018
Category:
Upload: vodat
View: 214 times
Download: 0 times
Share this document with a friend
209
22 July 2011 1 LOAD FLOW A. J. Conejo Univ. Castilla La Mancha 2011
Transcript

22 July 2011 1

LOAD FLOW

A. J. Conejo

Univ. Castilla – La Mancha

2011

22 July 2011 2

The load flow problem

0. References

1. Introduction

2. Problem formulation

Two-bus case

Matrix

General equations

Bus classification

Variable types and

limits

BUSY

22 July 2011 3

The load flow problem

3. The Gauss-Seidel solution technique

Introduction

Algorithm initialization

PQ Buses

PV Buses

Stopping criterion

22 July 2011 4

The load flow problem

4. The Newton-Raphson solution technique

Introduction

General fomulation

Load flow case

Jacobian matrix

Solution outline

22 July 2011 5

The load flow problem

5. Fast decoupled AC load flow

6. Adjustment of bounds

7. DC load flow

8. Comparison of load flow solution methods

22 July 2011 6

The load flow problem

References

1. A. Gómez Expósito, A. J. Conejo, C. Cañizares. “Electric Energy Systems. Analysis and Operation”. CRC Press, Boca Raton, Florida, 2008.

2. A. R. Bergen, V. Vittal. “Power Systems Analysis”. Second Edition. Prentice Hall, Upper Saddle River, New Jersey, 1999.

22 July 2011 7

1. Introduction

22 July 2011 8

Introduction

• A snapshot of the system

• Most used tool in steady state power system

analysis

• Knowning the demand and/or generation of

power in each bus, find out:

– buses voltages

– load flow in lines and transformers

22 July 2011 9

Introduction

• The problem is described throught a non-

lineal system of equations

• Need of iterative solution techniques

• Solution technique: accuracy vs. computing

time

22 July 2011 10

Introduction

• Applications:

1. On-line analyses

• State estimation

• Security

• Economic analyses

22 July 2011 11

Introduction

2. Off-line analyses

• Operation analyses

• Plannig analyses

Network expansion planning

Power exchange planning

Security and adecuacy analyses

- Faults

- Stability

22 July 2011 12

2. Problem formulation

22 July 2011 13

Problem formulation

Two-bus case

We want to find out the relationship between

and in all buses of the power

system

iii jQPS ijii eVV

2VGY

SY

1V

2I

GY

1I

Transmission line π model

22 July 2011 14

Problem formulation

Two-bus case

BUSBUSBUS

2

1

2221

1211

2

1

SGS

SSG

2

1

S12G22

S21G11

V YI

V

V

YY

YY

V

V

YYY

YYY

I

I

Y)VV(YVI

Y)VV(YVI

Using Kirchhoff laws:

Matrix notation:

22 July 2011 15

Problem formulation

Two-bus case

• Complex power injected in each bus:

)VYVY(VIVS

)VYVY(VIVS

IVjQPSSS

IVjQPSSS

*2

*22

*1

*212

*222

*2

*12

*1

*111

*111

*22222D2G2

*11111D1G1

22 July 2011 16

Problem formulation

Two-bus case continuation

Notation:

Replacing:

)(j2

1k

kk2222

)(j2

1k

kk1111

j

ii

j

ikik

k2k2

k1k1

i

ik

eVYVjQP

eVYVjQP

eVV

eYY

22 July 2011 17

Problem formulation

Two-bus case continuation

Therefore, the no lineal equations for the 2

buses network are:

2,1i

)(sinVYVQ

)(cosVYVP

ikki

2

1kkikii

ikki

2

1kkikii

22 July 2011 18

Problem formulation

Matrix Ybus

• Two bus case

SGS

SSG

2221

1211BUS

YYY

YYY

YY

YYY

22 July 2011 19

General building rules

Matrix Ybus

1. Self admittance of node i, ,equals the algebraic sum of all the admittances connected to node i

2. Mutual admittance between nodes i and k, ,equals the negative of the sum of all admittances connecting nodes i and k

3.

iiY

ikY

kiYikY

22 July 2011 20

Problem formulation

Matrix Ybus

• Caracteristics of

1. is symmetric

2. is very sparse

(>90% for more than 100 buses)

BUSY

BUSY

BUSY

22 July 2011 21

Ybus example

Shunt element

Series element

line) per (two 01.0jYG

1.0jZS

98.19j10j10j

10j98.19j10j

10j10j98.19j

YBUS

22 July 2011 22

Problem formulation

General equations

• 2n equations (static load flow equations)

systembusn

n,...,1i

2)(sinVYVQQQ

1)(cosVYVPPP

ikki

n

1k

kikiDiGii

ikki

n

1k

kikiDiGii

22 July 2011 23

Problem formulation

General equations

kiik

ikikik

ikikikik

n

1kkii

ikikikik

n

1kkii

BjGY

where

]2[)cosBsenG(VVQ

]1[)senBcosG(VVP

Polar representation for voltages and rectangular

for admittances

22 July 2011 24

Problem formulation

General equations

• 4n variables

• If 2n variables are specified, the other 2n are

determined by equations [1] and [2]

n,...,1i;Q,P,,V iiii

22 July 2011 25

Problem formulation

BUS Classification

1. PQ buses

known ( known, zero)

known ( known, zero)

unknown

unknown

iP

iQ

iV

i

DiP GiP

DiQ GiQ

22 July 2011 26

Problem formulation

BUS Classification

2. PV buses

known

unknown

known ( specified, known)

known (specified)

unknown ( unknown, known)

unknown

iV

iP

iQ

iP

iQ

DiP

GiQ

GiP

DiQ

i

22 July 2011 27

Problem formulation

BUS Classification

3. Slack bus, generator with large capacity.

known (specified)

known (specified, typically

reference)

unknown ( known, unknown)

unknown ( known, unknown)

1V

1

1Q

1P 1DP

1DQ 1GQ

1GP

01

22 July 2011 28

Problem formulation

Variable types and limits

• Power balance

n

1i

n

1iLOSSDiGi

n

1i

n

1iLOSSDiGi

QQQ

PPP

22 July 2011 29

Problem formulation

Variable types and limits

• Variable types

Control variables

(excepting slack bus)

Non-control variables

State variables

GiP

iiV

iGi VorQ

DiDi QP

22 July 2011 30

Problem formulation

Variable types and limits

• Variable limits

Voltage magnitude

Power angle (every existing line)

Power limits

maxiimini VVV

maxkiki

max,GiGimin,Gi

max,GiGimin,Gi

QQQ

PPP

31

3.The Gauss-Seidel solution

technique

22 July 2011

22 July 2011 32

Gauss-Seidel solution technique

)r()1r(

)r()1r(

xx

)x(Fx

)x(Fx0)x(f

No lineal system:

Iteration

Stoping rule

22 July 2011 33

Gauss-Seidel solution technique

Example

Many iterations!

0000.1x,12r

0000.1x,11r

0001.1x,10r

...

0042.1x,6r

0103.1x,5r

...

1442.18.0312.12.0x,2r

312.18.06.12.0x,1r

6.18.022.0x,0r

2x;8.0)x(2.0x

8.0x2.0x

04x5x)x(f

)13(

)12(

)11(

)7(

)6(

2)3(

2)2(

2)1(

)0(2)r()1r(

2

2

22 July 2011 34

Gauss-Seidel solution technique

Algorithm beginning

1) Known

)BusesPV(m,...,2iQ,Q

)BusesPQ(n,...,1miV,V

busslackV

)BusesPV(m,...,2iV

)BusesPQ(n,...,1miQ

)BusesPQ&PV(n,...,2iP

max,Gimin,Gi

maxi

mini

1

i

i

i

22 July 2011 35

Gauss-Seidel solution technique

Algorithm beginning

2) Build

3) Initialize voltages

n,...,2i

n,...,1miVV

0ii

0ii

BUSY

22 July 2011 36

Gauss-Seidel solution technique

PQ buses4) PQ buses

ik;n,...,1k;n,...,1miY

YB

n,...,1miY

jQPA

VYV

jQP

Y

1V

VYVVYVIVjQPS

ii

ikik

ii

iii

n

ik1k

kik*i

ii

iii

n

ik1k

kik*iiii

*ii

*iii

*i

22 July 2011 37

Gauss-Seidel solution technique

PQ buses

At iteration (r+1) and bus i, the available values of

voltages at previous buses are used:

)r(k

n

1ik

ik)1r(

k

1i

1k

ik*)r(

i

i)1r(i VBVB

)V(

AV

22 July 2011 38

Gauss-Seidel solution technique

PV buses

5) PV buses

n

1k

kik*ii

n

1k

kik*ii

*iii

*i

VYVQ

VYVIVjQPS

22 July 2011 39

Gauss-Seidel solution technique

PV buses

At iteration (r+1):

1i

1k

n

1ik

)r(

kik)1r(

kik*)r(

i

)1r(

i)1r(i

ii

)1r(ii)1r(

iii

n

ik

)r(

kik

1i

1k

*)r(

i

)1r(

kik*)r(

i)1r(

i

VBVB)V(

Aangle

Y

jQPAVangle

VY)V(VY)V(Q

22 July 2011 40

Gauss-Seidel solution technique

PV buses

Beware of limits!

