+ All Categories
Home > Documents > The Organizational Structure of Physics Laurent Hollo - 2011.

The Organizational Structure of Physics Laurent Hollo - 2011.

Date post: 12-Jan-2016
Category:
Upload: blaise-sutton
View: 213 times
Download: 0 times
Share this document with a friend
34
The Organizational Structure of Physics Laurent Hollo - 2011 laurenthollo @hotmail.com
Transcript
Page 1: The Organizational Structure of Physics Laurent Hollo - 2011.

TheOrganizational

Structureof Physics

Laurent Hollo - 2011

[email protected]

Page 2: The Organizational Structure of Physics Laurent Hollo - 2011.

Context

A windshield is always a windshield,regardless of where it is installed !

The name of a physical quantity should be based on its ROLE

The same name for different roles

Different names for the same role

CAR = Wheels * engine / windshield

CAR = Wheels * engine / windshieldTRUCK = Wheels * engine / windshield

VEHICLE = Wheels * engine / windshield

TRUCK = Sleehw * xyz / enigne

Page 3: The Organizational Structure of Physics Laurent Hollo - 2011.

Similarities and symmetriesHidden in complexity

Things, Influence, Properties, Quantities, Roles

Names, SymbolsUnits, Dimensions

Context

2

22110

2

21

2

21

4 r

dIdI

r

QQK

r

MMGF

Page 4: The Organizational Structure of Physics Laurent Hollo - 2011.

This formalism presents ahigh level engineering framework(Euclidian, Isotropic and Spherical)

to highlight

The common underlying structure and operating mechanism of standard DOMAINS

The organizational structure of physics and the formalization of physical interactions

Context

Page 5: The Organizational Structure of Physics Laurent Hollo - 2011.

Density Distribution Gradient Quantity

Flow

SPACE

TIME

Dimensional relationships

The SpaceTime Matrix

Simple and visual operations◦ Horizontal move: Multiply or divide by length

◦ Vertical move: Multiply or divide by time

Highlights dimensional relationships

Defines Densities

-4 -3 -2 -1 0 1 2 3 4

43210 1

-1-2-3-4

(/m) Space Space (m)

(/s

)

Tim

e

(s

)

Page 6: The Organizational Structure of Physics Laurent Hollo - 2011.

6 Domains

◦ SpaceTime Localize the interaction

◦ Standard (x4) Operate the interaction

◦ Energetic Cause / Effect of the interaction

Energy is the cause / result of 2 types of

interaction:

Conduction & Radiation

The Overall Structure

If Physics was a text ...

The length, surface and volume of the text

The time necessary to read the text

The words and their associated symbols

The orthographic and grammatical rules

The storyThe meaning of the text

SPACETIME

GRAVITIC THERMIC ELECTRIC MAGNETIC

ENERGETIC

Page 7: The Organizational Structure of Physics Laurent Hollo - 2011.

The Overall Structure

SPACETIME

GRAVITIC THERMIC ELECTRIC MAGNETIC

ENERGETIC

Page 8: The Organizational Structure of Physics Laurent Hollo - 2011.

SpaceTime Domain

Localization of physical interactions

Quantity Symbol Relation

Length or distance l or d d

Surface s d*d

Volume v d*d*d

Time t t

Frequency f 1/t

Velocity c d/t

Space-Time

Gravitic Thermic Electric Magnetic

Energetic

td s v

f

Page 9: The Organizational Structure of Physics Laurent Hollo - 2011.

An identical structure and operations

The Structure: 4 Groups ... 16 Roles◦ Conduction The Charge and its space time localization

◦ Radiation The stress of the charge on the medium

◦ Static The promotion of the medium to Radiation (opposition to Conduction)

◦ Dynamic The promotion of the medium to Conduction (opposition to Radiation)

Standard DomainsSpace-Time

Gravitic Thermic Electric Magnetic

Energetic

GRAVITIC THERMIC ELECTRIC MAGNETIC

The Structure

Page 10: The Organizational Structure of Physics Laurent Hollo - 2011.

