+ All Categories
Home > Documents > The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the...

The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the...

Date post: 07-Sep-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
34
The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Authors: Alessandro Monti, University of Innsbruck Daniel Oderinde, University of Applied Sciences, FH Campus Wien Maria Polugodina, Freie Universität Berlin Agency: UNIDO Mentor: Ricardo Müller Counsel: Nathalie Splitter Peer +: David Neusteurer
Transcript
Page 1: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

The Phantom Menace

Bridging the Regulatory Gap for Sustainable Biogas

Authors

Alessandro Monti University of Innsbruck

Daniel Oderinde University of Applied Sciences FH Campus Wien

Maria Polugodina Freie Universitaumlt Berlin

Agency UNIDO

Mentor Ricardo Muumlller

Counsel Nathalie Splitter

Peer + David Neusteurer

Abstract

Biogas is a key component of the energy system of the future Once upgraded to biomethane it

has a similar chemical composition to natural gas thus offering a promising alternative to fossil

fuels For instance it can be injected into the natural gas grid or power gas-fueled vehicles thus

contributing to the decarbonization of the transport sector However biogas production is not

always environmentally sustainable On one hand biogas production from waste (eg manure or

agricultural residues) represents an effective way to promote virtuous circles of resource use and

re-use On the other hand the production of biogas from energy crops poses serious sustainability

challenges due to the negative impacts on biodiversity and the possible competition with food and

feed crops Similar risks are taken into account in the policy framework of the European Union

(EU) which following the adoption of the new Renewable Energy Directive (RED 2018)

provides specific sustainability criteria for biogas production Outside the EU few other

jurisdictions specifically address sustainability challenges related to biogas production Adopting

an interdisciplinary approach in the first part of this paper we conduct an LCA analysis to assess

the regionalized impact of biogas production from different feedstocks In the second part of the

paper we analyze the essential elements of the EU sustainability criteria and taking stock of the

results of the LCA analysis we propose a threefold set of policy recommendations to increasingly

promote biogas sustainability with a specific focus on developing countries

Contents

1 Introduction 4

2 Biogas and biomethane an overview 6

21 Biogas production sources processes applications 6

22 Biogas as a sustainable energy source 7

3 Research design 9

4 Regional impacts of biogas production 11

5 Sustainable biogas policy the EUrsquos legal framework 13

51 Biofuels in EU law targets and sustainability criteria 13

52 Sustainable biogas in the 2018 Renewable Energy Directive 14

6 Promoting biogas sustainability the case for sustainability criteria beyond the EU legal

framework 15

61 Global relevance of the EU sustainability criteria 15

62 The way forward for sustainable biogas policies 16

7 Conclusion 18

Bibliography 20

Appendix 26

1 OpenLCA impact categories 26

2 Maize and sugar beet yields around the world 27

3 Overall impact of biogas production Maize vs sugar beet 28

4 Regional impacts of biogas production (ldquoglobalrdquo plant location) 30

5 Regional impacts of biogas production from sugar beet different plant locations 31

6 Regional impacts of biogas production from maize different plant locations 33

4

The Phantom Menace

Bridging the Regulatory Gap for Sustainable Biogas

Alessandro Monti Daniel Oderinde amp Maria Polugodina

1 Introduction

The melting of glaciers sea level rise and extreme weather events are no longer mere scientific

predictions of some distant future but an everyday reality in many parts of the world The latest

report published by the Intergovernmental Panel on Climate Change (IPCC 2018) pictured the

daunting consequences of global warming exceeding 15 degC above the pre-industrial levels the

ambitious target set under the Paris Agreement (UNFCCC 2015) To tackle such unprecedented

challenges far-reaching policy reforms in numerous economic sectors are needed Several of the

17 Sustainable Development Goals (SDGs) approved in 2015 by the UN General Assembly

(United Nations 2015) set the course for such reform efforts

The energy sector in particular is responsible for the largest share of global greenhouse gas

(GHG) emissions (IEA 2019a) and SDG 7 (ldquoaffordable and clean energyrdquo) mandates a transition

away from fossil fuels Hence renewable energy (RE) ie energy produced from renewable

sources in a sustainable manner (IRENA 2009) has a central role to play for a sustainable

development of the energy system This paper focuses on one specific category of renewable

energies namely biofuels due to their large untapped potential to be deployed in the transport

sector Within this category the focus is further restricted to gaseous biofuels also known as

biogas When upgraded to biomethane biogas has a significant potential to be directly applied to

the transport sector also powering heavy-duty vehicles (Wilken et al 2017) Moreover biogas

can be produced from a wide variety of feedstock including waste therefore having high potential

as a springboard for the circular economy

However biogas not unlike other biofuels faces specific sustainability challenges The production

of biogas from agricultural feedstock through the use of energy crops represents a potential threat

to agricultural land and may lead to phenomena such as the spreading of ldquoMaiswuumlstenrdquo ie ldquomaize

desertsrdquo exclusively dedicated to the cultivation of maize for biogas production Hence this study

aims to take a closer look at the biogas value chain to foster an enhanced understanding of biogas

sustainability and promote scientifically-sound policies With reference to the SDGs our approach

will particularly highlight possible options to foster synergies between SDG 7 (ldquoaffordable and

clean energyrdquo) and SDG 13 (ldquoclimate actionrdquo) and SDG 12 (ldquoresponsible consumption and

productionrdquo)

The challenges of biogas sustainability have already been addressed in numerous studies A

common approach is the development of a life-cycle-assessment (LCA) to quantify the impacts

of biogas production for different plant configurations (for a recent review of LCA studies on

biogas see Hijazi et al (2016)) Among the most recent studies Omar (2017) and Lyng amp Brekke

(2019) show that biogas from waste is the more sustainable than biogas from agricultural crops

5

and other carbon intensive sources The reason is that the production of biogas from agricultural

cultivation requires several steps including farmland preparation fertilization machineries crop

harvest etc Lyng amp Brekke (2019) also observe that the choice of the crop has an impact on GHG

emissions and that perennial crops are more sustainable than the annual ones A common feature

of these studies is that they usually take a selection of existing biogas plants in a certain country

and compare feedstocks plant sizes or technologies to each other What seems missing however

is a broader outlook transcending those studies Does the same plant have an equal impact

everywhere in the world Or is it dependent on where the plant is located What is the geographical

distribution of the impact

The promotion of biogas sustainability has numerous policy implications In this sense one of the

most advanced regulatory frameworks can be found in the European Union which since the

adoption of the first Renewable Energy Directive (RED 2009) has included sustainability criteria

for biofuels Such criteria were originally formulated with regard to liquid biofuels Yet in 2018

an updated version of the Renewable Energy Directive was adopted (RED 2018) which extends

the applicability of numerous sustainability criteria also to biogas production Outlining the key

features of the EU legal framework will serve as a useful reference to propose strategies for the

development of sustainable biogas policies also in extra-EU jurisdictions

Adopting an interdisciplinary approach which covers both technical and legal aspects of biogas

production our paper investigates the role of sustainability in biofuels and biogas policies

addressing the following research question How can the production of sustainable biogas be

promoted through scientifically sound policies

This main research question is further articulated in the following sub-research questions

minus What is the environmental impact of biogas production from different plant configurations

minus How does the environmental impact of biogas production differ spatially

minus Which policies and regulations address sustainability concerns

minus How can existing policies be improved

Our paper answers these interrogatives by adopting an interdisciplinary approach and bridging the

gaps between studies in environmental and legal sciences The analysis is divided into the

following two steps

First we employ the LCA approach to calculate the regionalized impact of biogas production from

different feedstocks Differently to other LCA studies we do not focus on the overall effect of an

existing plant in a specific country Instead we take into account that regional differences eg in

climate can influence the sustainability of the same type of biogas depending on the plant location1

A prominent example here is variation in the yields of the energy crops In places where the soil

is less productive larger harvest areas or better fertilization are needed to produce the same amount

of biogas Apart from that the production of fertilizers and plant parts is often not located in the

same region as the biogas plant itself Therefore we draw on Geographic Information System

(GIS) data to support our analysis and perform a regionalized LCA for a hypothetical plant which

has the same technical characteristics in every location we consider

1 For verbal simplicity we will often refer to biogas from different feedstocks as ldquotypesrdquo of biogas throughout

the paper

6

Second we review the existing policies regarding biofuels and biogas sustainability Moving from

a review of the EU sustainability criteria as updated under the RED 2018 we propose a number

of policy recommendations to foster sustainable biofuels and biogas policies in extra-EU countries

with a special focus on developing countries

The remainder of the paper is structured as follows In Section 2 we provide a brief overview of

the production applications and sustainability concerns of biogas Section 3 illustrates our research

approach Section 4 presents the results of the LCA analysis Section 5 addresses the EU legal

framework for biofuels and biogas Section 6 analyses the global relevance of the EU sustainability

criteria and provides some policy recommendations for the promotion of sustainable biogas

Section 7 concludes the paper

2 Biogas and biomethane an overview

21 Biogas production sources processes applications

Biogas is a mixture of gases with high share of methane (usually 50-70) produced through

decomposition of organic matter (biomass feedstock) Biomethane is in turn a result of biogas

upgrading whereby other gases are removed from biogas and methane share reaches over 90 In

a broader perspective biogas is one of a number of biofuels Biofuels are based on plant biomass

that can be burned to produce energy in which they are similar to fossil fuels (Guo et al 2015)

They however have faster recovery rates which makes them considered as renewable energy

(ibid) Biofuels can be solid (eg firewood) liquid (bioethanol biodiesel etc) or gaseous (biogas)

(Creutzig et al 2015 Guo et al 2015) Importantly they can be utilized in different areas such

as transport cooking as well as heat and electricity production (Creutzig et al 2015)

Among these fuels biogas stands out as a relatively new fuel with high potential but relatively

underdeveloped today While Guo et al (2015) predicted that biogas may replace up to 25 of

current natural gas demand by 2016 biogas production was still negligible comprising only one-

fifth of all bioenergy globally which in turn covered only 8 of all RE production (IRENA 2018)

Yet biogas represents a number of advantages relative to other biofuels Unlike other biofuels

(eg biodiesel or bioethanol) biogas production can use a large variety of feedstocks including

special energy crops (maize lay crops sweet potato straw etc) agricultural waste (plant residues

and animal manure) and municipal waste (Guo et al 2015) This can contribute to an additional

area of waste management both in rural and in urban areas It also diminishes the need for growing

specific energy crops which put under doubt the social and environmental sustainability of other

biofuels (Guo et al 2015 Roumlder 2016 de Andrade 2016 Achinas et al 2017)

The widely used and commercially most successful technology for biogas production today is

anaerobic digestion (AD) (Koornneef et al 2013) In this process a certain group of bacteria

transform the biomass into biogas and digestate (biofertilizer) in absence of oxygen2 Compared

to the refined natural gas delivered to the end user biogas has a lower share of methane but a

higher share of carbon dioxide as well as other components such as water vapor hydrogen

sulphide and ammonia (Muzenda 2014 Zhou et al 2017) Therefore in some cases (eg to be

2 For the description of the technical process see eg Achinas et al (2017) and Muzenda (2014)

7

used as a vehicle fuel) it has to be purified of contaminants (especially CO2) that means upgraded

to biomethane3

The main advantage of biogas is that it is easily stored for longer periods of time so it can be

treated as a stock energy just like the fossil fuels This important feature differentiates if from

electricity from hydro- solar and wind power which are the largest renewable energy sources

today (IRENA 2018) In addition both the main product of biogas production (the biogas itself)

and the by-product (the digestate) can be put to efficient use (Wilken et al 2017) Namely the

digestate can be used as an organic fertilizer while biogas itself has three main applications heat

generation power generation and transport fuel Biogas is primarily used for heat or power

generation often also in combined heat and power (CHP) units (ibid) Upgraded to biomethane

it has almost the same chemical composition as natural gas It can therefore be used in all types

of gas-fueled vehicles and thus make use of already existing fleets and commercially available

technologies (Svensson 2013) Where a grid exists biomethane can be freely intermixed with

natural gas to be easily transported over large distances Where no grid is available the biomethane

can be compressed or liquefied and transported very efficiently by road (Roggenkamp et al 2018

Svensson 2013) This also makes it stand out in comparison with hydrogen which is still costly

to produce and transport and is debated in terms of its GHG savings (Ali et al 2016)

Another application of biogas which has been mentioned above lies in the possibility to produce

it from agricultural residues and municipal waste thus offering a viable alternative to composting

or landfilling the waste and contributing to sustainable waste management

22 Biogas as a sustainable energy source

The production of biogas from agricultural and municipal waste is one of the trending and

promising environmentally friendly technologies in the world today This is because biogas

production is driven by energy sustainable processes that contribute relatively less to climate

change compared to natural gas production from fossil fuels (Jiřiacute et al 2016) With a rise in biogas

energy production from 028 exajoules to 133 exajoules between 2000 and 2017 (Wang 2019)

the global biogas production is projected to be worth 110 billion US dollars by 2025 with a

compound annual growth rate of 7 (Global Market Insights 2019)

Considering the growing market of biogas globally special care has to be taken in ensuring that

the production and consumption of biogas are in line with and do not negatively affect the three

pillars of sustainability namely the economy environment and society These three pillars are

relevant and applicable in accessing the sustainability of biogas as a renewable energy source

(Purvis et al 2018) Based on the focus of the EU sustainability criteria the major aspect analyzed

in this paper is the environmental sustainability

This paper addresses the factors related to biogas environmental sustainability analyzing the life

cycle of biogas production in terms of GHG reductions against the fossil fuels comparators as

well as in terms of the feedstock used to produce biogas The use of municipal and agricultural

waste in particular appears as a viable option to solve environmental issues through the creation

of a suitable end of life for waste and the reduction of the amount of waste remaining in the landfill

3 For a comprehensive overview of upgrading techniques see eg Wilken et al (2017)

8

sites (Jonas et al 2017) The problem of GHG emissions at landfills not equipped with gas capture

is thereby reduced and as a result air pollution is diminished Because the landfills are usually

close to the cities biogas plants are often established close to them and by this the distribution of

energy becomes simpler and more efficient compared to the fossil energy (Jacopo et al 2013)

Conducting a Life Cycle Sustainability Assessment (LCSA) which also includes a Life Cycle

Assessment (LCA) represents a promising tool for evaluating sustainable production and

consumption This tool is also considered as the best approach to analyzing the environmental

social and economic sustainability of production processes (Hannouf amp Assefa 2019) To

illustrate the sustainability of biogas production against carbon intensive energy sources we first

conduct an LCA and compare the environmental impacts of the production of biogas against

carbon intensive energy sources In obtaining quantitative results the environmental impacts due

to the generation of 1MJ of energy were calculated for biogas from waste and diesel production

Diesel was chosen as a fossil fuel comparator due to its high level of industrial application The

same amount of energy yield was chosen so that the environmental impacts are directly

comparable

Each production process impacts the environment in a very general sense along a number of

directions For the LCA analysis the EU has recommended a set of Life Cycle Impact Assessment

methods (JRC 2012) There major impact categories for any production chain include climate

change (in CO2-equivalent) ecosystem quality human health and resource use Each of them is

further detailed eg the climate change may be induced by the use of fossil fuels land use and

land use change (LULUC) or through biogenic impact (ibid) With a focus on the three major

impact categories in the EU sustainability criteria ndash climate change land use change and fossils as

a resource ndash the results of the first brief analysis are provided in Figure 1 The figure shows that

the production of biogas can achieve an 86 reduction of GHG against the production of diesel

Regarding the reduction of land use an 84 reduction can be achieved and there is no significant

impact of biogas production on fossil fuel consumption when compared to diesel production

Figure 1 LCA environmental footprint results for biogas from waste versus diesel tons per hectare

9

It must be noted that this brief comparison shows the ldquobest caserdquo scenario since ndash as mentioned

before ndash biogas from waste is the most sustainable biogas type (Omar 2017) The sustainability

of biogas from energy crops is on the contrary contestable even when judging on the mere basis

of the overall impact (Guo et al 2015 Roumlder 2016 de Andrade 2016 Achinas et al 2017) On

top of that the environmental impact of biogas generation from energy crops can potentially vary

in different regions of the world due to varying crop yields Therefore the rest of the paper will

specifically focus on the production of biogas from energy crops

3 Research design

We perform our analysis in two main steps First we investigate the environmental sustainability

of biogas from a regionalized perspective Second we review how existing policies tackle the

sustainability issues of biogas production We then combine the results of the two analyses to

suggest tailored policy recommendations aimed at enhancing biogas sustainability outside the EU

and particularly in developing countries

For our analysis of the environmental sustainability of biogas we assess the environmental impact

of its production ndash to which we will also refer to as footprint ndash along several impact categories

We use the Life Cycle Assessment (LCA) approach and the impact categories correspond to those

defined by the EU (JRC 2012) They will be specifically referred to below in connection with the

specific software we use Unlike other LCA studies we are looking at how the overall footprint is

distributed across the world and how this distribution changes if we move our hypothetical plant

to different locations Just like in the case of goods production one might expect GHG emissions

in biofuels production or environmental effects of crop cultivation to fall into international

responsibility (for goods see Pan et al (2008) for an example of Chinarsquos role in international trade

and GHG emissions) At the same time as will be shown later only a few countries deal with

biogas sustainability within their territories let alone from a cross-border perspective To grasp

the relevance and effects of this perspective we perform a regionalized LCA

We split the LCA analysis into further two steps We first compare the regional impacts for an

arbitrary (ldquoglobalrdquo) biogas plant location to examine if the patterns differ between the feedstocks

As it is primarily biogas from energy crops which raises sustainability questions in the literature

and in the public (Kline et al 2016) we only look at this group of feedstocks The two most often

analyzed energy crops are maize and sugar beet (see Hijazi et al 2016) Thus given the scope of

our paper we limit ourselves to these two feedstocks

We then focus specifically on several plant locations to investigate how the location changes the

pattern for the specific feedstock For that we analyze four plant locations in four different parts

of the world Brazil as the major biogas producer in the Latin America and among the developing

countries (due to the large country size we focused specifically on the state of Paranaacute where

UNIDO-GEF projects for biogas promotion have been active since 20154) China and Germany

as the major biogas producers in Asia and Europe respectively and Nigeria as the emerging biogas

producer and the seat of the African Biorenewable Association These countries represent very

different stages of economic development and one of the questions we want to test with our LCA

4 See eg the ldquoBiogas Applications for the Brazilian Agro-industryrdquo project at wwwthegeforgprojectbiogas-

applications-brazilian-agro-industry (accessed 27 October 2019)

10

analysis is if the sustainability concerns are equally relevant for both developed and developing

countries

We use the OpenLCA software and the ecoinvent database to perform the analysis5 The software

is capable of evaluating environmental impacts and other relevant environmental and economic

aspects for each part of the value chain from the extraction of material through transport and

production to the end-use The OpenLCA provides results along the impact categories as

recommended by JRC (2012) A brief overview of these categories is provided in Table A1 in

Appendix 1

For agricultural biogas the ecoinvent database only contains the processes for biogas plant

construction and production of biogas from animal manure For energy crops we have to create a

new process based on this existing one To analyze the effects of biogas production from maize

and sugar beet the process for manure was taken as a basis Specifically the inputs of agricultural

plant construction and of energy and heat to operate the digester were taken from that example

The input of feedstock was replaced with the respective energy crop as follows The amount of

feedstock needed for biogas production was calculated using the potential biogas yield from the

literature 066 m3kg of total solids for maize as in Hutňan (2016) and 0685 m3kg of total solids

for sugar beet as an average of the findings of Starke amp Hoffmann (2014) The share of total solids

in the fresh crops for the respective feedstocks was taken from Kreuger et al (2011) who provide

a comprehensive overview on a number of crops To specifically investigate potential regional

differences arising from varying soil productivity we added two input processes which were not

relevant for biogas from manure Firstly we account for the amount of land needed to grow the

energy crop based on the regional yields provided as GIS data by Monfreda et al (2008) in the

EarthStat project The spatial distribution of yields is illustrated in Figures A1 and A2 in Appendix

2 for maize and sugar beet respectively Secondly we add the process for transportation of the

feedstock to the plant For manure feedstocks it is typically assumed that manure is collected in a

barn (Lusk 1998 Homan 2012) so the transportation distance is negligible provided the biogas

plant is constructed not far from the barn For energy crops the same cannot be the case the crops

have to be delivered from the whole cultivation area and this distance needs to be accounted for

To do so we assumed the plant to be located within a square field where the crop is grown and

used the average distance within a square as the transportation distance choosing a lorry as means

of transport The estimation of the environmental impact was then done using the ILCD 20 2018

midpoint method The amount of biogas produced is normalized to 100 m3 for the sake of

comparability6

5 OpenLCA is a professional LCA and footprint software that has a variety of features and many available

databases An important advantage against other professional LCA software is that openLCA is an open access

software It is also endorsed by the US Environmental Protection Agency (cfpubepagovsiindexcfm) The

ecoinvent database is an extensive and comprehensive collection of datasets on life cycle inventory including a

large number of products production processes and value chains (see httpswwwecoinventorg for more

information on the database) 6 The results of a regionalized LCA reflect the contribution of different regions to the overall impact ie the

percentage share of the respective region Therefore scaling the amount of biogas up or down will not change

the results We experimented with 1 m3 100 m3 and 100000 m3 of biogas and the result was qualitatively always

the same

11

4 Regional impacts of biogas production

In this section we present the results of the regionalized LCA We start by briefly comparing the

overall impacts of biogas production from maize and sugar beet After that we focus on the results

in a regional perspective first with unknown plant location and then for four different plant

locations

Regarding the overall impact of biogas production from maize and sugar beet along the impact

categories listed in Table A1 it should be noted that maize has a much larger impact than sugar

beet on all categories The comparison is illustrated in Figures A3-A6 in Appendix 3 and this

result is in line with the findings outlined by Hijazi et al (2016) However the regional impacts

of the two feedstocks show quite some differentiation

The first finding is that the regional distribution of the impacts differs substantially between the

two agricultural feedstocks For the sake of brevity we only provide results for three impacts

which are also addressed in the EU sustainability criteria climate change due to land use and land

use change use of fossils as a resource and use of land as a resource The comparison is illustrated

in Figures A7-A9 in Appendix 4 The maps show relative contributions of the respective regions

to the overall impact the warmer the color on the map the larger the regionrsquos contribution7

In terms of land use and the LULUC-induced climate change (Figures A7-A8) the regional

variation follows quite closely the world industrialization patterns on the one hand and the

agricultural productivity on the other In case of maize the impact is most prominent in Argentina

both for land use and LULUC-induced climate change This is not surprising as on the one hand

Argentina is among the top five maize producers across world8 while on the other hand

Argentinian agriculture is responsible for 90 of the countryrsquos forest loss (Antoacuten et al 2019)

The latter is translated into the LULUC-induced climate change In the case of sugar beet the

LULUC-induced climate change is prominent in Brazil however there is no overlap with land use

as a resource This suggests that the effect is not due to sugar beet production which is also in line

with Figure A2 in Appendix 2 A closer investigation reveals that additional electricity production

for agriculture and the plant would have the highest LULUC-related environmental costs in Brazil

where the majority of electricity is supplied by hydropower and water reservoirs created for that

pose a number of environmental challenges (von Sperling 2012)

With regard to the use of fossil fuels (Figure A9) the major impacts are as could be expected in

the fuel- and mineral-exporting countries The impact comes on the one hand from the energy for

plant construction operation and from the fuel used for feedstock transportation On the other

hand it also reflects the resources for fertilizer production which is quite important in crop

agriculture

Turning to different plant locations the second important finding is that while certain impacts are

connected to plant location others are always attributed to the same regions The results of the

comparison for sugar beet are illustrated in Figures A10-A11 in Appendix 5 The results for maize

7 The drawback of the OpenLCA software is that it does not provide an exact scale for the regionalized results

The illustrative maps should therefore be considered as a qualitative not quantitative reference 8 Based on FAO data wwwfaoorgfaostatendataQC (accessed 8 December 2019)

12

are presented in Figures A12-A13 in Appendix 6 Again the higher contribution of a region to the

overall impact is marked with warmer colors For sugar beet particularly the effects related to

growing the energy crops ldquomoverdquo together with the plants (see the impact on the land use in Figure

A10) In the case of maize Argentina seems to be one of the source countries for the feedstock for

all four plant locations Unlike other major maize (corn) producers not only is Argentina the third

largest exporter of corn but also corn figures as the second largest category of Argentinian

exports9 At the same time part of the impact is still located in the country of the plant location

Another interesting observation in the cases of both maize and sugar beet is that the more

developed the country the lower the impact share This also overlaps with the distribution of yields

in Figures A1-A2 in Appendix 2

Turning to other resources the picture is similar to that with the undefined plant location Both for

maize and sugar beet especially the use of resources related to fertilizers plant construction and

transportation (minerals and metals) is associated with the same regions independent of where the

plant is located In other words fossil energy construction materials and fertilizers often do not

come from the same country they are used in This raises the question in how much the impact

created by this demand is taken into account by the policy-makers when promoting biogas or

setting the criteria for determining whether to call biogas a sustainable renewable energy

To sum these results up there are several observations relevant for tackling sustainability concerns

of biogas from energy crops

1 Production of biogas may have substantial effects in terms of land use and climate change

induced by a change in land use or deforestation This effect might come directly from growing

energy crops However it can also come eg from supporting energy production as long as

biogas production is not completely autonomous or does not cover the energy needed for the

cultivation of energy crops

2 For some feedstocks it is likely that at least a share of them is imported from other countries

therefore shifting the environmental impact away from the countries where a biogas plant is

located

3 For other resources necessary for biogas plant construction and cultivation of the energy crop

the majority of the impact is accrued to the same set of countries independent of the plant

location Therefore it is typically situated outside of the country where a biogas plant is

located

If one further looks at the future of biogas production and distribution there is already some

movement towards trading this fuel Examples are the plans of the German electric utilities

company RWE to trade biogas between Great Britain and the Netherlands (enformer 2018) and

inclusion of biogas and feedstocks in the portfolio of companies trading energy commodities (eg

ACT Commodities) However long-distance transportation options for biogas as discussed in

Section 21 can be somewhat limited compared to liquid biofuels For example to transport

biogas overseas it has to be compressed or liquified meaning the origin and destination ports need

to be equipped respectively and LNG vessels need to be employed This creates additional

9 Based on the data by the Observatory of Economic Complexity wwwoecworldenprofilecountryarg

(accessed 8 December 2019)

13

transportation costs compared to liquid fuels and lowers profitability of such trade Therefore it

is rather likely that biogas ndash provided it is produced in sufficient quantities ndash is first traded

regionally where grid connections exist or between already LNG-equipped locations Another

option is that instead of the final product the feedstock will be traded Trade in agricultural

products is very well established and the trend of trading energy crops for biofuels in general and

biogas in particular was already visible in Europe in the early 2010s (Kalt amp Kranzl 2012 Pagh-

Schlegel amp Elkjaeligr 2012)

In view of these considerations it is likely that the three observations outlined above will be

increasingly important in the future Therefore they need to be taken into account when promoting

biogas development around the world In the next section we will review how some existing

regulations are already able to tackle these challenges Based on this we will then formulate our

policy recommendations

5 Sustainable biogas policy the EUrsquos legal framework

51 Biofuels in EU law targets and sustainability criteria

The EU is widely reputed as a leader of international climate action (Bogojevic 2016) having

substantially contributed to the development of the international legal regime on climate change

(Oberthuumlr 2018) Renewable energy has traditionally represented a proactive area of the EUrsquos

policymaking as the RE targets were already enshrined in the 2001 Renewable Energy Directive

(RED 2001) and subsequently updated under the 2009 Renewable Energy Directive (RED 2009)

and the 2018 Renewable Energy Directive (RED 2018) Along with the general RE targets at the

Member State or at the EU level specific sub-targets have been enacted with a view of promoting

the energy transition in the transport sector At first such targets were enshrined in the 2003

Biofuels Directive (Biofuels Directive 2003) Subsequently targets for renewable energy in

transport have been incorporated into the RED 2009 and most recently a target of 14 renewable

energy in transport by 2030 is foreseen under Article 25(1) RED 2018

In order to reach their renewable energy targets several EU Member States have adopted different

kinds of support schemes such as feed-in tariffs (FIT) feed-in premium (FIP) tradable green

certificates and auctions (Banja et al 2019) Moreover further policy measures have also

contributed to a steady increase in the share of bioenergy in some cases specifically encouraging

the deployment of biogas and biomethane A case in point is the Alternative Fuels Infrastructure