(more on this below)

PQbecomesi&QQQQ

PQbecomesi&QQQQ

max,i

)1r(

imax,i

)1r(

i

min,i

)1r(

imin,i

)1r(

i

22 July 2011 41

Gauss-Seidel solution technique

PV buses

6.1) Slack bus power (after convergence)

n

1k

kk1*111

)r(i

)1r(i

VYVjQP

n,...,2i;VV

6) Stop criterion

22 July 2011 42

Gauss-Seidel solution technique

Algorith final calculations

6.2) Compute line currents (after convergence)

iV

ikV

k

ikSikS

0ikY

LikY

0ikI

LikI LkiI

0kiY

0kiI

0kik0kiLikikLki

0iki0ikLikkiLik

YVI;Y)VV(I

YVI;Y)VV(I

22 July 2011 43

Gauss-Seidel solution technique

Algorith final calculations6.2) Compute line complex power (after convergence)

;YVVY)VV(VS

;YVVY)VV(VS

*0ik

*ii

*Lik

*k

*iiik

*0ki

*kk

*Lik

*i

*kkki

iV

ikV

k

ikSikS

0ikY

LikY

0ikI

LikI LkiI

0kiY

0kiI

22 July 2011 44

Gauss-Seidel solution technique

Algorith final calculations

6.3) Compute losses (after convergence)

7) If no convergence, go to step 4.

i,k

ik,lossloss

kiikik,loss

SS

i,k;SSS

22 July 2011 45

Gauss-Seidel solution technique

Algorithm improvement

• Acceleration factor (in order to decrease

the number of iterations):

)r(

i

)1r(

i

)r(

i)1r(

i VVVV~

1.6 (generally recommended)

22 July 2011 46

Gauss-SeidelMatlab code

function [Vfinal,angfinal,nite,P,Q,errorplot,tiempo]=Gaussgen(m,n,Ybus,Vmodini,Angini,P,Q,tol,Vmax,Vmin,Qmax,Qmin)

%--------------------------------------------------------------------------------------------------------------------------------------------------

%-function [Vmod,ang,nite,P,Qerrorplot,tiempo]=Gaussgen(m,n,Ybus,Vmodini,Angini,P,Q,tol,Vmax,Vmin,Qmax,Qmin)

%-Resuelve de forma general problema de carga por el m´etodo de Gauss-Seidel

%-donde:

%-2...m nudos PV; (m=1 cuando no hay nudos PV)

%-n nudos totales

%-Ybus matriz de admitancias

%-Vmodini tensiones iniciales modulo

%-Angini angulos iniciales RADIANES

%-P potencia activa inicial

%-Q potencia reactiva inicial

%-tol tolerancia para error en tension y potencia reactiva

%-Vmax Vmin valores limites aceptables para las tensiones

%-Qmax Qmin valores limites aceptables para las potencias reactivas

%-nite n´umero de iteraciones

%-Vfinal vector con todas las potencias para cada iteraci´on

%-angfinal igual pero con los ´angulos

%-tiempo, tiempo invertido en hacer las operaciones

%---------------------------------------------------------------------------------------------------------------------------------------------------

%calculo de la matriz B

B=zeros(n,n);

for t=1:n

for k=1:n

B(t,k)=Ybus(t,k)/Ybus(t,t);

end

end

22 July 2011 47

Gauss-SeidelMatlab code 2

%calculos los valores en coordenadas cuadrangulares de la tension

V=zeros(n,1);

for a=1:n

V(a)=Vmodini(a)*exp(i*Angini(a));

end

ang=Angini;

%empieza el bucle:

error=1; %valores iniciales para poder entrar en el bucle

errorQ=1;

nite=0;

tic;

while max(abs(error))>tol | max(abs(errorQ))>tol

nite=nite+1;

Vmod=abs(V);

Vini=V;

ang=angle(V);

Qini=Q;

%calculo las reactivas para los nudos PV

if m>1

for l=2:m

AQ=0;

for k=1:n

AQ=AQ+Ybus(l,k)*V(k);

end

Q(l)=-imag((V(l)')*AQ);

end

22 July 2011 48

Gauss-SeidelMatlab code 3

%calculo las A para todos los nudos:

for a=1:n

A(a)=(P(a)-i*Q(a))/Ybus(a,a);

end

%calculo los angulos nudos PV:

for l=2:m

Aang=0;

for k=1:n

Aang=Aang+B(l,k)*V(k);

end

ang(l)=angle(A(l)/((V(2))')-Aang+B(l,l)*V(l));

end

end

for a=1:n

A(a)=(P(a)-i*Q(a))/Ybus(a,a);

end

%ahora actualizo los voltajes otra vez:

for a=1:n

V(a)=Vmod(a)*exp(i*ang(a));

end

%ahora calculo los nudos PQ

AV=zeros(n,1);

for p=m+1:n

for k=1:n

AV(p)=AV(p)+B(p,k)*V(k);

end

V(p)=A(p)/((V(p))')-AV(p)+B(p,p)*V(p);

end

error=Vini-V;

errorQ=Qini-Q;

errorplot(1,nite)=norm(abs(error));

Vfinal(:,nite)=abs(V);

angfinal(:,nite)=ang*180/pi; %paso a grados

end

22 July 2011 49

Gauss-SeidelMatlab code 4

%calculos los valores de potencia para el nudo slack:

S1=0;

for t=1:n

S1=S1+(V(1)')*(Ybus(1,t)*V(t));

end

P(1)=real(S1);

Q(1)=-imag(S1);

tiempo=toc;

%alerta por si se sobrepasan valores aceptables:

if max(Vmod)>Vmax | min(Vmod)<Vmin

disp('¡¡SE SOBREPASAN LIMITES TENSIONES!!')

end

if max(Q)>Qmax | min(Q)<Qmin

disp('¡¡SE SOBREPASAN LIMITES REACTIVA!!')

end

ang=(180/pi)*angle(V);

Vmo=abs(V);

%represento los errores por iteraci´on:

plot(1:nite,errorplot,'o');grid on;xlabel('iteraci´on');ylabel('error por iteraci´on');title('evoluci´on error tesi´on');

%------------------------------------------------------------%

% %

% Realizado por Carlos Ruiz Mora octubre 2006 %

% %

%------------------------------------------------------------%

50

Gauss-Seidel example

22 July 2011

22 July 2011 51

G-S Example

Solution tolerance is set to 0.1 MVA.

ONE TWO

THREE

22 July 2011 52

G-S Example

Data below. Base power is SB=100 MVA:

Bus Voltage (p.u.) Power

1 1.02 (slack)

2 1.02 PG=50 MW

3 - PC=100 MW

QC=60 MVAr

Lin Impedance (p.u.)