Standard Domains - Operations

A charge can only spread into or stress the medium

Charge Conduction◦ Spread in space : The capacity to occupy space =>

Charge density◦ Spread in time : The capacity to flow => Current

Charge Radiation◦ A domain specific influence (polarization) on the medium

Opposition

CauseEffect

omotionCauseEffect Pr*

Page 11: The Organizational Structure of Physics Laurent Hollo - 2011.

Conduction Group

Charge◦ Fills space (Conduction)

◦ Moves (Conduction)

◦ Influences the medium (Radiation)

◦ Standard Domains Charges Mass (kg) Electric charge (C) Magnetic monopole (A-m) Heat (K)

Charge Density◦ Gradient, Surface, Spatial

◦ D & H are surface charge densities

Current and Current Density◦ Integration of time (I = Q / t)

◦ A potential will move charges (I = U / R)

Quantity Symbol Relation

Charge Q Q

Charge Distribution D Q / d2

Charge Density ρ Q / d3

Current I Q / t

Current Distribution J Q / (t * d2)

Standard domain

Radiation

Conduction

Static Dynamic

Λ D Q

J I

Charge densities

ChargeFlow

Page 12: The Organizational Structure of Physics Laurent Hollo - 2011.

Radiation Group

Charges impose a stress on the medium

Flux◦ An ambiguous name

◦ The global amount of stress (Φ = 4πKQ)

Potential◦ Level of stress from the source (U = Φ / d)

◦ The result of a perturbed flow (U = IR)

Field◦ Concentration of Flux (E = Φ / s)

◦ The result of a distributed charge (E = D / ε)

Quantity Symbol Relation

Flux Φ Φ

Potential U Φ / d

Field E Φ / d2

Gravitic Electric Magnetic

Flux = −4π𝐺𝑀

ර 𝑔 𝑑𝐴 ර 𝐸 𝑑𝐴 ර 𝐵 𝑑𝐴

4π𝐾𝑄 µ𝐼𝑑

Standard domain

Radiation

Conduction

Static Dynamic

Field (E)

E U Φ

Flux (Φ) Potential (U)

Q

Page 13: The Organizational Structure of Physics Laurent Hollo - 2011.

Static Group

Opposing Conduction ... Promoting Radiation

Resistivity and Resistance◦ Oppose the flow of charges (temporal conduction)

◦ Resistivity is the medium propertyResistance is the embodiment (R = ρ * l / s)

◦ If a Potential and a Current existThen a Resistance also exist (R = U / I)

Rigidity and Rigidance◦ Oppose the spread of charges (spatial conduction)

◦ Prevent the creation of Charge Density (4πK = E / D, 4πK = Φ / Q)

◦ KM = µ / 4π => µ = 1 / εM and B = µH becomes B = H / εM ≡ E = D / ε

Standard domain

Radiation

Conduction

Static Dynamic

Gravitic Electric Magnetic Thermic

Flux Φ L3T-2 ML3T-3A-1 LA LK

Potential U L2T-2 ML2T-3A-1 A KCharge Q M TA LA K

Current I MT-1 A LAT-1 T-1K

K/R LT-1 LT-1 LT-1 LT-1

Quantity Symbol Relation

Resistivity ρ ρ

Resistance R ρ / d

Rigidity K ρ * t

Rigidance Y ρ * t / d

R ρ

Y K

Page 14: The Organizational Structure of Physics Laurent Hollo - 2011.

Dynamic Group

Opposing Radiation... Promoting Conduction

Conductivity and Conductance◦ Promote the flow of charges (temporal conduction)

◦ Conductivity is the medium propertyConductance is the embodiment (G = σ * s / l)

◦ If a Potential and a Current existThen a Conductance also exist (G = I / U)

Permittivity and Capacitance◦ Promote the spread of charges (spatial conduction)

Quantity Symbol Relation

Conductivity σ G / d

Conductance G G (=1 / R)

Permittivity ε 1 / (4π K)

Capacitance C ε * d

Standard domain

Radiation

Conduction

Static Dynamic

ε C

σ G

Page 15: The Organizational Structure of Physics Laurent Hollo - 2011.