Directive (AFID Directive) which includes minimum requirements for the build-up of refueling

points for liquid natural gas (LNG) and compressed natural gas (CNG) (Van Grinsven et al 2017)

As proven by the recent Eurostat data the EU policy activism has contributed to a steady increase

of the share of bioenergy (including energy from the agricultural biomass the forest biomass and

the renewable waste) which grew from 59 in 2005 to 103 in 2017 (Banja et al 2019)

However incentives for biofuels production have also triggered in some cases the conversion of

agricultural land into land dedicated to the cultivation of energy crops The biogas sector along

with other biofuels is part of this phenomenon determined inter alia by the higher methane yield

of energy crops compared to manure and other sources of agricultural waste In the case of

14

Germany for instance biogas production from energy crops significantly outweighs its production

from industrial and agricultural waste (Eyl-Mazzega et al 2019)

Following the adoption of the RED 2009 the EU legislator has taken specific countermeasures to

reduce the risks connected to an indiscriminate expansion of biofuel production from energy crops

Such measures known as lsquosustainability criteriarsquo address both lsquocarbon-relatedrsquo and lsquonon carbon-

relatedrsquo concerns In particular lsquocarbon-relatedrsquo encompasses the necessary reduction in the GHG

emissions that needs to be achieved by biofuels against their fossil fuel comparators (Olsen et al

2016) lsquoNon-carbon relatedrsquo concerns on the other hand pertain to nature conservation and

biodiversity aspects of land use also known as lsquodirect land-use changersquo (DLUC) as well as to the

risk that part of the demand for biofuels will be met by increasingly devoting land to agriculture

a phenomenon known as lsquoIndirect Land-Use Changersquo (ILUC) (European Commission 2010) The

RED 2009 took into account both carbon-related concerns and non-carbon related concerns with

the exclusion of ILUC It introduced a minimum standard of 35 GHG emission savings from

the use of biofuels and provided that lsquosustainablersquo biofuels could not be sourced from certain

protected areas (eg highly biodiverse grassland wetlands continuously forested areas) (RED

2009 Article 17) For what concerns ILUC instead the normative framework was integrated by

the adoption of the 2015 Indirect Land-Use Change Directive (ILUC Directive) It introduced an

overall 7 limit of biofuels from food crops as well as the category of lsquoadvanced biofuelsrsquo ie

biofuels that are not in competition with food crops (ILUC Directive recital (5))

Importantly the promotion of lsquosustainablersquo biofuels in the RED 2009 did not entail an absolute

ban on lsquonon-sustainablersquo biofuels Instead compliance with the sustainability criteria is required

for biofuels to enjoy a threefold set of benefits (a) accounting towards the accomplishment of the

national renewable energy targets (b) contributing to the fulfilment of renewable energy

obligations eg the mandatory share of renewable energy in transport (c) being eligible for

financial support

52 Sustainable biogas in the 2018 Renewable Energy Directive

In 2018 the EU adopted a new Renewable Energy Directive (RED 2018) which largely builds

upon the previous RED 2009 and enhances the legal framework for the promotion of advanced

biofuels Most notably the RED 2018 introduces a specific sub-target for a share of 35

advanced biofuels by 2030 (RED 2018 Article 25(1)) Under the RED 2018 advanced biofuels

can be counted for twice their energy content when calculating their contribution towards the target

for renewable energy in the transport sector Moreover the technological development and

deployment of advanced biofuels constitutes one of the elements to be included in the lsquoUnion

Bioenergy Sustainability Reportrsquo a biennial progress report to be released by the European

Commission from 2023 (Governance Regulation (2018) Annex X)

The RED 2018 is particularly relevant for what concerns biogas as it extends the need to comply

with non-carbon related sustainability criteria to biogas production In fact the previous RED 2009

only addressed the minimum GHG emissions savings of biogas (RED 2009 Annex V) while the

remainder of the sustainability criteria only referred to liquid biofuels The RED 2018 instead

applies the full range of sustainability criteria also to biogas production with an exemption for

small installations not exceeding a total rated thermal input of 2 MW (RED 2018 Article 29(1))

15

Analogously to the RED 2009 also in the RED 2018 compliance with the sustainability criteria is

necessary for bioenergy to account towards the renewable energy targets and to qualify for

financial support (RED 2018 Article 29(1)) For what specifically concerns ILUC the RED 2018

is supplemented by the Commission Delegated Regulation (EU) 2019807 (ILUC Delegated

Regulation) which sets specific criteria for the identification of respectively high- and low- ILUC

risk feedstock

6 Promoting biogas sustainability the case for sustainability criteria

beyond the EU legal framework

61 Global relevance of the EU sustainability criteria

The EU legal framework for biofuels sustainability is widely reputed as an example of lsquopioneeringrsquo

legislation (Kulovesi et al 2009) and one of the most comprehensive and advanced binding

sustainability schemes on a global scale (European Commission 2011) The global relevance of

the EU sustainability criteria emerges in particular from the fact that their validity is not limited to

the EU borders On the contrary for biofuels to enjoy the benefits mentioned above (see RED

2018 Article 29(1)) compliance with the sustainability criteria needs to be proven regardless of

whether the feedstock originates from within or outside the EU Such extraterritorial applicability

has given rise to a vivid debate related to the compatibility of the EU sustainability criteria with

international trade rules (Olsen et al 2016 Lydgate 2012 Scott 2011 Kulovesi et al 2009)

Conversely less scholarly attention has been devoted to the regulation of biofuels sustainability

outside the EU legal framework and especially in developing countries Undoubtedly for many

developing countries the EU represents an important export market for liquid biofuels (eg

bioethanol and biodiesel) Therefore the adoption of stringent sustainability criteria has the

potential to significantly affect biofuels production For instance the classification of palm oil

(often used as a feedstock for the production of biodiesel) as a high-ILUC risk feedstock under the

newly adopted ILUC Delegated Regulation has recently given rise to a legal complaint by

Indonesia currently pending before the WTO (WTO 2019) Despite the global significance of the

EU market this accounts only for a minority share of global biofuels trade (IEA 2019b)

Therefore the adoption of the sustainability criteria also in extra-EU jurisdictions would be a

crucial step to further mitigate the negative impacts associated with biofuels and biogas

production

In a few non-EU countries some progress has been registered in support of biofuels sustainability

This is the case for instance of Brazil Japan and the United States (Naiki 2016) On the contrary

sustainability criteria have rarely been adopted in the legal framework of developing countries A

survey of biofuel policies in East African countries for instance concludes that lsquogenerally

agrofuel investments have been insensitive to environmental and human rights concerns of

vulnerable populationsrsquo (Owino 2016) The same study holds that in the East African region

only Mozambique has put in place sustainability criteria in its biofuels policy known as the

lsquoMozambique Biofuel Sustainable Frameworkrsquo (MBSF) Even in the legislative framework of

developed countries biofuels sustainability is not taken into account to the same extent as in the

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 2: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

Abstract

Biogas is a key component of the energy system of the future Once upgraded to biomethane it

has a similar chemical composition to natural gas thus offering a promising alternative to fossil

fuels For instance it can be injected into the natural gas grid or power gas-fueled vehicles thus

contributing to the decarbonization of the transport sector However biogas production is not

always environmentally sustainable On one hand biogas production from waste (eg manure or

agricultural residues) represents an effective way to promote virtuous circles of resource use and

re-use On the other hand the production of biogas from energy crops poses serious sustainability

challenges due to the negative impacts on biodiversity and the possible competition with food and

feed crops Similar risks are taken into account in the policy framework of the European Union

(EU) which following the adoption of the new Renewable Energy Directive (RED 2018)

provides specific sustainability criteria for biogas production Outside the EU few other

jurisdictions specifically address sustainability challenges related to biogas production Adopting

an interdisciplinary approach in the first part of this paper we conduct an LCA analysis to assess

the regionalized impact of biogas production from different feedstocks In the second part of the

paper we analyze the essential elements of the EU sustainability criteria and taking stock of the

results of the LCA analysis we propose a threefold set of policy recommendations to increasingly

promote biogas sustainability with a specific focus on developing countries

Contents

1 Introduction 4

2 Biogas and biomethane an overview 6

21 Biogas production sources processes applications 6

22 Biogas as a sustainable energy source 7

3 Research design 9

4 Regional impacts of biogas production 11

5 Sustainable biogas policy the EUrsquos legal framework 13

51 Biofuels in EU law targets and sustainability criteria 13

52 Sustainable biogas in the 2018 Renewable Energy Directive 14

6 Promoting biogas sustainability the case for sustainability criteria beyond the EU legal

framework 15

61 Global relevance of the EU sustainability criteria 15

62 The way forward for sustainable biogas policies 16

7 Conclusion 18

Bibliography 20

Appendix 26

1 OpenLCA impact categories 26

2 Maize and sugar beet yields around the world 27

3 Overall impact of biogas production Maize vs sugar beet 28

4 Regional impacts of biogas production (ldquoglobalrdquo plant location) 30

5 Regional impacts of biogas production from sugar beet different plant locations 31

6 Regional impacts of biogas production from maize different plant locations 33

4

The Phantom Menace

Bridging the Regulatory Gap for Sustainable Biogas

Alessandro Monti Daniel Oderinde amp Maria Polugodina

1 Introduction

The melting of glaciers sea level rise and extreme weather events are no longer mere scientific

predictions of some distant future but an everyday reality in many parts of the world The latest

report published by the Intergovernmental Panel on Climate Change (IPCC 2018) pictured the

daunting consequences of global warming exceeding 15 degC above the pre-industrial levels the

ambitious target set under the Paris Agreement (UNFCCC 2015) To tackle such unprecedented

challenges far-reaching policy reforms in numerous economic sectors are needed Several of the

17 Sustainable Development Goals (SDGs) approved in 2015 by the UN General Assembly

(United Nations 2015) set the course for such reform efforts

The energy sector in particular is responsible for the largest share of global greenhouse gas

(GHG) emissions (IEA 2019a) and SDG 7 (ldquoaffordable and clean energyrdquo) mandates a transition

away from fossil fuels Hence renewable energy (RE) ie energy produced from renewable

sources in a sustainable manner (IRENA 2009) has a central role to play for a sustainable

development of the energy system This paper focuses on one specific category of renewable

energies namely biofuels due to their large untapped potential to be deployed in the transport

sector Within this category the focus is further restricted to gaseous biofuels also known as

biogas When upgraded to biomethane biogas has a significant potential to be directly applied to

the transport sector also powering heavy-duty vehicles (Wilken et al 2017) Moreover biogas

can be produced from a wide variety of feedstock including waste therefore having high potential

as a springboard for the circular economy

However biogas not unlike other biofuels faces specific sustainability challenges The production

of biogas from agricultural feedstock through the use of energy crops represents a potential threat

to agricultural land and may lead to phenomena such as the spreading of ldquoMaiswuumlstenrdquo ie ldquomaize

desertsrdquo exclusively dedicated to the cultivation of maize for biogas production Hence this study

aims to take a closer look at the biogas value chain to foster an enhanced understanding of biogas

sustainability and promote scientifically-sound policies With reference to the SDGs our approach

will particularly highlight possible options to foster synergies between SDG 7 (ldquoaffordable and

clean energyrdquo) and SDG 13 (ldquoclimate actionrdquo) and SDG 12 (ldquoresponsible consumption and

productionrdquo)

The challenges of biogas sustainability have already been addressed in numerous studies A

common approach is the development of a life-cycle-assessment (LCA) to quantify the impacts

of biogas production for different plant configurations (for a recent review of LCA studies on

biogas see Hijazi et al (2016)) Among the most recent studies Omar (2017) and Lyng amp Brekke

(2019) show that biogas from waste is the more sustainable than biogas from agricultural crops

5

and other carbon intensive sources The reason is that the production of biogas from agricultural

cultivation requires several steps including farmland preparation fertilization machineries crop

harvest etc Lyng amp Brekke (2019) also observe that the choice of the crop has an impact on GHG

emissions and that perennial crops are more sustainable than the annual ones A common feature

of these studies is that they usually take a selection of existing biogas plants in a certain country

and compare feedstocks plant sizes or technologies to each other What seems missing however

is a broader outlook transcending those studies Does the same plant have an equal impact

everywhere in the world Or is it dependent on where the plant is located What is the geographical

distribution of the impact

The promotion of biogas sustainability has numerous policy implications In this sense one of the

most advanced regulatory frameworks can be found in the European Union which since the

adoption of the first Renewable Energy Directive (RED 2009) has included sustainability criteria

for biofuels Such criteria were originally formulated with regard to liquid biofuels Yet in 2018

an updated version of the Renewable Energy Directive was adopted (RED 2018) which extends

the applicability of numerous sustainability criteria also to biogas production Outlining the key

features of the EU legal framework will serve as a useful reference to propose strategies for the

development of sustainable biogas policies also in extra-EU jurisdictions

Adopting an interdisciplinary approach which covers both technical and legal aspects of biogas

production our paper investigates the role of sustainability in biofuels and biogas policies

addressing the following research question How can the production of sustainable biogas be

promoted through scientifically sound policies

This main research question is further articulated in the following sub-research questions

minus What is the environmental impact of biogas production from different plant configurations

minus How does the environmental impact of biogas production differ spatially

minus Which policies and regulations address sustainability concerns

minus How can existing policies be improved

Our paper answers these interrogatives by adopting an interdisciplinary approach and bridging the

gaps between studies in environmental and legal sciences The analysis is divided into the

following two steps

First we employ the LCA approach to calculate the regionalized impact of biogas production from

different feedstocks Differently to other LCA studies we do not focus on the overall effect of an

existing plant in a specific country Instead we take into account that regional differences eg in

climate can influence the sustainability of the same type of biogas depending on the plant location1

A prominent example here is variation in the yields of the energy crops In places where the soil

is less productive larger harvest areas or better fertilization are needed to produce the same amount

of biogas Apart from that the production of fertilizers and plant parts is often not located in the

same region as the biogas plant itself Therefore we draw on Geographic Information System

(GIS) data to support our analysis and perform a regionalized LCA for a hypothetical plant which

has the same technical characteristics in every location we consider

1 For verbal simplicity we will often refer to biogas from different feedstocks as ldquotypesrdquo of biogas throughout

the paper

6

Second we review the existing policies regarding biofuels and biogas sustainability Moving from

a review of the EU sustainability criteria as updated under the RED 2018 we propose a number

of policy recommendations to foster sustainable biofuels and biogas policies in extra-EU countries

with a special focus on developing countries

The remainder of the paper is structured as follows In Section 2 we provide a brief overview of

the production applications and sustainability concerns of biogas Section 3 illustrates our research

approach Section 4 presents the results of the LCA analysis Section 5 addresses the EU legal

framework for biofuels and biogas Section 6 analyses the global relevance of the EU sustainability

criteria and provides some policy recommendations for the promotion of sustainable biogas

Section 7 concludes the paper

2 Biogas and biomethane an overview

21 Biogas production sources processes applications

Biogas is a mixture of gases with high share of methane (usually 50-70) produced through

decomposition of organic matter (biomass feedstock) Biomethane is in turn a result of biogas

upgrading whereby other gases are removed from biogas and methane share reaches over 90 In

a broader perspective biogas is one of a number of biofuels Biofuels are based on plant biomass

that can be burned to produce energy in which they are similar to fossil fuels (Guo et al 2015)

They however have faster recovery rates which makes them considered as renewable energy

(ibid) Biofuels can be solid (eg firewood) liquid (bioethanol biodiesel etc) or gaseous (biogas)

(Creutzig et al 2015 Guo et al 2015) Importantly they can be utilized in different areas such

as transport cooking as well as heat and electricity production (Creutzig et al 2015)

Among these fuels biogas stands out as a relatively new fuel with high potential but relatively

underdeveloped today While Guo et al (2015) predicted that biogas may replace up to 25 of

current natural gas demand by 2016 biogas production was still negligible comprising only one-

fifth of all bioenergy globally which in turn covered only 8 of all RE production (IRENA 2018)

Yet biogas represents a number of advantages relative to other biofuels Unlike other biofuels

(eg biodiesel or bioethanol) biogas production can use a large variety of feedstocks including

special energy crops (maize lay crops sweet potato straw etc) agricultural waste (plant residues

and animal manure) and municipal waste (Guo et al 2015) This can contribute to an additional

area of waste management both in rural and in urban areas It also diminishes the need for growing

specific energy crops which put under doubt the social and environmental sustainability of other

biofuels (Guo et al 2015 Roumlder 2016 de Andrade 2016 Achinas et al 2017)

The widely used and commercially most successful technology for biogas production today is

anaerobic digestion (AD) (Koornneef et al 2013) In this process a certain group of bacteria

transform the biomass into biogas and digestate (biofertilizer) in absence of oxygen2 Compared

to the refined natural gas delivered to the end user biogas has a lower share of methane but a

higher share of carbon dioxide as well as other components such as water vapor hydrogen

sulphide and ammonia (Muzenda 2014 Zhou et al 2017) Therefore in some cases (eg to be

2 For the description of the technical process see eg Achinas et al (2017) and Muzenda (2014)

7

used as a vehicle fuel) it has to be purified of contaminants (especially CO2) that means upgraded

to biomethane3

The main advantage of biogas is that it is easily stored for longer periods of time so it can be

treated as a stock energy just like the fossil fuels This important feature differentiates if from

electricity from hydro- solar and wind power which are the largest renewable energy sources

today (IRENA 2018) In addition both the main product of biogas production (the biogas itself)

and the by-product (the digestate) can be put to efficient use (Wilken et al 2017) Namely the

digestate can be used as an organic fertilizer while biogas itself has three main applications heat

generation power generation and transport fuel Biogas is primarily used for heat or power

generation often also in combined heat and power (CHP) units (ibid) Upgraded to biomethane

it has almost the same chemical composition as natural gas It can therefore be used in all types

of gas-fueled vehicles and thus make use of already existing fleets and commercially available

technologies (Svensson 2013) Where a grid exists biomethane can be freely intermixed with

natural gas to be easily transported over large distances Where no grid is available the biomethane

can be compressed or liquefied and transported very efficiently by road (Roggenkamp et al 2018

Svensson 2013) This also makes it stand out in comparison with hydrogen which is still costly

to produce and transport and is debated in terms of its GHG savings (Ali et al 2016)

Another application of biogas which has been mentioned above lies in the possibility to produce

it from agricultural residues and municipal waste thus offering a viable alternative to composting

or landfilling the waste and contributing to sustainable waste management

22 Biogas as a sustainable energy source

The production of biogas from agricultural and municipal waste is one of the trending and

promising environmentally friendly technologies in the world today This is because biogas

production is driven by energy sustainable processes that contribute relatively less to climate

change compared to natural gas production from fossil fuels (Jiřiacute et al 2016) With a rise in biogas

energy production from 028 exajoules to 133 exajoules between 2000 and 2017 (Wang 2019)

the global biogas production is projected to be worth 110 billion US dollars by 2025 with a

compound annual growth rate of 7 (Global Market Insights 2019)

Considering the growing market of biogas globally special care has to be taken in ensuring that

the production and consumption of biogas are in line with and do not negatively affect the three

pillars of sustainability namely the economy environment and society These three pillars are

relevant and applicable in accessing the sustainability of biogas as a renewable energy source

(Purvis et al 2018) Based on the focus of the EU sustainability criteria the major aspect analyzed

in this paper is the environmental sustainability

This paper addresses the factors related to biogas environmental sustainability analyzing the life

cycle of biogas production in terms of GHG reductions against the fossil fuels comparators as

well as in terms of the feedstock used to produce biogas The use of municipal and agricultural

waste in particular appears as a viable option to solve environmental issues through the creation

of a suitable end of life for waste and the reduction of the amount of waste remaining in the landfill

3 For a comprehensive overview of upgrading techniques see eg Wilken et al (2017)

8

sites (Jonas et al 2017) The problem of GHG emissions at landfills not equipped with gas capture

is thereby reduced and as a result air pollution is diminished Because the landfills are usually

close to the cities biogas plants are often established close to them and by this the distribution of

energy becomes simpler and more efficient compared to the fossil energy (Jacopo et al 2013)

Conducting a Life Cycle Sustainability Assessment (LCSA) which also includes a Life Cycle

Assessment (LCA) represents a promising tool for evaluating sustainable production and

consumption This tool is also considered as the best approach to analyzing the environmental

social and economic sustainability of production processes (Hannouf amp Assefa 2019) To

illustrate the sustainability of biogas production against carbon intensive energy sources we first

conduct an LCA and compare the environmental impacts of the production of biogas against

carbon intensive energy sources In obtaining quantitative results the environmental impacts due

to the generation of 1MJ of energy were calculated for biogas from waste and diesel production

Diesel was chosen as a fossil fuel comparator due to its high level of industrial application The

same amount of energy yield was chosen so that the environmental impacts are directly

comparable

Each production process impacts the environment in a very general sense along a number of

directions For the LCA analysis the EU has recommended a set of Life Cycle Impact Assessment

methods (JRC 2012) There major impact categories for any production chain include climate

change (in CO2-equivalent) ecosystem quality human health and resource use Each of them is

further detailed eg the climate change may be induced by the use of fossil fuels land use and

land use change (LULUC) or through biogenic impact (ibid) With a focus on the three major

impact categories in the EU sustainability criteria ndash climate change land use change and fossils as

a resource ndash the results of the first brief analysis are provided in Figure 1 The figure shows that

the production of biogas can achieve an 86 reduction of GHG against the production of diesel

Regarding the reduction of land use an 84 reduction can be achieved and there is no significant

impact of biogas production on fossil fuel consumption when compared to diesel production

Figure 1 LCA environmental footprint results for biogas from waste versus diesel tons per hectare

9

It must be noted that this brief comparison shows the ldquobest caserdquo scenario since ndash as mentioned

before ndash biogas from waste is the most sustainable biogas type (Omar 2017) The sustainability

of biogas from energy crops is on the contrary contestable even when judging on the mere basis

of the overall impact (Guo et al 2015 Roumlder 2016 de Andrade 2016 Achinas et al 2017) On

top of that the environmental impact of biogas generation from energy crops can potentially vary

in different regions of the world due to varying crop yields Therefore the rest of the paper will

specifically focus on the production of biogas from energy crops

3 Research design

We perform our analysis in two main steps First we investigate the environmental sustainability

of biogas from a regionalized perspective Second we review how existing policies tackle the

sustainability issues of biogas production We then combine the results of the two analyses to

suggest tailored policy recommendations aimed at enhancing biogas sustainability outside the EU

and particularly in developing countries

For our analysis of the environmental sustainability of biogas we assess the environmental impact

of its production ndash to which we will also refer to as footprint ndash along several impact categories

We use the Life Cycle Assessment (LCA) approach and the impact categories correspond to those

defined by the EU (JRC 2012) They will be specifically referred to below in connection with the

specific software we use Unlike other LCA studies we are looking at how the overall footprint is

distributed across the world and how this distribution changes if we move our hypothetical plant

to different locations Just like in the case of goods production one might expect GHG emissions

in biofuels production or environmental effects of crop cultivation to fall into international

responsibility (for goods see Pan et al (2008) for an example of Chinarsquos role in international trade

and GHG emissions) At the same time as will be shown later only a few countries deal with

biogas sustainability within their territories let alone from a cross-border perspective To grasp

the relevance and effects of this perspective we perform a regionalized LCA

We split the LCA analysis into further two steps We first compare the regional impacts for an

arbitrary (ldquoglobalrdquo) biogas plant location to examine if the patterns differ between the feedstocks

As it is primarily biogas from energy crops which raises sustainability questions in the literature

and in the public (Kline et al 2016) we only look at this group of feedstocks The two most often

analyzed energy crops are maize and sugar beet (see Hijazi et al 2016) Thus given the scope of

our paper we limit ourselves to these two feedstocks

We then focus specifically on several plant locations to investigate how the location changes the

pattern for the specific feedstock For that we analyze four plant locations in four different parts

of the world Brazil as the major biogas producer in the Latin America and among the developing

countries (due to the large country size we focused specifically on the state of Paranaacute where

UNIDO-GEF projects for biogas promotion have been active since 20154) China and Germany

as the major biogas producers in Asia and Europe respectively and Nigeria as the emerging biogas

producer and the seat of the African Biorenewable Association These countries represent very

different stages of economic development and one of the questions we want to test with our LCA

4 See eg the ldquoBiogas Applications for the Brazilian Agro-industryrdquo project at wwwthegeforgprojectbiogas-

applications-brazilian-agro-industry (accessed 27 October 2019)

10

analysis is if the sustainability concerns are equally relevant for both developed and developing

countries

We use the OpenLCA software and the ecoinvent database to perform the analysis5 The software

is capable of evaluating environmental impacts and other relevant environmental and economic

aspects for each part of the value chain from the extraction of material through transport and

production to the end-use The OpenLCA provides results along the impact categories as

recommended by JRC (2012) A brief overview of these categories is provided in Table A1 in

Appendix 1

For agricultural biogas the ecoinvent database only contains the processes for biogas plant

construction and production of biogas from animal manure For energy crops we have to create a

new process based on this existing one To analyze the effects of biogas production from maize

and sugar beet the process for manure was taken as a basis Specifically the inputs of agricultural

plant construction and of energy and heat to operate the digester were taken from that example

The input of feedstock was replaced with the respective energy crop as follows The amount of

feedstock needed for biogas production was calculated using the potential biogas yield from the

literature 066 m3kg of total solids for maize as in Hutňan (2016) and 0685 m3kg of total solids

for sugar beet as an average of the findings of Starke amp Hoffmann (2014) The share of total solids

in the fresh crops for the respective feedstocks was taken from Kreuger et al (2011) who provide

a comprehensive overview on a number of crops To specifically investigate potential regional

differences arising from varying soil productivity we added two input processes which were not

relevant for biogas from manure Firstly we account for the amount of land needed to grow the

energy crop based on the regional yields provided as GIS data by Monfreda et al (2008) in the

EarthStat project The spatial distribution of yields is illustrated in Figures A1 and A2 in Appendix

2 for maize and sugar beet respectively Secondly we add the process for transportation of the

feedstock to the plant For manure feedstocks it is typically assumed that manure is collected in a

barn (Lusk 1998 Homan 2012) so the transportation distance is negligible provided the biogas

plant is constructed not far from the barn For energy crops the same cannot be the case the crops

have to be delivered from the whole cultivation area and this distance needs to be accounted for

To do so we assumed the plant to be located within a square field where the crop is grown and

used the average distance within a square as the transportation distance choosing a lorry as means

of transport The estimation of the environmental impact was then done using the ILCD 20 2018

midpoint method The amount of biogas produced is normalized to 100 m3 for the sake of

comparability6

5 OpenLCA is a professional LCA and footprint software that has a variety of features and many available

databases An important advantage against other professional LCA software is that openLCA is an open access

software It is also endorsed by the US Environmental Protection Agency (cfpubepagovsiindexcfm) The

ecoinvent database is an extensive and comprehensive collection of datasets on life cycle inventory including a

large number of products production processes and value chains (see httpswwwecoinventorg for more

information on the database) 6 The results of a regionalized LCA reflect the contribution of different regions to the overall impact ie the

percentage share of the respective region Therefore scaling the amount of biogas up or down will not change

the results We experimented with 1 m3 100 m3 and 100000 m3 of biogas and the result was qualitatively always

the same

11

4 Regional impacts of biogas production

In this section we present the results of the regionalized LCA We start by briefly comparing the

overall impacts of biogas production from maize and sugar beet After that we focus on the results

in a regional perspective first with unknown plant location and then for four different plant

locations

Regarding the overall impact of biogas production from maize and sugar beet along the impact

categories listed in Table A1 it should be noted that maize has a much larger impact than sugar

beet on all categories The comparison is illustrated in Figures A3-A6 in Appendix 3 and this

result is in line with the findings outlined by Hijazi et al (2016) However the regional impacts

of the two feedstocks show quite some differentiation

The first finding is that the regional distribution of the impacts differs substantially between the

two agricultural feedstocks For the sake of brevity we only provide results for three impacts

which are also addressed in the EU sustainability criteria climate change due to land use and land

use change use of fossils as a resource and use of land as a resource The comparison is illustrated

in Figures A7-A9 in Appendix 4 The maps show relative contributions of the respective regions

to the overall impact the warmer the color on the map the larger the regionrsquos contribution7

