+ All Categories
Home > Documents > The Papaver rhoeas S determinants confer self-incompatibility to...

The Papaver rhoeas S determinants confer self-incompatibility to...

Date post: 03-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
5
provide a framework with which to understand the many mutations in the protein that lead to diseases. REFERENCES AND NOTES 1. G. Fairbanks, T. L. Steck, D. F. Wallach, Biochemistry 10, 26062617 (1971). 2. J. W. Vince, R. A. Reithmeier, Biochemistry 39, 55275533 (2000). 3. J. Brahm, J. Gen. Physiol. 70, 283306 (1977). 4. H. Passow, Rev. Physiol. Biochem. Pharmacol. 103, 61203 (1986). 5. S. L. Alper, R. R. Kopito, S. M. Libresco, H. F. Lodish, J. Biol. Chem. 263, 1709217099 (1988). 6. R. R. Kopito et al., Cell 59, 927937 (1989). 7. F. C. Brosius 3rd, S. L. Alper, A. M. Garcia, H. F. Lodish, J. Biol. Chem. 264, 77847787 (1989). 8. S. L. Alper, J. Exp. Biol. 212, 16721683 (2009). 9. R. R. Kopito, H. F. Lodish, Nature 316, 234238 (1985). 10. S. Lepke, H. Passow, Biochim. Biophys. Acta 455, 353370 (1976). 11. S. Grinstein, S. Ship, A. Rothstein, Biochim. Biophys. Acta 507, 294304 (1978). 12. S. Lepke, A. Becker, H. Pascow, Biochim. Biophys. Acta 1106, 1316 (1992). 13. D. Zhang, A. Kiyatkin, J. T. Bolin, P. S. Low, Blood 96, 29252933 (2000). 14. J. L. Grey, G. C. Kodippili, K. Simon, P. S. Low, Biochemistry 51, 68386846 (2012). 15. L. Davis, S. E. Lux, V. Bennett, J. Biol. Chem. 264, 96659672 (1989). 16. M. J. Tanner, Curr. Opin. Hematol. 9, 133139 (2002). 17. J. A. Walder et al., J. Biol. Chem. 259, 1023810246 (1984). 18. J. Fujinaga, X. B. Tang, J. R. Casey, J. Biol. Chem. 274, 66266633 (1999). 19. X. B. Tang, J. Fujinaga, R. Kopito, J. R. Casey, J. Biol. Chem. 273, 2254522553 (1998). 20. A. M. Taylor, Q. Zhu, J. R. Casey, Biochem. J. 359, 661668 (2001). 21. Q. Zhu, D. W. Lee, J. R. Casey, J. Biol. Chem. 278, 31123120 (2003). 22. D. Barneaud-Rocca, B. Pellissier, F. Borgese, H. Guizouarn, Int. J. Cell Biol. 2011, 136802 (2011). 23. Q. Zhu, J. R. Casey, J. Biol. Chem. 279, 2356523573 (2004). 24. J. C. Cheung, R. A. Reithmeier, Mol. Membr. Biol. 22, 203214 (2005). 25. M. Popov, J. Li, R. A. Reithmeier, Biochem. J. 339, 269279 (1999). 26. D. N. Wang, W. Kühlbrandt, V. E. Sarabia, R. A. Reithmeier, EMBO J. 12, 22332239 (1993). 27. D. N. Wang, V. E. Sarabia, R. A. Reithmeier, W. Kühlbrandt, EMBO J. 13, 32303235 (1994). 28. T. Yamaguchi et al., J. Mol. Biol. 397, 179189 (2010). 29. D. Barneaud-Rocca, C. Etchebest, H. Guizouarn, J. Biol. Chem. 288, 2637226384 (2013). 30. P. Bonar, H. P. Schneider, H. M. Becker, J. W. Deitmer, J. R. Casey, J. Mol. Biol. 425, 25912608 (2013). 31. T. Hirai, N. Hamasaki, T. Yamaguchi, Y. Ikeda, Biochem. Cell Biol. 89, 148156 (2011). 32. Materials and methods are available as supplementary materials on Science Online. 33. Y. Shami, A. Rothstein, P. A. Knauf, Biochim. Biophys. Acta 508, 357363 (1978). 34. R. Saitoh et al., J. Immunol. Methods 322, 104117 (2007). 35. F. Lu et al., Nature 472, 243246 (2011). 36. Å. Västermark, M. H. Saier Jr., Proteins 82, 336346 (2014). 37. J. R. Casey, R. A. Reithmeier, J. Biol. Chem. 266, 1572615737 (1991). 38. N. K. Dahl et al., J. Biol. Chem. 278, 4494944958 (2003). 39. S. Lindenthal, D. Schubert, Proc. Natl. Acad. Sci. U.S.A. 88, 65406544 (1991). 40. K. Okubo, D. Kang, N. Hamasaki, M. L. Jennings, J. Biol. Chem. 269, 19181926 (1994). 41. P. G. Wood, H. Müller, M. Sovak, H. Passow, J. Membr. Biol. 127, 139148 (1992). 42. M. N. Chernova et al., J. Gen. Physiol. 109, 345360 (1997). 43. D. Karbach, M. Staub, P. G. Wood, H. Passow, Biochim. Biophys. Acta 1371, 114122 (1998). 44. A. K. Stewart et al., Am. J. Physiol. Cell Physiol. 300, C1034C1046 (2011). 45. R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait, R. MacKinnon, Nature 415, 287294 (2002). 46. P. A. Knauf, G. F. Fuhrmann, S. Rothstein, A. Rothstein, J. Gen. Physiol. 69, 363386 (1977). 47. M. L. Jennings, J. Membr. Biol. 28, 187205 (1976). 48. M. L. Jennings, J. Membr. Biol. 40, 365391 (1978). 49. M. L. Jennings, J. S. Smith, J. Biol. Chem. 267, 1396413971 (1992). 50. X. B. Tang, M. Kovacs, D. Sterling, J. R. Casey, J. Biol. Chem. 274, 35573564 (1999). 51. P. Jarolim et al., Blood 85, 634640 (1995). 52. L. J. Bruce et al., Nat. Genet. 37, 12581263 (2005). 53. P. Jarolim et al., Proc. Natl. Acad. Sci. U.S.A. 88, 1102211026 (1991). 54. L. J. Bruce et al., Biochim. Biophys. Acta 1416, 258270 (1999). 55. O. Jardetzky, Nature 211, 969970 (1966). 56. W. Furuya, T. Tarshis, F. Y. Law, P. A. Knauf, J. Gen. Physiol. 83, 657681 (1984). 57. C. Lee et al., Nature 501, 573577 (2013). 58. E. M. Quistgaard, C. Löw, P. Moberg, L. Trésaugues, P. Nordlund, Nat. Struct. Mol. Biol. 20, 766768 (2013). 59. N. Reyes, C. Ginter, O. Boudker, Nature 462, 880885 (2009). 60. T. Shimamura et al., Science 328, 470473 (2010). 61. X. Zhou et al., Nature 505, 569573 (2014). 