+ All Categories
Home > Documents > The “ ” Paige in Kalman Filtering K. E. Schubert.

The “ ” Paige in Kalman Filtering K. E. Schubert.

Date post: 04-Jan-2016
Category:
Upload: stewart-powell
View: 213 times
Download: 0 times
Share this document with a friend
40
The “” Paige in Kalman Filtering K. E. Schubert
Transcript
Page 1: The “ ” Paige in Kalman Filtering K. E. Schubert.

The “” Paige in Kalman Filtering

K. E. Schubert

Page 2: The “ ” Paige in Kalman Filtering K. E. Schubert.

Kalman’s Interest

State Space (Matrix Representation)

Discrete Time (difference equations)

kkkkkk wuBxAx 1

Optimal Control

Starting at x0 Go to xG

Minimize or maximize some quantity (time, energy, etc.)

Page 3: The “ ” Paige in Kalman Filtering K. E. Schubert.

Why Filtering?

State (xi) is not directly known

Must observe through minimum measurements

Observer Equation

kkkkkk vuDxCy Want to reconstruct the state vector

Page 4: The “ ” Paige in Kalman Filtering K. E. Schubert.

Random Variables

Process and observation noise

Independent, white Gaussian noise

v

w

RNvp

RNwp

,0

,0

~

~

2,~ Nxp

y=ax+b

22,~ aa bNyp

Page 5: The “ ” Paige in Kalman Filtering K. E. Schubert.

Complete Problem

Control and estimation are independent

Concerned only with observer

Obtain estimate:

kkkkkk

kkkkkk

vuDxCy

wuBxAx

1

kkx̂

Page 6: The “ ” Paige in Kalman Filtering K. E. Schubert.

Predictor-Corrector

1ˆ kkx

Measurements

Predict(Time Update)

Correct(Measurement Update)

kkx̂

Page 7: The “ ” Paige in Kalman Filtering K. E. Schubert.

To Err Is Kalman!

How accurate is the estimate?

kkkkk

kkkkk

xxe

xxe

ˆ

ˆ11

What is its distribution?

T

kkkkkk

Tkkkkkk

eeEP

eeEP

111

Page 8: The “ ” Paige in Kalman Filtering K. E. Schubert.

Predictor-Corrector

11ˆ kkkk Px

Measurements

Predict(Time Update)

Correct(Measurement Update)

kkkk Px̂

Page 9: The “ ” Paige in Kalman Filtering K. E. Schubert.

Predict

wTkkkkkk

kkkkk

RAPAP

xAx

1

1ˆˆ

No random variableYou don’t know it

Eigenvalues must be <1(For convergence)

Distribution does effect error covariance

wTkkkkkk

kkkkkk

RAPAP

weAe

1

1

Page 10: The “ ” Paige in Kalman Filtering K. E. Schubert.

Correct

kkkkkk Kxx 1ˆˆ

Kalman Gain

1

11

vTkkkk

Tkkkk RCPCCPK

1 kkkkkk PCKIP

Innovations (What’s New)

1ˆ kkkkk xCy

Oblique Projection

Page 11: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 1 (Basic Example)

X 2,

Companion Form

Nice but not perfect numerics and stability

01

9.1.

10

c

A

Page 12: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 1

Page 13: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 1

Page 14: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 1

Page 15: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 1

Page 16: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 1 (Again)

X 2,

Companion Form

Nice but not perfect numerics and stability

01

9.1.

10

c

A

Page 17: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 1

Page 18: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 1

Page 19: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 1

Page 20: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 1

Page 21: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 2 (Stiffness)

X 2,

Large Eigenvalue Spread

Condition number around 109

Large sampling time (big steps)

01

98.000000001.

10

c

A

Page 22: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 2

Page 23: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 2

Page 24: The “ ” Paige in Kalman Filtering K. E. Schubert.