In terms of land use and the LULUC-induced climate change (Figures A7-A8) the regional

variation follows quite closely the world industrialization patterns on the one hand and the

agricultural productivity on the other In case of maize the impact is most prominent in Argentina

both for land use and LULUC-induced climate change This is not surprising as on the one hand

Argentina is among the top five maize producers across world8 while on the other hand

Argentinian agriculture is responsible for 90 of the countryrsquos forest loss (Antoacuten et al 2019)

The latter is translated into the LULUC-induced climate change In the case of sugar beet the

LULUC-induced climate change is prominent in Brazil however there is no overlap with land use

as a resource This suggests that the effect is not due to sugar beet production which is also in line

with Figure A2 in Appendix 2 A closer investigation reveals that additional electricity production

for agriculture and the plant would have the highest LULUC-related environmental costs in Brazil

where the majority of electricity is supplied by hydropower and water reservoirs created for that

pose a number of environmental challenges (von Sperling 2012)

With regard to the use of fossil fuels (Figure A9) the major impacts are as could be expected in

the fuel- and mineral-exporting countries The impact comes on the one hand from the energy for

plant construction operation and from the fuel used for feedstock transportation On the other

hand it also reflects the resources for fertilizer production which is quite important in crop

agriculture

Turning to different plant locations the second important finding is that while certain impacts are

connected to plant location others are always attributed to the same regions The results of the

comparison for sugar beet are illustrated in Figures A10-A11 in Appendix 5 The results for maize

7 The drawback of the OpenLCA software is that it does not provide an exact scale for the regionalized results

The illustrative maps should therefore be considered as a qualitative not quantitative reference 8 Based on FAO data wwwfaoorgfaostatendataQC (accessed 8 December 2019)

12

are presented in Figures A12-A13 in Appendix 6 Again the higher contribution of a region to the

overall impact is marked with warmer colors For sugar beet particularly the effects related to

growing the energy crops ldquomoverdquo together with the plants (see the impact on the land use in Figure

A10) In the case of maize Argentina seems to be one of the source countries for the feedstock for

all four plant locations Unlike other major maize (corn) producers not only is Argentina the third

largest exporter of corn but also corn figures as the second largest category of Argentinian

exports9 At the same time part of the impact is still located in the country of the plant location

Another interesting observation in the cases of both maize and sugar beet is that the more

developed the country the lower the impact share This also overlaps with the distribution of yields

in Figures A1-A2 in Appendix 2

Turning to other resources the picture is similar to that with the undefined plant location Both for

maize and sugar beet especially the use of resources related to fertilizers plant construction and

transportation (minerals and metals) is associated with the same regions independent of where the

plant is located In other words fossil energy construction materials and fertilizers often do not

come from the same country they are used in This raises the question in how much the impact

created by this demand is taken into account by the policy-makers when promoting biogas or

setting the criteria for determining whether to call biogas a sustainable renewable energy

To sum these results up there are several observations relevant for tackling sustainability concerns

of biogas from energy crops

1 Production of biogas may have substantial effects in terms of land use and climate change

induced by a change in land use or deforestation This effect might come directly from growing

energy crops However it can also come eg from supporting energy production as long as

biogas production is not completely autonomous or does not cover the energy needed for the

cultivation of energy crops

2 For some feedstocks it is likely that at least a share of them is imported from other countries

therefore shifting the environmental impact away from the countries where a biogas plant is

located

3 For other resources necessary for biogas plant construction and cultivation of the energy crop

the majority of the impact is accrued to the same set of countries independent of the plant

location Therefore it is typically situated outside of the country where a biogas plant is

located

If one further looks at the future of biogas production and distribution there is already some

movement towards trading this fuel Examples are the plans of the German electric utilities

company RWE to trade biogas between Great Britain and the Netherlands (enformer 2018) and

inclusion of biogas and feedstocks in the portfolio of companies trading energy commodities (eg

ACT Commodities) However long-distance transportation options for biogas as discussed in

Section 21 can be somewhat limited compared to liquid biofuels For example to transport

biogas overseas it has to be compressed or liquified meaning the origin and destination ports need

to be equipped respectively and LNG vessels need to be employed This creates additional

9 Based on the data by the Observatory of Economic Complexity wwwoecworldenprofilecountryarg

(accessed 8 December 2019)

13

transportation costs compared to liquid fuels and lowers profitability of such trade Therefore it

is rather likely that biogas ndash provided it is produced in sufficient quantities ndash is first traded

regionally where grid connections exist or between already LNG-equipped locations Another

option is that instead of the final product the feedstock will be traded Trade in agricultural

products is very well established and the trend of trading energy crops for biofuels in general and

biogas in particular was already visible in Europe in the early 2010s (Kalt amp Kranzl 2012 Pagh-

Schlegel amp Elkjaeligr 2012)

In view of these considerations it is likely that the three observations outlined above will be

increasingly important in the future Therefore they need to be taken into account when promoting

biogas development around the world In the next section we will review how some existing

regulations are already able to tackle these challenges Based on this we will then formulate our

policy recommendations

5 Sustainable biogas policy the EUrsquos legal framework

51 Biofuels in EU law targets and sustainability criteria

The EU is widely reputed as a leader of international climate action (Bogojevic 2016) having

substantially contributed to the development of the international legal regime on climate change

(Oberthuumlr 2018) Renewable energy has traditionally represented a proactive area of the EUrsquos

policymaking as the RE targets were already enshrined in the 2001 Renewable Energy Directive

(RED 2001) and subsequently updated under the 2009 Renewable Energy Directive (RED 2009)

and the 2018 Renewable Energy Directive (RED 2018) Along with the general RE targets at the

Member State or at the EU level specific sub-targets have been enacted with a view of promoting

the energy transition in the transport sector At first such targets were enshrined in the 2003

Biofuels Directive (Biofuels Directive 2003) Subsequently targets for renewable energy in

transport have been incorporated into the RED 2009 and most recently a target of 14 renewable

energy in transport by 2030 is foreseen under Article 25(1) RED 2018

In order to reach their renewable energy targets several EU Member States have adopted different

kinds of support schemes such as feed-in tariffs (FIT) feed-in premium (FIP) tradable green

certificates and auctions (Banja et al 2019) Moreover further policy measures have also

contributed to a steady increase in the share of bioenergy in some cases specifically encouraging

the deployment of biogas and biomethane A case in point is the Alternative Fuels Infrastructure

Directive (AFID Directive) which includes minimum requirements for the build-up of refueling

points for liquid natural gas (LNG) and compressed natural gas (CNG) (Van Grinsven et al 2017)

As proven by the recent Eurostat data the EU policy activism has contributed to a steady increase

of the share of bioenergy (including energy from the agricultural biomass the forest biomass and

the renewable waste) which grew from 59 in 2005 to 103 in 2017 (Banja et al 2019)

However incentives for biofuels production have also triggered in some cases the conversion of

agricultural land into land dedicated to the cultivation of energy crops The biogas sector along

with other biofuels is part of this phenomenon determined inter alia by the higher methane yield

of energy crops compared to manure and other sources of agricultural waste In the case of

14

Germany for instance biogas production from energy crops significantly outweighs its production

from industrial and agricultural waste (Eyl-Mazzega et al 2019)

Following the adoption of the RED 2009 the EU legislator has taken specific countermeasures to

reduce the risks connected to an indiscriminate expansion of biofuel production from energy crops

Such measures known as lsquosustainability criteriarsquo address both lsquocarbon-relatedrsquo and lsquonon carbon-

relatedrsquo concerns In particular lsquocarbon-relatedrsquo encompasses the necessary reduction in the GHG

emissions that needs to be achieved by biofuels against their fossil fuel comparators (Olsen et al

2016) lsquoNon-carbon relatedrsquo concerns on the other hand pertain to nature conservation and

biodiversity aspects of land use also known as lsquodirect land-use changersquo (DLUC) as well as to the

risk that part of the demand for biofuels will be met by increasingly devoting land to agriculture

a phenomenon known as lsquoIndirect Land-Use Changersquo (ILUC) (European Commission 2010) The

RED 2009 took into account both carbon-related concerns and non-carbon related concerns with

the exclusion of ILUC It introduced a minimum standard of 35 GHG emission savings from

the use of biofuels and provided that lsquosustainablersquo biofuels could not be sourced from certain

protected areas (eg highly biodiverse grassland wetlands continuously forested areas) (RED

2009 Article 17) For what concerns ILUC instead the normative framework was integrated by

the adoption of the 2015 Indirect Land-Use Change Directive (ILUC Directive) It introduced an

overall 7 limit of biofuels from food crops as well as the category of lsquoadvanced biofuelsrsquo ie

biofuels that are not in competition with food crops (ILUC Directive recital (5))

Importantly the promotion of lsquosustainablersquo biofuels in the RED 2009 did not entail an absolute

ban on lsquonon-sustainablersquo biofuels Instead compliance with the sustainability criteria is required

for biofuels to enjoy a threefold set of benefits (a) accounting towards the accomplishment of the

national renewable energy targets (b) contributing to the fulfilment of renewable energy

obligations eg the mandatory share of renewable energy in transport (c) being eligible for

financial support

52 Sustainable biogas in the 2018 Renewable Energy Directive

In 2018 the EU adopted a new Renewable Energy Directive (RED 2018) which largely builds

upon the previous RED 2009 and enhances the legal framework for the promotion of advanced

biofuels Most notably the RED 2018 introduces a specific sub-target for a share of 35

advanced biofuels by 2030 (RED 2018 Article 25(1)) Under the RED 2018 advanced biofuels

can be counted for twice their energy content when calculating their contribution towards the target

for renewable energy in the transport sector Moreover the technological development and

deployment of advanced biofuels constitutes one of the elements to be included in the lsquoUnion

Bioenergy Sustainability Reportrsquo a biennial progress report to be released by the European

Commission from 2023 (Governance Regulation (2018) Annex X)

The RED 2018 is particularly relevant for what concerns biogas as it extends the need to comply

with non-carbon related sustainability criteria to biogas production In fact the previous RED 2009

only addressed the minimum GHG emissions savings of biogas (RED 2009 Annex V) while the

remainder of the sustainability criteria only referred to liquid biofuels The RED 2018 instead

applies the full range of sustainability criteria also to biogas production with an exemption for

small installations not exceeding a total rated thermal input of 2 MW (RED 2018 Article 29(1))

15

Analogously to the RED 2009 also in the RED 2018 compliance with the sustainability criteria is

necessary for bioenergy to account towards the renewable energy targets and to qualify for

financial support (RED 2018 Article 29(1)) For what specifically concerns ILUC the RED 2018

is supplemented by the Commission Delegated Regulation (EU) 2019807 (ILUC Delegated

Regulation) which sets specific criteria for the identification of respectively high- and low- ILUC

risk feedstock

6 Promoting biogas sustainability the case for sustainability criteria

beyond the EU legal framework

61 Global relevance of the EU sustainability criteria

The EU legal framework for biofuels sustainability is widely reputed as an example of lsquopioneeringrsquo

legislation (Kulovesi et al 2009) and one of the most comprehensive and advanced binding

sustainability schemes on a global scale (European Commission 2011) The global relevance of

the EU sustainability criteria emerges in particular from the fact that their validity is not limited to

the EU borders On the contrary for biofuels to enjoy the benefits mentioned above (see RED

2018 Article 29(1)) compliance with the sustainability criteria needs to be proven regardless of

whether the feedstock originates from within or outside the EU Such extraterritorial applicability

has given rise to a vivid debate related to the compatibility of the EU sustainability criteria with

international trade rules (Olsen et al 2016 Lydgate 2012 Scott 2011 Kulovesi et al 2009)

Conversely less scholarly attention has been devoted to the regulation of biofuels sustainability

outside the EU legal framework and especially in developing countries Undoubtedly for many

developing countries the EU represents an important export market for liquid biofuels (eg

bioethanol and biodiesel) Therefore the adoption of stringent sustainability criteria has the

potential to significantly affect biofuels production For instance the classification of palm oil

(often used as a feedstock for the production of biodiesel) as a high-ILUC risk feedstock under the

newly adopted ILUC Delegated Regulation has recently given rise to a legal complaint by

Indonesia currently pending before the WTO (WTO 2019) Despite the global significance of the

EU market this accounts only for a minority share of global biofuels trade (IEA 2019b)

Therefore the adoption of the sustainability criteria also in extra-EU jurisdictions would be a

crucial step to further mitigate the negative impacts associated with biofuels and biogas

production

In a few non-EU countries some progress has been registered in support of biofuels sustainability

This is the case for instance of Brazil Japan and the United States (Naiki 2016) On the contrary

sustainability criteria have rarely been adopted in the legal framework of developing countries A

survey of biofuel policies in East African countries for instance concludes that lsquogenerally

agrofuel investments have been insensitive to environmental and human rights concerns of

vulnerable populationsrsquo (Owino 2016) The same study holds that in the East African region

only Mozambique has put in place sustainability criteria in its biofuels policy known as the

lsquoMozambique Biofuel Sustainable Frameworkrsquo (MBSF) Even in the legislative framework of

developed countries biofuels sustainability is not taken into account to the same extent as in the

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 3: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

Contents

1 Introduction 4

2 Biogas and biomethane an overview 6

21 Biogas production sources processes applications 6

22 Biogas as a sustainable energy source 7

3 Research design 9

4 Regional impacts of biogas production 11

5 Sustainable biogas policy the EUrsquos legal framework 13

51 Biofuels in EU law targets and sustainability criteria 13

52 Sustainable biogas in the 2018 Renewable Energy Directive 14

6 Promoting biogas sustainability the case for sustainability criteria beyond the EU legal

framework 15

61 Global relevance of the EU sustainability criteria 15

62 The way forward for sustainable biogas policies 16

7 Conclusion 18

Bibliography 20

Appendix 26

1 OpenLCA impact categories 26

2 Maize and sugar beet yields around the world 27

3 Overall impact of biogas production Maize vs sugar beet 28

4 Regional impacts of biogas production (ldquoglobalrdquo plant location) 30

5 Regional impacts of biogas production from sugar beet different plant locations 31

6 Regional impacts of biogas production from maize different plant locations 33

4

The Phantom Menace

Bridging the Regulatory Gap for Sustainable Biogas

Alessandro Monti Daniel Oderinde amp Maria Polugodina

1 Introduction

The melting of glaciers sea level rise and extreme weather events are no longer mere scientific

predictions of some distant future but an everyday reality in many parts of the world The latest

report published by the Intergovernmental Panel on Climate Change (IPCC 2018) pictured the

daunting consequences of global warming exceeding 15 degC above the pre-industrial levels the

ambitious target set under the Paris Agreement (UNFCCC 2015) To tackle such unprecedented

challenges far-reaching policy reforms in numerous economic sectors are needed Several of the

17 Sustainable Development Goals (SDGs) approved in 2015 by the UN General Assembly

(United Nations 2015) set the course for such reform efforts

The energy sector in particular is responsible for the largest share of global greenhouse gas

(GHG) emissions (IEA 2019a) and SDG 7 (ldquoaffordable and clean energyrdquo) mandates a transition

away from fossil fuels Hence renewable energy (RE) ie energy produced from renewable

sources in a sustainable manner (IRENA 2009) has a central role to play for a sustainable

development of the energy system This paper focuses on one specific category of renewable

energies namely biofuels due to their large untapped potential to be deployed in the transport

sector Within this category the focus is further restricted to gaseous biofuels also known as

biogas When upgraded to biomethane biogas has a significant potential to be directly applied to

the transport sector also powering heavy-duty vehicles (Wilken et al 2017) Moreover biogas

can be produced from a wide variety of feedstock including waste therefore having high potential

as a springboard for the circular economy

However biogas not unlike other biofuels faces specific sustainability challenges The production

of biogas from agricultural feedstock through the use of energy crops represents a potential threat

to agricultural land and may lead to phenomena such as the spreading of ldquoMaiswuumlstenrdquo ie ldquomaize

desertsrdquo exclusively dedicated to the cultivation of maize for biogas production Hence this study

aims to take a closer look at the biogas value chain to foster an enhanced understanding of biogas

sustainability and promote scientifically-sound policies With reference to the SDGs our approach

will particularly highlight possible options to foster synergies between SDG 7 (ldquoaffordable and

clean energyrdquo) and SDG 13 (ldquoclimate actionrdquo) and SDG 12 (ldquoresponsible consumption and

productionrdquo)

The challenges of biogas sustainability have already been addressed in numerous studies A

common approach is the development of a life-cycle-assessment (LCA) to quantify the impacts

of biogas production for different plant configurations (for a recent review of LCA studies on

biogas see Hijazi et al (2016)) Among the most recent studies Omar (2017) and Lyng amp Brekke

(2019) show that biogas from waste is the more sustainable than biogas from agricultural crops

5

and other carbon intensive sources The reason is that the production of biogas from agricultural

cultivation requires several steps including farmland preparation fertilization machineries crop

harvest etc Lyng amp Brekke (2019) also observe that the choice of the crop has an impact on GHG

emissions and that perennial crops are more sustainable than the annual ones A common feature

of these studies is that they usually take a selection of existing biogas plants in a certain country

and compare feedstocks plant sizes or technologies to each other What seems missing however

is a broader outlook transcending those studies Does the same plant have an equal impact

everywhere in the world Or is it dependent on where the plant is located What is the geographical

distribution of the impact

The promotion of biogas sustainability has numerous policy implications In this sense one of the

most advanced regulatory frameworks can be found in the European Union which since the

adoption of the first Renewable Energy Directive (RED 2009) has included sustainability criteria

for biofuels Such criteria were originally formulated with regard to liquid biofuels Yet in 2018

an updated version of the Renewable Energy Directive was adopted (RED 2018) which extends

the applicability of numerous sustainability criteria also to biogas production Outlining the key

features of the EU legal framework will serve as a useful reference to propose strategies for the

development of sustainable biogas policies also in extra-EU jurisdictions

Adopting an interdisciplinary approach which covers both technical and legal aspects of biogas

production our paper investigates the role of sustainability in biofuels and biogas policies

addressing the following research question How can the production of sustainable biogas be

promoted through scientifically sound policies

This main research question is further articulated in the following sub-research questions

minus What is the environmental impact of biogas production from different plant configurations

minus How does the environmental impact of biogas production differ spatially

minus Which policies and regulations address sustainability concerns

minus How can existing policies be improved

Our paper answers these interrogatives by adopting an interdisciplinary approach and bridging the

gaps between studies in environmental and legal sciences The analysis is divided into the

following two steps

First we employ the LCA approach to calculate the regionalized impact of biogas production from

different feedstocks Differently to other LCA studies we do not focus on the overall effect of an

existing plant in a specific country Instead we take into account that regional differences eg in

climate can influence the sustainability of the same type of biogas depending on the plant location1

A prominent example here is variation in the yields of the energy crops In places where the soil

is less productive larger harvest areas or better fertilization are needed to produce the same amount

of biogas Apart from that the production of fertilizers and plant parts is often not located in the

same region as the biogas plant itself Therefore we draw on Geographic Information System

(GIS) data to support our analysis and perform a regionalized LCA for a hypothetical plant which

has the same technical characteristics in every location we consider

1 For verbal simplicity we will often refer to biogas from different feedstocks as ldquotypesrdquo of biogas throughout

the paper

6

Second we review the existing policies regarding biofuels and biogas sustainability Moving from

a review of the EU sustainability criteria as updated under the RED 2018 we propose a number

of policy recommendations to foster sustainable biofuels and biogas policies in extra-EU countries

with a special focus on developing countries

The remainder of the paper is structured as follows In Section 2 we provide a brief overview of

the production applications and sustainability concerns of biogas Section 3 illustrates our research

approach Section 4 presents the results of the LCA analysis Section 5 addresses the EU legal

framework for biofuels and biogas Section 6 analyses the global relevance of the EU sustainability

criteria and provides some policy recommendations for the promotion of sustainable biogas

Section 7 concludes the paper

2 Biogas and biomethane an overview

21 Biogas production sources processes applications

Biogas is a mixture of gases with high share of methane (usually 50-70) produced through

decomposition of organic matter (biomass feedstock) Biomethane is in turn a result of biogas

upgrading whereby other gases are removed from biogas and methane share reaches over 90 In

a broader perspective biogas is one of a number of biofuels Biofuels are based on plant biomass

that can be burned to produce energy in which they are similar to fossil fuels (Guo et al 2015)

They however have faster recovery rates which makes them considered as renewable energy

(ibid) Biofuels can be solid (eg firewood) liquid (bioethanol biodiesel etc) or gaseous (biogas)

(Creutzig et al 2015 Guo et al 2015) Importantly they can be utilized in different areas such

as transport cooking as well as heat and electricity production (Creutzig et al 2015)

Among these fuels biogas stands out as a relatively new fuel with high potential but relatively

underdeveloped today While Guo et al (2015) predicted that biogas may replace up to 25 of

current natural gas demand by 2016 biogas production was still negligible comprising only one-

fifth of all bioenergy globally which in turn covered only 8 of all RE production (IRENA 2018)

Yet biogas represents a number of advantages relative to other biofuels Unlike other biofuels

(eg biodiesel or bioethanol) biogas production can use a large variety of feedstocks including

special energy crops (maize lay crops sweet potato straw etc) agricultural waste (plant residues

and animal manure) and municipal waste (Guo et al 2015) This can contribute to an additional

area of waste management both in rural and in urban areas It also diminishes the need for growing

specific energy crops which put under doubt the social and environmental sustainability of other

biofuels (Guo et al 2015 Roumlder 2016 de Andrade 2016 Achinas et al 2017)

The widely used and commercially most successful technology for biogas production today is

anaerobic digestion (AD) (Koornneef et al 2013) In this process a certain group of bacteria

transform the biomass into biogas and digestate (biofertilizer) in absence of oxygen2 Compared

to the refined natural gas delivered to the end user biogas has a lower share of methane but a

higher share of carbon dioxide as well as other components such as water vapor hydrogen

sulphide and ammonia (Muzenda 2014 Zhou et al 2017) Therefore in some cases (eg to be

2 For the description of the technical process see eg Achinas et al (2017) and Muzenda (2014)

7

used as a vehicle fuel) it has to be purified of contaminants (especially CO2) that means upgraded

to biomethane3

The main advantage of biogas is that it is easily stored for longer periods of time so it can be

treated as a stock energy just like the fossil fuels This important feature differentiates if from

electricity from hydro- solar and wind power which are the largest renewable energy sources

today (IRENA 2018) In addition both the main product of biogas production (the biogas itself)

and the by-product (the digestate) can be put to efficient use (Wilken et al 2017) Namely the

digestate can be used as an organic fertilizer while biogas itself has three main applications heat

generation power generation and transport fuel Biogas is primarily used for heat or power

generation often also in combined heat and power (CHP) units (ibid) Upgraded to biomethane

it has almost the same chemical composition as natural gas It can therefore be used in all types

of gas-fueled vehicles and thus make use of already existing fleets and commercially available

technologies (Svensson 2013) Where a grid exists biomethane can be freely intermixed with

natural gas to be easily transported over large distances Where no grid is available the biomethane

can be compressed or liquefied and transported very efficiently by road (Roggenkamp et al 2018

Svensson 2013) This also makes it stand out in comparison with hydrogen which is still costly

to produce and transport and is debated in terms of its GHG savings (Ali et al 2016)

Another application of biogas which has been mentioned above lies in the possibility to produce

it from agricultural residues and municipal waste thus offering a viable alternative to composting

or landfilling the waste and contributing to sustainable waste management

22 Biogas as a sustainable energy source

The production of biogas from agricultural and municipal waste is one of the trending and

promising environmentally friendly technologies in the world today This is because biogas

production is driven by energy sustainable processes that contribute relatively less to climate

change compared to natural gas production from fossil fuels (Jiřiacute et al 2016) With a rise in biogas

energy production from 028 exajoules to 133 exajoules between 2000 and 2017 (Wang 2019)

the global biogas production is projected to be worth 110 billion US dollars by 2025 with a

compound annual growth rate of 7 (Global Market Insights 2019)

Considering the growing market of biogas globally special care has to be taken in ensuring that

the production and consumption of biogas are in line with and do not negatively affect the three

pillars of sustainability namely the economy environment and society These three pillars are

relevant and applicable in accessing the sustainability of biogas as a renewable energy source

(Purvis et al 2018) Based on the focus of the EU sustainability criteria the major aspect analyzed

in this paper is the environmental sustainability

This paper addresses the factors related to biogas environmental sustainability analyzing the life

cycle of biogas production in terms of GHG reductions against the fossil fuels comparators as

well as in terms of the feedstock used to produce biogas The use of municipal and agricultural

waste in particular appears as a viable option to solve environmental issues through the creation

of a suitable end of life for waste and the reduction of the amount of waste remaining in the landfill

3 For a comprehensive overview of upgrading techniques see eg Wilken et al (2017)

8

sites (Jonas et al 2017) The problem of GHG emissions at landfills not equipped with gas capture

is thereby reduced and as a result air pollution is diminished Because the landfills are usually

close to the cities biogas plants are often established close to them and by this the distribution of

energy becomes simpler and more efficient compared to the fossil energy (Jacopo et al 2013)

Conducting a Life Cycle Sustainability Assessment (LCSA) which also includes a Life Cycle

Assessment (LCA) represents a promising tool for evaluating sustainable production and

consumption This tool is also considered as the best approach to analyzing the environmental

social and economic sustainability of production processes (Hannouf amp Assefa 2019) To

illustrate the sustainability of biogas production against carbon intensive energy sources we first

conduct an LCA and compare the environmental impacts of the production of biogas against

carbon intensive energy sources In obtaining quantitative results the environmental impacts due

to the generation of 1MJ of energy were calculated for biogas from waste and diesel production

Diesel was chosen as a fossil fuel comparator due to its high level of industrial application The

same amount of energy yield was chosen so that the environmental impacts are directly

comparable

Each production process impacts the environment in a very general sense along a number of

directions For the LCA analysis the EU has recommended a set of Life Cycle Impact Assessment

methods (JRC 2012) There major impact categories for any production chain include climate

change (in CO2-equivalent) ecosystem quality human health and resource use Each of them is

further detailed eg the climate change may be induced by the use of fossil fuels land use and

land use change (LULUC) or through biogenic impact (ibid) With a focus on the three major

impact categories in the EU sustainability criteria ndash climate change land use change and fossils as

a resource ndash the results of the first brief analysis are provided in Figure 1 The figure shows that

the production of biogas can achieve an 86 reduction of GHG against the production of diesel

Regarding the reduction of land use an 84 reduction can be achieved and there is no significant

impact of biogas production on fossil fuel consumption when compared to diesel production

Figure 1 LCA environmental footprint results for biogas from waste versus diesel tons per hectare

9

It must be noted that this brief comparison shows the ldquobest caserdquo scenario since ndash as mentioned

before ndash biogas from waste is the most sustainable biogas type (Omar 2017) The sustainability

of biogas from energy crops is on the contrary contestable even when judging on the mere basis

of the overall impact (Guo et al 2015 Roumlder 2016 de Andrade 2016 Achinas et al 2017) On

top of that the environmental impact of biogas generation from energy crops can potentially vary

in different regions of the world due to varying crop yields Therefore the rest of the paper will

specifically focus on the production of biogas from energy crops

3 Research design

We perform our analysis in two main steps First we investigate the environmental sustainability

of biogas from a regionalized perspective Second we review how existing policies tackle the

sustainability issues of biogas production We then combine the results of the two analyses to

suggest tailored policy recommendations aimed at enhancing biogas sustainability outside the EU

and particularly in developing countries

For our analysis of the environmental sustainability of biogas we assess the environmental impact

of its production ndash to which we will also refer to as footprint ndash along several impact categories

We use the Life Cycle Assessment (LCA) approach and the impact categories correspond to those

defined by the EU (JRC 2012) They will be specifically referred to below in connection with the

specific software we use Unlike other LCA studies we are looking at how the overall footprint is

distributed across the world and how this distribution changes if we move our hypothetical plant

to different locations Just like in the case of goods production one might expect GHG emissions

in biofuels production or environmental effects of crop cultivation to fall into international

responsibility (for goods see Pan et al (2008) for an example of Chinarsquos role in international trade

and GHG emissions) At the same time as will be shown later only a few countries deal with

biogas sustainability within their territories let alone from a cross-border perspective To grasp

the relevance and effects of this perspective we perform a regionalized LCA

We split the LCA analysis into further two steps We first compare the regional impacts for an

arbitrary (ldquoglobalrdquo) biogas plant location to examine if the patterns differ between the feedstocks