Static and Dynamic Groups

Linked (opposed) by Role, Unit and Dimension

Properties of the Medium◦ If one element is ... They are all◦ The interaction force will vary with the medium

R ρ

Y K

ε C

σ G

R ρ

Y K

ε C

σ G

Electric Magnetic Gravitic Thermic Electric Magnetic Gravitic Thermic

Resistivity ρ ENTRY 4,85E-34 5,39E-51 3,60E-54 8,94E-24 1,68E-08 1,87E-25 1,25E-28 2,49E-03

Resistance R ρ / d 3,00E+01 3,34E-16 2,23E-19 5,53E+11 1,04E+27 1,16E+10 7,72E+06 1,54E+32

Rigidity K ρ / t 8,99E+09 1,00E-07 6,67E-11 1,66E+20 3,12E+35 3,47E+18 2,31E+15 4,63E+40

Rigidance Y ρ / td 5,56E+44 6,19E+27 4,13E+24 1,03E+55 1,93E+70 2,15E+53 1,43E+50 2,86E+75

Conductivity σ 1 / ρ 2,06E+33 1,85E+50 2,78E+53 1,12E+23 5,95E+07 5,35E+24 8,02E+27 4,01E+02

Conductance G 1 / ρd 3,34E-02 3,00E+15 4,49E+18 1,81E-12 9,62E-28 8,65E-11 1,30E-07 6,48E-33

Permittivity ε t / 4πρ 8,85E-12 7,96E+05 1,19E+09 4,80E-22 2,55E-37 2,30E-20 3,44E-17 1,72E-42

Capacitance C td / 4πρ 1,43E-46 1,29E-29 1,93E-26 7,75E-57 4,13E-72 3,71E-55 5,56E-52 2,78E-77Dyn

am

ic

Cooper

Sta

ticG

rou

p

Role

Sy

mb

ol

EquationFree space

Page 16: The Organizational Structure of Physics Laurent Hollo - 2011.

Permeability and Inductance

Permeability and Inductance are a “mirror representation” of magnetic Permittivity and Capacitance

M

1

MCL

1

E

Mc

1c

M

HB

E

DE

2

21

4

1

r

QQF MM

M

2

21

4

1

r

QQF EE

E

HB

2

21

4 r

QQF MM

Magnetic Electric

M

MM

Q

E

EE

Q

Id

Page 17: The Organizational Structure of Physics Laurent Hollo - 2011.

Radiat ion

C onduct ion

St at ic Dynamic

ρ D Q

J I

Sta

nd

ard

Do

main

XEffec t

Pro

mo

tion

Cause

GUI *X

Pro

mo

tion

Cause

Effec t

RIU *

Standard Domain Operations

><

/Effec t

Op

po

sitio

n

Cause

R

UI

/

Op

po

sitio

n

Cause

Effec t

G

IU

Standard domain

Radiation

Conduction

Static Dynamic

Right / Left /

Left X Right X

Radiation Conduction

Effect = Cause / Opposition

Effect = Cause * Promotion

Described phenomenonnature of the effect (LHS)

Type of equation

Page 18: The Organizational Structure of Physics Laurent Hollo - 2011.

Standard Domain Operations

Right / Left /

Left X Right X

Radiation Conduction

Effect = Cause / Opposition

Effect = Cause * Promotion

Described phenomenonnature of the effect (LHS)

Typ

e o

f eq

uat

ion

Q = U / 4πYQ = Φ / 4πKD = E / 4πKI = U / RI = Φ / ρJ = E / ρ

Φ = Q / εΦ = I / σU = Q / CU = I / GE = J / σE = D / ε

Φ = Q * 4πKΦ = I * ρU = I * RU = Q * 4πYE = J * ρE = D * 4πK

Q = U * CQ = Φ * εD = E * εI = U * GI = Φ * σJ = E * σ

Page 19: The Organizational Structure of Physics Laurent Hollo - 2011.