Trouble in Paradise

Inversion in the Kalman gain is slow and generally not stable

A is usually in companion formnumerically unstable (Laub)

Covariance are symmetric positive definiteCalculation cause P to become unsymmetric then lose positivity

n

knktikit

iiin

xax

aaa

I

0,,1

,0,1,

0

Page 25: The “ ” Paige in Kalman Filtering K. E. Schubert.

Square Root Filters

Kailath suggested propegating the square root rather than the whole covariance

Not really square root, actually Choleski Factor

rTr=R

Use on Rw, Rv, P

Page 26: The “ ” Paige in Kalman Filtering K. E. Schubert.

Our Square Roots

fTw

fww

ifv

ifTvv

Tkkkk

kTkkk

RRR

RRR

SSP

UUP

1

1

1

Page 27: The “ ” Paige in Kalman Filtering K. E. Schubert.

State Error

IuuxSxS

IuuSxx

IuuSe

SSPe

kkkkkkk

kkkkkk

kkkkk

Tkkkkkk

,0~,ˆ

,0~,ˆ

,0~,

,0,0~

11/

1

1/

1

1/1

Page 28: The “ ” Paige in Kalman Filtering K. E. Schubert.

Observations

kkk

ifvk

ifv

kifvk

vxCRyR

IvRv~

,0~~

Page 29: The “ ” Paige in Kalman Filtering K. E. Schubert.

Measurement Equation

Iv

uT

r

u

r

ux

U

r

b

Iv

u

v

uTx

CR

ST

yR

xST

k

kk

k

k

k

kk

k

k

k

k

k

k

kkk

kifv

kk

kifv

kkkk

,0~~

~,

~

0

,0~~,~

11/

1

Iv

u

v

ux

CR

S

yR

xS

k

k

k

kk

kifv

k

kifv

kkk ,0~~,~

11/

1

Page 30: The “ ” Paige in Kalman Filtering K. E. Schubert.

Measurement Update

Then, by definition

kkk

k

k

kkk

ifv

kk

kifv

kkkk

xU

r

b

xCR

ST

yR

xST

0

11/

1

Page 31: The “ ” Paige in Kalman Filtering K. E. Schubert.

Updating for Free?

U k xk k

bk

Uk xk k

Uk xk ˜ u k

U k xk k

xk ˜ u k

UkP

k kU

k

T I Pk k

1 Uk

TUk

Page 32: The “ ” Paige in Kalman Filtering K. E. Schubert.

Error Part 2

k

fwkkkkkk

kkf

wk

kkkkkkkkkk

kkkkk

kkkkk

wRuUAxx

IwwRw

wxxAuUAxA

uUxx

uxxU

~~ˆ

,0~~,~

111

11

1

Page 33: The “ ” Paige in Kalman Filtering K. E. Schubert.

Time Updating

1111

1111

111

11

11

111

~0

~

~~~

,0~~

~,~

~

~~

kkkkk

kkkkk

k

kkkk

k

kTkk

fwkkkk

k

k

k

kfwkkkk

kf

wkkkkkk

uSxx

uSxx

u

rSx

w

uTTRUAx

Iw

u

w

uRUAx

wRuUAxx

Page 34: The “ ” Paige in Kalman Filtering K. E. Schubert.

Paige’s Filter

kkk

kkkkk

kkf

wkk

PfactorS

xAx

STRUA

11

1

11 0

~

1

1/11

0

kkk

kkkk

k

kk

kifk

kkk

kifk

kk

PfactorU

bxU

r

bU

yR

xS

CR

ST

Page 35: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 3 (Fun Problem)

X 20,

Known difficult matrix that was scaled to be stable

00125

200

1

125

2

0125

1

c

A

Page 36: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 3

Page 37: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 3

Page 38: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 3

Page 39: The “ ” Paige in Kalman Filtering K. E. Schubert.

System 3

Page 40: The “ ” Paige in Kalman Filtering K. E. Schubert.

Conclusions

Called Paige’s filter but really Paige and Saunders developed

O(n3) and about 60% faster than regular square root

Current interests: faster, special structures, robustness


Recommended