62. F. Glaser et al., Bioinformatics 19, 163164 (2003). ACKNOWLEDGMENTS We thank the beamline scientists at Diamond Light Source, European Synchrotron Radiation Facility and SPring-8 for help with data collection; L. Bruce at the Bristol Institute for Transfusion Sciences; National Health Service Blood and Transplant; and A. Toye at the University of Bristol for useful discussion. S. Weyand contributed to the refinement of the Fab fragment, and R. Suno at Kyoto University contributed to the preparation of the figures. The project was funded by the Biotechnology and Biological Sciences Research Council (grants BB/G023425/1 and BB/D019516/1 to S.I.); the ERATO Human Receptor Crystallography Project of JST (to S.I.); the Targeted Proteins Research Program of the Ministry of Education, Culture, Sports, Science, and Technology, Japan (MEXT) (to S.I.); a Grant-in-Aid for Scientific Research (B) (grants 20370035 and 23370049 to T.K.); MEXTs Platform for Drug Discovery, Informatics, and Structural Life Science (to T.K. and S.I.); and the European Unions European Drug Initiative for Channels and Transporters (grant 201924 to S.I. and A.C.). The authors are grateful for the use of the Membrane Protein Laboratory, funded by the Wellcome Trust (grant WT089809) at the Diamond Light Source. The authors declare no competing interests. The project was conceived by S.I., D.K., and N.H. H.H., H.K., and N.H. purified the AE1 CTD protein. H.I. and T.Ha. raised the antibody using the AE1 CTD -expressing baculovirus as an antigen. T.A., T.Hi., C.I.-S., and T.M. screened the antibody. T.K.-Y., T.K., T.A., Y.Ab., and M.I. crystallized the AE1 CTD protein. T.K., Y.Al., A.D.C., and S.I. collected diffraction data. The structure was solved and refined by T.A., Y.Al. and A.D.C. The manuscript was written by T.K., A.D.C., Y.Al., and S.I. The coordinates and structure factors have been deposited with the Protein Data Bank (4YZF, band 3 with Fab4201; 5a16, Fab4201). T.A., T.K., T.K.-Y., T.Hi., T.M., N.N., S.I., T.Ha., H.I., Y.M., and N.H. are authors on a patent filed by JST Agency (JP 2013-103881 A) that covers the monoclonal antibody to human band 3. SUPPLEMENTARY MATERIALS www.sciencemag.org/content/350/6261/680/suppl/DC1 Materials and Methods Figs. S1 to S15 Tables S1 to S3 References (6384) 10 December 2014; accepted 25 September 2015 10.1126/science.aaa4335 PLANT EVOLUTION The Papaver rhoeas S determinants confer self-incompatibility to Arabidopsis thaliana in planta Zongcheng Lin,* Deborah J. Eaves, Eugenio Sanchez-Moran, F. Christopher H. Franklin, Vernonica E. Franklin-TongSelf-incompatibility (SI) is a major genetically controlled system used to prevent inbreeding in higher plants. S determinants regulate allele-specific rejection of selfpollen by the pistil. SI is an important model system for cell-to-cell recognition and signaling and could be potentially useful for first-generation (F 1 ) hybrid breeding.To date, the transfer of S determinants has used the complementation of orthologs to restoreSI in close relatives. We expressed the Papaver rhoeas S determinants PrsS and PrpS in Arabidopsis thaliana. This enabled pistils to reject pollen expressing cognate PrpS. Moreover, plants coexpressing cognate PrpS and PrsS exhibit robust SI. This demonstrates that PrsS and PrpS are sufficient for a functional synthetic S locus in vivo. This transfer of novel S determinants into a highly divergent species (>140 million years apart) with no orthologs suggests their potential utility in crop production. M any plants are hermaphrodites, with male and female organs in close proximity. Because this risks self-fertilization and undesirable inbreeding depression, many plants use self-incompatibility (SI) as a mechanism to prevent selfing. SI is controlled by an S locus allowing self/nonself recognition be- tween pistil and pollen (1, 2). SI in Papaver rhoeas is gametophytically controlled and specified by a pistil S determinant, PrsS [P. rhoeas stigma S (3)], and a pollen S determinant, PrpS [ P. rhoeas pollen S (4)]. PrsS and PrpS interact to trigger a signaling network in incompatible pollen, resulting in programmed cell death (PCD) (58). Arabidopsis thaliana is a self-fertile member of the Brassica- ceae. Self-compatibility in Arabidopsis originated 684 6 NOVEMBER 2015 VOL 350 ISSUE 6261 sciencemag.org SCIENCE School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK. *Present address: Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium. Corresponding author. E-mail: [email protected] RESEARCH | REPORTS on November 9, 2015 www.sciencemag.org Downloaded from on November 9, 2015 www.sciencemag.org Downloaded from on November 9, 2015 www.sciencemag.org Downloaded from on November 9, 2015 www.sciencemag.org Downloaded from
Transcript
  • provide a framework with which to understandthe many mutations in the protein that lead todiseases.