M A

F N X

P

Energetic Domain

The cause or effect of standard domain interaction

Conduction Group Element X Radiation Group Element

Potential Energy◦ Energy of position (N = QU)

Kinetic Energy◦ Energy of action (N = ½ QU)

Force◦ Spatial measure of Energy (F = QE)

Power◦ Temporal measure of Energy (P = UI)

Quantity Symbol Relation

Energy N N

Force F N / d

Power P N / t

Action A N * t

Momentum M N * t / d

Eflux X N * d

Domain Equation Unit

Generic NP = Q * U Joule

Gravitic NP = M1 * GM2/r kg-m2 / s2

Electric NP = Q1 * KQ2/r C-V

Magnetic NP = I * d * A A2-m

Thermic NP = Kb * T K-K

Domain Equation Unit

Generic F = Q * E Newton

Gravitic F = m * a kg-m / s2

Electric F = Q * E C-V / m

Magnetic F = I * d * B A-m * T

Thermic F = K * T / d K-K / m

Domain Equation Unit

Generic P = I * U Watt

Gravitic P = Φ * V Kg-m2 / s3

Electric P = I * U A-V

Magnetic P = (I * d / s) * A A2-m / s

Thermic P = Φ * T K-K / s

Space-Time

Gravitic Thermic Electric Magnetic

Energetic

Page 20: The Organizational Structure of Physics Laurent Hollo - 2011.

Structure & OperationsSpace-timeSTE = STE op STEEDE = EDE op STEGRX = GRX op STE

Static and Dynamic groupsGST = 1 / GDYGDY= 1 / GST

Standard domain operationsGCO = GRA / GSTGCO = GRA * GDYGRA = GCO / GDYGRA = GCO * GSTGST = GRA / GCOGDY = GCO / GRA

Energy radiation or conduction

EDE = GRA * GCOGCO = EDE / GRAGRA = EDE / GCO

op Operator * or /STE An element of the Space-Time

domainEDE An element of the Energetic domainGRX An element of any group of a

standard domainGRA An element of the Radiation groupGCO An element of the Conduction groupGST An element of the Static groupGDY An element of the Dynamic group

/

Radiat ion

C onduct ion

St at ic Dynamic

/

XXρ D Q

J I

M A

F N X

P

t

d s v

f c

E ner get icDo main

SpaceTimeDo main

St andar d Do main

Page 21: The Organizational Structure of Physics Laurent Hollo - 2011.

Meta-Equations

Space-time relationships

Static and Dynamic groups relationships

Standard domain operations relationships

Energy relationships

Page 22: The Organizational Structure of Physics Laurent Hollo - 2011.

Mapping current knowledgeGroup Name Gravitic Electric Magnetic Thermic

Charge Mass Charge HeatCharge distribution Displacement field Magnetic excitationCharge Density Mass Density Charge DensityCurrent Mass Flow Current Heat FluxCurrent Distribution Current DistributionDipole moment Dipole MomentFlux Flux Flux FluxPotential Potential Potential Potential TemperatureField Acceleration Field FieldResistivity ResistivityResistance Resistance ResistanceRigidity Gravitational constant Coulomb's constantRigidanceConductivity Conductivity ConductivityConductance ConductancePermittivity Permittivity 1 / PermeabilityCapacitance Capacitance 1 / Inductance capacity