1-2 0.02+0.04j

1-3 0.02+0.06j

2-3 0.02+0.04j

(each)

22 July 2011 53

Solution procedure

1. Data and unknown:

Bus Type Data Unknown

1 Slack V1=1.02 1=0.0 P1 Q1

2 PV V2=1.02 P2=0.5 δ2 Q2

3 PQ P3=-1.0 Q2=-0.6 δ3 V3

22 July 2011 54

Solution procedure

j5525j4020j155

j4020j6030j2010

j155j2010j3515

YBUS

BUSY

ONE TWO

THREE

22 July 2011 55

Solution procedure

3. Voltage magnitude initialization (iteration 0):

1VV 033

PQ bus

0

0

033

022

All buses but the reference one

Vector form:

0

0

0

1

02.1

02.1

V 00

22 July 2011 56

Solution procedure

Per iteration:

- PV buses (Q, δ) i=2,...,m (bus 2)

- PQ buses (V, δ) i=m+1,...,n (bus 3)

- Stopping criterios:

a) convergence Sslack and power flows;

b) no converge new iteration

22 July 2011 57

Solution procedure

4. PV buses: iteration (r+1) :

bus 2:

22

)1r(

22)1r(

222

)r(

323

*)r(

2

)r(

222

*)r(

2

)1r(

121

*)r(

2

)1r(

2

Y

jQPA]V[ angle

VY)V(VY)V(VY)V(Q

22 July 2011 58

Solution procedure

)r(

323

)1r(

121*)1r(

2

)1r(

2)1r(

2 VBVB)V(

Aangle

where

ii

ikik

Y

YB is a constant

22 July 2011 59

Solution procedure

5. Buses PQ iteration (r+1):

bus 3:

)1r(232

)1r(131*)r(

3

3)1r(3 VBVB

)V(

AV

where

ii

ikik

33

333

Y

YB

Y

jQPA

Are constants for PQ buses

22 July 2011 60

Solution procedure

6. Stopping criterion:

310

|QQ|

&

|VV|

)r(j

)1r(j

)r(i

)1r(i

2j ;3 ,2i

22 July 2011 61

Solution procedure

If convergence:

6.1) Slack power

6.2) Power flows

)VYVYVY(VjQPS 313212111*111

*slack

*Likk

*iiik Y)VV(VS -*

323123132112 S,S,S,S,S,S

22 July 2011 62

Solution procedure

6.3) Line losses:

23,loss13,loss12,lossloss

kiikik,losss

SSSS

3,2,1i,kSSS

7. If no coveergence, the procedure continues in Step 4.

22 July 2011 63

Implementation

MATLAB:

22 July 2011 64

Solution

11 iterations needed to attain the solution

Iteration (pu) 1 2 3 ... 10 11

P1 ,Q1(slack) - - - ... -0.5083

0.0716

P2 0.5 0.5 0.5 ... 0.5 0.5

Q20.81 0.4084 0.4696 ... 0.5493 0.5501

P3-1.0 -1.0 -1.0 ... -1.0 -1.0

Q3-0.6 -0.6 -0.6 ... -0.6 -0.6

22 July 2011 65

Solution

Iteration 1 2 3 ... 10 11

1.02 1.02 1.02 ... 1.02 1.02

0 0 0 ... 0 0

1.02 1.02 1.02 ... 1.02 1.02

0.0675 -0.1596 -0.2885 ... -0.4667 -0.4685

1.0041 1.0042 1.0043 ... 1.0043 1.0043

-0.5746 -0.7336 -0.8278 ... -0.9580 -0.9593

1V

2V

3V

)(º1

)(º2

)(º3

22 July 2011 66

Solution

Iteration 1 2 3 ... 10 11

Max. Error V 0.0041 9.68·10-5 5.05·10-5 ... 1.15·10-6 6.74·10-7

Max. Error Q 0.8160 0.4076 0.0612 ... 0.0014 8.11·10-4

Errors for |V| & |Q|:

22 July 2011 67

Final Solution

Bus P (MW) Q (MVAr ) (pu)

1 50.83 7.16 1.02 0º

2 50.00 55.01 1.02 -0.4685º

3 -100 -60.00 1.0043 -0.9593º

V

22 July 2011 68

Checking

Checking using Power-World:

ONE TWO

THREE

22 July 2011 69

Checking

Bus 1 Bus 2 Bus 3

Solution G-S PW G-S PW G-S PW

V (pu) 1.02 1.02 1.02 1.02 1.0043 1.0043

δ(º) 0 0 -0.4685 -0.4710 -0.9593 -0.9612

P (MW) 50.83 50.98 50.00 50.00 -100 -100

Q (MVAr) 7.16 7.10 55.01 55.12 -60 -60

22 July 2011 70

Checking

Variable V δ P Q

Error Max. (%) 0 % 0.53 % 0.29% 0.84 %

71

4. The Newton-Raphson solution

technique

22 July 2011

22 July 2011 72

The Newton-Raphson solution technique

Introduction

• One variable

)r(

)r()r()1r(

)0()0()1(

)0(

)0()0(

)0()0()0()0()0(

)0()0()0(

dx

df

)x(fxx

xxx;

dx

df

)x(fx

...dx

dfx)x(f0)xx(f

0)xx(f,0)x(f,0)x(f

22 July 2011 73

The Newton-Raphson solution technique

Introduction

• Example

!Fast

0000.159988.02

49988.059988.09988.0x

9988.059375.02

49375.059375.09375.0x

9375.055.02

45.055.05.0x

5.0x;5x2

4x5)x(xx

5x2dx

)x(df;04x5x)x(f

2)3(

2)2(

2)1(

)0(

)r(

)r(2)r()r()1r(

2

22 July 2011 74

The Newton-Raphson solution technique

General formulation

• General case

)x(fJxx

xxx

)x(fJx

0xJ)x(f)xx(f

0)xx(f,0)x(fRR:0)x(f

)r(1)r()r()1r(

)0()0()1(

)0(1)0()0(

)0()0()0()0(

)0()0()0(nn

22 July 2011 75

The Newton-Raphson solution technique

General formulation

n

n

2

n

1

n

n

2

2

2

1

2

n

1

2

1

1

1

n

2

1

n

2

1

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

J

f

f

f

f

x

x

x

x

22 July 2011 76

The Newton-Raphson solution technique

Load flow case

n1mn2

sp,iiiQi

sp,iiiPi

n

1k

ikikikikkiiQ

n

1k

ikikikikkiiP

)r(

n

)r(

1n

)r(

1m

)r(

n

)r(

3

)r(

2

)r(

V,...,V;,...,

QQ,f)(Q

PP,f)(P

)cosBsinG(VV)(f

)sinBcosG(VV)(f

V

V

Vx

22 July 2011 77

The Newton-Raphson solution technique

Load flow case

)r(

iQsp,i

)r(

i

)r(

iPsp,i

)r(

i

)r(

n

)r(

n

iQ)r(

1m

)r(

1m

iQ)r(

n

)r(

n

iQ)r(

2

)r(

2

iQ)r(

iQsp,i

)r(

n

)r(

n

iP)r(

1m

)r(

1m

iP)r(

n

)r(

n

iP)r(

2

)r(

2

iP)r(

iPsp,i

fQQ;fPP

VV

f...V

V

ff...

ffQ

VV

f...V

V

ff...

ffP

Using Taylor:

The increments below should be 0:

22 July 2011 78

The Newton-Raphson solution technique

Load flow case

)r(

n

)r(

1m

)r(

n

)r(

2

)r(

n

nQ

)r(

2

nQ

)r(

n

P2

)r(

2

P2

)r(

n

)r(

1m

)r(

2

)r(

2

V

V

f......

f

............

............