As it is primarily biogas from energy crops which raises sustainability questions in the literature

and in the public (Kline et al 2016) we only look at this group of feedstocks The two most often

analyzed energy crops are maize and sugar beet (see Hijazi et al 2016) Thus given the scope of

our paper we limit ourselves to these two feedstocks

We then focus specifically on several plant locations to investigate how the location changes the

pattern for the specific feedstock For that we analyze four plant locations in four different parts

of the world Brazil as the major biogas producer in the Latin America and among the developing

countries (due to the large country size we focused specifically on the state of Paranaacute where

UNIDO-GEF projects for biogas promotion have been active since 20154) China and Germany

as the major biogas producers in Asia and Europe respectively and Nigeria as the emerging biogas

producer and the seat of the African Biorenewable Association These countries represent very

different stages of economic development and one of the questions we want to test with our LCA

4 See eg the ldquoBiogas Applications for the Brazilian Agro-industryrdquo project at wwwthegeforgprojectbiogas-

applications-brazilian-agro-industry (accessed 27 October 2019)

10

analysis is if the sustainability concerns are equally relevant for both developed and developing

countries

We use the OpenLCA software and the ecoinvent database to perform the analysis5 The software

is capable of evaluating environmental impacts and other relevant environmental and economic

aspects for each part of the value chain from the extraction of material through transport and

production to the end-use The OpenLCA provides results along the impact categories as

recommended by JRC (2012) A brief overview of these categories is provided in Table A1 in

Appendix 1

For agricultural biogas the ecoinvent database only contains the processes for biogas plant

construction and production of biogas from animal manure For energy crops we have to create a

new process based on this existing one To analyze the effects of biogas production from maize

and sugar beet the process for manure was taken as a basis Specifically the inputs of agricultural

plant construction and of energy and heat to operate the digester were taken from that example

The input of feedstock was replaced with the respective energy crop as follows The amount of

feedstock needed for biogas production was calculated using the potential biogas yield from the

literature 066 m3kg of total solids for maize as in Hutňan (2016) and 0685 m3kg of total solids

for sugar beet as an average of the findings of Starke amp Hoffmann (2014) The share of total solids

in the fresh crops for the respective feedstocks was taken from Kreuger et al (2011) who provide

a comprehensive overview on a number of crops To specifically investigate potential regional

differences arising from varying soil productivity we added two input processes which were not

relevant for biogas from manure Firstly we account for the amount of land needed to grow the

energy crop based on the regional yields provided as GIS data by Monfreda et al (2008) in the

EarthStat project The spatial distribution of yields is illustrated in Figures A1 and A2 in Appendix

2 for maize and sugar beet respectively Secondly we add the process for transportation of the

feedstock to the plant For manure feedstocks it is typically assumed that manure is collected in a

barn (Lusk 1998 Homan 2012) so the transportation distance is negligible provided the biogas

plant is constructed not far from the barn For energy crops the same cannot be the case the crops

have to be delivered from the whole cultivation area and this distance needs to be accounted for

To do so we assumed the plant to be located within a square field where the crop is grown and

used the average distance within a square as the transportation distance choosing a lorry as means

of transport The estimation of the environmental impact was then done using the ILCD 20 2018

midpoint method The amount of biogas produced is normalized to 100 m3 for the sake of

comparability6

5 OpenLCA is a professional LCA and footprint software that has a variety of features and many available

databases An important advantage against other professional LCA software is that openLCA is an open access

software It is also endorsed by the US Environmental Protection Agency (cfpubepagovsiindexcfm) The

ecoinvent database is an extensive and comprehensive collection of datasets on life cycle inventory including a

large number of products production processes and value chains (see httpswwwecoinventorg for more

information on the database) 6 The results of a regionalized LCA reflect the contribution of different regions to the overall impact ie the

percentage share of the respective region Therefore scaling the amount of biogas up or down will not change

the results We experimented with 1 m3 100 m3 and 100000 m3 of biogas and the result was qualitatively always

the same

11

4 Regional impacts of biogas production

In this section we present the results of the regionalized LCA We start by briefly comparing the

overall impacts of biogas production from maize and sugar beet After that we focus on the results

in a regional perspective first with unknown plant location and then for four different plant

locations

Regarding the overall impact of biogas production from maize and sugar beet along the impact

categories listed in Table A1 it should be noted that maize has a much larger impact than sugar

beet on all categories The comparison is illustrated in Figures A3-A6 in Appendix 3 and this

result is in line with the findings outlined by Hijazi et al (2016) However the regional impacts

of the two feedstocks show quite some differentiation

The first finding is that the regional distribution of the impacts differs substantially between the

two agricultural feedstocks For the sake of brevity we only provide results for three impacts

which are also addressed in the EU sustainability criteria climate change due to land use and land

use change use of fossils as a resource and use of land as a resource The comparison is illustrated

in Figures A7-A9 in Appendix 4 The maps show relative contributions of the respective regions

to the overall impact the warmer the color on the map the larger the regionrsquos contribution7

In terms of land use and the LULUC-induced climate change (Figures A7-A8) the regional

variation follows quite closely the world industrialization patterns on the one hand and the

agricultural productivity on the other In case of maize the impact is most prominent in Argentina

both for land use and LULUC-induced climate change This is not surprising as on the one hand

Argentina is among the top five maize producers across world8 while on the other hand

Argentinian agriculture is responsible for 90 of the countryrsquos forest loss (Antoacuten et al 2019)

The latter is translated into the LULUC-induced climate change In the case of sugar beet the

LULUC-induced climate change is prominent in Brazil however there is no overlap with land use

as a resource This suggests that the effect is not due to sugar beet production which is also in line

with Figure A2 in Appendix 2 A closer investigation reveals that additional electricity production

for agriculture and the plant would have the highest LULUC-related environmental costs in Brazil

where the majority of electricity is supplied by hydropower and water reservoirs created for that

pose a number of environmental challenges (von Sperling 2012)

With regard to the use of fossil fuels (Figure A9) the major impacts are as could be expected in

the fuel- and mineral-exporting countries The impact comes on the one hand from the energy for

plant construction operation and from the fuel used for feedstock transportation On the other

hand it also reflects the resources for fertilizer production which is quite important in crop

agriculture

Turning to different plant locations the second important finding is that while certain impacts are

connected to plant location others are always attributed to the same regions The results of the

comparison for sugar beet are illustrated in Figures A10-A11 in Appendix 5 The results for maize

7 The drawback of the OpenLCA software is that it does not provide an exact scale for the regionalized results

The illustrative maps should therefore be considered as a qualitative not quantitative reference 8 Based on FAO data wwwfaoorgfaostatendataQC (accessed 8 December 2019)

12

are presented in Figures A12-A13 in Appendix 6 Again the higher contribution of a region to the

overall impact is marked with warmer colors For sugar beet particularly the effects related to

growing the energy crops ldquomoverdquo together with the plants (see the impact on the land use in Figure

A10) In the case of maize Argentina seems to be one of the source countries for the feedstock for

all four plant locations Unlike other major maize (corn) producers not only is Argentina the third

largest exporter of corn but also corn figures as the second largest category of Argentinian

exports9 At the same time part of the impact is still located in the country of the plant location

Another interesting observation in the cases of both maize and sugar beet is that the more

developed the country the lower the impact share This also overlaps with the distribution of yields

in Figures A1-A2 in Appendix 2

Turning to other resources the picture is similar to that with the undefined plant location Both for

maize and sugar beet especially the use of resources related to fertilizers plant construction and

transportation (minerals and metals) is associated with the same regions independent of where the

plant is located In other words fossil energy construction materials and fertilizers often do not

come from the same country they are used in This raises the question in how much the impact

created by this demand is taken into account by the policy-makers when promoting biogas or

setting the criteria for determining whether to call biogas a sustainable renewable energy

To sum these results up there are several observations relevant for tackling sustainability concerns

of biogas from energy crops

1 Production of biogas may have substantial effects in terms of land use and climate change

induced by a change in land use or deforestation This effect might come directly from growing

energy crops However it can also come eg from supporting energy production as long as

biogas production is not completely autonomous or does not cover the energy needed for the

cultivation of energy crops

2 For some feedstocks it is likely that at least a share of them is imported from other countries

therefore shifting the environmental impact away from the countries where a biogas plant is

located

3 For other resources necessary for biogas plant construction and cultivation of the energy crop

the majority of the impact is accrued to the same set of countries independent of the plant

location Therefore it is typically situated outside of the country where a biogas plant is

located

If one further looks at the future of biogas production and distribution there is already some

movement towards trading this fuel Examples are the plans of the German electric utilities

company RWE to trade biogas between Great Britain and the Netherlands (enformer 2018) and

inclusion of biogas and feedstocks in the portfolio of companies trading energy commodities (eg

ACT Commodities) However long-distance transportation options for biogas as discussed in

Section 21 can be somewhat limited compared to liquid biofuels For example to transport

biogas overseas it has to be compressed or liquified meaning the origin and destination ports need

to be equipped respectively and LNG vessels need to be employed This creates additional

9 Based on the data by the Observatory of Economic Complexity wwwoecworldenprofilecountryarg

(accessed 8 December 2019)

13

transportation costs compared to liquid fuels and lowers profitability of such trade Therefore it

is rather likely that biogas ndash provided it is produced in sufficient quantities ndash is first traded

regionally where grid connections exist or between already LNG-equipped locations Another

option is that instead of the final product the feedstock will be traded Trade in agricultural

products is very well established and the trend of trading energy crops for biofuels in general and

biogas in particular was already visible in Europe in the early 2010s (Kalt amp Kranzl 2012 Pagh-

Schlegel amp Elkjaeligr 2012)

In view of these considerations it is likely that the three observations outlined above will be

increasingly important in the future Therefore they need to be taken into account when promoting

biogas development around the world In the next section we will review how some existing

regulations are already able to tackle these challenges Based on this we will then formulate our

policy recommendations

5 Sustainable biogas policy the EUrsquos legal framework

51 Biofuels in EU law targets and sustainability criteria

The EU is widely reputed as a leader of international climate action (Bogojevic 2016) having

substantially contributed to the development of the international legal regime on climate change

(Oberthuumlr 2018) Renewable energy has traditionally represented a proactive area of the EUrsquos

policymaking as the RE targets were already enshrined in the 2001 Renewable Energy Directive

(RED 2001) and subsequently updated under the 2009 Renewable Energy Directive (RED 2009)

and the 2018 Renewable Energy Directive (RED 2018) Along with the general RE targets at the

Member State or at the EU level specific sub-targets have been enacted with a view of promoting

the energy transition in the transport sector At first such targets were enshrined in the 2003

Biofuels Directive (Biofuels Directive 2003) Subsequently targets for renewable energy in

transport have been incorporated into the RED 2009 and most recently a target of 14 renewable

energy in transport by 2030 is foreseen under Article 25(1) RED 2018

In order to reach their renewable energy targets several EU Member States have adopted different

kinds of support schemes such as feed-in tariffs (FIT) feed-in premium (FIP) tradable green

certificates and auctions (Banja et al 2019) Moreover further policy measures have also

contributed to a steady increase in the share of bioenergy in some cases specifically encouraging

the deployment of biogas and biomethane A case in point is the Alternative Fuels Infrastructure

Directive (AFID Directive) which includes minimum requirements for the build-up of refueling

points for liquid natural gas (LNG) and compressed natural gas (CNG) (Van Grinsven et al 2017)

As proven by the recent Eurostat data the EU policy activism has contributed to a steady increase

of the share of bioenergy (including energy from the agricultural biomass the forest biomass and

the renewable waste) which grew from 59 in 2005 to 103 in 2017 (Banja et al 2019)

However incentives for biofuels production have also triggered in some cases the conversion of

agricultural land into land dedicated to the cultivation of energy crops The biogas sector along

with other biofuels is part of this phenomenon determined inter alia by the higher methane yield

of energy crops compared to manure and other sources of agricultural waste In the case of

14

Germany for instance biogas production from energy crops significantly outweighs its production

from industrial and agricultural waste (Eyl-Mazzega et al 2019)

Following the adoption of the RED 2009 the EU legislator has taken specific countermeasures to

reduce the risks connected to an indiscriminate expansion of biofuel production from energy crops

Such measures known as lsquosustainability criteriarsquo address both lsquocarbon-relatedrsquo and lsquonon carbon-

relatedrsquo concerns In particular lsquocarbon-relatedrsquo encompasses the necessary reduction in the GHG

emissions that needs to be achieved by biofuels against their fossil fuel comparators (Olsen et al

2016) lsquoNon-carbon relatedrsquo concerns on the other hand pertain to nature conservation and

biodiversity aspects of land use also known as lsquodirect land-use changersquo (DLUC) as well as to the

risk that part of the demand for biofuels will be met by increasingly devoting land to agriculture

a phenomenon known as lsquoIndirect Land-Use Changersquo (ILUC) (European Commission 2010) The

RED 2009 took into account both carbon-related concerns and non-carbon related concerns with

the exclusion of ILUC It introduced a minimum standard of 35 GHG emission savings from

the use of biofuels and provided that lsquosustainablersquo biofuels could not be sourced from certain

protected areas (eg highly biodiverse grassland wetlands continuously forested areas) (RED

2009 Article 17) For what concerns ILUC instead the normative framework was integrated by

the adoption of the 2015 Indirect Land-Use Change Directive (ILUC Directive) It introduced an

overall 7 limit of biofuels from food crops as well as the category of lsquoadvanced biofuelsrsquo ie

biofuels that are not in competition with food crops (ILUC Directive recital (5))

Importantly the promotion of lsquosustainablersquo biofuels in the RED 2009 did not entail an absolute

ban on lsquonon-sustainablersquo biofuels Instead compliance with the sustainability criteria is required

for biofuels to enjoy a threefold set of benefits (a) accounting towards the accomplishment of the

national renewable energy targets (b) contributing to the fulfilment of renewable energy

obligations eg the mandatory share of renewable energy in transport (c) being eligible for

financial support

52 Sustainable biogas in the 2018 Renewable Energy Directive

In 2018 the EU adopted a new Renewable Energy Directive (RED 2018) which largely builds

upon the previous RED 2009 and enhances the legal framework for the promotion of advanced

biofuels Most notably the RED 2018 introduces a specific sub-target for a share of 35

advanced biofuels by 2030 (RED 2018 Article 25(1)) Under the RED 2018 advanced biofuels

can be counted for twice their energy content when calculating their contribution towards the target

for renewable energy in the transport sector Moreover the technological development and

deployment of advanced biofuels constitutes one of the elements to be included in the lsquoUnion

Bioenergy Sustainability Reportrsquo a biennial progress report to be released by the European

Commission from 2023 (Governance Regulation (2018) Annex X)

The RED 2018 is particularly relevant for what concerns biogas as it extends the need to comply

with non-carbon related sustainability criteria to biogas production In fact the previous RED 2009

only addressed the minimum GHG emissions savings of biogas (RED 2009 Annex V) while the

remainder of the sustainability criteria only referred to liquid biofuels The RED 2018 instead

applies the full range of sustainability criteria also to biogas production with an exemption for

small installations not exceeding a total rated thermal input of 2 MW (RED 2018 Article 29(1))

15

Analogously to the RED 2009 also in the RED 2018 compliance with the sustainability criteria is

necessary for bioenergy to account towards the renewable energy targets and to qualify for

financial support (RED 2018 Article 29(1)) For what specifically concerns ILUC the RED 2018

is supplemented by the Commission Delegated Regulation (EU) 2019807 (ILUC Delegated

Regulation) which sets specific criteria for the identification of respectively high- and low- ILUC

risk feedstock

6 Promoting biogas sustainability the case for sustainability criteria

beyond the EU legal framework

61 Global relevance of the EU sustainability criteria

The EU legal framework for biofuels sustainability is widely reputed as an example of lsquopioneeringrsquo

legislation (Kulovesi et al 2009) and one of the most comprehensive and advanced binding

sustainability schemes on a global scale (European Commission 2011) The global relevance of

the EU sustainability criteria emerges in particular from the fact that their validity is not limited to

the EU borders On the contrary for biofuels to enjoy the benefits mentioned above (see RED

2018 Article 29(1)) compliance with the sustainability criteria needs to be proven regardless of

whether the feedstock originates from within or outside the EU Such extraterritorial applicability

has given rise to a vivid debate related to the compatibility of the EU sustainability criteria with

international trade rules (Olsen et al 2016 Lydgate 2012 Scott 2011 Kulovesi et al 2009)

Conversely less scholarly attention has been devoted to the regulation of biofuels sustainability

outside the EU legal framework and especially in developing countries Undoubtedly for many

developing countries the EU represents an important export market for liquid biofuels (eg

bioethanol and biodiesel) Therefore the adoption of stringent sustainability criteria has the

potential to significantly affect biofuels production For instance the classification of palm oil

(often used as a feedstock for the production of biodiesel) as a high-ILUC risk feedstock under the

newly adopted ILUC Delegated Regulation has recently given rise to a legal complaint by

Indonesia currently pending before the WTO (WTO 2019) Despite the global significance of the

EU market this accounts only for a minority share of global biofuels trade (IEA 2019b)

Therefore the adoption of the sustainability criteria also in extra-EU jurisdictions would be a

crucial step to further mitigate the negative impacts associated with biofuels and biogas

production

In a few non-EU countries some progress has been registered in support of biofuels sustainability

This is the case for instance of Brazil Japan and the United States (Naiki 2016) On the contrary

sustainability criteria have rarely been adopted in the legal framework of developing countries A

survey of biofuel policies in East African countries for instance concludes that lsquogenerally

agrofuel investments have been insensitive to environmental and human rights concerns of

vulnerable populationsrsquo (Owino 2016) The same study holds that in the East African region

only Mozambique has put in place sustainability criteria in its biofuels policy known as the

lsquoMozambique Biofuel Sustainable Frameworkrsquo (MBSF) Even in the legislative framework of

developed countries biofuels sustainability is not taken into account to the same extent as in the

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 4: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

4

The Phantom Menace

Bridging the Regulatory Gap for Sustainable Biogas

Alessandro Monti Daniel Oderinde amp Maria Polugodina

1 Introduction

The melting of glaciers sea level rise and extreme weather events are no longer mere scientific

predictions of some distant future but an everyday reality in many parts of the world The latest

report published by the Intergovernmental Panel on Climate Change (IPCC 2018) pictured the

daunting consequences of global warming exceeding 15 degC above the pre-industrial levels the

ambitious target set under the Paris Agreement (UNFCCC 2015) To tackle such unprecedented

challenges far-reaching policy reforms in numerous economic sectors are needed Several of the

17 Sustainable Development Goals (SDGs) approved in 2015 by the UN General Assembly

(United Nations 2015) set the course for such reform efforts

The energy sector in particular is responsible for the largest share of global greenhouse gas

(GHG) emissions (IEA 2019a) and SDG 7 (ldquoaffordable and clean energyrdquo) mandates a transition

away from fossil fuels Hence renewable energy (RE) ie energy produced from renewable

sources in a sustainable manner (IRENA 2009) has a central role to play for a sustainable

development of the energy system This paper focuses on one specific category of renewable

energies namely biofuels due to their large untapped potential to be deployed in the transport

sector Within this category the focus is further restricted to gaseous biofuels also known as

biogas When upgraded to biomethane biogas has a significant potential to be directly applied to

the transport sector also powering heavy-duty vehicles (Wilken et al 2017) Moreover biogas

can be produced from a wide variety of feedstock including waste therefore having high potential

as a springboard for the circular economy

However biogas not unlike other biofuels faces specific sustainability challenges The production

of biogas from agricultural feedstock through the use of energy crops represents a potential threat

to agricultural land and may lead to phenomena such as the spreading of ldquoMaiswuumlstenrdquo ie ldquomaize

desertsrdquo exclusively dedicated to the cultivation of maize for biogas production Hence this study

aims to take a closer look at the biogas value chain to foster an enhanced understanding of biogas

sustainability and promote scientifically-sound policies With reference to the SDGs our approach

will particularly highlight possible options to foster synergies between SDG 7 (ldquoaffordable and

clean energyrdquo) and SDG 13 (ldquoclimate actionrdquo) and SDG 12 (ldquoresponsible consumption and

productionrdquo)

The challenges of biogas sustainability have already been addressed in numerous studies A

common approach is the development of a life-cycle-assessment (LCA) to quantify the impacts

of biogas production for different plant configurations (for a recent review of LCA studies on

biogas see Hijazi et al (2016)) Among the most recent studies Omar (2017) and Lyng amp Brekke

(2019) show that biogas from waste is the more sustainable than biogas from agricultural crops

5

and other carbon intensive sources The reason is that the production of biogas from agricultural

cultivation requires several steps including farmland preparation fertilization machineries crop

harvest etc Lyng amp Brekke (2019) also observe that the choice of the crop has an impact on GHG

emissions and that perennial crops are more sustainable than the annual ones A common feature

of these studies is that they usually take a selection of existing biogas plants in a certain country

and compare feedstocks plant sizes or technologies to each other What seems missing however

is a broader outlook transcending those studies Does the same plant have an equal impact

everywhere in the world Or is it dependent on where the plant is located What is the geographical

distribution of the impact

The promotion of biogas sustainability has numerous policy implications In this sense one of the

most advanced regulatory frameworks can be found in the European Union which since the

adoption of the first Renewable Energy Directive (RED 2009) has included sustainability criteria

for biofuels Such criteria were originally formulated with regard to liquid biofuels Yet in 2018

an updated version of the Renewable Energy Directive was adopted (RED 2018) which extends

the applicability of numerous sustainability criteria also to biogas production Outlining the key

features of the EU legal framework will serve as a useful reference to propose strategies for the

development of sustainable biogas policies also in extra-EU jurisdictions

Adopting an interdisciplinary approach which covers both technical and legal aspects of biogas

production our paper investigates the role of sustainability in biofuels and biogas policies

addressing the following research question How can the production of sustainable biogas be

promoted through scientifically sound policies

This main research question is further articulated in the following sub-research questions

minus What is the environmental impact of biogas production from different plant configurations

minus How does the environmental impact of biogas production differ spatially

minus Which policies and regulations address sustainability concerns

minus How can existing policies be improved

Our paper answers these interrogatives by adopting an interdisciplinary approach and bridging the

gaps between studies in environmental and legal sciences The analysis is divided into the

following two steps

First we employ the LCA approach to calculate the regionalized impact of biogas production from

different feedstocks Differently to other LCA studies we do not focus on the overall effect of an

existing plant in a specific country Instead we take into account that regional differences eg in

climate can influence the sustainability of the same type of biogas depending on the plant location1

A prominent example here is variation in the yields of the energy crops In places where the soil

is less productive larger harvest areas or better fertilization are needed to produce the same amount

of biogas Apart from that the production of fertilizers and plant parts is often not located in the

same region as the biogas plant itself Therefore we draw on Geographic Information System

(GIS) data to support our analysis and perform a regionalized LCA for a hypothetical plant which

has the same technical characteristics in every location we consider

1 For verbal simplicity we will often refer to biogas from different feedstocks as ldquotypesrdquo of biogas throughout

the paper

6

Second we review the existing policies regarding biofuels and biogas sustainability Moving from

a review of the EU sustainability criteria as updated under the RED 2018 we propose a number

of policy recommendations to foster sustainable biofuels and biogas policies in extra-EU countries

with a special focus on developing countries

The remainder of the paper is structured as follows In Section 2 we provide a brief overview of

the production applications and sustainability concerns of biogas Section 3 illustrates our research

approach Section 4 presents the results of the LCA analysis Section 5 addresses the EU legal

framework for biofuels and biogas Section 6 analyses the global relevance of the EU sustainability

criteria and provides some policy recommendations for the promotion of sustainable biogas

Section 7 concludes the paper

2 Biogas and biomethane an overview

21 Biogas production sources processes applications

Biogas is a mixture of gases with high share of methane (usually 50-70) produced through

decomposition of organic matter (biomass feedstock) Biomethane is in turn a result of biogas

upgrading whereby other gases are removed from biogas and methane share reaches over 90 In

a broader perspective biogas is one of a number of biofuels Biofuels are based on plant biomass

that can be burned to produce energy in which they are similar to fossil fuels (Guo et al 2015)

They however have faster recovery rates which makes them considered as renewable energy

(ibid) Biofuels can be solid (eg firewood) liquid (bioethanol biodiesel etc) or gaseous (biogas)

(Creutzig et al 2015 Guo et al 2015) Importantly they can be utilized in different areas such

as transport cooking as well as heat and electricity production (Creutzig et al 2015)

Among these fuels biogas stands out as a relatively new fuel with high potential but relatively

underdeveloped today While Guo et al (2015) predicted that biogas may replace up to 25 of

current natural gas demand by 2016 biogas production was still negligible comprising only one-

fifth of all bioenergy globally which in turn covered only 8 of all RE production (IRENA 2018)

Yet biogas represents a number of advantages relative to other biofuels Unlike other biofuels

(eg biodiesel or bioethanol) biogas production can use a large variety of feedstocks including

special energy crops (maize lay crops sweet potato straw etc) agricultural waste (plant residues

and animal manure) and municipal waste (Guo et al 2015) This can contribute to an additional

area of waste management both in rural and in urban areas It also diminishes the need for growing

specific energy crops which put under doubt the social and environmental sustainability of other

biofuels (Guo et al 2015 Roumlder 2016 de Andrade 2016 Achinas et al 2017)

The widely used and commercially most successful technology for biogas production today is

anaerobic digestion (AD) (Koornneef et al 2013) In this process a certain group of bacteria

transform the biomass into biogas and digestate (biofertilizer) in absence of oxygen2 Compared

to the refined natural gas delivered to the end user biogas has a lower share of methane but a

higher share of carbon dioxide as well as other components such as water vapor hydrogen

sulphide and ammonia (Muzenda 2014 Zhou et al 2017) Therefore in some cases (eg to be

2 For the description of the technical process see eg Achinas et al (2017) and Muzenda (2014)

7

used as a vehicle fuel) it has to be purified of contaminants (especially CO2) that means upgraded

to biomethane3

The main advantage of biogas is that it is easily stored for longer periods of time so it can be

treated as a stock energy just like the fossil fuels This important feature differentiates if from

electricity from hydro- solar and wind power which are the largest renewable energy sources

today (IRENA 2018) In addition both the main product of biogas production (the biogas itself)

and the by-product (the digestate) can be put to efficient use (Wilken et al 2017) Namely the

digestate can be used as an organic fertilizer while biogas itself has three main applications heat

generation power generation and transport fuel Biogas is primarily used for heat or power

generation often also in combined heat and power (CHP) units (ibid) Upgraded to biomethane

it has almost the same chemical composition as natural gas It can therefore be used in all types

of gas-fueled vehicles and thus make use of already existing fleets and commercially available

technologies (Svensson 2013) Where a grid exists biomethane can be freely intermixed with

natural gas to be easily transported over large distances Where no grid is available the biomethane

can be compressed or liquefied and transported very efficiently by road (Roggenkamp et al 2018

Svensson 2013) This also makes it stand out in comparison with hydrogen which is still costly

to produce and transport and is debated in terms of its GHG savings (Ali et al 2016)

Another application of biogas which has been mentioned above lies in the possibility to produce

it from agricultural residues and municipal waste thus offering a viable alternative to composting

or landfilling the waste and contributing to sustainable waste management

22 Biogas as a sustainable energy source

The production of biogas from agricultural and municipal waste is one of the trending and

promising environmentally friendly technologies in the world today This is because biogas

production is driven by energy sustainable processes that contribute relatively less to climate

change compared to natural gas production from fossil fuels (Jiřiacute et al 2016) With a rise in biogas

energy production from 028 exajoules to 133 exajoules between 2000 and 2017 (Wang 2019)

the global biogas production is projected to be worth 110 billion US dollars by 2025 with a

compound annual growth rate of 7 (Global Market Insights 2019)

Considering the growing market of biogas globally special care has to be taken in ensuring that

the production and consumption of biogas are in line with and do not negatively affect the three

pillars of sustainability namely the economy environment and society These three pillars are

relevant and applicable in accessing the sustainability of biogas as a renewable energy source

(Purvis et al 2018) Based on the focus of the EU sustainability criteria the major aspect analyzed

in this paper is the environmental sustainability

This paper addresses the factors related to biogas environmental sustainability analyzing the life

cycle of biogas production in terms of GHG reductions against the fossil fuels comparators as

well as in terms of the feedstock used to produce biogas The use of municipal and agricultural

waste in particular appears as a viable option to solve environmental issues through the creation

of a suitable end of life for waste and the reduction of the amount of waste remaining in the landfill