Con

du

ctio

nR

adia

tion

Stat

icD

ynam

ic

Group Name Gravitic Electric Magnetic Thermic Generic

Charge M Q Q Q

Charge distribution D H D

Charge Density ρ Λ

Current I Φ I

Current Distribution J J

Flux Φ Φ Φ

Potential V A T U

Field a E B E

FieldTime v S

Resistivity ρ ρ

Resistance R R R

Rigidity G K K

Rigidance Y

Conductivity σ l σ

Conductance G G

Permittivity ε (1/µ) ε

Capacitance C (1/L) c C

Con

duct

ion

Rad

iatio

nSt

atic

Dyn

amic

Group Name Gravitic Electric Magnetic ThermicCharge kg Coulomb A-m Kelvin = Ke

Charge distribution kg/m2

C/m2 A/m Ke/m

2

Charge Density kg/m3 C/m3 A/m

2Ke/m

3

Current kg/s C/s = Ampere Am/s Ke/s

Current Distribution kg/s-m2

A/m2 A/m-s Ke/s-m

2

Flux m3/s

2 V-m A-m = Weber Ki-m

Potential m2/s

2 Volt A Kelvin = Ki

Field m/s2 V/m A/m = Tesla Ki/m

FieldTime m/s Vs/m T-s Ki-s/m

Resistivity m3/s-kg ohm-m (C/s)-m/(C-m/s

2) = s Ki-m/(Ke/s) = Ki--s-m/Ke

Resistance m2/s-kg V-s/C = ohm (C/s)/(C-m/s

2) = s/m Ki/(Ke/s) = Ki-s/Ke

Rigidity m3/s

2-kg V-m/C A-m/A-m = Unitless Ki-m/Ke

Rigidance m2/s

2-kg V/C (A-m/A-m)/m = 1/m Ki/Ke

Conductivity s-kg/m3 S/m ((C-m/s

2)/(C/s))/m = 1/s ((Ke/s)/Ki)/m = Ke/Ki--s-m

Conductance s-kg/m2 C/V-s = Siemens (C-m/s

2)/(C/s) = m/s (Ke/s)/Ki = Ke/Ki-s

Permittivity s2-kg/m

3 F/m ((A-m)/A)/m = Unitless ((Ke/s)s/Ki)/m = Ke/Ki-m

Capacitance s2-kg/m

2 C/V = Farad (A-m)/A = m (Ke/s)s/Ki = Ke/Ki

Con

duct

ion

Rad

iatio

nSt

atic

Dyn

amic

Page 23: The Organizational Structure of Physics Laurent Hollo - 2011.

Dimensions

domain NameLength L

Surface L2

Volume L3

Time T

Frequency T-1

Spac

eTim

e

domain NameEnergy ML

2T

-2

Force MLT-2

Power ML2T

-3

Action ML2T

-1

Momentum MLT-1

Eflux ML3T

-2

Ene

rget

ic

Group Name Gravitic Electric Magnetic ThermicCharge M AT LA ML

2T

-2

Charge distribution ML-2

ATL-2

L-1

A MT-2

Charge Density ML-3

ATL-3

L-2

A ML-1

T-2

Current MT-1 A LT

-1A ML

2T

-3

Current Distribution MT-1

L-2

AL-2

L-1

T-1

A MT-3

Flux L3T

-2ML

3T

-3A

-1ML

2T

-2A

-1 KL

Potential L2T

-2ML

2T

-3A

-1MLT

-2A

-1 K

Field LT-2

MLT-3

A-1

MT-2

A-1

KL-1

FieldTime LT-1

MLT-2

A-1

MT-1

A-1

KL-1

T

Resistivity M-1

L3T

-1ML

3T

-3A

-2MLT

-1A

-2M

-1L

-1T

3K

Resistance M-1

L2T

-1ML

2T

-3A

-2MT

-1A

-2M

-1L

-2T

3K

Rigidity M-1

L3T

-2ML

3T

-4A

-2MLT

-2A

-2M

-1L

-1T

2K

Rigidance M-1

L2T

-2ML

2T

-4A

-2MT

-2A

-2M

-1L

-2T

2K

Conductivity ML-3

T M-1

L-3

T3A

2M

-1L

-1TA

2MLT

-3K

-1

Conductance ML-2

T M-1

L-2

T3A

2M

-1TA

2ML

2T

-3K

-1

Permittivity ML-3

T2

M-1

L-3

T4A

2M

-1L

-1T

2A

2MLT

-2K

-1

Capacitance ML-2

T2

M-1

L-2

T4A

2M

-1T

2A

2ML

2T

-2K

-1

Con

duct

ion

Rad

iatio

nSt

atic

Dyn

amic

Page 24: The Organizational Structure of Physics Laurent Hollo - 2011.