V

f......

f

Q

Q

P

P

Matrix notation:

22 July 2011 79

The Newton-Raphson solution technique

Jacobian matrix

• PQ buses generate 2 Jacobian rows

corresponding to ΔP and ΔQ

• PV buses generate 1 Jacobian row

corresponding to ΔP

22 July 2011 80

The Newton-Raphson solution technique

Jacobian elements

• Jacobian dimension

busesPVofNumberN

busesPQofNumberN

NN2

PV

PQ

PVPQ

22 July 2011 81

The Newton-Raphson solution technique

Jacobian elements

• Jacobian dimension

efficiencynalcomputatioimprovingfor

VofinsteadV

V

VV

LJ

NH

Q

P

)1r(

)r(

)1r(

)r(

)1r(

)1r(

)r()r(

)r()r(

)r(

)r(

22 July 2011 82

The Newton-Raphson solution technique

Jacobian elements

)cosBsinG(VVV

QVL

)sinBcosG(VVQ

J

)sinBcosG(VVV

PVN

)cosBsinG(VVP

H

km

kmkmkmkmmk

m

kmkm

kmkmkmkmmk

m

kkm

kmkmkmkmmk

m

kmkm

kmkmkmkmmk

m

kkm

22 July 2011 83

The Newton-Raphson solution technique

Jacobian elements

2kkkk

k

kkkk

kmkmkm2kkkk

k

kkk

mkkm2kkkk

k

kkkk

2kkkk

k

kkk

VBQV

QVL

jBGYVGPQ

J

VGPV

PVN

:NoteVBQP

H

mk

22 July 2011 84

The Newton-Raphson solution technique

Solution outline

1. Build

2. Specify

3. Initialize

1

i

i

i

1

V

m,...,2iV

n,...,1miQ

n,...,2iP

0

n,...,1mi,V

n,...,2i,

i

i

BUSY

22 July 2011 85

The Newton-Raphson solution technique

Solution outline

4. Compute

5. If

6. Compute submatrices

ongoelse

Stop)3

flowsline)2

jQP)1

computethen

Q&P

11

Q)r(

iP)r(

i

)r()r()r()r( L,J,N,H

)BusesPQfor(Q),BusesPQ&PVfor(P )r(i

)r(i

22 July 2011 86

The Newton-Raphson solution technique

Solution outline

7. Solve

8. Update

9. Go to step 4

)r(

)r(1

)r()r(

)r()r(

)r(

)1r(

)1r(

Q

P

LJ

NH

VV

BusesPVVVV

BusesPQ&PV

)1r()r()1r(

)1r()r()1r(

22 July 2011 87

The Newton-Raphson, Matlab Code

function [V_modulo, V_fase, P, Q, N_iter, T_calculo, Error_p] = nraphson(V_modulo_ini, V_fase_ini, P_ini, Q_ini, Y, npv)

%

% [V_modulo, V_fase, P, Q, N_iter, T_calculo, Error_p] = nraphson(V_modulo_ini, V_fase_ini, P_ini, Q_ini, Y, npv)

%

% Obtencion de indices de nodos: 1 -> SLACK;

% 2,...,M -> PV;

% M+1,...,N -> PQ

n = length(V_modulo_ini);

m = npv + 1;

% Parametros del Metodo

Tol = 0.0001; % Tolerancia del metodo (Perdida de potencia).

Error_p = 1; % Error inicial (A un valor mayor que Tol).

N_iter = 0; % Numero de iteraciones.

% Valores iniciales

V_modulo= V_modulo_ini';

V_fase = V_fase_ini';

P = P_ini';

Q = Q_ini';

j=sqrt(-1);

22 July 2011 88

The Newton-Raphson, Matlab Code

tic;

while (Error_p > Tol) % Bucle principal (Se permiten 50 iteraciones como mucho).

if (N_iter >50)

error('Demasiadas iteraciones');

break

end

V = V_modulo.*exp(j*V_fase); % Expresion compleja de la tension

S = V.*conj(Y*V); % Expresion compleja de la potencia

DP = P(2:n)-real(S(2:n)); % Incremento de potencia activa (nudos PV y PQ)

DQ = Q(m+1:n)-imag(S(m+1:n)); % Incremento de potencia reactiva (nudos PQ)

PQ = [DP ; DQ];

Error_p = norm(PQ,2); % Error en esa iteracion

DS_DA = diag(V)*conj(Y*j*diag(V)) + diag(conj(Y*V))*j*diag(V);

DS_DV = diag(V)*conj(Y*diag(V./V_modulo)) + diag(conj(Y*V))*diag(V./V_modulo);

% Construccion del Jacobiano

J = [real(DS_DA(2:n , 2:n)) real(DS_DV(2:n , m+1:n))

imag(DS_DA(m+1:n , 2:n)) imag(DS_DV(m+1:n , m+1:n))]

dx=J\PQ; % indices: 1...n-1 = fases en PV y PQ; n...final = modulos en PQ

22 July 2011 89

The Newton-Raphson, Matlab Code

V_fase (2:n) = V_fase(2:n) + dx(1:n-1); % Actualizamos la fase de las tensiones (nudos PV y PQ)

V_modulo (m+1:n)= V_modulo(m+1:n) + dx(n:end); % Actualizamos el modulo de las tensiones (nudos PQ)

N_iter = N_iter + 1; % Incremento el numero de iteraciones

disp('Pulse una tecla para continuar')

pause

end

P=real(S); % Calculo de la potencia activa

Q=imag(S); % Calculo de la potencia reactiva

V_fase=V_fase*180/pi; % Paso de Radianes a grados

T_calculo=toc;

% **** ENTRADAS ****

%

% V_modulo_ini = Modulo de la tension para comenzar a iterar (conocidos en SLACK y PV).

% V_fase_ini = Fase de la tension para comenzar a iterar (conocido en SLACK).

% P_ini = Potencia activa en los nodos (conocido en PV y PQ).

% Q_ini = Potencia reactica en los nodos (conocido en PQ).

% Y = Matriz de admitancias nodales.

22 July 2011 90

The Newton-Raphson, Matlab Code

% **** SALIDAS ****

%

% V_modulo = Modulo de la tension en todos los nodos.

% V_fase = Fase de la tension en todos los nodos.

% P = Potencia activa en todos los nodos.

% Q = Potencia reactiva en todos los nodos.

% N_iter = Numero de iteraciones.

% T_calculo = Tiempo de calculo.

% Error_p = Error.

%

%

% **** OBSERVACIONES ****

%

% Los nodos deben estar ordenador asi:

%

% * 1 : SLACK.

% * 2...m : PV.

% * m+1...n : PQ.

%

%

% **** FECHA Y AUTOR ****

%

% Laura Laguna - Octubre de 2005

22 July 2011 91

Ejemplo resuelto por el método

de Newton-Raphson

22 July 2011 92

Newton-Raphson Example

• Checking with Matlab and PowerWorld

22 July 2011 93

Newton-Raphson Example

Bus Voltage p.u Power

1 1.02 -

2 1.02 PG=50 MW

3 - PC= 100 MW

QC=60 MVAr

ONE TWO

THREE

22 July 2011 94

Newton-Raphson Example

Data:

Line Impedance p.u.

1-2 0.02+0.04j

1-3 0.02+0.06j

2-3 0.02+0.04j each

22 July 2011 95

Newton-Raphson Example

• 3 buses:

• Bus1: Slack

• Bus 2: PV

• Bus 3: PQ

• Voltage magnitude at bus 3 initialized at 1.02.

• Angles intitialized to zero.

22 July 2011 96

Newton-Raphson Example

Y bus:

55.0000j- 25.000040.0000j+ 20.0000-15.0000j+ 5.0000-

40.0000j+ 20.0000-60.0000j- 30.000020.0000j+ 10.0000-

15.0000j+ 5.0000-20.0000j+ 10.0000-35.0000j- 15.0000

Y

Intitialization:

02.1V

0

3

32

22 July 2011 97

Newton-Raphson Example

Residuals:

3i))cos(BsenG(VVQQ

3,2i))(senBcosG(VVPP

3

1j

ijijijijji

esp

ii

3

1j

ijijijijji

esp

ii

--

-

22 July 2011 98

Newton-Raphson Example

Checking:

No tolerance satisfied: the process continues.

6.0

1

5.0

Q6.0

P1

P5.0

Q

P

P

10·2475.7

0

10·3624.0

Q

P

P

cal

3

cal

3

cal

2

3

3

2

15

14

cal

3

cal

3

cal

2

22 July 2011 99

Newton-Raphson Example

Jacobian:

333332

333332

232322

LMM

NHH

NHH

J

1000.560100.268080.20

5000.252220.576160.41

4000.206160.414240.62

J

22 July 2011 100

Newton-Raphson Example

First iteration:

0.0154-

0.9406-

0.4557-

VV

3

3

3

2

0.9406-

0.4557-

0

;

0046.1

0200.1

0200.1

V

22 July 2011 101

Ejemplo por Newton-Raphson

Residuals:

No convergence.