3 For a comprehensive overview of upgrading techniques see eg Wilken et al (2017)

8

sites (Jonas et al 2017) The problem of GHG emissions at landfills not equipped with gas capture

is thereby reduced and as a result air pollution is diminished Because the landfills are usually

close to the cities biogas plants are often established close to them and by this the distribution of

energy becomes simpler and more efficient compared to the fossil energy (Jacopo et al 2013)

Conducting a Life Cycle Sustainability Assessment (LCSA) which also includes a Life Cycle

Assessment (LCA) represents a promising tool for evaluating sustainable production and

consumption This tool is also considered as the best approach to analyzing the environmental

social and economic sustainability of production processes (Hannouf amp Assefa 2019) To

illustrate the sustainability of biogas production against carbon intensive energy sources we first

conduct an LCA and compare the environmental impacts of the production of biogas against

carbon intensive energy sources In obtaining quantitative results the environmental impacts due

to the generation of 1MJ of energy were calculated for biogas from waste and diesel production

Diesel was chosen as a fossil fuel comparator due to its high level of industrial application The

same amount of energy yield was chosen so that the environmental impacts are directly

comparable

Each production process impacts the environment in a very general sense along a number of

directions For the LCA analysis the EU has recommended a set of Life Cycle Impact Assessment

methods (JRC 2012) There major impact categories for any production chain include climate

change (in CO2-equivalent) ecosystem quality human health and resource use Each of them is

further detailed eg the climate change may be induced by the use of fossil fuels land use and

land use change (LULUC) or through biogenic impact (ibid) With a focus on the three major

impact categories in the EU sustainability criteria ndash climate change land use change and fossils as

a resource ndash the results of the first brief analysis are provided in Figure 1 The figure shows that

the production of biogas can achieve an 86 reduction of GHG against the production of diesel

Regarding the reduction of land use an 84 reduction can be achieved and there is no significant

impact of biogas production on fossil fuel consumption when compared to diesel production

Figure 1 LCA environmental footprint results for biogas from waste versus diesel tons per hectare

9

It must be noted that this brief comparison shows the ldquobest caserdquo scenario since ndash as mentioned

before ndash biogas from waste is the most sustainable biogas type (Omar 2017) The sustainability

of biogas from energy crops is on the contrary contestable even when judging on the mere basis

of the overall impact (Guo et al 2015 Roumlder 2016 de Andrade 2016 Achinas et al 2017) On

top of that the environmental impact of biogas generation from energy crops can potentially vary

in different regions of the world due to varying crop yields Therefore the rest of the paper will

specifically focus on the production of biogas from energy crops

3 Research design

We perform our analysis in two main steps First we investigate the environmental sustainability

of biogas from a regionalized perspective Second we review how existing policies tackle the

sustainability issues of biogas production We then combine the results of the two analyses to

suggest tailored policy recommendations aimed at enhancing biogas sustainability outside the EU

and particularly in developing countries

For our analysis of the environmental sustainability of biogas we assess the environmental impact

of its production ndash to which we will also refer to as footprint ndash along several impact categories

We use the Life Cycle Assessment (LCA) approach and the impact categories correspond to those

defined by the EU (JRC 2012) They will be specifically referred to below in connection with the

specific software we use Unlike other LCA studies we are looking at how the overall footprint is

distributed across the world and how this distribution changes if we move our hypothetical plant

to different locations Just like in the case of goods production one might expect GHG emissions

in biofuels production or environmental effects of crop cultivation to fall into international

responsibility (for goods see Pan et al (2008) for an example of Chinarsquos role in international trade

and GHG emissions) At the same time as will be shown later only a few countries deal with

biogas sustainability within their territories let alone from a cross-border perspective To grasp

the relevance and effects of this perspective we perform a regionalized LCA

We split the LCA analysis into further two steps We first compare the regional impacts for an

arbitrary (ldquoglobalrdquo) biogas plant location to examine if the patterns differ between the feedstocks

As it is primarily biogas from energy crops which raises sustainability questions in the literature

and in the public (Kline et al 2016) we only look at this group of feedstocks The two most often

analyzed energy crops are maize and sugar beet (see Hijazi et al 2016) Thus given the scope of

our paper we limit ourselves to these two feedstocks

We then focus specifically on several plant locations to investigate how the location changes the

pattern for the specific feedstock For that we analyze four plant locations in four different parts

of the world Brazil as the major biogas producer in the Latin America and among the developing

countries (due to the large country size we focused specifically on the state of Paranaacute where

UNIDO-GEF projects for biogas promotion have been active since 20154) China and Germany

as the major biogas producers in Asia and Europe respectively and Nigeria as the emerging biogas

producer and the seat of the African Biorenewable Association These countries represent very

different stages of economic development and one of the questions we want to test with our LCA

4 See eg the ldquoBiogas Applications for the Brazilian Agro-industryrdquo project at wwwthegeforgprojectbiogas-

applications-brazilian-agro-industry (accessed 27 October 2019)

10

analysis is if the sustainability concerns are equally relevant for both developed and developing

countries

We use the OpenLCA software and the ecoinvent database to perform the analysis5 The software

is capable of evaluating environmental impacts and other relevant environmental and economic

aspects for each part of the value chain from the extraction of material through transport and

production to the end-use The OpenLCA provides results along the impact categories as

recommended by JRC (2012) A brief overview of these categories is provided in Table A1 in

Appendix 1

For agricultural biogas the ecoinvent database only contains the processes for biogas plant

construction and production of biogas from animal manure For energy crops we have to create a

new process based on this existing one To analyze the effects of biogas production from maize

and sugar beet the process for manure was taken as a basis Specifically the inputs of agricultural

plant construction and of energy and heat to operate the digester were taken from that example

The input of feedstock was replaced with the respective energy crop as follows The amount of

feedstock needed for biogas production was calculated using the potential biogas yield from the

literature 066 m3kg of total solids for maize as in Hutňan (2016) and 0685 m3kg of total solids

for sugar beet as an average of the findings of Starke amp Hoffmann (2014) The share of total solids

in the fresh crops for the respective feedstocks was taken from Kreuger et al (2011) who provide

a comprehensive overview on a number of crops To specifically investigate potential regional

differences arising from varying soil productivity we added two input processes which were not

relevant for biogas from manure Firstly we account for the amount of land needed to grow the

energy crop based on the regional yields provided as GIS data by Monfreda et al (2008) in the

EarthStat project The spatial distribution of yields is illustrated in Figures A1 and A2 in Appendix

2 for maize and sugar beet respectively Secondly we add the process for transportation of the

feedstock to the plant For manure feedstocks it is typically assumed that manure is collected in a

barn (Lusk 1998 Homan 2012) so the transportation distance is negligible provided the biogas

plant is constructed not far from the barn For energy crops the same cannot be the case the crops

have to be delivered from the whole cultivation area and this distance needs to be accounted for

To do so we assumed the plant to be located within a square field where the crop is grown and

used the average distance within a square as the transportation distance choosing a lorry as means

of transport The estimation of the environmental impact was then done using the ILCD 20 2018

midpoint method The amount of biogas produced is normalized to 100 m3 for the sake of

comparability6

5 OpenLCA is a professional LCA and footprint software that has a variety of features and many available

databases An important advantage against other professional LCA software is that openLCA is an open access

software It is also endorsed by the US Environmental Protection Agency (cfpubepagovsiindexcfm) The

ecoinvent database is an extensive and comprehensive collection of datasets on life cycle inventory including a

large number of products production processes and value chains (see httpswwwecoinventorg for more

information on the database) 6 The results of a regionalized LCA reflect the contribution of different regions to the overall impact ie the

percentage share of the respective region Therefore scaling the amount of biogas up or down will not change

the results We experimented with 1 m3 100 m3 and 100000 m3 of biogas and the result was qualitatively always

the same

11

4 Regional impacts of biogas production

In this section we present the results of the regionalized LCA We start by briefly comparing the

overall impacts of biogas production from maize and sugar beet After that we focus on the results

in a regional perspective first with unknown plant location and then for four different plant

locations

Regarding the overall impact of biogas production from maize and sugar beet along the impact

categories listed in Table A1 it should be noted that maize has a much larger impact than sugar

beet on all categories The comparison is illustrated in Figures A3-A6 in Appendix 3 and this

result is in line with the findings outlined by Hijazi et al (2016) However the regional impacts

of the two feedstocks show quite some differentiation

The first finding is that the regional distribution of the impacts differs substantially between the

two agricultural feedstocks For the sake of brevity we only provide results for three impacts

which are also addressed in the EU sustainability criteria climate change due to land use and land

use change use of fossils as a resource and use of land as a resource The comparison is illustrated

in Figures A7-A9 in Appendix 4 The maps show relative contributions of the respective regions

to the overall impact the warmer the color on the map the larger the regionrsquos contribution7

In terms of land use and the LULUC-induced climate change (Figures A7-A8) the regional

variation follows quite closely the world industrialization patterns on the one hand and the

agricultural productivity on the other In case of maize the impact is most prominent in Argentina

both for land use and LULUC-induced climate change This is not surprising as on the one hand

Argentina is among the top five maize producers across world8 while on the other hand

Argentinian agriculture is responsible for 90 of the countryrsquos forest loss (Antoacuten et al 2019)

The latter is translated into the LULUC-induced climate change In the case of sugar beet the

LULUC-induced climate change is prominent in Brazil however there is no overlap with land use

as a resource This suggests that the effect is not due to sugar beet production which is also in line

with Figure A2 in Appendix 2 A closer investigation reveals that additional electricity production

for agriculture and the plant would have the highest LULUC-related environmental costs in Brazil

where the majority of electricity is supplied by hydropower and water reservoirs created for that

pose a number of environmental challenges (von Sperling 2012)

With regard to the use of fossil fuels (Figure A9) the major impacts are as could be expected in

the fuel- and mineral-exporting countries The impact comes on the one hand from the energy for

plant construction operation and from the fuel used for feedstock transportation On the other

hand it also reflects the resources for fertilizer production which is quite important in crop

agriculture

Turning to different plant locations the second important finding is that while certain impacts are

connected to plant location others are always attributed to the same regions The results of the

comparison for sugar beet are illustrated in Figures A10-A11 in Appendix 5 The results for maize

7 The drawback of the OpenLCA software is that it does not provide an exact scale for the regionalized results

The illustrative maps should therefore be considered as a qualitative not quantitative reference 8 Based on FAO data wwwfaoorgfaostatendataQC (accessed 8 December 2019)

12

are presented in Figures A12-A13 in Appendix 6 Again the higher contribution of a region to the

overall impact is marked with warmer colors For sugar beet particularly the effects related to

growing the energy crops ldquomoverdquo together with the plants (see the impact on the land use in Figure

A10) In the case of maize Argentina seems to be one of the source countries for the feedstock for

all four plant locations Unlike other major maize (corn) producers not only is Argentina the third

largest exporter of corn but also corn figures as the second largest category of Argentinian

exports9 At the same time part of the impact is still located in the country of the plant location

Another interesting observation in the cases of both maize and sugar beet is that the more

developed the country the lower the impact share This also overlaps with the distribution of yields

in Figures A1-A2 in Appendix 2

Turning to other resources the picture is similar to that with the undefined plant location Both for

maize and sugar beet especially the use of resources related to fertilizers plant construction and

transportation (minerals and metals) is associated with the same regions independent of where the

plant is located In other words fossil energy construction materials and fertilizers often do not

come from the same country they are used in This raises the question in how much the impact

created by this demand is taken into account by the policy-makers when promoting biogas or

setting the criteria for determining whether to call biogas a sustainable renewable energy

To sum these results up there are several observations relevant for tackling sustainability concerns

of biogas from energy crops

1 Production of biogas may have substantial effects in terms of land use and climate change

induced by a change in land use or deforestation This effect might come directly from growing

energy crops However it can also come eg from supporting energy production as long as

biogas production is not completely autonomous or does not cover the energy needed for the

cultivation of energy crops

2 For some feedstocks it is likely that at least a share of them is imported from other countries

therefore shifting the environmental impact away from the countries where a biogas plant is

located

3 For other resources necessary for biogas plant construction and cultivation of the energy crop

the majority of the impact is accrued to the same set of countries independent of the plant

location Therefore it is typically situated outside of the country where a biogas plant is

located

If one further looks at the future of biogas production and distribution there is already some

movement towards trading this fuel Examples are the plans of the German electric utilities

company RWE to trade biogas between Great Britain and the Netherlands (enformer 2018) and

inclusion of biogas and feedstocks in the portfolio of companies trading energy commodities (eg

ACT Commodities) However long-distance transportation options for biogas as discussed in

Section 21 can be somewhat limited compared to liquid biofuels For example to transport

biogas overseas it has to be compressed or liquified meaning the origin and destination ports need

to be equipped respectively and LNG vessels need to be employed This creates additional

9 Based on the data by the Observatory of Economic Complexity wwwoecworldenprofilecountryarg

(accessed 8 December 2019)

13

transportation costs compared to liquid fuels and lowers profitability of such trade Therefore it

is rather likely that biogas ndash provided it is produced in sufficient quantities ndash is first traded

regionally where grid connections exist or between already LNG-equipped locations Another

option is that instead of the final product the feedstock will be traded Trade in agricultural

products is very well established and the trend of trading energy crops for biofuels in general and

biogas in particular was already visible in Europe in the early 2010s (Kalt amp Kranzl 2012 Pagh-

Schlegel amp Elkjaeligr 2012)

In view of these considerations it is likely that the three observations outlined above will be

increasingly important in the future Therefore they need to be taken into account when promoting

biogas development around the world In the next section we will review how some existing

regulations are already able to tackle these challenges Based on this we will then formulate our

policy recommendations

5 Sustainable biogas policy the EUrsquos legal framework

51 Biofuels in EU law targets and sustainability criteria

The EU is widely reputed as a leader of international climate action (Bogojevic 2016) having

substantially contributed to the development of the international legal regime on climate change

(Oberthuumlr 2018) Renewable energy has traditionally represented a proactive area of the EUrsquos

policymaking as the RE targets were already enshrined in the 2001 Renewable Energy Directive

(RED 2001) and subsequently updated under the 2009 Renewable Energy Directive (RED 2009)

and the 2018 Renewable Energy Directive (RED 2018) Along with the general RE targets at the

Member State or at the EU level specific sub-targets have been enacted with a view of promoting

the energy transition in the transport sector At first such targets were enshrined in the 2003

Biofuels Directive (Biofuels Directive 2003) Subsequently targets for renewable energy in

transport have been incorporated into the RED 2009 and most recently a target of 14 renewable

energy in transport by 2030 is foreseen under Article 25(1) RED 2018

In order to reach their renewable energy targets several EU Member States have adopted different

kinds of support schemes such as feed-in tariffs (FIT) feed-in premium (FIP) tradable green

certificates and auctions (Banja et al 2019) Moreover further policy measures have also

contributed to a steady increase in the share of bioenergy in some cases specifically encouraging

the deployment of biogas and biomethane A case in point is the Alternative Fuels Infrastructure

Directive (AFID Directive) which includes minimum requirements for the build-up of refueling

points for liquid natural gas (LNG) and compressed natural gas (CNG) (Van Grinsven et al 2017)

As proven by the recent Eurostat data the EU policy activism has contributed to a steady increase

of the share of bioenergy (including energy from the agricultural biomass the forest biomass and

the renewable waste) which grew from 59 in 2005 to 103 in 2017 (Banja et al 2019)

However incentives for biofuels production have also triggered in some cases the conversion of

agricultural land into land dedicated to the cultivation of energy crops The biogas sector along

with other biofuels is part of this phenomenon determined inter alia by the higher methane yield

of energy crops compared to manure and other sources of agricultural waste In the case of

14

Germany for instance biogas production from energy crops significantly outweighs its production

from industrial and agricultural waste (Eyl-Mazzega et al 2019)

Following the adoption of the RED 2009 the EU legislator has taken specific countermeasures to

reduce the risks connected to an indiscriminate expansion of biofuel production from energy crops

Such measures known as lsquosustainability criteriarsquo address both lsquocarbon-relatedrsquo and lsquonon carbon-

relatedrsquo concerns In particular lsquocarbon-relatedrsquo encompasses the necessary reduction in the GHG

emissions that needs to be achieved by biofuels against their fossil fuel comparators (Olsen et al

2016) lsquoNon-carbon relatedrsquo concerns on the other hand pertain to nature conservation and

biodiversity aspects of land use also known as lsquodirect land-use changersquo (DLUC) as well as to the

risk that part of the demand for biofuels will be met by increasingly devoting land to agriculture

a phenomenon known as lsquoIndirect Land-Use Changersquo (ILUC) (European Commission 2010) The

RED 2009 took into account both carbon-related concerns and non-carbon related concerns with

the exclusion of ILUC It introduced a minimum standard of 35 GHG emission savings from

the use of biofuels and provided that lsquosustainablersquo biofuels could not be sourced from certain

protected areas (eg highly biodiverse grassland wetlands continuously forested areas) (RED

2009 Article 17) For what concerns ILUC instead the normative framework was integrated by

the adoption of the 2015 Indirect Land-Use Change Directive (ILUC Directive) It introduced an

overall 7 limit of biofuels from food crops as well as the category of lsquoadvanced biofuelsrsquo ie

biofuels that are not in competition with food crops (ILUC Directive recital (5))

Importantly the promotion of lsquosustainablersquo biofuels in the RED 2009 did not entail an absolute

ban on lsquonon-sustainablersquo biofuels Instead compliance with the sustainability criteria is required

for biofuels to enjoy a threefold set of benefits (a) accounting towards the accomplishment of the

national renewable energy targets (b) contributing to the fulfilment of renewable energy

obligations eg the mandatory share of renewable energy in transport (c) being eligible for

financial support

52 Sustainable biogas in the 2018 Renewable Energy Directive

In 2018 the EU adopted a new Renewable Energy Directive (RED 2018) which largely builds

upon the previous RED 2009 and enhances the legal framework for the promotion of advanced

biofuels Most notably the RED 2018 introduces a specific sub-target for a share of 35

advanced biofuels by 2030 (RED 2018 Article 25(1)) Under the RED 2018 advanced biofuels

can be counted for twice their energy content when calculating their contribution towards the target

for renewable energy in the transport sector Moreover the technological development and

deployment of advanced biofuels constitutes one of the elements to be included in the lsquoUnion

Bioenergy Sustainability Reportrsquo a biennial progress report to be released by the European

Commission from 2023 (Governance Regulation (2018) Annex X)

The RED 2018 is particularly relevant for what concerns biogas as it extends the need to comply

with non-carbon related sustainability criteria to biogas production In fact the previous RED 2009

only addressed the minimum GHG emissions savings of biogas (RED 2009 Annex V) while the

remainder of the sustainability criteria only referred to liquid biofuels The RED 2018 instead

applies the full range of sustainability criteria also to biogas production with an exemption for

small installations not exceeding a total rated thermal input of 2 MW (RED 2018 Article 29(1))

15

Analogously to the RED 2009 also in the RED 2018 compliance with the sustainability criteria is

necessary for bioenergy to account towards the renewable energy targets and to qualify for

financial support (RED 2018 Article 29(1)) For what specifically concerns ILUC the RED 2018

is supplemented by the Commission Delegated Regulation (EU) 2019807 (ILUC Delegated

Regulation) which sets specific criteria for the identification of respectively high- and low- ILUC

risk feedstock

6 Promoting biogas sustainability the case for sustainability criteria

beyond the EU legal framework

61 Global relevance of the EU sustainability criteria

The EU legal framework for biofuels sustainability is widely reputed as an example of lsquopioneeringrsquo

legislation (Kulovesi et al 2009) and one of the most comprehensive and advanced binding

sustainability schemes on a global scale (European Commission 2011) The global relevance of

the EU sustainability criteria emerges in particular from the fact that their validity is not limited to

the EU borders On the contrary for biofuels to enjoy the benefits mentioned above (see RED

2018 Article 29(1)) compliance with the sustainability criteria needs to be proven regardless of

whether the feedstock originates from within or outside the EU Such extraterritorial applicability

has given rise to a vivid debate related to the compatibility of the EU sustainability criteria with

international trade rules (Olsen et al 2016 Lydgate 2012 Scott 2011 Kulovesi et al 2009)

Conversely less scholarly attention has been devoted to the regulation of biofuels sustainability

outside the EU legal framework and especially in developing countries Undoubtedly for many

developing countries the EU represents an important export market for liquid biofuels (eg

bioethanol and biodiesel) Therefore the adoption of stringent sustainability criteria has the

potential to significantly affect biofuels production For instance the classification of palm oil

(often used as a feedstock for the production of biodiesel) as a high-ILUC risk feedstock under the

newly adopted ILUC Delegated Regulation has recently given rise to a legal complaint by

Indonesia currently pending before the WTO (WTO 2019) Despite the global significance of the

EU market this accounts only for a minority share of global biofuels trade (IEA 2019b)

Therefore the adoption of the sustainability criteria also in extra-EU jurisdictions would be a

crucial step to further mitigate the negative impacts associated with biofuels and biogas

production

In a few non-EU countries some progress has been registered in support of biofuels sustainability

This is the case for instance of Brazil Japan and the United States (Naiki 2016) On the contrary

sustainability criteria have rarely been adopted in the legal framework of developing countries A

survey of biofuel policies in East African countries for instance concludes that lsquogenerally

agrofuel investments have been insensitive to environmental and human rights concerns of

vulnerable populationsrsquo (Owino 2016) The same study holds that in the East African region

only Mozambique has put in place sustainability criteria in its biofuels policy known as the

lsquoMozambique Biofuel Sustainable Frameworkrsquo (MBSF) Even in the legislative framework of

developed countries biofuels sustainability is not taken into account to the same extent as in the

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 5: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

5

and other carbon intensive sources The reason is that the production of biogas from agricultural

cultivation requires several steps including farmland preparation fertilization machineries crop

harvest etc Lyng amp Brekke (2019) also observe that the choice of the crop has an impact on GHG

emissions and that perennial crops are more sustainable than the annual ones A common feature

of these studies is that they usually take a selection of existing biogas plants in a certain country

and compare feedstocks plant sizes or technologies to each other What seems missing however

is a broader outlook transcending those studies Does the same plant have an equal impact

everywhere in the world Or is it dependent on where the plant is located What is the geographical

distribution of the impact

The promotion of biogas sustainability has numerous policy implications In this sense one of the

most advanced regulatory frameworks can be found in the European Union which since the

adoption of the first Renewable Energy Directive (RED 2009) has included sustainability criteria

for biofuels Such criteria were originally formulated with regard to liquid biofuels Yet in 2018

an updated version of the Renewable Energy Directive was adopted (RED 2018) which extends

the applicability of numerous sustainability criteria also to biogas production Outlining the key

features of the EU legal framework will serve as a useful reference to propose strategies for the

development of sustainable biogas policies also in extra-EU jurisdictions

Adopting an interdisciplinary approach which covers both technical and legal aspects of biogas

production our paper investigates the role of sustainability in biofuels and biogas policies

addressing the following research question How can the production of sustainable biogas be

promoted through scientifically sound policies

This main research question is further articulated in the following sub-research questions

minus What is the environmental impact of biogas production from different plant configurations

minus How does the environmental impact of biogas production differ spatially

minus Which policies and regulations address sustainability concerns

minus How can existing policies be improved

Our paper answers these interrogatives by adopting an interdisciplinary approach and bridging the

gaps between studies in environmental and legal sciences The analysis is divided into the

following two steps

First we employ the LCA approach to calculate the regionalized impact of biogas production from

different feedstocks Differently to other LCA studies we do not focus on the overall effect of an

existing plant in a specific country Instead we take into account that regional differences eg in

climate can influence the sustainability of the same type of biogas depending on the plant location1

A prominent example here is variation in the yields of the energy crops In places where the soil

is less productive larger harvest areas or better fertilization are needed to produce the same amount

of biogas Apart from that the production of fertilizers and plant parts is often not located in the

same region as the biogas plant itself Therefore we draw on Geographic Information System

(GIS) data to support our analysis and perform a regionalized LCA for a hypothetical plant which

has the same technical characteristics in every location we consider

1 For verbal simplicity we will often refer to biogas from different feedstocks as ldquotypesrdquo of biogas throughout

the paper

6

Second we review the existing policies regarding biofuels and biogas sustainability Moving from

a review of the EU sustainability criteria as updated under the RED 2018 we propose a number

of policy recommendations to foster sustainable biofuels and biogas policies in extra-EU countries

with a special focus on developing countries

The remainder of the paper is structured as follows In Section 2 we provide a brief overview of

the production applications and sustainability concerns of biogas Section 3 illustrates our research

approach Section 4 presents the results of the LCA analysis Section 5 addresses the EU legal

framework for biofuels and biogas Section 6 analyses the global relevance of the EU sustainability

criteria and provides some policy recommendations for the promotion of sustainable biogas

Section 7 concludes the paper

2 Biogas and biomethane an overview

21 Biogas production sources processes applications

Biogas is a mixture of gases with high share of methane (usually 50-70) produced through

decomposition of organic matter (biomass feedstock) Biomethane is in turn a result of biogas

upgrading whereby other gases are removed from biogas and methane share reaches over 90 In

a broader perspective biogas is one of a number of biofuels Biofuels are based on plant biomass

that can be burned to produce energy in which they are similar to fossil fuels (Guo et al 2015)

They however have faster recovery rates which makes them considered as renewable energy

(ibid) Biofuels can be solid (eg firewood) liquid (bioethanol biodiesel etc) or gaseous (biogas)

(Creutzig et al 2015 Guo et al 2015) Importantly they can be utilized in different areas such

as transport cooking as well as heat and electricity production (Creutzig et al 2015)

Among these fuels biogas stands out as a relatively new fuel with high potential but relatively

underdeveloped today While Guo et al (2015) predicted that biogas may replace up to 25 of

current natural gas demand by 2016 biogas production was still negligible comprising only one-

fifth of all bioenergy globally which in turn covered only 8 of all RE production (IRENA 2018)

Yet biogas represents a number of advantages relative to other biofuels Unlike other biofuels

(eg biodiesel or bioethanol) biogas production can use a large variety of feedstocks including

special energy crops (maize lay crops sweet potato straw etc) agricultural waste (plant residues

and animal manure) and municipal waste (Guo et al 2015) This can contribute to an additional

area of waste management both in rural and in urban areas It also diminishes the need for growing

specific energy crops which put under doubt the social and environmental sustainability of other

biofuels (Guo et al 2015 Roumlder 2016 de Andrade 2016 Achinas et al 2017)

The widely used and commercially most successful technology for biogas production today is

anaerobic digestion (AD) (Koornneef et al 2013) In this process a certain group of bacteria

transform the biomass into biogas and digestate (biofertilizer) in absence of oxygen2 Compared

to the refined natural gas delivered to the end user biogas has a lower share of methane but a

higher share of carbon dioxide as well as other components such as water vapor hydrogen

sulphide and ammonia (Muzenda 2014 Zhou et al 2017) Therefore in some cases (eg to be

2 For the description of the technical process see eg Achinas et al (2017) and Muzenda (2014)

7

used as a vehicle fuel) it has to be purified of contaminants (especially CO2) that means upgraded

to biomethane3

The main advantage of biogas is that it is easily stored for longer periods of time so it can be

treated as a stock energy just like the fossil fuels This important feature differentiates if from

electricity from hydro- solar and wind power which are the largest renewable energy sources

today (IRENA 2018) In addition both the main product of biogas production (the biogas itself)

and the by-product (the digestate) can be put to efficient use (Wilken et al 2017) Namely the

digestate can be used as an organic fertilizer while biogas itself has three main applications heat

generation power generation and transport fuel Biogas is primarily used for heat or power

generation often also in combined heat and power (CHP) units (ibid) Upgraded to biomethane

it has almost the same chemical composition as natural gas It can therefore be used in all types

of gas-fueled vehicles and thus make use of already existing fleets and commercially available

technologies (Svensson 2013) Where a grid exists biomethane can be freely intermixed with

natural gas to be easily transported over large distances Where no grid is available the biomethane

can be compressed or liquefied and transported very efficiently by road (Roggenkamp et al 2018

Svensson 2013) This also makes it stand out in comparison with hydrogen which is still costly

to produce and transport and is debated in terms of its GHG savings (Ali et al 2016)