Planck values generalization

The Planck (Dirac) quantum: h (h)Planck values should be derivable

from any standard domain (no precedence)

G

ccc

G

cPP

225

G

GGK

cUU

G

GGR

UU1

UIPP

Gravitic Electric Magnetic ThermicQ 2,1764E-08 1,8755E-18 5,6227E-10 1,3807E-23

I = Q / T 4,0370E+35 3,4789E+25 1,0429E+34 2,5609E+20

U 8,9876E+16 1,0429E+27 3,4789E+18 1,4168E+32

P = UI 3,6283E+52 3,6281E+52 3,6283E+52 3,6283E+52

Quantity Standard equation

Power 𝑐5𝐺

Force 𝑐4𝐺

Energy ඨℎ𝑐5𝐺

Momentum ඨℎ𝑐3𝐺

GG IU

Page 25: The Organizational Structure of Physics Laurent Hollo - 2011.

Planck values generalization

Gravitic Electric Magnetic Thermic Equation

Charge 2,1764E-08 1,8755E-18 5,6227E-10 1,3807E-23 Q = ENTRY

Current 4,0370E+35 3,4789E+25 1,0429E+34 2,5609E+20 I = Q / TP

Potential 8,9876E+16 1,0429E+27 3,4789E+18 1,4168E+32 U = ENTRY

Field 5,5607E+51 6,4526E+61 2,1524E+53 8,7658E+66 E = U / LP

Energy 1,9561E+09 1,9560E+09 1,9561E+09 1,9561E+09 N = QU

Force 1,2103E+44 1,2102E+44 1,2103E+44 1,2103E+44 F = QE

Power 3,6283E+52 3,6281E+52 3,6283E+52 3,6283E+52 P = IU

Momentum 6,5248E+00 6,5245E+00 6,5248E+00 6,5248E+00 M = QETP

Action 1,0546E-34 1,0545E-34 1,0546E-34 1,0546E-34 A = QUTP

Eflux 3,1615E-26 3,1614E-26 3,1615E-26 3,1615E-26 X = QΦ

Page 26: The Organizational Structure of Physics Laurent Hollo - 2011.

Planck values generalizationdomain Name Value Equation

Energy 1,9561E+09 N = QUForce 1,2103E+44 F = QEPower 3,6283E+52 P = IUAction 1,0546E-34 A = ENTRY

Momentum 6,5248E+00 M = QETP

Eflux 3,1615E-26 X = QULP

Ene

rget

ic

domain Name ValueLength 1,62E-35Surface 2,61E-70Volume 4,22E-105Time 5,39E-44Frequency 1,85E+43

Spac

eTim

e

Group Name Gravitic Electric Magnetic Thermic EquationCharge 2,1767E-08 1,8755E-18 5,6227E-10 1,3807E-23 Q = sqr (h / R)