0126.0

0165.0

0042.0

)5874.0(6.0

)9835.0(1

4958.05.0

Q

P

P

5874.0

9835.0

4958.0

Q

P

P

3

3

2

cal

3

cal

3

cal

2

22 July 2011 102

Newton-Raphson Example

Jacobian for iteration 2:

6707.542162.268409.20

1371.240994.568145.40

0540.201614.418860.61

J

22 July 2011 103

Newton-Raphson Example

State variables at iteration 2

4-

3

3

3

2

3.0024·10-

0.0206-

0.0154-

VV

0.9612-

0.4710-

0

;

0043.1

0200.1

0200.1

V

22 July 2011 104

Newton-Raphson Example

Residuals:

Tolerance OK.

6

5

5

3

3

2

cal

3

cal

3

cal

2

10·9698.4

10·5454.0

10·0664.0

)6000.0(6.0

)0000.1(1

5000.05.0

Q

P

P

6000.0

0000.1

5000.0

Q

P

P

22 July 2011 105

Newton-Raphson Example

0.96810-

0.4710-

0

;

0043.1

0200.1

0200.1

V

7-

5-

5-

3

3

3

2

1.1106·10-

0.7534·10-

0.6458·10-

VV

Jacobian iteration 3:

6707.542162.268409.20

1371.240994.568145.40

0540.201614.418860.61

J

22 July 2011 106

Newton-Raphson Example

Final power values:

6000.0

5513.0

0710.0

Q

Q

Q

0000.1

5000.0

5098.0

P

P

P

3

2

1

3

2

1

22 July 2011 107

Newton-Raphson Example

convergence

22 July 2011 108

Newton-Raphson Exampleconvergence

22 July 2011 109

Newton-Raphson Exampleconvergence

22 July 2011 110

Newton-Raphson Exampleconvergence

22 July 2011 111

Power World

CEROUNO

DOS

50,977 MW

7,095 Mvar

50,000 MW

55,126 Mvar

100 MW 60 Mvar

1 ,020 pu

0 ,000 Deg 1 ,020 pu

-0 ,471 Deg

1,0043 pu

-0 ,961 Deg

22 July 2011 112

Newton-Raphson Example

Bus V(p.u) δ P Q

0 (PW) 1.02 0 50.9763 7.0955

0 1.02 0 50.9755 7.0954

1 (PW) 1.02 -0.4710 50 55.1256

1 1.02 -0.4710 50.0006 55.1228

2 (PW) 1.0043 -0.9612 -100 -60

2 1.0043 -0.9612 -99.9989 -59.9970

22 July 2011 113

Newton-Raphson Example

• Largest error below 0.1 MVA.

• More effective technique than Gauss Seidel.

• Convergence is fast (if adequate initialization).

22 July 2011 114

Including tap-changing transformers

22 July 2011 115

Tap-Changing transformer

• A tap changing transformer makes the

admitance matrix dependent on the

transformer parameter t.

• The Jacobian matrix also depends on t.

22 July 2011 116

Admitance matrix

Equivalent circuit:

i jt:1

ccY tYcc

2cct

t1Y

t

1tYcc

ji

1t

22 July 2011 117

Admitance matrix

• General building rules

1. Self admittance of node i, , equals the

algebraic sum of all the admittances

connected to node i

2. Mutual admittance between nodes i and

k, , equals the negative of the sum of

all admittances connecting nodes i and k

3.

iiY

iiY

kiik YY

22 July 2011 118

Tap-changing

Example

22 July 2011 119

Tap-changing

Example

tYcc

2cct

t1Y

t

1tYcc

1 3 2

4

13Z 23Z

13shuntY23shuntY

13shuntY23shuntY

The tap-changing

transformer

controls voltage

of bus 4

22 July 2011 120

Tap-changing

Example

cccccc

44

cc34

cc2cc23shunt

2313shunt

1333

1213shunt13

11

Yt

1tY

tY

Y

tY

Y

tY

t

t1YY

Z

1Y

Z

1Y...

...;0Y;YZ

1Y

It does not depend

on t!

22 July 2011 121

Tap-changing

Example

44434241

34333231

24232221

14131211

Y)t(YYY

)t(Y)t(YYY

YYYY

YYYY

Y

22 July 2011 122

Tap-changing transformer

Load flow equations:

n

1kikikikikkii

n

1kikikikikkii

cosBsinGVVQ

sinBcosGVVP

22 July 2011 123

Tap-changing transformer

Taylor Expansion:

)r(

)r(

iQ)r(

n

)r(

n

iQ

)r(

1m

)r(

1m

iQ)r(

n

)r(

n

iQ)r(

2

)r(

2

iQ)r(

iQ

dato

i

)r(

)r(

iP)r(

n

)r(

n

iP

)r(

1m

)r(

1m

iP)r(

n

)r(

n

iP)r(

2

)r(

2

iP)r(

iP

dato

i

tt

fV

V

f...

...VV

ff...

ffQ

tt

fV

V

f...

...VV

ff...

ffP

22 July 2011 124

Tap-changing transformer

• The admitance matrix depend on t.

• The Jacobian matrix has a new column.

• The new variable (t) replace the voltage valueat the corresponding PQ bus.

22 July 2011 125

Tap-changing transformer

• Increment Δt is divided by t to improve

computational efficiency.

• The Jacobian matrix maintains its # of column

& rows.

• The variable t is considered in the last place.

22 July 2011 126

Tap-changing transformer

The Jacobian matrix blocks are:

H, N, M & L are the standard blocks.

Submatrix C & D have as many columns as

the # of tap-changing transformers.

)r()r()r(

)r()r()r(

DLM

CNHJ

22 July 2011 127

Tap-changing transformer

Derivatives with respect to t:

n

1k

ikik

ikik

kiiQ

i

n

1k

ikik

ikik

kiiP

i

cost

Bsin

t

GVVt

t

ftD

sint

Bcos

t

GVVt

t

ftC

C & D multiplied by t!

22 July 2011 128

Tap-changing transformer

Iterative procedure analogous, but:

• If t hit any of its limit, it is fixed to the limit &

the corresponding bus becomes PQ.

• If the procedure converge, fix t at its closest

integer value & continues the iteration with

that t fixed.

22 July 2011 129

Tap-changing

Example

1.- Slack

2.- PV

3.- PQ

4.- PQ

5.- PQV

22 July 2011 130

Tap-changing

Example

Data:

Line impedances: 0.001+j0.05 p.u.

Shunt admitances: j0.05 p.u. (2 per line).

Transformer: 0.9<t<1.1, steps of 0.005; Zcc=j0.1.

22 July 2011 131

Tap-changing

Example

Bus Voltage (pu). Power

1 1.00 Slack

2 1.00 Pg=150MW

3 -- Pc=50MW, Qc=10MVAr

4 -- Pc=0MW, Qc=0MVAr

5 1.00 Pc=100MW,Qc=50MVAr

22 July 2011 132

Tap-changing

Example

1 32 4

5

shuntYshuntYshuntYshuntY

shuntY shuntY

líneaY líneaY líneaY

tYcc

2cct

t1Y

t

1tYcc

22 July 2011 133

Tap-changing

Example

Admitance matrix:

cccc

cc2cc

ccslll

lsl

lsll

lsl

BUS

Yt

Y000

t

Y

t

)t1(Y

t

YY2Y2YY0

0YYY00

0Y0Y2Y2Y

000YYY

Y

22 July 2011 134

Tap-changing

Example

10j10j000

10j884.49j7997.0992.19j3998.0992.19j3998.00

0992.19j3998.0942.19j3998.000

0992.19j3998.00884.39j7997.0992.19j3998.0

000992.19j3998.0942.19j3998.0

Ybus

Variable initial values:

;1t

;1VV

;0

43

5432

22 July 2011 135

Tap-changing

Example

Increment calculations:

5.0

0

1.0

1

0

5.0

5.1

Q5.0

Q

Q1.0

P1

P

P5.0

P5.1

Q

Q

Q

P

P

P

P

cal

5

cal

4

cal

3

cal

5

cal

4

cal

3

cal

2

5

4

3

5

4

3

2

22 July 2011 136

Tap-changing

Example

101000000

10754.49992.1907997.03998.03998.0

0992.19892.1903998.03998.00

000101000

07997.03998.010984.49992.19992.19

03998.03998.00992.19992.190

03998.000992.190984.39

J

Jacobian

22 July 2011 137

Tap-changing

Example

First iteration:

918.0t;

1744.0

0744.0

0993.0

0

0

;

1

968.0

9623.0

1

1

V

082.0

032.0

0377.0

1744.0

0744.0

0993.0

0

t

t

V

V

V

V

4

4

3

3

5

4

3

2

22 July 2011 138

Tap-changing

Example

Admitance matrix:

10j893.10j000

8933.10j750.51j7997.099.19j399.0992.19j3998.00

0992.19j3998.094.19j3998.000

0992.19j3998.00884.39j7997.0992.19j3998.0

00099.19j3998.0942.19j3998.0

Ybus

22 July 2011 139

Tap-changing

Example

Power computation:

492.0

1027.0

1407.0

5647.0

05.0

Q

Q

Q

Q

Q

0527.1

069.0

4657.0

4521.1

0

P

P

P

P

P

5

4

3

2

1

5

4

3

2

1

22 July 2011 140

Tap-changing

Example

Power increments:

008.0

1027.0

0407.0

0527.0

069.0

0343.0

0479.0

492.05.0

1027.0

1407.01.0

0527.11

069.0

4657.05.0

4521.15.1

Q

Q

Q

P

P

P

P

5

4

3

5

4

3

2

22 July 2011 141

Tap-changing

Example

Jacobian matrix:

492.10492.1000527.10527.100

746.115934.486261.180527.16803.00912.08242.1

06075.183261.1808359.08359.00

0527.10527.10492.10492.1000

0527.18183.00912.0492.103879.486261.182698.19

08359.00954.006075.186075.180

00523.1003273.1909193.39

J

22 July 2011 142

Tap-changing

Example

Second iteration

9144.0t;

1723.0

0744.0

1043.0

0002.0

0

;

1

9644.0

9607.0

1

1

V

0039.0

0037.0

0016.0

0021.0

003.0

005.0

0002.0

t

t

V

V

V

V

4

4

3

3

5

4

3

2

22 July 2011 143

Tap-changing

Example

Admitance matrix:

10j9365.10j000

9365.10j8447.51j7997.0992.19j3998.0992.19j3998.00

0992.19j3998.0942.19j3998.000

0992.19j3998.00884.39j7997.0992.19j3998.0

000992.19j3998.0942.19j3998.0

Ybus

22 July 2011 144

Tap-changing

Example

Power calculations:

4999.0

0006.0

1000.0

6391.0

0501.0

Q

Q

Q

Q

Q

0000.1

000.0

4998.0

4998.1

0031.0

P

P

P

P

P

5

4

3

2

1

5

4

3

2

1

22 July 2011 145

Tap-changing

Example

Power increments:

3

5

4

3

5

4

3

2

10

1218.0

6375.0

0339.0

0258.0

0057.0

1969.0

2065.0

4999.05.0

0006.0

1000.01.0

0000.11

000.0

4998.05.0

4998.15.1

Q

Q

Q

P

P

P

P

22 July 2011 146

Tap-changing

Example

Tap to the closest feasible value:

Admitance matrix:

915.0t9144.0t

10929.10000

929.108282.517997.0992.193998.0992.193998.00

0992.193998.0942.193998.000

0992.193998.00884.397997.0992.193998.0

000992.193998.0942.193998.0

jj

jjjj

jj

jjj

jj

Ybus

22 July 2011 147

Tap-changing

Example

Power calculation:

4926.0

0075.0

1000.0

6391.0

0501.0

Q

Q

Q

Q

Q

9993.0

0007.0

4998.0

4998.1

0031.0

P

P

P

P

P

5

4

3

2

1

5

4

3

2

1

22 July 2011 148

Tap-changing

Example

Power increment calculations:

5

5

4

4

3

3

5

4

3

2

5

4

3

5

4

3

2

V

V

V

V

V

V;

0074.0

0075.0

0000.0

0007.0

0007.0

0002.0

0002.0

4926.05.0

0075.0

1000.01.0

9993.01

0007.0

4998.05.0

4998.15.1

Q

Q

Q

P

P

P

P

22 July 2011 149

Tap-changing

Example

Jacobian:

5074.94926.1009993.09993.000

4926.101983.485271.189993.07445.01282.0872.1

05072.183071.1808689.08689.00

9993.09993.004926.104926.1000

9993.07431.01282.04926.102132.485271.181935.19

08689.01307.005072.185072.180

0103.100253.1902449.39

J

22 July 2011 150

Tap-changing

Example

Final values

1725.0

0744.0

1043.0

0002.0

0

;

9991.0

9644.0

9607.0

1

1

V10

8522.0

0558.0

0552.0

1699.0

0152.0

0289.0

0007.0

V

V

V

V

V

V 3

5

5

4

4

3

3

5

4

3

2

22 July 2011 151

Tap-changing

Example

Final power values:

5000.0

000.0

1000.0

6402.0

0501.0

Q

Q

Q

Q

Q

0000.1

0000.0

5000.0

5000.1

0031.0

P

P

P

P

P

5

4

3

2

1

5

4

3

2

1

22 July 2011 152

Power World

22 July 2011 153

5. Fast decoupled AC load flow

22 July 2011 154

Fast decoupled AC load flow

Two simplifications:

– Do not build Jacobian at each iteration (small error

introduced, then, the procedure needs more

iterations to reach the solution)

– Decoupling between P-δ and Q-V (not

recommended in system highly loaded and/or with

low voltage levels)

22 July 2011 155

Fast decoupled AC load flow

Assume:

kkk

ki

ki

ikik

i

)r(

)1r(

)1r(

)r()r(

)r()r(

)r(

)r(

BQ)iv

0.0)sin(

0.1)cos()iii

k,iBG)ii

i0.1V)i

VV

LJ

NH

Q

P

22 July 2011 156

Fast decoupled AC load flow

We have:

BUS

iiii

ikik21

21

YofElementsBB

~

BB~

B~

,B~

0J,0N,B~

L,B~

H

22 July 2011 157

Fast decoupled AC load flow

)r(1

2)1r(

)r(1

1)1r(

)1r(2

)r(

)1r(1

)r(

)1r(

)1r(

2

1

)r(

)r(

QB~

V

PB~

)2(VB~

Q

)1(B~

P

VB~

0

0B~

Q

P

Use Newton-Raphson Iteration

22 July 2011 158

Fast decoupled load flow. Flow diagram DATA INPUT

Solve (1) and update angles

Solve (2) and update V

OUTPUT RESULTS

YES YES

YES YES

NO

NO

NO

Reactive power

coverged ?

Reactive power

coverged

?

Real power

coverged

?

Real power

coverged ?

Calculate Delta P

NO

NO

Calculate Delta Q

22 July 2011 159

Fast decoupled load flow. Matlab Code

function [V_modulo, V_fase, P, Q, N_iter, T_calculo, Error_p] = desacoplado(V_modulo_ini, V_fase_ini, P_ini, Q_ini, Y, npv)

%

% [V_modulo, V_fase, P, Q, N_iter, T_calculo, Error_p] = desacoplado(V_modulo_ini, V_fase_ini, P_ini, Q_ini, Y, npv)

%

% Obtencion de indices de nodos: 1 -> SLACK;

% 2,...,M -> PV;

% M+1,...,N -> PQ

n = length(V_modulo_ini);

m = npv + 1;

% Parametros del Metodo

Tol = 0.0001; % Tolerancia del metodo (Perdida de potencia).

Error_p = 1; % Error inicial (A un valor mayor que Tol).

N_iter = 0; % Numero de iteraciones.