Another application of biogas which has been mentioned above lies in the possibility to produce

it from agricultural residues and municipal waste thus offering a viable alternative to composting

or landfilling the waste and contributing to sustainable waste management

22 Biogas as a sustainable energy source

The production of biogas from agricultural and municipal waste is one of the trending and

promising environmentally friendly technologies in the world today This is because biogas

production is driven by energy sustainable processes that contribute relatively less to climate

change compared to natural gas production from fossil fuels (Jiřiacute et al 2016) With a rise in biogas

energy production from 028 exajoules to 133 exajoules between 2000 and 2017 (Wang 2019)

the global biogas production is projected to be worth 110 billion US dollars by 2025 with a

compound annual growth rate of 7 (Global Market Insights 2019)

Considering the growing market of biogas globally special care has to be taken in ensuring that

the production and consumption of biogas are in line with and do not negatively affect the three

pillars of sustainability namely the economy environment and society These three pillars are

relevant and applicable in accessing the sustainability of biogas as a renewable energy source

(Purvis et al 2018) Based on the focus of the EU sustainability criteria the major aspect analyzed

in this paper is the environmental sustainability

This paper addresses the factors related to biogas environmental sustainability analyzing the life

cycle of biogas production in terms of GHG reductions against the fossil fuels comparators as

well as in terms of the feedstock used to produce biogas The use of municipal and agricultural

waste in particular appears as a viable option to solve environmental issues through the creation

of a suitable end of life for waste and the reduction of the amount of waste remaining in the landfill

3 For a comprehensive overview of upgrading techniques see eg Wilken et al (2017)

8

sites (Jonas et al 2017) The problem of GHG emissions at landfills not equipped with gas capture

is thereby reduced and as a result air pollution is diminished Because the landfills are usually

close to the cities biogas plants are often established close to them and by this the distribution of

energy becomes simpler and more efficient compared to the fossil energy (Jacopo et al 2013)

Conducting a Life Cycle Sustainability Assessment (LCSA) which also includes a Life Cycle

Assessment (LCA) represents a promising tool for evaluating sustainable production and

consumption This tool is also considered as the best approach to analyzing the environmental

social and economic sustainability of production processes (Hannouf amp Assefa 2019) To

illustrate the sustainability of biogas production against carbon intensive energy sources we first

conduct an LCA and compare the environmental impacts of the production of biogas against

carbon intensive energy sources In obtaining quantitative results the environmental impacts due

to the generation of 1MJ of energy were calculated for biogas from waste and diesel production

Diesel was chosen as a fossil fuel comparator due to its high level of industrial application The

same amount of energy yield was chosen so that the environmental impacts are directly

comparable

Each production process impacts the environment in a very general sense along a number of

directions For the LCA analysis the EU has recommended a set of Life Cycle Impact Assessment

methods (JRC 2012) There major impact categories for any production chain include climate

change (in CO2-equivalent) ecosystem quality human health and resource use Each of them is

further detailed eg the climate change may be induced by the use of fossil fuels land use and

land use change (LULUC) or through biogenic impact (ibid) With a focus on the three major

impact categories in the EU sustainability criteria ndash climate change land use change and fossils as

a resource ndash the results of the first brief analysis are provided in Figure 1 The figure shows that

the production of biogas can achieve an 86 reduction of GHG against the production of diesel

Regarding the reduction of land use an 84 reduction can be achieved and there is no significant

impact of biogas production on fossil fuel consumption when compared to diesel production

Figure 1 LCA environmental footprint results for biogas from waste versus diesel tons per hectare

9

It must be noted that this brief comparison shows the ldquobest caserdquo scenario since ndash as mentioned

before ndash biogas from waste is the most sustainable biogas type (Omar 2017) The sustainability

of biogas from energy crops is on the contrary contestable even when judging on the mere basis

of the overall impact (Guo et al 2015 Roumlder 2016 de Andrade 2016 Achinas et al 2017) On

top of that the environmental impact of biogas generation from energy crops can potentially vary

in different regions of the world due to varying crop yields Therefore the rest of the paper will

specifically focus on the production of biogas from energy crops

3 Research design

We perform our analysis in two main steps First we investigate the environmental sustainability

of biogas from a regionalized perspective Second we review how existing policies tackle the

sustainability issues of biogas production We then combine the results of the two analyses to

suggest tailored policy recommendations aimed at enhancing biogas sustainability outside the EU

and particularly in developing countries

For our analysis of the environmental sustainability of biogas we assess the environmental impact

of its production ndash to which we will also refer to as footprint ndash along several impact categories

We use the Life Cycle Assessment (LCA) approach and the impact categories correspond to those

defined by the EU (JRC 2012) They will be specifically referred to below in connection with the

specific software we use Unlike other LCA studies we are looking at how the overall footprint is

distributed across the world and how this distribution changes if we move our hypothetical plant

to different locations Just like in the case of goods production one might expect GHG emissions

in biofuels production or environmental effects of crop cultivation to fall into international

responsibility (for goods see Pan et al (2008) for an example of Chinarsquos role in international trade

and GHG emissions) At the same time as will be shown later only a few countries deal with

biogas sustainability within their territories let alone from a cross-border perspective To grasp

the relevance and effects of this perspective we perform a regionalized LCA

We split the LCA analysis into further two steps We first compare the regional impacts for an

arbitrary (ldquoglobalrdquo) biogas plant location to examine if the patterns differ between the feedstocks

As it is primarily biogas from energy crops which raises sustainability questions in the literature

and in the public (Kline et al 2016) we only look at this group of feedstocks The two most often

analyzed energy crops are maize and sugar beet (see Hijazi et al 2016) Thus given the scope of

our paper we limit ourselves to these two feedstocks

We then focus specifically on several plant locations to investigate how the location changes the

pattern for the specific feedstock For that we analyze four plant locations in four different parts

of the world Brazil as the major biogas producer in the Latin America and among the developing

countries (due to the large country size we focused specifically on the state of Paranaacute where

UNIDO-GEF projects for biogas promotion have been active since 20154) China and Germany

as the major biogas producers in Asia and Europe respectively and Nigeria as the emerging biogas

producer and the seat of the African Biorenewable Association These countries represent very

different stages of economic development and one of the questions we want to test with our LCA

4 See eg the ldquoBiogas Applications for the Brazilian Agro-industryrdquo project at wwwthegeforgprojectbiogas-

applications-brazilian-agro-industry (accessed 27 October 2019)

10

analysis is if the sustainability concerns are equally relevant for both developed and developing

countries

We use the OpenLCA software and the ecoinvent database to perform the analysis5 The software

is capable of evaluating environmental impacts and other relevant environmental and economic

aspects for each part of the value chain from the extraction of material through transport and

production to the end-use The OpenLCA provides results along the impact categories as

recommended by JRC (2012) A brief overview of these categories is provided in Table A1 in

Appendix 1

For agricultural biogas the ecoinvent database only contains the processes for biogas plant

construction and production of biogas from animal manure For energy crops we have to create a

new process based on this existing one To analyze the effects of biogas production from maize

and sugar beet the process for manure was taken as a basis Specifically the inputs of agricultural

plant construction and of energy and heat to operate the digester were taken from that example

The input of feedstock was replaced with the respective energy crop as follows The amount of

feedstock needed for biogas production was calculated using the potential biogas yield from the

literature 066 m3kg of total solids for maize as in Hutňan (2016) and 0685 m3kg of total solids

for sugar beet as an average of the findings of Starke amp Hoffmann (2014) The share of total solids

in the fresh crops for the respective feedstocks was taken from Kreuger et al (2011) who provide

a comprehensive overview on a number of crops To specifically investigate potential regional

differences arising from varying soil productivity we added two input processes which were not

relevant for biogas from manure Firstly we account for the amount of land needed to grow the

energy crop based on the regional yields provided as GIS data by Monfreda et al (2008) in the

EarthStat project The spatial distribution of yields is illustrated in Figures A1 and A2 in Appendix

2 for maize and sugar beet respectively Secondly we add the process for transportation of the

feedstock to the plant For manure feedstocks it is typically assumed that manure is collected in a

barn (Lusk 1998 Homan 2012) so the transportation distance is negligible provided the biogas

plant is constructed not far from the barn For energy crops the same cannot be the case the crops

have to be delivered from the whole cultivation area and this distance needs to be accounted for

To do so we assumed the plant to be located within a square field where the crop is grown and

used the average distance within a square as the transportation distance choosing a lorry as means

of transport The estimation of the environmental impact was then done using the ILCD 20 2018

midpoint method The amount of biogas produced is normalized to 100 m3 for the sake of

comparability6

5 OpenLCA is a professional LCA and footprint software that has a variety of features and many available

databases An important advantage against other professional LCA software is that openLCA is an open access

software It is also endorsed by the US Environmental Protection Agency (cfpubepagovsiindexcfm) The

ecoinvent database is an extensive and comprehensive collection of datasets on life cycle inventory including a

large number of products production processes and value chains (see httpswwwecoinventorg for more

information on the database) 6 The results of a regionalized LCA reflect the contribution of different regions to the overall impact ie the

percentage share of the respective region Therefore scaling the amount of biogas up or down will not change

the results We experimented with 1 m3 100 m3 and 100000 m3 of biogas and the result was qualitatively always

the same

11

4 Regional impacts of biogas production

In this section we present the results of the regionalized LCA We start by briefly comparing the

overall impacts of biogas production from maize and sugar beet After that we focus on the results

in a regional perspective first with unknown plant location and then for four different plant

locations

Regarding the overall impact of biogas production from maize and sugar beet along the impact

categories listed in Table A1 it should be noted that maize has a much larger impact than sugar

beet on all categories The comparison is illustrated in Figures A3-A6 in Appendix 3 and this

result is in line with the findings outlined by Hijazi et al (2016) However the regional impacts

of the two feedstocks show quite some differentiation

The first finding is that the regional distribution of the impacts differs substantially between the

two agricultural feedstocks For the sake of brevity we only provide results for three impacts

which are also addressed in the EU sustainability criteria climate change due to land use and land

use change use of fossils as a resource and use of land as a resource The comparison is illustrated

in Figures A7-A9 in Appendix 4 The maps show relative contributions of the respective regions

to the overall impact the warmer the color on the map the larger the regionrsquos contribution7

In terms of land use and the LULUC-induced climate change (Figures A7-A8) the regional

variation follows quite closely the world industrialization patterns on the one hand and the

agricultural productivity on the other In case of maize the impact is most prominent in Argentina

both for land use and LULUC-induced climate change This is not surprising as on the one hand

Argentina is among the top five maize producers across world8 while on the other hand

Argentinian agriculture is responsible for 90 of the countryrsquos forest loss (Antoacuten et al 2019)

The latter is translated into the LULUC-induced climate change In the case of sugar beet the

LULUC-induced climate change is prominent in Brazil however there is no overlap with land use

as a resource This suggests that the effect is not due to sugar beet production which is also in line

with Figure A2 in Appendix 2 A closer investigation reveals that additional electricity production

for agriculture and the plant would have the highest LULUC-related environmental costs in Brazil

where the majority of electricity is supplied by hydropower and water reservoirs created for that

pose a number of environmental challenges (von Sperling 2012)

With regard to the use of fossil fuels (Figure A9) the major impacts are as could be expected in

the fuel- and mineral-exporting countries The impact comes on the one hand from the energy for

plant construction operation and from the fuel used for feedstock transportation On the other

hand it also reflects the resources for fertilizer production which is quite important in crop

agriculture

Turning to different plant locations the second important finding is that while certain impacts are

connected to plant location others are always attributed to the same regions The results of the

comparison for sugar beet are illustrated in Figures A10-A11 in Appendix 5 The results for maize

7 The drawback of the OpenLCA software is that it does not provide an exact scale for the regionalized results

The illustrative maps should therefore be considered as a qualitative not quantitative reference 8 Based on FAO data wwwfaoorgfaostatendataQC (accessed 8 December 2019)

12

are presented in Figures A12-A13 in Appendix 6 Again the higher contribution of a region to the

overall impact is marked with warmer colors For sugar beet particularly the effects related to

growing the energy crops ldquomoverdquo together with the plants (see the impact on the land use in Figure

A10) In the case of maize Argentina seems to be one of the source countries for the feedstock for

all four plant locations Unlike other major maize (corn) producers not only is Argentina the third

largest exporter of corn but also corn figures as the second largest category of Argentinian

exports9 At the same time part of the impact is still located in the country of the plant location

Another interesting observation in the cases of both maize and sugar beet is that the more

developed the country the lower the impact share This also overlaps with the distribution of yields

in Figures A1-A2 in Appendix 2

Turning to other resources the picture is similar to that with the undefined plant location Both for

maize and sugar beet especially the use of resources related to fertilizers plant construction and

transportation (minerals and metals) is associated with the same regions independent of where the

plant is located In other words fossil energy construction materials and fertilizers often do not

come from the same country they are used in This raises the question in how much the impact

created by this demand is taken into account by the policy-makers when promoting biogas or

setting the criteria for determining whether to call biogas a sustainable renewable energy

To sum these results up there are several observations relevant for tackling sustainability concerns

of biogas from energy crops

1 Production of biogas may have substantial effects in terms of land use and climate change

induced by a change in land use or deforestation This effect might come directly from growing

energy crops However it can also come eg from supporting energy production as long as

biogas production is not completely autonomous or does not cover the energy needed for the

cultivation of energy crops

2 For some feedstocks it is likely that at least a share of them is imported from other countries

therefore shifting the environmental impact away from the countries where a biogas plant is

located

3 For other resources necessary for biogas plant construction and cultivation of the energy crop

the majority of the impact is accrued to the same set of countries independent of the plant

location Therefore it is typically situated outside of the country where a biogas plant is

located

If one further looks at the future of biogas production and distribution there is already some

movement towards trading this fuel Examples are the plans of the German electric utilities

company RWE to trade biogas between Great Britain and the Netherlands (enformer 2018) and

inclusion of biogas and feedstocks in the portfolio of companies trading energy commodities (eg

ACT Commodities) However long-distance transportation options for biogas as discussed in

Section 21 can be somewhat limited compared to liquid biofuels For example to transport

biogas overseas it has to be compressed or liquified meaning the origin and destination ports need

to be equipped respectively and LNG vessels need to be employed This creates additional

9 Based on the data by the Observatory of Economic Complexity wwwoecworldenprofilecountryarg

(accessed 8 December 2019)

13

transportation costs compared to liquid fuels and lowers profitability of such trade Therefore it

is rather likely that biogas ndash provided it is produced in sufficient quantities ndash is first traded

regionally where grid connections exist or between already LNG-equipped locations Another

option is that instead of the final product the feedstock will be traded Trade in agricultural

products is very well established and the trend of trading energy crops for biofuels in general and

biogas in particular was already visible in Europe in the early 2010s (Kalt amp Kranzl 2012 Pagh-

Schlegel amp Elkjaeligr 2012)

In view of these considerations it is likely that the three observations outlined above will be

increasingly important in the future Therefore they need to be taken into account when promoting

biogas development around the world In the next section we will review how some existing

regulations are already able to tackle these challenges Based on this we will then formulate our

policy recommendations

5 Sustainable biogas policy the EUrsquos legal framework

51 Biofuels in EU law targets and sustainability criteria

The EU is widely reputed as a leader of international climate action (Bogojevic 2016) having

substantially contributed to the development of the international legal regime on climate change

(Oberthuumlr 2018) Renewable energy has traditionally represented a proactive area of the EUrsquos

policymaking as the RE targets were already enshrined in the 2001 Renewable Energy Directive

(RED 2001) and subsequently updated under the 2009 Renewable Energy Directive (RED 2009)

and the 2018 Renewable Energy Directive (RED 2018) Along with the general RE targets at the

Member State or at the EU level specific sub-targets have been enacted with a view of promoting

the energy transition in the transport sector At first such targets were enshrined in the 2003

Biofuels Directive (Biofuels Directive 2003) Subsequently targets for renewable energy in

transport have been incorporated into the RED 2009 and most recently a target of 14 renewable

energy in transport by 2030 is foreseen under Article 25(1) RED 2018

In order to reach their renewable energy targets several EU Member States have adopted different

kinds of support schemes such as feed-in tariffs (FIT) feed-in premium (FIP) tradable green

certificates and auctions (Banja et al 2019) Moreover further policy measures have also

contributed to a steady increase in the share of bioenergy in some cases specifically encouraging

the deployment of biogas and biomethane A case in point is the Alternative Fuels Infrastructure

Directive (AFID Directive) which includes minimum requirements for the build-up of refueling

points for liquid natural gas (LNG) and compressed natural gas (CNG) (Van Grinsven et al 2017)

As proven by the recent Eurostat data the EU policy activism has contributed to a steady increase

of the share of bioenergy (including energy from the agricultural biomass the forest biomass and

the renewable waste) which grew from 59 in 2005 to 103 in 2017 (Banja et al 2019)

However incentives for biofuels production have also triggered in some cases the conversion of

agricultural land into land dedicated to the cultivation of energy crops The biogas sector along

with other biofuels is part of this phenomenon determined inter alia by the higher methane yield

of energy crops compared to manure and other sources of agricultural waste In the case of

14

Germany for instance biogas production from energy crops significantly outweighs its production

from industrial and agricultural waste (Eyl-Mazzega et al 2019)

Following the adoption of the RED 2009 the EU legislator has taken specific countermeasures to

reduce the risks connected to an indiscriminate expansion of biofuel production from energy crops

Such measures known as lsquosustainability criteriarsquo address both lsquocarbon-relatedrsquo and lsquonon carbon-

relatedrsquo concerns In particular lsquocarbon-relatedrsquo encompasses the necessary reduction in the GHG

emissions that needs to be achieved by biofuels against their fossil fuel comparators (Olsen et al

2016) lsquoNon-carbon relatedrsquo concerns on the other hand pertain to nature conservation and

biodiversity aspects of land use also known as lsquodirect land-use changersquo (DLUC) as well as to the

risk that part of the demand for biofuels will be met by increasingly devoting land to agriculture

a phenomenon known as lsquoIndirect Land-Use Changersquo (ILUC) (European Commission 2010) The

RED 2009 took into account both carbon-related concerns and non-carbon related concerns with

the exclusion of ILUC It introduced a minimum standard of 35 GHG emission savings from

the use of biofuels and provided that lsquosustainablersquo biofuels could not be sourced from certain

protected areas (eg highly biodiverse grassland wetlands continuously forested areas) (RED

2009 Article 17) For what concerns ILUC instead the normative framework was integrated by

the adoption of the 2015 Indirect Land-Use Change Directive (ILUC Directive) It introduced an

overall 7 limit of biofuels from food crops as well as the category of lsquoadvanced biofuelsrsquo ie

biofuels that are not in competition with food crops (ILUC Directive recital (5))

Importantly the promotion of lsquosustainablersquo biofuels in the RED 2009 did not entail an absolute

ban on lsquonon-sustainablersquo biofuels Instead compliance with the sustainability criteria is required

for biofuels to enjoy a threefold set of benefits (a) accounting towards the accomplishment of the

national renewable energy targets (b) contributing to the fulfilment of renewable energy

obligations eg the mandatory share of renewable energy in transport (c) being eligible for

financial support

52 Sustainable biogas in the 2018 Renewable Energy Directive

In 2018 the EU adopted a new Renewable Energy Directive (RED 2018) which largely builds

upon the previous RED 2009 and enhances the legal framework for the promotion of advanced

biofuels Most notably the RED 2018 introduces a specific sub-target for a share of 35

advanced biofuels by 2030 (RED 2018 Article 25(1)) Under the RED 2018 advanced biofuels

can be counted for twice their energy content when calculating their contribution towards the target

for renewable energy in the transport sector Moreover the technological development and

deployment of advanced biofuels constitutes one of the elements to be included in the lsquoUnion

Bioenergy Sustainability Reportrsquo a biennial progress report to be released by the European

Commission from 2023 (Governance Regulation (2018) Annex X)

The RED 2018 is particularly relevant for what concerns biogas as it extends the need to comply

with non-carbon related sustainability criteria to biogas production In fact the previous RED 2009

only addressed the minimum GHG emissions savings of biogas (RED 2009 Annex V) while the

remainder of the sustainability criteria only referred to liquid biofuels The RED 2018 instead

applies the full range of sustainability criteria also to biogas production with an exemption for

small installations not exceeding a total rated thermal input of 2 MW (RED 2018 Article 29(1))

15

Analogously to the RED 2009 also in the RED 2018 compliance with the sustainability criteria is

necessary for bioenergy to account towards the renewable energy targets and to qualify for

financial support (RED 2018 Article 29(1)) For what specifically concerns ILUC the RED 2018

is supplemented by the Commission Delegated Regulation (EU) 2019807 (ILUC Delegated

Regulation) which sets specific criteria for the identification of respectively high- and low- ILUC

risk feedstock

6 Promoting biogas sustainability the case for sustainability criteria

beyond the EU legal framework

61 Global relevance of the EU sustainability criteria

The EU legal framework for biofuels sustainability is widely reputed as an example of lsquopioneeringrsquo

legislation (Kulovesi et al 2009) and one of the most comprehensive and advanced binding

sustainability schemes on a global scale (European Commission 2011) The global relevance of

the EU sustainability criteria emerges in particular from the fact that their validity is not limited to

the EU borders On the contrary for biofuels to enjoy the benefits mentioned above (see RED

2018 Article 29(1)) compliance with the sustainability criteria needs to be proven regardless of

whether the feedstock originates from within or outside the EU Such extraterritorial applicability

has given rise to a vivid debate related to the compatibility of the EU sustainability criteria with

international trade rules (Olsen et al 2016 Lydgate 2012 Scott 2011 Kulovesi et al 2009)

Conversely less scholarly attention has been devoted to the regulation of biofuels sustainability

outside the EU legal framework and especially in developing countries Undoubtedly for many

developing countries the EU represents an important export market for liquid biofuels (eg

bioethanol and biodiesel) Therefore the adoption of stringent sustainability criteria has the

potential to significantly affect biofuels production For instance the classification of palm oil

(often used as a feedstock for the production of biodiesel) as a high-ILUC risk feedstock under the

newly adopted ILUC Delegated Regulation has recently given rise to a legal complaint by

Indonesia currently pending before the WTO (WTO 2019) Despite the global significance of the

EU market this accounts only for a minority share of global biofuels trade (IEA 2019b)

Therefore the adoption of the sustainability criteria also in extra-EU jurisdictions would be a

crucial step to further mitigate the negative impacts associated with biofuels and biogas

production

In a few non-EU countries some progress has been registered in support of biofuels sustainability

This is the case for instance of Brazil Japan and the United States (Naiki 2016) On the contrary

sustainability criteria have rarely been adopted in the legal framework of developing countries A

survey of biofuel policies in East African countries for instance concludes that lsquogenerally

agrofuel investments have been insensitive to environmental and human rights concerns of

vulnerable populationsrsquo (Owino 2016) The same study holds that in the East African region

only Mozambique has put in place sustainability criteria in its biofuels policy known as the

lsquoMozambique Biofuel Sustainable Frameworkrsquo (MBSF) Even in the legislative framework of

developed countries biofuels sustainability is not taken into account to the same extent as in the

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 6: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

6

Second we review the existing policies regarding biofuels and biogas sustainability Moving from

a review of the EU sustainability criteria as updated under the RED 2018 we propose a number

of policy recommendations to foster sustainable biofuels and biogas policies in extra-EU countries

with a special focus on developing countries

The remainder of the paper is structured as follows In Section 2 we provide a brief overview of

the production applications and sustainability concerns of biogas Section 3 illustrates our research

approach Section 4 presents the results of the LCA analysis Section 5 addresses the EU legal

framework for biofuels and biogas Section 6 analyses the global relevance of the EU sustainability

criteria and provides some policy recommendations for the promotion of sustainable biogas

Section 7 concludes the paper

2 Biogas and biomethane an overview

21 Biogas production sources processes applications

Biogas is a mixture of gases with high share of methane (usually 50-70) produced through

decomposition of organic matter (biomass feedstock) Biomethane is in turn a result of biogas

upgrading whereby other gases are removed from biogas and methane share reaches over 90 In

a broader perspective biogas is one of a number of biofuels Biofuels are based on plant biomass

that can be burned to produce energy in which they are similar to fossil fuels (Guo et al 2015)

They however have faster recovery rates which makes them considered as renewable energy

(ibid) Biofuels can be solid (eg firewood) liquid (bioethanol biodiesel etc) or gaseous (biogas)

(Creutzig et al 2015 Guo et al 2015) Importantly they can be utilized in different areas such

as transport cooking as well as heat and electricity production (Creutzig et al 2015)

Among these fuels biogas stands out as a relatively new fuel with high potential but relatively

underdeveloped today While Guo et al (2015) predicted that biogas may replace up to 25 of

current natural gas demand by 2016 biogas production was still negligible comprising only one-

fifth of all bioenergy globally which in turn covered only 8 of all RE production (IRENA 2018)

Yet biogas represents a number of advantages relative to other biofuels Unlike other biofuels

(eg biodiesel or bioethanol) biogas production can use a large variety of feedstocks including

special energy crops (maize lay crops sweet potato straw etc) agricultural waste (plant residues

and animal manure) and municipal waste (Guo et al 2015) This can contribute to an additional

area of waste management both in rural and in urban areas It also diminishes the need for growing

specific energy crops which put under doubt the social and environmental sustainability of other

biofuels (Guo et al 2015 Roumlder 2016 de Andrade 2016 Achinas et al 2017)

The widely used and commercially most successful technology for biogas production today is

anaerobic digestion (AD) (Koornneef et al 2013) In this process a certain group of bacteria

transform the biomass into biogas and digestate (biofertilizer) in absence of oxygen2 Compared

to the refined natural gas delivered to the end user biogas has a lower share of methane but a

higher share of carbon dioxide as well as other components such as water vapor hydrogen

sulphide and ammonia (Muzenda 2014 Zhou et al 2017) Therefore in some cases (eg to be

2 For the description of the technical process see eg Achinas et al (2017) and Muzenda (2014)

7

used as a vehicle fuel) it has to be purified of contaminants (especially CO2) that means upgraded

to biomethane3

The main advantage of biogas is that it is easily stored for longer periods of time so it can be

treated as a stock energy just like the fossil fuels This important feature differentiates if from

electricity from hydro- solar and wind power which are the largest renewable energy sources

today (IRENA 2018) In addition both the main product of biogas production (the biogas itself)

and the by-product (the digestate) can be put to efficient use (Wilken et al 2017) Namely the

digestate can be used as an organic fertilizer while biogas itself has three main applications heat

generation power generation and transport fuel Biogas is primarily used for heat or power

generation often also in combined heat and power (CHP) units (ibid) Upgraded to biomethane

it has almost the same chemical composition as natural gas It can therefore be used in all types

of gas-fueled vehicles and thus make use of already existing fleets and commercially available

technologies (Svensson 2013) Where a grid exists biomethane can be freely intermixed with

natural gas to be easily transported over large distances Where no grid is available the biomethane

can be compressed or liquefied and transported very efficiently by road (Roggenkamp et al 2018

Svensson 2013) This also makes it stand out in comparison with hydrogen which is still costly

to produce and transport and is debated in terms of its GHG savings (Ali et al 2016)

Another application of biogas which has been mentioned above lies in the possibility to produce

it from agricultural residues and municipal waste thus offering a viable alternative to composting

or landfilling the waste and contributing to sustainable waste management

22 Biogas as a sustainable energy source

The production of biogas from agricultural and municipal waste is one of the trending and

promising environmentally friendly technologies in the world today This is because biogas

production is driven by energy sustainable processes that contribute relatively less to climate

change compared to natural gas production from fossil fuels (Jiřiacute et al 2016) With a rise in biogas

energy production from 028 exajoules to 133 exajoules between 2000 and 2017 (Wang 2019)

the global biogas production is projected to be worth 110 billion US dollars by 2025 with a

compound annual growth rate of 7 (Global Market Insights 2019)

Considering the growing market of biogas globally special care has to be taken in ensuring that

the production and consumption of biogas are in line with and do not negatively affect the three

pillars of sustainability namely the economy environment and society These three pillars are

relevant and applicable in accessing the sustainability of biogas as a renewable energy source

(Purvis et al 2018) Based on the focus of the EU sustainability criteria the major aspect analyzed

in this paper is the environmental sustainability

This paper addresses the factors related to biogas environmental sustainability analyzing the life

cycle of biogas production in terms of GHG reductions against the fossil fuels comparators as

well as in terms of the feedstock used to produce biogas The use of municipal and agricultural

waste in particular appears as a viable option to solve environmental issues through the creation

of a suitable end of life for waste and the reduction of the amount of waste remaining in the landfill

