+ All Categories
Home > Documents > The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy...

The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy...

Date post: 20-Jul-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
52
1 The Milky Way Galaxy
Transcript
Page 1: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

1

The Milky Way Galaxy

Page 2: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

2

Guiding Questions

1. What is our Galaxy? How do astronomers know where we are located within it?

2. What is the shape and size of our Galaxy?3. How do we know that our Galaxy has spiral

arms?4. What is most of the Galaxy made of? Is it stars,

gas, dust, or something else?5. What is the nature of the spiral arms?6. What lies at the very center of our Galaxy?

Page 3: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

3

Interstellar dust obscures our view at visible wavelengths along lines of sight that lie in the plane of the galactic disk

Page 4: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

4

William Herschel maps out the distribution of stars and gets:

The sun The

“universe” of

Herschel

Page 5: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

5

William Parsons, 3rd Earl of Rosse, builds the “Leviathan of Parsonstown” - draws “spiral nebulae”

What were they?

Stars & planetary systems forming in our own “universe”?

Separate “island universes”?

Page 6: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

6

Henrietta Leavitt & the Cepheid P-L Relationship

Light curve of a Cepheid variable

Large & Small Magellaic Clouds Period versus magnitude of Cepheids in SMC

Page 7: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

7

H. Shapley maps distribution of Globular Star Clusters using “Cepheids”

(“where’s the mass centered?”)

We are NOT at the center.

What happened?

Globular cluster with variable stars

Page 8: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

8

“Dust Happened”At visible wavelengths, the center of our galaxy suffers ~ 30 mag of extinction by dust!! Even with big modern telescopes, we cannot see very far in the plane of our galaxy at visible wavelengths

Page 9: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

9

The Shapley-Curtis Debate (1920)

MWG MWG

ShapleyCurtis

The debate solved nothing!

Questions in science are not resolved by debates, but by observations & experiments

Page 10: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

10

Nature of the Spiral Nebulae and the Great Debate

Shapley

Novae brightnesses incompatible with M31 being as big as MWG

Rotation of M101

Curtis

Novae indicate a smaller MWG than Shapley’s

Galaxy proper motions undetected

Zones of avoidance in other systems

Page 11: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

11

1923 - Hubble Measures Distance to M 31 using

Cepheid Variables

100-inch Hooker Telescope, Mt. Wilson

Edwin Hubble

Debate OVER!Discovery of

Cepheids in M 31

Page 12: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

12

Star cluster is really HERE

But the extinction makes it fainter, so we would incorrectly think that it is HERE based on brightness measurements

Region with dust absorption: A mags

Ignoring the extinction due to dust will result in deriving a photometric distance that is too large by a factor of 10A/5!

Trumpler - 1929

Shapley’s MWG was too big for a couple of reasons:

Page 13: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

13

Using RR Lyrae stars & Type II Cepheids, thinking they are Type I, will make the distances appear larger

For a given apparent brightness, a higher L star must be more distant. Observed Type II’s, but used L’s of Type I’s.

Page 14: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

14

Other problems:

S Andromedae, a “nova” in the Andromeda Galaxy, was actually a supernova -with much higher L and hence distance

Proper motions in galaxies “measured” would require speeds greater than light if they were distant - these measurements turned out to be wrong!

Summary: Shapley’s MWG was too big, and his distances to the spiral nebulae too small

Page 15: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

15

Stellar Photometric Distances

For an apparent (observed) magnitude m, absolute magnitude M, and distance d in parsecs:

Without dust: m = M+5logd-5 and so d = 10(m-M+5)/5 pc

(reminder: m = Md=10pc )

With dust: m = M+5logd-5+A and d = 10(m-M-A+5)/5 pc

where A is the extinction by dust in magnitudes

(Note: sometimes astronomers use the “distance modulus” m-M = 5logd-5 to express the distance to some objects)

Page 16: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

16

Page 17: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

17

This dilemma was resolved by observing parts of the Galaxy outside the disk

Page 18: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

18

Page 19: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

19

Page 20: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

20

Determining the distance and direction of the globular clusters gave us the Sun’s location