    REFERENCES AND NOTES

    1. G. Fairbanks, T. L. Steck, D. F. Wallach, Biochemistry 10,2606–2617 (1971).

    2. J. W. Vince, R. A. Reithmeier, Biochemistry 39, 5527–5533(2000).

    3. J. Brahm, J. Gen. Physiol. 70, 283–306 (1977).4. H. Passow, Rev. Physiol. Biochem. Pharmacol. 103, 61–203

    (1986).5. S. L. Alper, R. R. Kopito, S. M. Libresco, H. F. Lodish, J. Biol.

    Chem. 263, 17092–17099 (1988).6. R. R. Kopito et al., Cell 59, 927–937 (1989).7. F. C. Brosius 3rd, S. L. Alper, A. M. Garcia, H. F. Lodish, J. Biol. Chem.

    264, 7784–7787 (1989).8. S. L. Alper, J. Exp. Biol. 212, 1672–1683 (2009).9. R. R. Kopito, H. F. Lodish, Nature 316, 234–238 (1985).10. S. Lepke, H. Passow, Biochim. Biophys. Acta 455, 353–370

    (1976).11. S. Grinstein, S. Ship, A. Rothstein, Biochim. Biophys. Acta 507,

    294–304 (1978).12. S. Lepke, A. Becker, H. Pascow, Biochim. Biophys. Acta 1106,

    13–16 (1992).13. D. Zhang, A. Kiyatkin, J. T. Bolin, P. S. Low, Blood 96,

    2925–2933 (2000).14. J. L. Grey, G. C. Kodippili, K. Simon, P. S. Low, Biochemistry 51,

    6838–6846 (2012).15. L. Davis, S. E. Lux, V. Bennett, J. Biol. Chem. 264, 9665–9672

    (1989).16. M. J. Tanner, Curr. Opin. Hematol. 9, 133–139 (2002).17. J. A. Walder et al., J. Biol. Chem. 259, 10238–10246

    (1984).18. J. Fujinaga, X. B. Tang, J. R. Casey, J. Biol. Chem. 274,

    6626–6633 (1999).19. X. B. Tang, J. Fujinaga, R. Kopito, J. R. Casey, J. Biol. Chem.

    273, 22545–22553 (1998).20. A. M. Taylor, Q. Zhu, J. R. Casey, Biochem. J. 359, 661–668

    (2001).21. Q. Zhu, D. W. Lee, J. R. Casey, J. Biol. Chem. 278, 3112–3120

    (2003).22. D. Barneaud-Rocca, B. Pellissier, F. Borgese, H. Guizouarn,

    Int. J. Cell Biol. 2011, 136802 (2011).23. Q. Zhu, J. R. Casey, J. Biol. Chem. 279, 23565–23573

    (2004).24. J. C. Cheung, R. A. Reithmeier, Mol. Membr. Biol. 22, 203–214

    (2005).25. M. Popov, J. Li, R. A. Reithmeier, Biochem. J. 339, 269–279

    (1999).26. D. N. Wang, W. Kühlbrandt, V. E. Sarabia, R. A. Reithmeier,

    EMBO J. 12, 2233–2239 (1993).27. D. N. Wang, V. E. Sarabia, R. A. Reithmeier, W. Kühlbrandt,

    EMBO J. 13, 3230–3235 (1994).28. T. Yamaguchi et al., J. Mol. Biol. 397, 179–189 (2010).29. D. Barneaud-Rocca, C. Etchebest, H. Guizouarn, J. Biol. Chem.