3 For a comprehensive overview of upgrading techniques see eg Wilken et al (2017)

8

sites (Jonas et al 2017) The problem of GHG emissions at landfills not equipped with gas capture

is thereby reduced and as a result air pollution is diminished Because the landfills are usually

close to the cities biogas plants are often established close to them and by this the distribution of

energy becomes simpler and more efficient compared to the fossil energy (Jacopo et al 2013)

Conducting a Life Cycle Sustainability Assessment (LCSA) which also includes a Life Cycle

Assessment (LCA) represents a promising tool for evaluating sustainable production and

consumption This tool is also considered as the best approach to analyzing the environmental

social and economic sustainability of production processes (Hannouf amp Assefa 2019) To

illustrate the sustainability of biogas production against carbon intensive energy sources we first

conduct an LCA and compare the environmental impacts of the production of biogas against

carbon intensive energy sources In obtaining quantitative results the environmental impacts due

to the generation of 1MJ of energy were calculated for biogas from waste and diesel production

Diesel was chosen as a fossil fuel comparator due to its high level of industrial application The

same amount of energy yield was chosen so that the environmental impacts are directly

comparable

Each production process impacts the environment in a very general sense along a number of

directions For the LCA analysis the EU has recommended a set of Life Cycle Impact Assessment

methods (JRC 2012) There major impact categories for any production chain include climate

change (in CO2-equivalent) ecosystem quality human health and resource use Each of them is

further detailed eg the climate change may be induced by the use of fossil fuels land use and

land use change (LULUC) or through biogenic impact (ibid) With a focus on the three major

impact categories in the EU sustainability criteria ndash climate change land use change and fossils as

a resource ndash the results of the first brief analysis are provided in Figure 1 The figure shows that

the production of biogas can achieve an 86 reduction of GHG against the production of diesel

Regarding the reduction of land use an 84 reduction can be achieved and there is no significant

impact of biogas production on fossil fuel consumption when compared to diesel production

Figure 1 LCA environmental footprint results for biogas from waste versus diesel tons per hectare

9

It must be noted that this brief comparison shows the ldquobest caserdquo scenario since ndash as mentioned

before ndash biogas from waste is the most sustainable biogas type (Omar 2017) The sustainability

of biogas from energy crops is on the contrary contestable even when judging on the mere basis

of the overall impact (Guo et al 2015 Roumlder 2016 de Andrade 2016 Achinas et al 2017) On

top of that the environmental impact of biogas generation from energy crops can potentially vary

in different regions of the world due to varying crop yields Therefore the rest of the paper will

specifically focus on the production of biogas from energy crops

3 Research design

We perform our analysis in two main steps First we investigate the environmental sustainability

of biogas from a regionalized perspective Second we review how existing policies tackle the

sustainability issues of biogas production We then combine the results of the two analyses to

suggest tailored policy recommendations aimed at enhancing biogas sustainability outside the EU

and particularly in developing countries

For our analysis of the environmental sustainability of biogas we assess the environmental impact

of its production ndash to which we will also refer to as footprint ndash along several impact categories

We use the Life Cycle Assessment (LCA) approach and the impact categories correspond to those

defined by the EU (JRC 2012) They will be specifically referred to below in connection with the

specific software we use Unlike other LCA studies we are looking at how the overall footprint is

distributed across the world and how this distribution changes if we move our hypothetical plant

to different locations Just like in the case of goods production one might expect GHG emissions

in biofuels production or environmental effects of crop cultivation to fall into international

responsibility (for goods see Pan et al (2008) for an example of Chinarsquos role in international trade

and GHG emissions) At the same time as will be shown later only a few countries deal with

biogas sustainability within their territories let alone from a cross-border perspective To grasp

the relevance and effects of this perspective we perform a regionalized LCA

We split the LCA analysis into further two steps We first compare the regional impacts for an

arbitrary (ldquoglobalrdquo) biogas plant location to examine if the patterns differ between the feedstocks

As it is primarily biogas from energy crops which raises sustainability questions in the literature

and in the public (Kline et al 2016) we only look at this group of feedstocks The two most often

analyzed energy crops are maize and sugar beet (see Hijazi et al 2016) Thus given the scope of

our paper we limit ourselves to these two feedstocks

We then focus specifically on several plant locations to investigate how the location changes the

pattern for the specific feedstock For that we analyze four plant locations in four different parts

of the world Brazil as the major biogas producer in the Latin America and among the developing

countries (due to the large country size we focused specifically on the state of Paranaacute where

UNIDO-GEF projects for biogas promotion have been active since 20154) China and Germany

as the major biogas producers in Asia and Europe respectively and Nigeria as the emerging biogas

producer and the seat of the African Biorenewable Association These countries represent very

different stages of economic development and one of the questions we want to test with our LCA

4 See eg the ldquoBiogas Applications for the Brazilian Agro-industryrdquo project at wwwthegeforgprojectbiogas-

applications-brazilian-agro-industry (accessed 27 October 2019)

10

analysis is if the sustainability concerns are equally relevant for both developed and developing

countries

We use the OpenLCA software and the ecoinvent database to perform the analysis5 The software

is capable of evaluating environmental impacts and other relevant environmental and economic

aspects for each part of the value chain from the extraction of material through transport and

production to the end-use The OpenLCA provides results along the impact categories as

recommended by JRC (2012) A brief overview of these categories is provided in Table A1 in

Appendix 1

For agricultural biogas the ecoinvent database only contains the processes for biogas plant

construction and production of biogas from animal manure For energy crops we have to create a

new process based on this existing one To analyze the effects of biogas production from maize

and sugar beet the process for manure was taken as a basis Specifically the inputs of agricultural

plant construction and of energy and heat to operate the digester were taken from that example

The input of feedstock was replaced with the respective energy crop as follows The amount of

feedstock needed for biogas production was calculated using the potential biogas yield from the

literature 066 m3kg of total solids for maize as in Hutňan (2016) and 0685 m3kg of total solids

for sugar beet as an average of the findings of Starke amp Hoffmann (2014) The share of total solids

in the fresh crops for the respective feedstocks was taken from Kreuger et al (2011) who provide

a comprehensive overview on a number of crops To specifically investigate potential regional

differences arising from varying soil productivity we added two input processes which were not

relevant for biogas from manure Firstly we account for the amount of land needed to grow the

energy crop based on the regional yields provided as GIS data by Monfreda et al (2008) in the

EarthStat project The spatial distribution of yields is illustrated in Figures A1 and A2 in Appendix

2 for maize and sugar beet respectively Secondly we add the process for transportation of the

feedstock to the plant For manure feedstocks it is typically assumed that manure is collected in a

barn (Lusk 1998 Homan 2012) so the transportation distance is negligible provided the biogas

plant is constructed not far from the barn For energy crops the same cannot be the case the crops

have to be delivered from the whole cultivation area and this distance needs to be accounted for

To do so we assumed the plant to be located within a square field where the crop is grown and

used the average distance within a square as the transportation distance choosing a lorry as means

of transport The estimation of the environmental impact was then done using the ILCD 20 2018

midpoint method The amount of biogas produced is normalized to 100 m3 for the sake of

comparability6

5 OpenLCA is a professional LCA and footprint software that has a variety of features and many available

databases An important advantage against other professional LCA software is that openLCA is an open access

software It is also endorsed by the US Environmental Protection Agency (cfpubepagovsiindexcfm) The

ecoinvent database is an extensive and comprehensive collection of datasets on life cycle inventory including a

large number of products production processes and value chains (see httpswwwecoinventorg for more

information on the database) 6 The results of a regionalized LCA reflect the contribution of different regions to the overall impact ie the

percentage share of the respective region Therefore scaling the amount of biogas up or down will not change

the results We experimented with 1 m3 100 m3 and 100000 m3 of biogas and the result was qualitatively always

the same

11

4 Regional impacts of biogas production

In this section we present the results of the regionalized LCA We start by briefly comparing the

overall impacts of biogas production from maize and sugar beet After that we focus on the results

in a regional perspective first with unknown plant location and then for four different plant

locations

Regarding the overall impact of biogas production from maize and sugar beet along the impact

categories listed in Table A1 it should be noted that maize has a much larger impact than sugar

beet on all categories The comparison is illustrated in Figures A3-A6 in Appendix 3 and this

result is in line with the findings outlined by Hijazi et al (2016) However the regional impacts

of the two feedstocks show quite some differentiation

The first finding is that the regional distribution of the impacts differs substantially between the

two agricultural feedstocks For the sake of brevity we only provide results for three impacts

which are also addressed in the EU sustainability criteria climate change due to land use and land

use change use of fossils as a resource and use of land as a resource The comparison is illustrated

in Figures A7-A9 in Appendix 4 The maps show relative contributions of the respective regions

to the overall impact the warmer the color on the map the larger the regionrsquos contribution7

In terms of land use and the LULUC-induced climate change (Figures A7-A8) the regional

variation follows quite closely the world industrialization patterns on the one hand and the

agricultural productivity on the other In case of maize the impact is most prominent in Argentina

both for land use and LULUC-induced climate change This is not surprising as on the one hand

Argentina is among the top five maize producers across world8 while on the other hand

Argentinian agriculture is responsible for 90 of the countryrsquos forest loss (Antoacuten et al 2019)

The latter is translated into the LULUC-induced climate change In the case of sugar beet the

LULUC-induced climate change is prominent in Brazil however there is no overlap with land use

as a resource This suggests that the effect is not due to sugar beet production which is also in line

with Figure A2 in Appendix 2 A closer investigation reveals that additional electricity production

for agriculture and the plant would have the highest LULUC-related environmental costs in Brazil

where the majority of electricity is supplied by hydropower and water reservoirs created for that

pose a number of environmental challenges (von Sperling 2012)

With regard to the use of fossil fuels (Figure A9) the major impacts are as could be expected in

the fuel- and mineral-exporting countries The impact comes on the one hand from the energy for

plant construction operation and from the fuel used for feedstock transportation On the other

hand it also reflects the resources for fertilizer production which is quite important in crop

agriculture

Turning to different plant locations the second important finding is that while certain impacts are

connected to plant location others are always attributed to the same regions The results of the

comparison for sugar beet are illustrated in Figures A10-A11 in Appendix 5 The results for maize

7 The drawback of the OpenLCA software is that it does not provide an exact scale for the regionalized results

The illustrative maps should therefore be considered as a qualitative not quantitative reference 8 Based on FAO data wwwfaoorgfaostatendataQC (accessed 8 December 2019)

12

are presented in Figures A12-A13 in Appendix 6 Again the higher contribution of a region to the

overall impact is marked with warmer colors For sugar beet particularly the effects related to

growing the energy crops ldquomoverdquo together with the plants (see the impact on the land use in Figure

A10) In the case of maize Argentina seems to be one of the source countries for the feedstock for

all four plant locations Unlike other major maize (corn) producers not only is Argentina the third

largest exporter of corn but also corn figures as the second largest category of Argentinian

exports9 At the same time part of the impact is still located in the country of the plant location

Another interesting observation in the cases of both maize and sugar beet is that the more

developed the country the lower the impact share This also overlaps with the distribution of yields

in Figures A1-A2 in Appendix 2

Turning to other resources the picture is similar to that with the undefined plant location Both for

maize and sugar beet especially the use of resources related to fertilizers plant construction and

transportation (minerals and metals) is associated with the same regions independent of where the

plant is located In other words fossil energy construction materials and fertilizers often do not

come from the same country they are used in This raises the question in how much the impact

created by this demand is taken into account by the policy-makers when promoting biogas or

setting the criteria for determining whether to call biogas a sustainable renewable energy

To sum these results up there are several observations relevant for tackling sustainability concerns

of biogas from energy crops

1 Production of biogas may have substantial effects in terms of land use and climate change

induced by a change in land use or deforestation This effect might come directly from growing

energy crops However it can also come eg from supporting energy production as long as

biogas production is not completely autonomous or does not cover the energy needed for the

cultivation of energy crops

2 For some feedstocks it is likely that at least a share of them is imported from other countries

therefore shifting the environmental impact away from the countries where a biogas plant is

located

3 For other resources necessary for biogas plant construction and cultivation of the energy crop

the majority of the impact is accrued to the same set of countries independent of the plant

location Therefore it is typically situated outside of the country where a biogas plant is

located

If one further looks at the future of biogas production and distribution there is already some

movement towards trading this fuel Examples are the plans of the German electric utilities

company RWE to trade biogas between Great Britain and the Netherlands (enformer 2018) and

inclusion of biogas and feedstocks in the portfolio of companies trading energy commodities (eg

ACT Commodities) However long-distance transportation options for biogas as discussed in

Section 21 can be somewhat limited compared to liquid biofuels For example to transport

biogas overseas it has to be compressed or liquified meaning the origin and destination ports need

to be equipped respectively and LNG vessels need to be employed This creates additional

9 Based on the data by the Observatory of Economic Complexity wwwoecworldenprofilecountryarg

(accessed 8 December 2019)

13

transportation costs compared to liquid fuels and lowers profitability of such trade Therefore it

is rather likely that biogas ndash provided it is produced in sufficient quantities ndash is first traded

regionally where grid connections exist or between already LNG-equipped locations Another

option is that instead of the final product the feedstock will be traded Trade in agricultural

products is very well established and the trend of trading energy crops for biofuels in general and

biogas in particular was already visible in Europe in the early 2010s (Kalt amp Kranzl 2012 Pagh-

Schlegel amp Elkjaeligr 2012)

In view of these considerations it is likely that the three observations outlined above will be

increasingly important in the future Therefore they need to be taken into account when promoting

biogas development around the world In the next section we will review how some existing

regulations are already able to tackle these challenges Based on this we will then formulate our

policy recommendations

5 Sustainable biogas policy the EUrsquos legal framework

51 Biofuels in EU law targets and sustainability criteria

The EU is widely reputed as a leader of international climate action (Bogojevic 2016) having

substantially contributed to the development of the international legal regime on climate change

(Oberthuumlr 2018) Renewable energy has traditionally represented a proactive area of the EUrsquos

policymaking as the RE targets were already enshrined in the 2001 Renewable Energy Directive

(RED 2001) and subsequently updated under the 2009 Renewable Energy Directive (RED 2009)

and the 2018 Renewable Energy Directive (RED 2018) Along with the general RE targets at the

Member State or at the EU level specific sub-targets have been enacted with a view of promoting

the energy transition in the transport sector At first such targets were enshrined in the 2003

Biofuels Directive (Biofuels Directive 2003) Subsequently targets for renewable energy in

transport have been incorporated into the RED 2009 and most recently a target of 14 renewable

energy in transport by 2030 is foreseen under Article 25(1) RED 2018

In order to reach their renewable energy targets several EU Member States have adopted different

kinds of support schemes such as feed-in tariffs (FIT) feed-in premium (FIP) tradable green

certificates and auctions (Banja et al 2019) Moreover further policy measures have also

contributed to a steady increase in the share of bioenergy in some cases specifically encouraging

the deployment of biogas and biomethane A case in point is the Alternative Fuels Infrastructure

Directive (AFID Directive) which includes minimum requirements for the build-up of refueling

points for liquid natural gas (LNG) and compressed natural gas (CNG) (Van Grinsven et al 2017)

As proven by the recent Eurostat data the EU policy activism has contributed to a steady increase

of the share of bioenergy (including energy from the agricultural biomass the forest biomass and

the renewable waste) which grew from 59 in 2005 to 103 in 2017 (Banja et al 2019)

However incentives for biofuels production have also triggered in some cases the conversion of

agricultural land into land dedicated to the cultivation of energy crops The biogas sector along

with other biofuels is part of this phenomenon determined inter alia by the higher methane yield

of energy crops compared to manure and other sources of agricultural waste In the case of

14

Germany for instance biogas production from energy crops significantly outweighs its production

from industrial and agricultural waste (Eyl-Mazzega et al 2019)

Following the adoption of the RED 2009 the EU legislator has taken specific countermeasures to

reduce the risks connected to an indiscriminate expansion of biofuel production from energy crops

Such measures known as lsquosustainability criteriarsquo address both lsquocarbon-relatedrsquo and lsquonon carbon-

relatedrsquo concerns In particular lsquocarbon-relatedrsquo encompasses the necessary reduction in the GHG

emissions that needs to be achieved by biofuels against their fossil fuel comparators (Olsen et al

2016) lsquoNon-carbon relatedrsquo concerns on the other hand pertain to nature conservation and

biodiversity aspects of land use also known as lsquodirect land-use changersquo (DLUC) as well as to the

risk that part of the demand for biofuels will be met by increasingly devoting land to agriculture

a phenomenon known as lsquoIndirect Land-Use Changersquo (ILUC) (European Commission 2010) The

RED 2009 took into account both carbon-related concerns and non-carbon related concerns with

the exclusion of ILUC It introduced a minimum standard of 35 GHG emission savings from

the use of biofuels and provided that lsquosustainablersquo biofuels could not be sourced from certain

protected areas (eg highly biodiverse grassland wetlands continuously forested areas) (RED

2009 Article 17) For what concerns ILUC instead the normative framework was integrated by

the adoption of the 2015 Indirect Land-Use Change Directive (ILUC Directive) It introduced an

overall 7 limit of biofuels from food crops as well as the category of lsquoadvanced biofuelsrsquo ie

biofuels that are not in competition with food crops (ILUC Directive recital (5))

Importantly the promotion of lsquosustainablersquo biofuels in the RED 2009 did not entail an absolute

ban on lsquonon-sustainablersquo biofuels Instead compliance with the sustainability criteria is required

for biofuels to enjoy a threefold set of benefits (a) accounting towards the accomplishment of the

national renewable energy targets (b) contributing to the fulfilment of renewable energy

obligations eg the mandatory share of renewable energy in transport (c) being eligible for

financial support

52 Sustainable biogas in the 2018 Renewable Energy Directive

In 2018 the EU adopted a new Renewable Energy Directive (RED 2018) which largely builds

upon the previous RED 2009 and enhances the legal framework for the promotion of advanced

biofuels Most notably the RED 2018 introduces a specific sub-target for a share of 35

advanced biofuels by 2030 (RED 2018 Article 25(1)) Under the RED 2018 advanced biofuels

can be counted for twice their energy content when calculating their contribution towards the target

for renewable energy in the transport sector Moreover the technological development and

deployment of advanced biofuels constitutes one of the elements to be included in the lsquoUnion

Bioenergy Sustainability Reportrsquo a biennial progress report to be released by the European

Commission from 2023 (Governance Regulation (2018) Annex X)

The RED 2018 is particularly relevant for what concerns biogas as it extends the need to comply

with non-carbon related sustainability criteria to biogas production In fact the previous RED 2009

only addressed the minimum GHG emissions savings of biogas (RED 2009 Annex V) while the

remainder of the sustainability criteria only referred to liquid biofuels The RED 2018 instead

applies the full range of sustainability criteria also to biogas production with an exemption for

small installations not exceeding a total rated thermal input of 2 MW (RED 2018 Article 29(1))

15

Analogously to the RED 2009 also in the RED 2018 compliance with the sustainability criteria is

necessary for bioenergy to account towards the renewable energy targets and to qualify for

financial support (RED 2018 Article 29(1)) For what specifically concerns ILUC the RED 2018

is supplemented by the Commission Delegated Regulation (EU) 2019807 (ILUC Delegated

Regulation) which sets specific criteria for the identification of respectively high- and low- ILUC

risk feedstock

6 Promoting biogas sustainability the case for sustainability criteria

beyond the EU legal framework

61 Global relevance of the EU sustainability criteria

The EU legal framework for biofuels sustainability is widely reputed as an example of lsquopioneeringrsquo

legislation (Kulovesi et al 2009) and one of the most comprehensive and advanced binding

sustainability schemes on a global scale (European Commission 2011) The global relevance of

the EU sustainability criteria emerges in particular from the fact that their validity is not limited to

the EU borders On the contrary for biofuels to enjoy the benefits mentioned above (see RED

2018 Article 29(1)) compliance with the sustainability criteria needs to be proven regardless of

whether the feedstock originates from within or outside the EU Such extraterritorial applicability

has given rise to a vivid debate related to the compatibility of the EU sustainability criteria with

international trade rules (Olsen et al 2016 Lydgate 2012 Scott 2011 Kulovesi et al 2009)

Conversely less scholarly attention has been devoted to the regulation of biofuels sustainability

outside the EU legal framework and especially in developing countries Undoubtedly for many

developing countries the EU represents an important export market for liquid biofuels (eg

bioethanol and biodiesel) Therefore the adoption of stringent sustainability criteria has the

potential to significantly affect biofuels production For instance the classification of palm oil

(often used as a feedstock for the production of biodiesel) as a high-ILUC risk feedstock under the

newly adopted ILUC Delegated Regulation has recently given rise to a legal complaint by

Indonesia currently pending before the WTO (WTO 2019) Despite the global significance of the

EU market this accounts only for a minority share of global biofuels trade (IEA 2019b)

Therefore the adoption of the sustainability criteria also in extra-EU jurisdictions would be a

crucial step to further mitigate the negative impacts associated with biofuels and biogas

production

In a few non-EU countries some progress has been registered in support of biofuels sustainability

This is the case for instance of Brazil Japan and the United States (Naiki 2016) On the contrary

sustainability criteria have rarely been adopted in the legal framework of developing countries A

survey of biofuel policies in East African countries for instance concludes that lsquogenerally

agrofuel investments have been insensitive to environmental and human rights concerns of

vulnerable populationsrsquo (Owino 2016) The same study holds that in the East African region

only Mozambique has put in place sustainability criteria in its biofuels policy known as the

lsquoMozambique Biofuel Sustainable Frameworkrsquo (MBSF) Even in the legislative framework of

developed countries biofuels sustainability is not taken into account to the same extent as in the

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 7: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

7

used as a vehicle fuel) it has to be purified of contaminants (especially CO2) that means upgraded

to biomethane3

The main advantage of biogas is that it is easily stored for longer periods of time so it can be

treated as a stock energy just like the fossil fuels This important feature differentiates if from

electricity from hydro- solar and wind power which are the largest renewable energy sources

today (IRENA 2018) In addition both the main product of biogas production (the biogas itself)

and the by-product (the digestate) can be put to efficient use (Wilken et al 2017) Namely the

digestate can be used as an organic fertilizer while biogas itself has three main applications heat

generation power generation and transport fuel Biogas is primarily used for heat or power

generation often also in combined heat and power (CHP) units (ibid) Upgraded to biomethane

it has almost the same chemical composition as natural gas It can therefore be used in all types

of gas-fueled vehicles and thus make use of already existing fleets and commercially available

technologies (Svensson 2013) Where a grid exists biomethane can be freely intermixed with

natural gas to be easily transported over large distances Where no grid is available the biomethane

can be compressed or liquefied and transported very efficiently by road (Roggenkamp et al 2018

Svensson 2013) This also makes it stand out in comparison with hydrogen which is still costly

to produce and transport and is debated in terms of its GHG savings (Ali et al 2016)

Another application of biogas which has been mentioned above lies in the possibility to produce

it from agricultural residues and municipal waste thus offering a viable alternative to composting

or landfilling the waste and contributing to sustainable waste management

22 Biogas as a sustainable energy source

The production of biogas from agricultural and municipal waste is one of the trending and

promising environmentally friendly technologies in the world today This is because biogas

production is driven by energy sustainable processes that contribute relatively less to climate

change compared to natural gas production from fossil fuels (Jiřiacute et al 2016) With a rise in biogas

energy production from 028 exajoules to 133 exajoules between 2000 and 2017 (Wang 2019)

the global biogas production is projected to be worth 110 billion US dollars by 2025 with a

compound annual growth rate of 7 (Global Market Insights 2019)

Considering the growing market of biogas globally special care has to be taken in ensuring that

the production and consumption of biogas are in line with and do not negatively affect the three

pillars of sustainability namely the economy environment and society These three pillars are

relevant and applicable in accessing the sustainability of biogas as a renewable energy source

(Purvis et al 2018) Based on the focus of the EU sustainability criteria the major aspect analyzed

in this paper is the environmental sustainability

This paper addresses the factors related to biogas environmental sustainability analyzing the life

cycle of biogas production in terms of GHG reductions against the fossil fuels comparators as

well as in terms of the feedstock used to produce biogas The use of municipal and agricultural

waste in particular appears as a viable option to solve environmental issues through the creation

of a suitable end of life for waste and the reduction of the amount of waste remaining in the landfill

3 For a comprehensive overview of upgrading techniques see eg Wilken et al (2017)

8

sites (Jonas et al 2017) The problem of GHG emissions at landfills not equipped with gas capture

is thereby reduced and as a result air pollution is diminished Because the landfills are usually

close to the cities biogas plants are often established close to them and by this the distribution of

energy becomes simpler and more efficient compared to the fossil energy (Jacopo et al 2013)

Conducting a Life Cycle Sustainability Assessment (LCSA) which also includes a Life Cycle

Assessment (LCA) represents a promising tool for evaluating sustainable production and

consumption This tool is also considered as the best approach to analyzing the environmental

social and economic sustainability of production processes (Hannouf amp Assefa 2019) To

illustrate the sustainability of biogas production against carbon intensive energy sources we first

conduct an LCA and compare the environmental impacts of the production of biogas against

carbon intensive energy sources In obtaining quantitative results the environmental impacts due

to the generation of 1MJ of energy were calculated for biogas from waste and diesel production

Diesel was chosen as a fossil fuel comparator due to its high level of industrial application The

same amount of energy yield was chosen so that the environmental impacts are directly

comparable

Each production process impacts the environment in a very general sense along a number of

directions For the LCA analysis the EU has recommended a set of Life Cycle Impact Assessment

methods (JRC 2012) There major impact categories for any production chain include climate

change (in CO2-equivalent) ecosystem quality human health and resource use Each of them is

further detailed eg the climate change may be induced by the use of fossil fuels land use and

land use change (LULUC) or through biogenic impact (ibid) With a focus on the three major

impact categories in the EU sustainability criteria ndash climate change land use change and fossils as

a resource ndash the results of the first brief analysis are provided in Figure 1 The figure shows that

the production of biogas can achieve an 86 reduction of GHG against the production of diesel

Regarding the reduction of land use an 84 reduction can be achieved and there is no significant

impact of biogas production on fossil fuel consumption when compared to diesel production

Figure 1 LCA environmental footprint results for biogas from waste versus diesel tons per hectare

9

It must be noted that this brief comparison shows the ldquobest caserdquo scenario since ndash as mentioned

before ndash biogas from waste is the most sustainable biogas type (Omar 2017) The sustainability

of biogas from energy crops is on the contrary contestable even when judging on the mere basis

of the overall impact (Guo et al 2015 Roumlder 2016 de Andrade 2016 Achinas et al 2017) On

top of that the environmental impact of biogas generation from energy crops can potentially vary

in different regions of the world due to varying crop yields Therefore the rest of the paper will

specifically focus on the production of biogas from energy crops

3 Research design

We perform our analysis in two main steps First we investigate the environmental sustainability

of biogas from a regionalized perspective Second we review how existing policies tackle the

sustainability issues of biogas production We then combine the results of the two analyses to

suggest tailored policy recommendations aimed at enhancing biogas sustainability outside the EU

and particularly in developing countries

For our analysis of the environmental sustainability of biogas we assess the environmental impact

of its production ndash to which we will also refer to as footprint ndash along several impact categories

We use the Life Cycle Assessment (LCA) approach and the impact categories correspond to those

defined by the EU (JRC 2012) They will be specifically referred to below in connection with the

specific software we use Unlike other LCA studies we are looking at how the overall footprint is

distributed across the world and how this distribution changes if we move our hypothetical plant

to different locations Just like in the case of goods production one might expect GHG emissions

in biofuels production or environmental effects of crop cultivation to fall into international

responsibility (for goods see Pan et al (2008) for an example of Chinarsquos role in international trade

and GHG emissions) At the same time as will be shown later only a few countries deal with

biogas sustainability within their territories let alone from a cross-border perspective To grasp

the relevance and effects of this perspective we perform a regionalized LCA

We split the LCA analysis into further two steps We first compare the regional impacts for an

arbitrary (ldquoglobalrdquo) biogas plant location to examine if the patterns differ between the feedstocks

As it is primarily biogas from energy crops which raises sustainability questions in the literature

and in the public (Kline et al 2016) we only look at this group of feedstocks The two most often

analyzed energy crops are maize and sugar beet (see Hijazi et al 2016) Thus given the scope of

our paper we limit ourselves to these two feedstocks

We then focus specifically on several plant locations to investigate how the location changes the

pattern for the specific feedstock For that we analyze four plant locations in four different parts

of the world Brazil as the major biogas producer in the Latin America and among the developing

countries (due to the large country size we focused specifically on the state of Paranaacute where