% Valores iniciales

V_modulo= V_modulo_ini';

V_fase = V_fase_ini';

V = V_modulo.*exp(j*V_fase); % Expresion compleja de la tension

P = P_ini';

Q = Q_ini';

DS_DA = diag(V)*conj(Y*j*diag(V)) + diag(conj(Y*V))*j*diag(V);

DS_DV = diag(V)*conj(Y*diag(V./V_modulo)) + diag(conj(Y*V))*diag(V./V_modulo);

22 July 2011 160

Fast decoupled load flow. Matlab Code

%J = [real(DS_DA(2:n , 2:n)) real(DS_DV(2:n , m+1:n)) % Construccion del Jacobiano

% imag(DS_DA(m+1:n , 2:n)) imag(DS_DV(m+1:n , m+1:n))];

H = imag(-Y(2:end , 2:end))

L = imag(-Y(m+1:end,m+1:end))

j=sqrt(-1);

tic;

while (Error_p > Tol) % Bucle principal (Se permiten 50 iteraciones como mucho).

if (N_iter >50)

error('Demasiadas iteraciones');

break

end

V = V_modulo.*exp(j*V_fase); % Expresion compleja de la tension

S = V.*conj(Y*V); % Expresion compleja de la potencia

DP = P(2:n)-real(S(2:n)); % Incremento de potencia activa (nudos PV y PQ)

DQ = Q(m+1:n)-imag(S(m+1:n)); % Incremento de potencia reactiva (nudos PQ)

Dfase = H\DP;

Dmodulo = L\DQ;

PQ = [DP ; DQ];

Error_p = norm(PQ,2); % Error en esa iteracion

22 July 2011 161

Fast decoupled load flow. Matlab Code

V_fase (2:n) = V_fase(2:n) + Dfase; % Actualizamos la fase de las tensiones (nudos PV y PQ)

V_modulo (m+1:n)= V_modulo(m+1:n) + Dmodulo; % Actualizamos el modulo de las tensiones (nudos PQ)

N_iter = N_iter + 1; % Incremento el numero de iteraciones

% disp('Pulse una tecla para continuar')

% pause

end

P=real(S); % Calculo de la potencia activa

Q=imag(S); % Calculo de la potencia reactiva

V_fase=V_fase*180/pi; % Paso de Radianes a grados

T_calculo=toc;

% **** ENTRADAS ****

%

% V_modulo_ini = Modulo de la tension para comenzar a iterar (conocidos en SLACK y PV).

% V_fase_ini = Fase de la tension para comenzar a iterar (conocido en SLACK).

% P_ini = Potencia activa en los nodos (conocido en PV y PQ).

% Q_ini = Potencia reactica en los nodos (conocido en PQ).

% Y = Matriz de admitancias nodales.

22 July 2011 162

Fast decoupled load flow. Matlab Code

% **** SALIDAS ****

%

% V_modulo = Modulo de la tension en todos los nodos.

% V_fase = Fase de la tension en todos los nodos.

% P = Potencia activa en todos los nodos.

% Q = Potencia reactiva en todos los nodos.

% N_iter = Numero de iteraciones.

% T_calculo = Tiempo de calculo.

% Error_p = Error.

%

%

% **** OBSERVACIONES ****

%

% Los nodos deben estar ordenador asi:

%

% * 1 : SLACK.

% * 2...m : PV.

% * m+1...n : PQ.

%

%

% **** FECHA Y AUTOR ****

%

% Laura Laguna - Nobiembre de 2005

22 July 2011 163

Fast decoupled load flow: Exaple

• Tolerance 0.1 MVA.

ONE TWO

THREE

22 July 2011 164

Fast decoupled load flow: Exaple

• Power base SB = 100MVA

Bus Voltage p.u. Power

1 1.02 -

2 1.02 PG=50 MW

3 - PC=100 MW

QC=60 MVAr

Line Impedance p.u.

1-2 0.02+0.04j

1-3 0.02+0.06j

2-3 0.02+0.04j

(cada una)

22 July 2011 165

Fast decoupled load flow: Exaple

• Admitance matrix

j5525j4020j155

j4020j6030j2010

j155j2010j3515

busY

22 July 2011 166

Fast decoupled load flow: Exaple

• Data and unknown:

Bus Type Data Unknown

1Slack and

reference

V1 = 1.02

δ1=0.0P1, Q1

2 PVP2 =0.5

V2 = 1.02δ2, Q2

3 PQP3 = -1.0

Q3 = -0.6δ3, V3

• Inicialization:

δ2 = δ3 = 0.0 ; V3 = 1.02 p.u.

22 July 2011 167

• Flow diagram

Fast decoupled load flow: Exaple

Vi(0) , δi

(0), Piesp, Qi

esp

Compute: Pical, Qi

cal

Compute: Delta Q

Convergence P?

Compute: Delta P

Solve subproblem 1 and update angles

Final results

Convergence Q?

Solve subproblem 2 and update voltages

Convergence P?Convergence Q?

NO

NO

Yes

Yes

Yes

Yes

NO

NO

22 July 2011 168

Fast decoupled load flow: Exaple

Compute

Calculate P and Q:

No convergence

55L;5540

4060H

6.0

1

5.0

Q6.0

P1

P5.0

Q

P

P

10·2475.7

0

10·3624.0

Q

P

P

cal

3

cal

3

cal

2

3

3

2

15

14

cal

3

cal

3

cal

2

22 July 2011 169

Fast decoupled load flow: Exaple

• First iteration:

0.0109-

1.3481-

0.4213-

VV

3

3

3

2

1.3481-

0.4213-

0

;

0091.1

0200.1

0200.1

V

22 July 2011 170

Fast decoupled load flow: Exaple

Residuals:

Error = 0.5976 → no convergence

4583.0

3003.0

2385.0

Q6.0

P1

P5.0

Q

P

P

1417.0

3003.1

7385.0

Q

P

P

cal

3

cal

3

cal

2

3

3

2

cal

3

cal

3

cal

2

22 July 2011 171

Fast decoupled load flow: Exaple

• System state (second iteration)

0.0083-

0.2857

0.0372-

VV

3

3

3

2

1.0264-

0.4585-

0

;

0008.1

0200.1

0200.1

V

22 July 2011 172

Fast decoupled load flow: Exaple

•Residuals:

•Error = 0.2885 → no convergence

1444.0

1936.0

1578.0

Q6.0

P1

P5.0

Q

P

P

7444.0

1936.1

6578.0

Q

P

P

cal

3

cal

3

cal

2

3

3

2

cal

3

cal

3

cal

2

22 July 2011 173

Fast decoupled load flow: Exaple

• System state (third iteration):

• The process continues.

0.0026

0.1788

0.0315-

VV

3

3

3

2

0.8836-

0.4900-

0

;

0034.1

0200.1

0200.1

V

22 July 2011 174

Fast decoupled load flow: Exaple

•After 9 iterations:

•Error = 0.0012 → convergence attained

3

3

3

cal

3

cal

3

cal

2

3

3

2

cal

3

cal

3

cal

2

10·3346.8

10·7006.0

10·5954.0

Q6.0

P1

P5.0

Q

P

P

5992.0

0007.1

5006.0

Q

P

P

22 July 2011 175

Fast decoupled load flow: Exaple

• System state at iteration 10:

5-

3-

3-

3

3

3

2

1.5154·10-

0.6141·10

0.1592·10-

VV

0.9614-

0.4710-

0

;

0043.1

0200.1

0200.1

V

22 July 2011 176

Fast decoupled load flow: Exaple

•Residuals:

•Error = 5.6285·10-4 → convergence attained

4

3

3

cal

3

cal

3

cal

2

3

3

2

cal

3

cal

3

cal

2

10·3349.3

10·3516.0

10·2863.0

Q6.0

P1

P5.0

Q

P

P

6003.0

0004.1

5003.0

Q

P

P

22 July 2011 177

Fast decoupled load flow: Exaple

• State at iteration 11:

6-

3-

3-

3

3

3

2

6.0634·10

0.3251·10

0.0567·10-

VV

0.9611-

0.4711-

0

;

0043.1

0200.1

0200.1

V

6003.0

5515.0

0711.0

Q

0004.1

5003.0

5098.0

P

22 July 2011 178

Fast decoupled load flow: Exapleconvergence

22 July 2011 179

Fast decoupled load flow: Exapleconvergence

22 July 2011 180

Fast decoupled load flow: Exapleconvergence

22 July 2011 181

Fast decoupled load flow: Exapleconvergence

22 July 2011 182

6. Variable limits

22 July 2011 183

Variable limits

Physical considerations

1. Voltage magnitudes out of limits

a PQ BUS does not meet

Action: Warning! voltage problem

2. Flow magnitudes out of limits

A line does not meet

Action: Warning! overloading of lines problem

maxij

S ij

S maxij

S- ≤≤

max

ii

min

i vvv

22 July 2011 184

Variable limits

Physical Considerations

3. Reactive Power out of limits

A PV BUS does not meet

Action: Wrong Formulation!