    288, 26372–26384 (2013).30. P. Bonar, H. P. Schneider, H. M. Becker, J. W. Deitmer,

    J. R. Casey, J. Mol. Biol. 425, 2591–2608 (2013).31. T. Hirai, N. Hamasaki, T. Yamaguchi, Y. Ikeda, Biochem. Cell Biol.

    89, 148–156 (2011).32. Materials and methods are available as supplementary

    materials on Science Online.33. Y. Shami, A. Rothstein, P. A. Knauf, Biochim. Biophys. Acta

    508, 357–363 (1978).34. R. Saitoh et al., J. Immunol. Methods 322, 104–117 (2007).35. F. Lu et al., Nature 472, 243–246 (2011).36. Å. Västermark, M. H. Saier Jr., Proteins 82, 336–346 (2014).37. J. R. Casey, R. A. Reithmeier, J. Biol. Chem. 266, 15726–15737

    (1991).38. N. K. Dahl et al., J. Biol. Chem. 278, 44949–44958 (2003).39. S. Lindenthal, D. Schubert, Proc. Natl. Acad. Sci. U.S.A. 88,

    6540–6544 (1991).40. K. Okubo, D. Kang, N. Hamasaki, M. L. Jennings, J. Biol. Chem.

    269, 1918–1926 (1994).41. P. G. Wood, H. Müller, M. Sovak, H. Passow, J. Membr. Biol. 127,

    139–148 (1992).42. M. N. Chernova et al., J. Gen. Physiol. 109, 345–360 (1997).43. D. Karbach, M. Staub, P. G. Wood, H. Passow,

    Biochim. Biophys. Acta 1371, 114–122 (1998).44. A. K. Stewart et al., Am. J. Physiol. Cell Physiol. 300,

    C1034–C1046 (2011).45. R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait,

    R. MacKinnon, Nature 415, 287–294 (2002).

    46. P. A. Knauf, G. F. Fuhrmann, S. Rothstein, A. Rothstein,J. Gen. Physiol. 69, 363–386 (1977).

    47. M. L. Jennings, J. Membr. Biol. 28, 187–205 (1976).48. M. L. Jennings, J. Membr. Biol. 40, 365–391 (1978).49. M. L. Jennings, J. S. Smith, J. Biol. Chem. 267, 13964–13971

    (1992).50. X. B. Tang, M. Kovacs, D. Sterling, J. R. Casey, J. Biol. Chem.

    274, 3557–3564 (1999).51. P. Jarolim et al., Blood 85, 634–640 (1995).52. L. J. Bruce et al., Nat. Genet. 37, 1258–1263 (2005).53. P. Jarolim et al., Proc. Natl. Acad. Sci. U.S.A. 88, 11022–11026

    (1991).54. L. J. Bruce et al., Biochim. Biophys. Acta 1416, 258–270

    (1999).55. O. Jardetzky, Nature 211, 969–970 (1966).56. W. Furuya, T. Tarshis, F. Y. Law, P. A. Knauf, J. Gen. Physiol.

    83, 657–681 (1984).57. C. Lee et al., Nature 501, 573–577 (2013).58. E. M. Quistgaard, C. Löw, P. Moberg, L. Trésaugues,

    P. Nordlund, Nat. Struct. Mol. Biol. 20, 766–768 (2013).59. N. Reyes, C. Ginter, O. Boudker, Nature 462, 880–885

    (2009).60. T. Shimamura et al., Science 328, 470–473 (2010).61. X. Zhou et al., Nature 505, 569–573 (2014).62. F. Glaser et al., Bioinformatics 19, 163–164 (2003).

    ACKNOWLEDGMENTS

    We thank the beamline scientists at Diamond Light Source,European Synchrotron Radiation Facility and SPring-8 for helpwith data collection; L. Bruce at the Bristol Institute for TransfusionSciences; National Health Service Blood and Transplant; andA. Toye at the University of Bristol for useful discussion.S. Weyand contributed to the refinement of the Fab fragment,and R. Suno at Kyoto University contributed to the preparation ofthe figures. The project was funded by the Biotechnology and