Our Sun lies within the galactic disk, some 8000 pc (26,000 ly) from the center of the Galaxy

Page 21: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

21

Observations at different wavelengths help reveal the shape of the Galaxy

Page 22: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

22

There are about 400 billion (4 × 1011) stars in the Galaxy

• Our Galaxy has a disk about 50 kpc (160,000 ly) in diameter and about 600 pc (2000 ly) thick, with a high concentration of interstellar dust and gas in the disk

• The Sun orbits around the center of the Galaxy at a speed of about 790,000 km/h

• It takes about 220 million years to complete one orbit

Page 23: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

23

• The galactic center is surrounded by a large distribution of stars called the central bulge

• This bulge is not perfectly symmetrical, but may have a bar

• The disk of the Galaxy is surrounded by a spherical distribution of globular clusters and old stars, called the galactic halo

Page 24: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

24

The spin-flip transition in hydrogen emits 21-cm radio waves

Page 25: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

25

• This is the same physical principle behind magnetic resonance imaging (MRI), an important diagnostic tool of modern medicine

Page 26: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

26

These emissions easily penetrate the intervening interstellar dust

Page 27: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

27

Spiral arms can be traced from the positions of clouds of atomic hydrogen

Page 28: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

28

Page 29: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

29

OB associations, H II regions, and molecular clouds in the galactic disk outline huge spiral arms

Page 30: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

30

Page 31: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

31

Page 32: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

32

Page 33: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

33

The rotation of our Galaxy reveals the presence of dark matter

From studies of the rotation of the Galaxy, astronomers estimate that the total mass of the Galaxy is about 1012

M

Page 34: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

34

Page 35: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

35

Page 36: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

36

Page 37: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

37

Page 38: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

38

Only about 10% of this mass is in the form of visible stars, gas, and dust

• The remaining 90% is in some nonvisible form, called dark matter, that extends beyond the edge of the luminous material in the Galaxy

• Our Galaxy’s dark matter may be a combination of MACHOs (dim, star-sized objects), massive neutrinos, and WIMPs (relatively massive subatomic particles)

Page 39: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

39

Spiral arms are caused by density waves that sweep around the Galaxy

• There are two leading theories of spiral structure in galaxies

• According to the density- wave theory, spiral arms are created by density waves that sweep around the Galaxy

• The gravitational field of this spiral pattern compresses the interstellar clouds through which it passes, thereby triggering the formation of the OB associations and H II regions that illuminate the spiral arms

Page 40: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

40

Page 41: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

41

Page 42: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

42

Page 43: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

43

Page 44: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

44

Page 45: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

45

• According to the theory of self-propagating star formation, spiral arms are caused by the birth of stars over an extended region in a galaxy– Differential rotation of the galaxy stretches the

star forming region into an elongated arch of stars and nebulae.

Page 46: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

46

Page 47: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

47

Page 48: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

48

The innermost part of the Galaxy, or galactic nucleus, has been studied through its radio, infrared, and X-ray emissions (which are able to pass through interstellar dust)

Page 49: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

49

Page 50: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

50

Page 51: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

51

A strong radio source called Sagittarius A* is located at the galactic center

This marks the position of a supermassive black hole with a mass of about 3.7 × 106 M

Page 52: The Milky Way Galaxyphysics.gmu.edu/~hgeller/astr113c01/MilkyWayGalB.pdf · • Milky Way Galaxy • near-infrared • rotation curve • RR Lyrae variable • Sagittarius A* •

52

Jargon• central bulge (of a galaxy)• dark matter• density wave• disk (of a galaxy)• far-infrared• flocculent spiral galaxy• galactic nucleus• galaxy• globular cluster• grand-design spiral galaxy• H I• halo (of a galaxy)• high-velocity star• interstellar extinction• Local Bubble

• magnetic resonance imaging (MRI)• massive compact halo object (MACHO)• microlensing• Milky Way Galaxy• near-infrared• rotation curve• RR Lyrae variable• Sagittarius A*• self-propagating star formation• spin (of a particle)• spin-flip transition• spiral arm• 21-cm radio emission• weakly interacting massive particle

(WIMP)• winding dilemma


Recommended