Charge distribution 8,33264E+61 7,17975E+51 2,15243E+60 5,28526E+46 D = Q / LP2

Charge Density 5,1555E+96 4,4422E+86 1,3317E+95 3,2701E+81 Λ = Q / LP3

Current 4,0375E+35 3,4789E+25 1,0429E+34 2,5609E+20 I = Q / TP

Current Distribution 1,5456E+105 1,3317E+95 3,9925E+103 9,8034E+89 J = Q / TPLP2

Flux 1,8252E-17 2,1183E-07 7,0658E-16 2,8775E-02 Φ = X / Q

Potential 1,1293E+18 1,3106E+28 4,3717E+19 1,7804E+33 U = N / Q

Field 6,9869E+52 8,1089E+62 2,7048E+54 1,1015E+68 E = F / Q

Resistivity 3,5974E-54 4,8454E-34 5,3912E-51 8,9416E-24 ρ = ENTRY

Resistance 2,2257E-19 2,9979E+01 3,3356E-16 5,5323E+11 R = ρ / LP

Rigidity 6,6726E-11 8,9876E+09 1,0000E-07 1,6585E+20 K = ρ / TP

Rigidance 4,1284E+24 5,5607E+44 6,1872E+27 1,0262E+55 Y = ρ / LPTP

Conductivity 2,7798E+53 2,0638E+33 1,8549E+50 1,1184E+23 σ = 1 / ρ

Conductance 4,4929E+18 3,3356E-02 2,9979E+15 1,8076E-12 G = 1 / R

Permittivity 1,1926E+09 8,8542E-12 7,9577E+05 4,7980E-22 ε = 1 / 4πK

Capacitance 1,9275E-26 1,4311E-46 1,2862E-29 7,7548E-57 C = 1 / 4πY

Con

duct

ion

Rad

iatio

nSt

atic

Dyn

amic

Page 27: The Organizational Structure of Physics Laurent Hollo - 2011.

Maxwell equations generalization

∇∙Ε = 𝜌𝐸𝜀0

∇∙Β = 𝜇0𝜌𝑀

∇× Ε = −𝜕Β𝜕𝑡 + 𝜇0JM

∇× Β = 𝜇0𝜀0 𝜕Ε𝜕𝑡 + 𝜇0JE

With magnetic monopoles∇∙Ε = 𝜌𝜀0

∇∙Β = 0

∇× Ε = −𝜕Β𝜕𝑡

∇× Β = 𝜇0J+ 𝜇0𝜀0 𝜕Ε𝜕𝑡

Standard differential form

Page 28: The Organizational Structure of Physics Laurent Hollo - 2011.

Maxwell equations generalization

∇∙Ε = 𝜌𝐸𝜀0

∇∙Β = 𝜇0𝜌𝑀

∇× Ε = −𝜕Β𝜕𝑡 + 𝜇0JM

∇× Β = 𝜇0𝜀0 𝜕Ε𝜕𝑡 + 𝜇0JE

With magnetic monopoles ∇∙ΕE = 𝜌𝐸𝜀𝐸

∇∙EM = 𝜌𝑀𝜀𝑀

∇× ΕE = −൬𝜕EM𝜕𝑡 + JM

εM൰ ∇× EM = 𝜀𝐸𝜀𝑀൬

𝜕ΕE𝜕𝑡 + JEεE൰

With 1M

Page 29: The Organizational Structure of Physics Laurent Hollo - 2011.

Conclusion

A coherent engineering formalismcompatible with current knowledge

Some deeper implications◦ D & H are surface charge densities◦ G & K are medium dependant

Next steps◦ Test the interaction force in water for the Electric and

Gravitic domains◦ Validate the existence of a thermic interaction force

/

Radiat ion

C onduct ion

St at ic Dynamic

/

XXρ D Q

J I

M AF N X

P

t

d s v

f c

E ner get icDo main

SpaceTimeDo main

St andar d Do main

Page 30: The Organizational Structure of Physics Laurent Hollo - 2011.

THANK YOU !

[email protected]

Page 31: The Organizational Structure of Physics Laurent Hollo - 2011.

Physics Structure & Operations

t

d s v

f c

Sp

ac

eTim

eD

om

ain

M A

F N X

P

En

er

getic

Do

ma

in

Radiat ion

C onduct ion

St at ic Dynamic

ρ D Q

J I

Sta

nd

ard

Do

main

><

X

Pro

mo

tion

Cause

Effec t

/Effec t

Op

po

sitio

n

Cause

XEffec t

Pro

mo

tion

Cause

/

Op

po

sitio

n

Cause

Effec t

R

C

S D

*

/

*

/

R

C

S D

*

/

*

/

R

C

S D

R

C

S D

RC

S D

R

C

S D

*

/

*

/

Page 32: The Organizational Structure of Physics Laurent Hollo - 2011.
Page 33: The Organizational Structure of Physics Laurent Hollo - 2011.

Current (I)

Potential (U)

Resistance (R)

Page 34: The Organizational Structure of Physics Laurent Hollo - 2011.

R U

I

R U

I

R U

I


Recommended