    Biological Sciences Research Council (grants BB/G023425/1and BB/D019516/1 to S.I.); the ERATO Human ReceptorCrystallography Project of JST (to S.I.); the Targeted ProteinsResearch Program of the Ministry of Education, Culture, Sports,Science, and Technology, Japan (MEXT) (to S.I.); a Grant-in-Aidfor Scientific Research (B) (grants 20370035 and 23370049 toT.K.); MEXT’s Platform for Drug Discovery, Informatics, andStructural Life Science (to T.K. and S.I.); and the European Union’sEuropean Drug Initiative for Channels and Transporters (grant201924 to S.I. and A.C.). The authors are grateful for the use of theMembrane Protein Laboratory, funded by the Wellcome Trust(grant WT089809) at the Diamond Light Source. The authorsdeclare no competing interests. The project was conceived byS.I., D.K., and N.H. H.H., H.K., and N.H. purified the AE1CTD protein.H.I. and T.Ha. raised the antibody using the AE1CTD-expressingbaculovirus as an antigen. T.A., T.Hi., C.I.-S., and T.M. screenedthe antibody. T.K.-Y., T.K., T.A., Y.Ab., and M.I. crystallized theAE1CTD protein. T.K., Y.Al., A.D.C., and S.I. collected diffractiondata. The structure was solved and refined by T.A., Y.Al. and A.D.C.The manuscript was written by T.K., A.D.C., Y.Al., and S.I. Thecoordinates and structure factors have been deposited with theProtein Data Bank (4YZF, band 3 with Fab4201; 5a16, Fab4201).T.A., T.K., T.K.-Y., T.Hi., T.M., N.N., S.I., T.Ha., H.I., Y.M., and N.H.are authors on a patent filed by JST Agency (JP 2013-103881 A)that covers the monoclonal antibody to human band 3.

    SUPPLEMENTARY MATERIALS

    www.sciencemag.org/content/350/6261/680/suppl/DC1Materials and MethodsFigs. S1 to S15Tables S1 to S3References (63–84)

    10 December 2014; accepted 25 September 201510.1126/science.aaa4335

    PLANT EVOLUTION

    The Papaver rhoeas S determinantsconfer self-incompatibility toArabidopsis thaliana in plantaZongcheng Lin,* Deborah J. Eaves, Eugenio Sanchez-Moran,F. Christopher H. Franklin, Vernonica E. Franklin-Tong†

    Self-incompatibility (SI) is a major genetically controlled system used to prevent inbreeding inhigher plants. S determinants regulate allele-specific rejection of “self” pollen by the pistil.SI is an importantmodel system for cell-to-cell recognition and signalingand could be potentiallyuseful for first-generation (F1) hybrid breeding.To date, the transfer of S determinants hasused the complementation of orthologs to “restore” SI in close relatives.We expressed thePapaver rhoeas S determinants PrsS and PrpS in Arabidopsis thaliana. This enabled pistils toreject pollen expressing cognate PrpS. Moreover, plants coexpressing cognate PrpS and PrsSexhibit robust SI.This demonstrates that PrsS and PrpS are sufficient for a functionalsynthetic S locus in vivo.This transfer of novel S determinants into a highly divergent species(>140 million years apart) with no orthologs suggests their potential utility in crop production.

    Many plants are hermaphrodites, withmaleand female organs in close proximity.Because this risks self-fertilization andundesirable inbreeding depression,manyplants use self-incompatibility (SI) as a

    mechanism to prevent selfing. SI is controlled byan S locus allowing self/nonself recognition be-tween pistil and pollen (1, 2). SI in Papaver rhoeasis gametophytically controlled and specified by apistil S determinant, PrsS [P. rhoeas stigma S (3)],and a pollen Sdeterminant,PrpS [P. rhoeas pollen S(4)]. PrsS and PrpS interact to trigger a signalingnetwork in incompatible pollen, resulting inprogrammed cell death (PCD) (5–8). Arabidopsisthaliana is a self-fertile member of the Brassica-ceae. Self-compatibility in Arabidopsis originated

    684 6 NOVEMBER 2015 • VOL 350 ISSUE 6261 sciencemag.org SCIENCE

    School of Biosciences, University of Birmingham, Edgbaston,Birmingham B15 2TT, UK.*Present address: Department of Plant Systems Biology, VlaamsInstituut voor Biotechnologie, 9052 Gent, Belgium.†Corresponding author. E-mail: [email protected]

    RESEARCH | REPORTS

    on

    Nov

    embe

    r 9,

    201

    5w

    ww

    .sci

    ence

    mag

    .org

    Dow

    nloa

    ded

    from

    o

    n N

    ovem

    ber

    9, 2

    015

    ww

    w.s

    cien

    cem

    ag.o

    rgD

    ownl

    oade

    d fr

    om

    on

    Nov

    embe

    r 9,

    201

    5w

    ww

    .sci

    ence

    mag

    .org

    Dow

    nloa

    ded

    from

    o

    n N

    ovem

    ber

    9, 2

    015

    ww

    w.s

    cien

    cem

    ag.o

    rgD

    ownl

    oade

    d fr

    om

    http://www.sciencemag.org/http://www.sciencemag.org/http://www.sciencemag.org/http://www.sciencemag.org/