Specified voltage cannot be attained

Formulate the problem properly

maxi i

mini Q Q Q

22 July 2011 185

Q hits

limit?

yes

QG>Qmax?Yes Change to

P-Q

Q=Qmax

QG<Qmin?

Yes

No

Change to

P-Q

Q=Qmin

Stay as

P-V

No

no

Q=Qmax ?

yes

V >Vdato?Change to P-V

V=Vdato

Stay as

P-Q

no

Yes

V <Vdato?Change to P-V

V=Vdato

NoStay as

P-Q

Variable limits

Computational Considerations

Changing PV to PQ

Yes

No

22 July 2011 186

7. DC load flow

22 July 2011 187

DC load flow

• Approximate solution.

• Two simplifications:

– In network model: do not consider series

resistences and shunt admittances

– Assume Vi=1 at all buses

22 July 2011 188

DC load flow

Approximate analytical solution

Assume

0.1 cos)iii

sin)ii

i0.1 V)i

ijcos

ijX

jV

iV

ijX

2

iV

ijQ

ijsin

ijX

jV

iV

ijP

ij

ijij

i

∀≈

-

22 July 2011 189

DC load flow

Approximate analytical solution

where

ij'ij

n

ij1j

ij'ii

n

ij1j

jiji

n

ij1j

n

ij1j

ijiji

jijiijijijij

ijij

BB

BB

´BP

BBPP

BBBX

P

22 July 2011 190

DC load flow

Continuation

VBQ

VBVBQQ

VBVB)VV(BX

VVQ

'

j

n

ij1j

iji

n

ij1j

ij

n

ij1j

iji

jijiijjiij

ij

ji

ij

22 July 2011 191

DC load flow

Continuation

Solution

ij

ij

ij

'

ij

n

ij1j

ij

'

ii'

n

1m

n

2

n

1

n

1

'

'

X

1B;

BB

BB

B

Q

Q

Q;

P

P

P;

V

V

V;

BusesPQVBQ

BusesPV&PQBP

22 July 2011 192

DC Power flow: example

22 July 2011 193

DC Power flow: example

ONE TWO

THREE

22 July 2011 194

Data

Bus Voltage p.u. Power

0 1.02 -

1 1.02 PG=50MW

2 - PC=100MW, QC=60MVAr

Line Impedance p.u.

0-1 0.02+0.04j

0-2 0.02+0.06j

1-2 0.02+0.04j (both)

DC Power flow: example

22 July 2011 195

DC Power flow: example

2

1

0

2

1

0

V

02.1

02.1

67.665067.16

507525

67.162567.41

6.0

Q

Q

0

67.665067.16

507525

67.162567.41

0.1

5.0

P

67.665067.16

507525

67.162567.41

B

22 July 2011 196

DC Power flow: example

2

1

0 0

67.665067.16

507525

67.162567.41

0.1

5.0

P

22 July 2011 197

Po= -25δ1 - 16.67δ2

0.5= +75δ1 - 50δ2

-1.0= -50δ1 + 66.67δ2

Q0= 41.67*1.02 - 25*1.02 - 16.67V2

Q1= -25*1.02 + 75*1.02 - 50V2

-0.6= -16.67*1.02 - 50*1.02 + 66.67V2

DC Power flow: example

22 July 2011 198

Solution:

P0 0.5p.u.=50MW

Q0 0.15p.u.=15MVAr

Q1 0.45p.u.=45MVAr

δ1 -1.1459º

δ2 -0.3819º

V2 1.011p.u.

DC Power flow: example

22 July 2011 199

PowerWorld comparison:

Var DC PowerWorld DC PowerWorld G-S

P0 0.50p.u. 0.50p.u. 0.509p.u.

Q0 0.15p.u. 0.00p.u. 0.07p.u.

Q1 0.45p.u. 0.00p.u. 0.55p.u.

δ1 -0.3819 -0.3820 -0.47

δ2 -1.1459 -1.1459 -0.96

V2 1.0056p.u. 1.0000p.u. 1.0043p.u.

DC Power flow: example

22 July 2011 200

DC Power flow: example

UNO

DOS

CERO

0,00 MW 0,00 Mvar

50,00 MW 0,00 Mvar

TRES

100,00 MW

60,00 Mvar

22 July 2011 201

Data.

Bus Voltage p.u. Power

0 1.02 -

1 1.02 PG=50MW

2 - PC=0MW, QC=0MVAr

3 - PC=100MW, QC=60MVAr

Line Impedance p.u.

0-1 0.02+0.04j

0-2 0.02+0.06j

1-2 0.02+0.04 (both)

2-3 0.1j

DC Power flow: example

22 July 2011 202

DC Power flow: example

3

2

1

0

3

2

1

0

V

V

02.1

02.1

101000

1067.765067.16

0507525

067.162567.41

6.0

0.0

Q

Q

0

101000

1067.765067.16

0507525

067.162567.41

0.1

0.0

5.0

P

101000

1067.765067.16

0507525

067.162567.41

B

22 July 2011 203

P0 = -25δ1 -16.67δ2-0*δ3

0.5 = 75δ1 - 50δ2-0*δ3

0.0 = -50δ1 + 76.67δ2-10δ3

-1.0 = -0*δ1 - 10δ2+10δ3

Q0 = 41.67*1.02 - 25*1.02 - 16.67V2 + 0*V3

Q1 = -25*1.02 + 75*1.02 - 50V2 + 0*V3

0.0 = -16.67*1.02 - 50*1.02 + 76.67V2-10*V3

-0.6 = 0*1.02-0*1.02 - 10*V2 + 10*V3

DC Power flow: example

22 July 2011 204

PowerWorld comparison:

Var DC PowerWorld G-S PowerWorld DC

P0 0.50p.u. 0.51p.u. 0.50p.u.

Q0 0.00p.u. 0.11p.u. 0.00p.u.

Q1 0.00p.u. 0.67p.u. 0.00p.u.

δ1 -0.3819º -0.48º -0.382º

δ2 -1.1459º -0.91º -1.1459º

δ3 -6.8755º -7.05º -6.8755º

V2 1.011p.u. 1.002p.u. 1.000p.u.

V3 0.951p.u. 0.932p.u. 1.000p.u.

DC Power flow: example

22 July 2011 205

8. Comparison of load flow

solution methods

22 July 2011 206

Comparison of load flow methods

1. Gauss-Seidel (G-S)

Simple technique

Iteration time increases linearly with the

number of buses. Lower iteration time than N-

R. Seven times faster in large systems

Linear rate of convergence. Many iterations

required for getting close to the solution

Number of iteration increases with the

number of buses

22 July 2011 207

Comparison of load flow methods

(Continuation)

2. Newton-Raphson (N-R)

Widely used

Iteration-time increases linearly with the number of buses

Quadratic rate of convergency. A few iterations for getting close to the solution

Number of iterations independent of the number of buses of the system

The Jacobian is a very sparse matrix

Method non-sensitive to slack bus choice and the presence of series capacitors

Sensitive to initial solution

22 July 2011 208

Comparison of load flow methods

(Continuation)

3. AC decoupled

has to be computed and factorized only once

It requires more iterations than Newton-Raphson method

Iteration time is 5 times lower than Newton-Raphson´s iteration time

Useful for analyzing topology changes because can be easily modified

Used in planning and contigency analyses

B~

B~

22 July 2011 209

Comparison of load flow methods

(Continuation)

4. DC Decoupled

Analytical, approximate and non-iterative method

Good approximation for , not that good

approximation for

Used in reliability analyses

Used in optimal pricing calculations

Good for getting an initial point

V


Recommended