  • recently (

  • in normal seed-set (50.6 ± 5, 50.0 ± 3.9, n = 10siliques), which is significantly different fromthose with cognate combinations (P < 0.001***,t test). Pollinations between Col-0 pistils and At-PrpS1 or At-PrpS3 pollen gave normal seed-set(49.9 ± 3.7 and 47.6 ± 3.7, n = 10 siliques), so trans-genic stigmas and pollen are fully functional.Thus, the Papaver S determinants function in vivoin an S-specific manner, resulting in failure offertilization with cognate, but not noncognate,pollen expressing PrpS.We generated Col-0 lines coexpressing PrsS1

    and PrpS1 (SI1 lines) by transforming homozy-gous At-PrpS1–GFP plants with SLR1p::PrsS1.Lines coexpressing PrsS3 and PrpS1 (SC lines)were also generated. Expression of PrsS1 andPrpS1 was examined in three SI1 lines (Fig. 3A).Fluorescence microscopy of pollen from theseSI1 lines confirmed the expression of PrpS1-GFP(Fig. 3B). The SI1 and SC lines had a similar veg-etative phenotype to Col-0, At-PrpS1, and At-PrsS1plants (fig. S7). However, when left to set self-seednaturally, the SI1-line plants had small siliques(Fig. 3C and fig. S7F), between 3 ± 0.5 and 7 ±1.4 mm long (n = 470 siliques; fig. S8A), sig-nificantly shorter than siliques of control plants(Fig. 3C and fig. S7F) Col-0 (15.5 ± 0.6 mm), At-PrpS1 (16.3 ± 1.0), At-PrsS1 (15.9 ± 0.5), and SCplants (15.3 ± 0.5 mm; P < 0.001***, t test; n = 10siliques per plant). Twelve of the SI1 lines set noseed; the remaining 35 plants had between 0.1 ±0.3 and 7.0 ± 1.4 seeds per silique (n = 10 siliquesper plant; fig. S8B). This was significantly less(P < 0.001***) than the 58 ± 1.6 seeds per siliquein Col-0 plants, At-PrpS1 plants (57.7 ± 2.8), At-PrsS1 plants (58.3 ± 1.6), and SC lines (57.1 ± 1.7;n = 10). Total self seed-set from these SI1 linesgave between 0 and 680 seeds; ~60% had 8500 seeds per plant (n = 12).This SI response is stronger than previously ob-tained using the S determinants from A. lyrata(12, 18) and similar to that achieved by (19). Linescoexpressing PrsS3 and PrpS3 (SI3 lines) had asimilar vegetative phenotype to Col-0 plants, ex-cept for short siliques (fig. S9). Self–seed-set anal-ysis revealed small siliques (fig. S10, A and B) andno or very low seed-set (fig. S10, B and C), whichwere similar to those for the SI1 lines. Analysis ofnaturally self-pollinated pistils from SI linesrevealed that pollen tubes were inhibited in theupper pistil, whereas comparable self-pollinatedCol-0 pistils had pollen tubes extending throughthe pistil (Fig. 3, E and F, and figs. S11 and S12).Together, these data provide compelling evidencethat the SI lines are self-incompatible.To confirm that SI lines were fully functional,

    pistils from representative SI1 lines (SI1-9, SI1-18,and SI1-32) were pollinatedwithAt-PrpS3 or Col-0pollen (Fig. 3D, n = 9 pollinations per line).Siliques obtained were not significantly differentfrom those pollinated using Col-0 stigmas (P =0.246, P = 0.703, ANOVA; n = 3 pollinations perline). Pollen from SI1 lines was also pollinatedontoAt-PrpS1 stigmas. They produced siliques andseed-set not significantly different from At-PrpS1stigmas pollinatedwithCol-0pollen (P=0.931,P=

    0.803, ANOVA; n = 3 pollinations per line; fig. S13,A and B). Because pollen and pistils from these SIlines are functional, the reason why these SI linesset no self-seed is not because they have a fertilitydefect, but because they are self-incompatible.

    Our data provide compelling evidence thatthe Papaver S determinants coexpressed in A.thaliana make plants self-incompatible andare the sole additional requirement to establishSI in this highly diverged self-compatible species.

    686 6 NOVEMBER 2015 • VOL 350 ISSUE 6261 sciencemag.org SCIENCE

    Fig. 2. At-PrpS pollen is inhibited on cognate At-PrsS pistils, demonstrating S-specificity. (A) Anilineblue staining of representative semi–in vivo pollinations of At-PrsS1 pistils with At-PrpS1 or Col-0 pollen.(B) Quantitation of pollen tube lengths on At-PrsS1 pistils using At-PrpS1 pollen (left) or Col-0 pollen(right); n = 4 stigmas per At-PrsS1 line. (C) At-PrsS1 and At-PrsS3 pistils pollinated semi–in vivo withAt-PrpS3 or At-PrpS1 pollen. At-PrpS pollen tubes were inhibited on cognate At-PrsS pistils (i and v),whereas controls were not. (D) Representative in vivo pollination of an At-PrsS1 stigma with At-PrpS1pollen resulted in a small empty silique. (E) Col-0 pollinated with Col-0 pollen had a normal-lengthsilique and many seeds.

    Table 1. In vivo pollination of At-PrsS stigmas with cognate At-PrpS pollen resulted in shortersiliques and no seed set. Pollination of emasculated At-PrsS1 stigmas with At-PrpS1 pollen resultedin short siliques and reduced seed number, as did pollination of At-PrsS3 with At-PrpS3 pollen. Other

    control pollinations: Noncognate pollination of At-PrsS1 stigmas with At-PrpS3 pollen; At-PrsS3stigmas with At-PrpS1 or Col-0 pollen; and Col-0 stigmas with Col-0, At-PrpS1, or At-PrpS3 pollen

    gave normal silique length and seed number (mean +− SD, n = 10 siliques pollinated per cross).Numbers in bold indicate incompatible combinations.

    ♀/♂ At-PrpS1 At-PrpS3 Col-0

    At-PrsS1 (line 9)Silique lengths (mm) 6.2 T 1.4 16.1 T 0.8 16.4 T 0.7. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

    Seeds per silique 0.5 T 1.0 50.6 T 5.1 49.3 T 5.3. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

    At-PrsS3 (line 8)Silique lengths (mm) 16.4 T 0.8 6.3 T 1.7 16.5 T 0.5. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

    Seeds per silique 50.0 T 3.9 1.2 T 1.8 50.0 T 3.2. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

    Col-0Silique lengths (mm) 16.6 T 1.0 16.6 T 0.8 16.4 T 0.7. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

    Seeds per silique 49.9 T 3.7 47.6 T 3.7 47.7 T 3.6. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

    RESEARCH | REPORTS

  • This is a milestone, because the successful trans-fer of S determinants to date has been betweenclose relatives sharing an ancestral SI system,using complementation to “restore” SI (12, 13).Because the Papaveraceae and Brassicaceae areevolutionarily separated by ~140 million years(8, 15), our finding that they function in plantain Col-0 to display a robust SI rejection responseis of considerable interest.We are not “restoring”a SI system, because SI in Brassica andArabidopsishas genetically and functionally distinct S deter-minants. Because we previously showed thatrecombinantPrsS can trigger SI-PCD inArabidopsispollen expressing PrpS (8), and there is no evidencethat Brassica and Arabidopsis SI involves PCD, themost economical explanation is that the Papaver Sdeterminants can interface with, and activate, anetwork of common signaling components thatmediate PCD to induce a “Papaver-like” SI re-sponse in Arabidopsis pollen. Papaver SI usesCa2+, reactive oxygen species, and pH (7, 20),which have all been described in Arabidopsissignaling networks achieving various physio-logical responses, including PCD (21). We hypoth-esize that these common signaling componentsare co-opted downstream of PrsS-PrpS interac-tion to mediate SI. Our findings reinforce pro-posals that SI may recruit preexisting signalingnetworks from other biological processes (8, 22).This raises questions about how SI systemsevolved, aswell as about recruitment and functionaldiversification of preexisting components (23).Wide transgenera functionality of the Papaver

    SI system opens up the possibility that the trans-fer of these S determinants may, in the longer

    term, provide a tractable SI system for crop plants.Use of the SLR1 promoter from Brassica (16, 17)allowsPrsS to be expressed inmatureCol-0pistils,unlike older Col-0 pistils expressing SCRb-SRKb(12, 18). The production of F1 hybrid plants innormally self-compatible species typically useslaborious, expensive manual emasculation toprevent self-fertilization. Because it is desir-able to be able to control plant fertility for foodsecurity, this demonstration of the transfer of aSI system into a self-compatible species sug-gests an alternative method for the productionof F1 hybrids, a long-term goal of SI research.

    REFERENCES AND NOTES

    1. V. E. Franklin-Tong, Ed., Self-Incompatibility in Flowering Plants:Evolution, Diversity, and Mechanisms (Springer-Verlag, Berlin,2008).

    2. T. Dresselhaus, N. Franklin-Tong, Mol. Plant 6, 1018–1036(2013).

    3. H. C. C. Foote et al., Proc. Natl. Acad. Sci. U.S.A. 91,2265–2269 (1994).

    4. M. J. Wheeler et al., Nature 459, 992–995 (2009).5. S. G. Thomas, V. E. Franklin-Tong, Nature 429, 305–309

    (2004).6. M. Bosch, V. E. Franklin-Tong, Proc. Natl. Acad. Sci. U.S.A. 104,

    18327–18332 (2007).7. K. A. Wilkins, N. S. Poulter, V. E. Franklin-Tong, J. Exp. Bot. 65,

    1331–1342 (2014).8. B. H. de Graaf et al., Curr. Biol. 22, 154–159 (2012).9. J. S. Bechsgaard, V. Castric, D. Charlesworth, X. Vekemans,

    M. H. Schierup, Mol. Biol. Evol. 23, 1741–1750 (2006).10. J. C. Stein, B. Howlett, D. C. Boyes, M. E. Nasrallah,

    J. B. Nasrallah, Proc. Natl. Acad. Sci. U.S.A. 88, 8816–8820(1991).

    11. C. R. Schopfer, M. E. Nasrallah, J. B. Nasrallah, Science 286,1697–1700 (1999).

    12. M. E. Nasrallah, P. Liu, J. B. Nasrallah, Science 297, 247–249(2002).

    13. N. A. Boggs et al., Genetics 182, 1313–1321 (2009).14. M. Yamamoto, T. Nishio, Horticulture Res. 1, 14054

    (2014).15. C. D. Bell, D. E. Soltis, P. S. Soltis, Am. J. Bot. 97, 1296–1303

    (2010).16. B. A. Lalonde et al., Plant Cell 1, 249–258 (1989).17. R. M. Hackett, M. J. Lawrence, F. C. H. Franklin, Plant J. 2,

    613–617 (1992).18. N. A. Boggs, J. B. Nasrallah, M. E. Nasrallah, S. Independent,

    PLOS Genet. 5, e1000426 (2009).19. D. R. Goring, E. Indriolo, M. A. Samuel, Plant Cell 26,

    3842–3846 (2014).20. K. A. Wilkins et al., Plant Physiol. 167, 766–779 (2015).21. T. Van Hautegem, A. J. Waters, J. Goodrich, M. K. Nowack,

    Trends Plant Sci. 20, 102–113 (2015).22. T. Tantikanjana, M. E. Nasrallah, J. B. Nasrallah, Curr. Opin.

    Plant Biol. 13, 520–526 (2010).23. F. M. Ausubel, Nat. Immunol. 6, 973–979 (2005).

    ACKNOWLEDGMENTS

    We thank D. Goring for the Binary Ti vector pORE O3 containingthe SLR1 promoter and S. Price for technical assistance. Z.L.held a Ph.D. studentship from the China Scholarship Council (CSC).D.J.E. was funded by the Biotechnology and Biological SciencesResearch Council (BBSRC). V.E.F-T. and F.C.H.F. are co-inventorson a patent application (2691/KOLNP/2011) filed by the Universityof Birmingham relating to PrsS and PrpS, to engineer plants(ornamental or crop) to exhibit SI by using a PrsS and PrpS S-allelepair, comprising a functional S locus with appropriate tissue-specific promoters. Materials will be freely available upon requestfor research purposes. The authors declare that they do nothave other competing financial interests. The data reported hereare available in the supplementary materials.

    SUPPLEMENTARY MATERIALS

    www.sciencemag.org/content/350/6261/684/suppl/DC1Materials and MethodsFigs. S1 to S14Table S1References (24–27)

    24 August 2015; accepted 18 September 201510.1126/science.aad2983

    SCIENCE sciencemag.org 6 NOVEMBER 2015 • VOL 350 ISSUE 6261 687

    Fig. 3. A. thaliana coexpressing PrsS1 and PrpS1 areself-incompatible and set no seed. (A) RT-PCR of threeA. thaliana SI1 lines coexpressing PrsS1 and PrpS1. (B) Pollenfrom SI1 lines exhibits GFP fluorescence (top); Col-0 pollenhas weak autofluorescence. (C) Self-seed set: SI1 lines formedshort siliques; controls, including an SC line coexpressingPrsS3 and PrpS1-GFP, set normal siliques. (D) A selfed SI1plant gave small siliques; pollinations with Col-0 or At-PrpS3pollen gave normal siliques. (E) Aniline blue staining of aself-pollinated SI1-line pistil; pollen tubes are inhibited in thestigma and style. (F) A self-pollinated Col-0 pistil had longpollen tubes.

    RESEARCH | REPORTS

  • DOI: 10.1126/science.aad2983, 684 (2015);350 Science

    et al.Zongcheng Lin in plantaArabidopsis thaliana

    determinants confer self-incompatibility to Papaver rhoeas S The

    This copy is for your personal, non-commercial use only.

    clicking here.colleagues, clients, or customers by , you can order high-quality copies for yourIf you wish to distribute this article to others

    here.following the guidelines

    can be obtained byPermission to republish or repurpose articles or portions of articles

    ): November 9, 2015 www.sciencemag.org (this information is current as of

    The following resources related to this article are available online at

    http://www.sciencemag.org/content/350/6261/684.full.htmlversion of this article at:

    including high-resolution figures, can be found in the onlineUpdated information and services,

    http://www.sciencemag.org/content/suppl/2015/11/04/350.6261.684.DC1.html can be found at: Supporting Online Material

    http://www.sciencemag.org/content/350/6261/684.full.html#relatedfound at:

    can berelated to this article A list of selected additional articles on the Science Web sites

    http://www.sciencemag.org/content/350/6261/684.full.html#ref-list-1, 12 of which can be accessed free:cites 26 articlesThis article

    registered trademark of AAAS. is aScience2015 by the American Association for the Advancement of Science; all rights reserved. The title

    CopyrightAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theScience

    on

    Nov

    embe

    r 9,

    201

    5w

    ww

    .sci

    ence

    mag

    .org

    Dow

    nloa

    ded

    from

    http://www.sciencemag.org/about/permissions.dtlhttp://www.sciencemag.org/about/permissions.dtlhttp://www.sciencemag.org/content/350/6261/684.full.htmlhttp://www.sciencemag.org/content/suppl/2015/11/04/350.6261.684.DC1.html http://www.sciencemag.org/content/350/6261/684.full.html#relatedhttp://www.sciencemag.org/content/350/6261/684.full.html#ref-list-1http://www.sciencemag.org/

Recommended