UNIDO-GEF projects for biogas promotion have been active since 20154) China and Germany

as the major biogas producers in Asia and Europe respectively and Nigeria as the emerging biogas

producer and the seat of the African Biorenewable Association These countries represent very

different stages of economic development and one of the questions we want to test with our LCA

4 See eg the ldquoBiogas Applications for the Brazilian Agro-industryrdquo project at wwwthegeforgprojectbiogas-

applications-brazilian-agro-industry (accessed 27 October 2019)

10

analysis is if the sustainability concerns are equally relevant for both developed and developing

countries

We use the OpenLCA software and the ecoinvent database to perform the analysis5 The software

is capable of evaluating environmental impacts and other relevant environmental and economic

aspects for each part of the value chain from the extraction of material through transport and

production to the end-use The OpenLCA provides results along the impact categories as

recommended by JRC (2012) A brief overview of these categories is provided in Table A1 in

Appendix 1

For agricultural biogas the ecoinvent database only contains the processes for biogas plant

construction and production of biogas from animal manure For energy crops we have to create a

new process based on this existing one To analyze the effects of biogas production from maize

and sugar beet the process for manure was taken as a basis Specifically the inputs of agricultural

plant construction and of energy and heat to operate the digester were taken from that example

The input of feedstock was replaced with the respective energy crop as follows The amount of

feedstock needed for biogas production was calculated using the potential biogas yield from the

literature 066 m3kg of total solids for maize as in Hutňan (2016) and 0685 m3kg of total solids

for sugar beet as an average of the findings of Starke amp Hoffmann (2014) The share of total solids

in the fresh crops for the respective feedstocks was taken from Kreuger et al (2011) who provide

a comprehensive overview on a number of crops To specifically investigate potential regional

differences arising from varying soil productivity we added two input processes which were not

relevant for biogas from manure Firstly we account for the amount of land needed to grow the

energy crop based on the regional yields provided as GIS data by Monfreda et al (2008) in the

EarthStat project The spatial distribution of yields is illustrated in Figures A1 and A2 in Appendix

2 for maize and sugar beet respectively Secondly we add the process for transportation of the

feedstock to the plant For manure feedstocks it is typically assumed that manure is collected in a

barn (Lusk 1998 Homan 2012) so the transportation distance is negligible provided the biogas

plant is constructed not far from the barn For energy crops the same cannot be the case the crops

have to be delivered from the whole cultivation area and this distance needs to be accounted for

To do so we assumed the plant to be located within a square field where the crop is grown and

used the average distance within a square as the transportation distance choosing a lorry as means

of transport The estimation of the environmental impact was then done using the ILCD 20 2018

midpoint method The amount of biogas produced is normalized to 100 m3 for the sake of

comparability6

5 OpenLCA is a professional LCA and footprint software that has a variety of features and many available

databases An important advantage against other professional LCA software is that openLCA is an open access

software It is also endorsed by the US Environmental Protection Agency (cfpubepagovsiindexcfm) The

ecoinvent database is an extensive and comprehensive collection of datasets on life cycle inventory including a

large number of products production processes and value chains (see httpswwwecoinventorg for more

information on the database) 6 The results of a regionalized LCA reflect the contribution of different regions to the overall impact ie the

percentage share of the respective region Therefore scaling the amount of biogas up or down will not change

the results We experimented with 1 m3 100 m3 and 100000 m3 of biogas and the result was qualitatively always

the same

11

4 Regional impacts of biogas production

In this section we present the results of the regionalized LCA We start by briefly comparing the

overall impacts of biogas production from maize and sugar beet After that we focus on the results

in a regional perspective first with unknown plant location and then for four different plant

locations

Regarding the overall impact of biogas production from maize and sugar beet along the impact

categories listed in Table A1 it should be noted that maize has a much larger impact than sugar

beet on all categories The comparison is illustrated in Figures A3-A6 in Appendix 3 and this

result is in line with the findings outlined by Hijazi et al (2016) However the regional impacts

of the two feedstocks show quite some differentiation

The first finding is that the regional distribution of the impacts differs substantially between the

two agricultural feedstocks For the sake of brevity we only provide results for three impacts

which are also addressed in the EU sustainability criteria climate change due to land use and land

use change use of fossils as a resource and use of land as a resource The comparison is illustrated

in Figures A7-A9 in Appendix 4 The maps show relative contributions of the respective regions

to the overall impact the warmer the color on the map the larger the regionrsquos contribution7

In terms of land use and the LULUC-induced climate change (Figures A7-A8) the regional

variation follows quite closely the world industrialization patterns on the one hand and the

agricultural productivity on the other In case of maize the impact is most prominent in Argentina

both for land use and LULUC-induced climate change This is not surprising as on the one hand

Argentina is among the top five maize producers across world8 while on the other hand

Argentinian agriculture is responsible for 90 of the countryrsquos forest loss (Antoacuten et al 2019)

The latter is translated into the LULUC-induced climate change In the case of sugar beet the

LULUC-induced climate change is prominent in Brazil however there is no overlap with land use

as a resource This suggests that the effect is not due to sugar beet production which is also in line

with Figure A2 in Appendix 2 A closer investigation reveals that additional electricity production

for agriculture and the plant would have the highest LULUC-related environmental costs in Brazil

where the majority of electricity is supplied by hydropower and water reservoirs created for that

pose a number of environmental challenges (von Sperling 2012)

With regard to the use of fossil fuels (Figure A9) the major impacts are as could be expected in

the fuel- and mineral-exporting countries The impact comes on the one hand from the energy for

plant construction operation and from the fuel used for feedstock transportation On the other

hand it also reflects the resources for fertilizer production which is quite important in crop

agriculture

Turning to different plant locations the second important finding is that while certain impacts are

connected to plant location others are always attributed to the same regions The results of the

comparison for sugar beet are illustrated in Figures A10-A11 in Appendix 5 The results for maize

7 The drawback of the OpenLCA software is that it does not provide an exact scale for the regionalized results

The illustrative maps should therefore be considered as a qualitative not quantitative reference 8 Based on FAO data wwwfaoorgfaostatendataQC (accessed 8 December 2019)

12

are presented in Figures A12-A13 in Appendix 6 Again the higher contribution of a region to the

overall impact is marked with warmer colors For sugar beet particularly the effects related to

growing the energy crops ldquomoverdquo together with the plants (see the impact on the land use in Figure

A10) In the case of maize Argentina seems to be one of the source countries for the feedstock for

all four plant locations Unlike other major maize (corn) producers not only is Argentina the third

largest exporter of corn but also corn figures as the second largest category of Argentinian

exports9 At the same time part of the impact is still located in the country of the plant location

Another interesting observation in the cases of both maize and sugar beet is that the more

developed the country the lower the impact share This also overlaps with the distribution of yields

in Figures A1-A2 in Appendix 2

Turning to other resources the picture is similar to that with the undefined plant location Both for

maize and sugar beet especially the use of resources related to fertilizers plant construction and

transportation (minerals and metals) is associated with the same regions independent of where the

plant is located In other words fossil energy construction materials and fertilizers often do not

come from the same country they are used in This raises the question in how much the impact

created by this demand is taken into account by the policy-makers when promoting biogas or

setting the criteria for determining whether to call biogas a sustainable renewable energy

To sum these results up there are several observations relevant for tackling sustainability concerns

of biogas from energy crops

1 Production of biogas may have substantial effects in terms of land use and climate change

induced by a change in land use or deforestation This effect might come directly from growing

energy crops However it can also come eg from supporting energy production as long as

biogas production is not completely autonomous or does not cover the energy needed for the

cultivation of energy crops

2 For some feedstocks it is likely that at least a share of them is imported from other countries

therefore shifting the environmental impact away from the countries where a biogas plant is

located

3 For other resources necessary for biogas plant construction and cultivation of the energy crop

the majority of the impact is accrued to the same set of countries independent of the plant

location Therefore it is typically situated outside of the country where a biogas plant is

located

If one further looks at the future of biogas production and distribution there is already some

movement towards trading this fuel Examples are the plans of the German electric utilities

company RWE to trade biogas between Great Britain and the Netherlands (enformer 2018) and

inclusion of biogas and feedstocks in the portfolio of companies trading energy commodities (eg

ACT Commodities) However long-distance transportation options for biogas as discussed in

Section 21 can be somewhat limited compared to liquid biofuels For example to transport

biogas overseas it has to be compressed or liquified meaning the origin and destination ports need

to be equipped respectively and LNG vessels need to be employed This creates additional

9 Based on the data by the Observatory of Economic Complexity wwwoecworldenprofilecountryarg

(accessed 8 December 2019)

13

transportation costs compared to liquid fuels and lowers profitability of such trade Therefore it

is rather likely that biogas ndash provided it is produced in sufficient quantities ndash is first traded

regionally where grid connections exist or between already LNG-equipped locations Another

option is that instead of the final product the feedstock will be traded Trade in agricultural

products is very well established and the trend of trading energy crops for biofuels in general and

biogas in particular was already visible in Europe in the early 2010s (Kalt amp Kranzl 2012 Pagh-

Schlegel amp Elkjaeligr 2012)

In view of these considerations it is likely that the three observations outlined above will be

increasingly important in the future Therefore they need to be taken into account when promoting

biogas development around the world In the next section we will review how some existing

regulations are already able to tackle these challenges Based on this we will then formulate our

policy recommendations

5 Sustainable biogas policy the EUrsquos legal framework

51 Biofuels in EU law targets and sustainability criteria

The EU is widely reputed as a leader of international climate action (Bogojevic 2016) having

substantially contributed to the development of the international legal regime on climate change

(Oberthuumlr 2018) Renewable energy has traditionally represented a proactive area of the EUrsquos

policymaking as the RE targets were already enshrined in the 2001 Renewable Energy Directive

(RED 2001) and subsequently updated under the 2009 Renewable Energy Directive (RED 2009)

and the 2018 Renewable Energy Directive (RED 2018) Along with the general RE targets at the

Member State or at the EU level specific sub-targets have been enacted with a view of promoting

the energy transition in the transport sector At first such targets were enshrined in the 2003

Biofuels Directive (Biofuels Directive 2003) Subsequently targets for renewable energy in

transport have been incorporated into the RED 2009 and most recently a target of 14 renewable

energy in transport by 2030 is foreseen under Article 25(1) RED 2018

In order to reach their renewable energy targets several EU Member States have adopted different

kinds of support schemes such as feed-in tariffs (FIT) feed-in premium (FIP) tradable green

certificates and auctions (Banja et al 2019) Moreover further policy measures have also

contributed to a steady increase in the share of bioenergy in some cases specifically encouraging

the deployment of biogas and biomethane A case in point is the Alternative Fuels Infrastructure

Directive (AFID Directive) which includes minimum requirements for the build-up of refueling

points for liquid natural gas (LNG) and compressed natural gas (CNG) (Van Grinsven et al 2017)

As proven by the recent Eurostat data the EU policy activism has contributed to a steady increase

of the share of bioenergy (including energy from the agricultural biomass the forest biomass and

the renewable waste) which grew from 59 in 2005 to 103 in 2017 (Banja et al 2019)

However incentives for biofuels production have also triggered in some cases the conversion of

agricultural land into land dedicated to the cultivation of energy crops The biogas sector along

with other biofuels is part of this phenomenon determined inter alia by the higher methane yield

of energy crops compared to manure and other sources of agricultural waste In the case of

14

Germany for instance biogas production from energy crops significantly outweighs its production

from industrial and agricultural waste (Eyl-Mazzega et al 2019)

Following the adoption of the RED 2009 the EU legislator has taken specific countermeasures to

reduce the risks connected to an indiscriminate expansion of biofuel production from energy crops

Such measures known as lsquosustainability criteriarsquo address both lsquocarbon-relatedrsquo and lsquonon carbon-

relatedrsquo concerns In particular lsquocarbon-relatedrsquo encompasses the necessary reduction in the GHG

emissions that needs to be achieved by biofuels against their fossil fuel comparators (Olsen et al

2016) lsquoNon-carbon relatedrsquo concerns on the other hand pertain to nature conservation and

biodiversity aspects of land use also known as lsquodirect land-use changersquo (DLUC) as well as to the

risk that part of the demand for biofuels will be met by increasingly devoting land to agriculture

a phenomenon known as lsquoIndirect Land-Use Changersquo (ILUC) (European Commission 2010) The

RED 2009 took into account both carbon-related concerns and non-carbon related concerns with

the exclusion of ILUC It introduced a minimum standard of 35 GHG emission savings from

the use of biofuels and provided that lsquosustainablersquo biofuels could not be sourced from certain

protected areas (eg highly biodiverse grassland wetlands continuously forested areas) (RED

2009 Article 17) For what concerns ILUC instead the normative framework was integrated by

the adoption of the 2015 Indirect Land-Use Change Directive (ILUC Directive) It introduced an

overall 7 limit of biofuels from food crops as well as the category of lsquoadvanced biofuelsrsquo ie

biofuels that are not in competition with food crops (ILUC Directive recital (5))

Importantly the promotion of lsquosustainablersquo biofuels in the RED 2009 did not entail an absolute

ban on lsquonon-sustainablersquo biofuels Instead compliance with the sustainability criteria is required

for biofuels to enjoy a threefold set of benefits (a) accounting towards the accomplishment of the

national renewable energy targets (b) contributing to the fulfilment of renewable energy

obligations eg the mandatory share of renewable energy in transport (c) being eligible for

financial support

52 Sustainable biogas in the 2018 Renewable Energy Directive

In 2018 the EU adopted a new Renewable Energy Directive (RED 2018) which largely builds

upon the previous RED 2009 and enhances the legal framework for the promotion of advanced

biofuels Most notably the RED 2018 introduces a specific sub-target for a share of 35

advanced biofuels by 2030 (RED 2018 Article 25(1)) Under the RED 2018 advanced biofuels

can be counted for twice their energy content when calculating their contribution towards the target

for renewable energy in the transport sector Moreover the technological development and

deployment of advanced biofuels constitutes one of the elements to be included in the lsquoUnion

Bioenergy Sustainability Reportrsquo a biennial progress report to be released by the European

Commission from 2023 (Governance Regulation (2018) Annex X)

The RED 2018 is particularly relevant for what concerns biogas as it extends the need to comply

with non-carbon related sustainability criteria to biogas production In fact the previous RED 2009

only addressed the minimum GHG emissions savings of biogas (RED 2009 Annex V) while the

remainder of the sustainability criteria only referred to liquid biofuels The RED 2018 instead

applies the full range of sustainability criteria also to biogas production with an exemption for

small installations not exceeding a total rated thermal input of 2 MW (RED 2018 Article 29(1))

15

Analogously to the RED 2009 also in the RED 2018 compliance with the sustainability criteria is

necessary for bioenergy to account towards the renewable energy targets and to qualify for

financial support (RED 2018 Article 29(1)) For what specifically concerns ILUC the RED 2018

is supplemented by the Commission Delegated Regulation (EU) 2019807 (ILUC Delegated

Regulation) which sets specific criteria for the identification of respectively high- and low- ILUC

risk feedstock

6 Promoting biogas sustainability the case for sustainability criteria

beyond the EU legal framework

61 Global relevance of the EU sustainability criteria

The EU legal framework for biofuels sustainability is widely reputed as an example of lsquopioneeringrsquo

legislation (Kulovesi et al 2009) and one of the most comprehensive and advanced binding

sustainability schemes on a global scale (European Commission 2011) The global relevance of

the EU sustainability criteria emerges in particular from the fact that their validity is not limited to

the EU borders On the contrary for biofuels to enjoy the benefits mentioned above (see RED

2018 Article 29(1)) compliance with the sustainability criteria needs to be proven regardless of

whether the feedstock originates from within or outside the EU Such extraterritorial applicability

has given rise to a vivid debate related to the compatibility of the EU sustainability criteria with

international trade rules (Olsen et al 2016 Lydgate 2012 Scott 2011 Kulovesi et al 2009)

Conversely less scholarly attention has been devoted to the regulation of biofuels sustainability

outside the EU legal framework and especially in developing countries Undoubtedly for many

developing countries the EU represents an important export market for liquid biofuels (eg

bioethanol and biodiesel) Therefore the adoption of stringent sustainability criteria has the

potential to significantly affect biofuels production For instance the classification of palm oil

(often used as a feedstock for the production of biodiesel) as a high-ILUC risk feedstock under the

newly adopted ILUC Delegated Regulation has recently given rise to a legal complaint by

Indonesia currently pending before the WTO (WTO 2019) Despite the global significance of the

EU market this accounts only for a minority share of global biofuels trade (IEA 2019b)

Therefore the adoption of the sustainability criteria also in extra-EU jurisdictions would be a

crucial step to further mitigate the negative impacts associated with biofuels and biogas

production

In a few non-EU countries some progress has been registered in support of biofuels sustainability

This is the case for instance of Brazil Japan and the United States (Naiki 2016) On the contrary

sustainability criteria have rarely been adopted in the legal framework of developing countries A

survey of biofuel policies in East African countries for instance concludes that lsquogenerally

agrofuel investments have been insensitive to environmental and human rights concerns of

vulnerable populationsrsquo (Owino 2016) The same study holds that in the East African region

only Mozambique has put in place sustainability criteria in its biofuels policy known as the

lsquoMozambique Biofuel Sustainable Frameworkrsquo (MBSF) Even in the legislative framework of

developed countries biofuels sustainability is not taken into account to the same extent as in the

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 8: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

8

sites (Jonas et al 2017) The problem of GHG emissions at landfills not equipped with gas capture

is thereby reduced and as a result air pollution is diminished Because the landfills are usually

close to the cities biogas plants are often established close to them and by this the distribution of

energy becomes simpler and more efficient compared to the fossil energy (Jacopo et al 2013)

Conducting a Life Cycle Sustainability Assessment (LCSA) which also includes a Life Cycle

Assessment (LCA) represents a promising tool for evaluating sustainable production and

consumption This tool is also considered as the best approach to analyzing the environmental

social and economic sustainability of production processes (Hannouf amp Assefa 2019) To

illustrate the sustainability of biogas production against carbon intensive energy sources we first

conduct an LCA and compare the environmental impacts of the production of biogas against

carbon intensive energy sources In obtaining quantitative results the environmental impacts due

to the generation of 1MJ of energy were calculated for biogas from waste and diesel production

Diesel was chosen as a fossil fuel comparator due to its high level of industrial application The

same amount of energy yield was chosen so that the environmental impacts are directly

comparable

Each production process impacts the environment in a very general sense along a number of

directions For the LCA analysis the EU has recommended a set of Life Cycle Impact Assessment

methods (JRC 2012) There major impact categories for any production chain include climate

change (in CO2-equivalent) ecosystem quality human health and resource use Each of them is

further detailed eg the climate change may be induced by the use of fossil fuels land use and

land use change (LULUC) or through biogenic impact (ibid) With a focus on the three major

impact categories in the EU sustainability criteria ndash climate change land use change and fossils as

a resource ndash the results of the first brief analysis are provided in Figure 1 The figure shows that

the production of biogas can achieve an 86 reduction of GHG against the production of diesel

Regarding the reduction of land use an 84 reduction can be achieved and there is no significant

impact of biogas production on fossil fuel consumption when compared to diesel production

Figure 1 LCA environmental footprint results for biogas from waste versus diesel tons per hectare

9

It must be noted that this brief comparison shows the ldquobest caserdquo scenario since ndash as mentioned

before ndash biogas from waste is the most sustainable biogas type (Omar 2017) The sustainability

of biogas from energy crops is on the contrary contestable even when judging on the mere basis

of the overall impact (Guo et al 2015 Roumlder 2016 de Andrade 2016 Achinas et al 2017) On

top of that the environmental impact of biogas generation from energy crops can potentially vary

in different regions of the world due to varying crop yields Therefore the rest of the paper will

specifically focus on the production of biogas from energy crops

3 Research design

We perform our analysis in two main steps First we investigate the environmental sustainability

of biogas from a regionalized perspective Second we review how existing policies tackle the

sustainability issues of biogas production We then combine the results of the two analyses to

suggest tailored policy recommendations aimed at enhancing biogas sustainability outside the EU

and particularly in developing countries

For our analysis of the environmental sustainability of biogas we assess the environmental impact

of its production ndash to which we will also refer to as footprint ndash along several impact categories

We use the Life Cycle Assessment (LCA) approach and the impact categories correspond to those

defined by the EU (JRC 2012) They will be specifically referred to below in connection with the

specific software we use Unlike other LCA studies we are looking at how the overall footprint is

distributed across the world and how this distribution changes if we move our hypothetical plant

to different locations Just like in the case of goods production one might expect GHG emissions

in biofuels production or environmental effects of crop cultivation to fall into international

responsibility (for goods see Pan et al (2008) for an example of Chinarsquos role in international trade

and GHG emissions) At the same time as will be shown later only a few countries deal with

biogas sustainability within their territories let alone from a cross-border perspective To grasp

the relevance and effects of this perspective we perform a regionalized LCA

We split the LCA analysis into further two steps We first compare the regional impacts for an

arbitrary (ldquoglobalrdquo) biogas plant location to examine if the patterns differ between the feedstocks

As it is primarily biogas from energy crops which raises sustainability questions in the literature

and in the public (Kline et al 2016) we only look at this group of feedstocks The two most often

analyzed energy crops are maize and sugar beet (see Hijazi et al 2016) Thus given the scope of

our paper we limit ourselves to these two feedstocks

We then focus specifically on several plant locations to investigate how the location changes the

pattern for the specific feedstock For that we analyze four plant locations in four different parts

of the world Brazil as the major biogas producer in the Latin America and among the developing

countries (due to the large country size we focused specifically on the state of Paranaacute where

UNIDO-GEF projects for biogas promotion have been active since 20154) China and Germany

as the major biogas producers in Asia and Europe respectively and Nigeria as the emerging biogas

producer and the seat of the African Biorenewable Association These countries represent very

different stages of economic development and one of the questions we want to test with our LCA

4 See eg the ldquoBiogas Applications for the Brazilian Agro-industryrdquo project at wwwthegeforgprojectbiogas-

applications-brazilian-agro-industry (accessed 27 October 2019)

10

analysis is if the sustainability concerns are equally relevant for both developed and developing

countries

We use the OpenLCA software and the ecoinvent database to perform the analysis5 The software

is capable of evaluating environmental impacts and other relevant environmental and economic

aspects for each part of the value chain from the extraction of material through transport and

production to the end-use The OpenLCA provides results along the impact categories as

recommended by JRC (2012) A brief overview of these categories is provided in Table A1 in

Appendix 1

For agricultural biogas the ecoinvent database only contains the processes for biogas plant

construction and production of biogas from animal manure For energy crops we have to create a

new process based on this existing one To analyze the effects of biogas production from maize

and sugar beet the process for manure was taken as a basis Specifically the inputs of agricultural

plant construction and of energy and heat to operate the digester were taken from that example

The input of feedstock was replaced with the respective energy crop as follows The amount of

feedstock needed for biogas production was calculated using the potential biogas yield from the

literature 066 m3kg of total solids for maize as in Hutňan (2016) and 0685 m3kg of total solids

for sugar beet as an average of the findings of Starke amp Hoffmann (2014) The share of total solids

in the fresh crops for the respective feedstocks was taken from Kreuger et al (2011) who provide

a comprehensive overview on a number of crops To specifically investigate potential regional

differences arising from varying soil productivity we added two input processes which were not

relevant for biogas from manure Firstly we account for the amount of land needed to grow the

energy crop based on the regional yields provided as GIS data by Monfreda et al (2008) in the

EarthStat project The spatial distribution of yields is illustrated in Figures A1 and A2 in Appendix

2 for maize and sugar beet respectively Secondly we add the process for transportation of the

feedstock to the plant For manure feedstocks it is typically assumed that manure is collected in a

barn (Lusk 1998 Homan 2012) so the transportation distance is negligible provided the biogas

plant is constructed not far from the barn For energy crops the same cannot be the case the crops

have to be delivered from the whole cultivation area and this distance needs to be accounted for

To do so we assumed the plant to be located within a square field where the crop is grown and

used the average distance within a square as the transportation distance choosing a lorry as means

of transport The estimation of the environmental impact was then done using the ILCD 20 2018

midpoint method The amount of biogas produced is normalized to 100 m3 for the sake of

comparability6

5 OpenLCA is a professional LCA and footprint software that has a variety of features and many available

databases An important advantage against other professional LCA software is that openLCA is an open access

software It is also endorsed by the US Environmental Protection Agency (cfpubepagovsiindexcfm) The

ecoinvent database is an extensive and comprehensive collection of datasets on life cycle inventory including a

large number of products production processes and value chains (see httpswwwecoinventorg for more

information on the database) 6 The results of a regionalized LCA reflect the contribution of different regions to the overall impact ie the

percentage share of the respective region Therefore scaling the amount of biogas up or down will not change

the results We experimented with 1 m3 100 m3 and 100000 m3 of biogas and the result was qualitatively always

the same

11

4 Regional impacts of biogas production

In this section we present the results of the regionalized LCA We start by briefly comparing the

overall impacts of biogas production from maize and sugar beet After that we focus on the results

in a regional perspective first with unknown plant location and then for four different plant

locations

Regarding the overall impact of biogas production from maize and sugar beet along the impact

categories listed in Table A1 it should be noted that maize has a much larger impact than sugar

beet on all categories The comparison is illustrated in Figures A3-A6 in Appendix 3 and this

result is in line with the findings outlined by Hijazi et al (2016) However the regional impacts

of the two feedstocks show quite some differentiation

The first finding is that the regional distribution of the impacts differs substantially between the

two agricultural feedstocks For the sake of brevity we only provide results for three impacts

which are also addressed in the EU sustainability criteria climate change due to land use and land

use change use of fossils as a resource and use of land as a resource The comparison is illustrated

in Figures A7-A9 in Appendix 4 The maps show relative contributions of the respective regions

to the overall impact the warmer the color on the map the larger the regionrsquos contribution7

In terms of land use and the LULUC-induced climate change (Figures A7-A8) the regional

variation follows quite closely the world industrialization patterns on the one hand and the

agricultural productivity on the other In case of maize the impact is most prominent in Argentina

both for land use and LULUC-induced climate change This is not surprising as on the one hand

Argentina is among the top five maize producers across world8 while on the other hand

Argentinian agriculture is responsible for 90 of the countryrsquos forest loss (Antoacuten et al 2019)

The latter is translated into the LULUC-induced climate change In the case of sugar beet the

LULUC-induced climate change is prominent in Brazil however there is no overlap with land use

as a resource This suggests that the effect is not due to sugar beet production which is also in line

with Figure A2 in Appendix 2 A closer investigation reveals that additional electricity production

for agriculture and the plant would have the highest LULUC-related environmental costs in Brazil

where the majority of electricity is supplied by hydropower and water reservoirs created for that

pose a number of environmental challenges (von Sperling 2012)

With regard to the use of fossil fuels (Figure A9) the major impacts are as could be expected in

the fuel- and mineral-exporting countries The impact comes on the one hand from the energy for

plant construction operation and from the fuel used for feedstock transportation On the other

hand it also reflects the resources for fertilizer production which is quite important in crop

agriculture

Turning to different plant locations the second important finding is that while certain impacts are

connected to plant location others are always attributed to the same regions The results of the

comparison for sugar beet are illustrated in Figures A10-A11 in Appendix 5 The results for maize

7 The drawback of the OpenLCA software is that it does not provide an exact scale for the regionalized results

The illustrative maps should therefore be considered as a qualitative not quantitative reference 8 Based on FAO data wwwfaoorgfaostatendataQC (accessed 8 December 2019)

12

are presented in Figures A12-A13 in Appendix 6 Again the higher contribution of a region to the

overall impact is marked with warmer colors For sugar beet particularly the effects related to

growing the energy crops ldquomoverdquo together with the plants (see the impact on the land use in Figure

A10) In the case of maize Argentina seems to be one of the source countries for the feedstock for

all four plant locations Unlike other major maize (corn) producers not only is Argentina the third

largest exporter of corn but also corn figures as the second largest category of Argentinian

exports9 At the same time part of the impact is still located in the country of the plant location

Another interesting observation in the cases of both maize and sugar beet is that the more

developed the country the lower the impact share This also overlaps with the distribution of yields

in Figures A1-A2 in Appendix 2

Turning to other resources the picture is similar to that with the undefined plant location Both for

maize and sugar beet especially the use of resources related to fertilizers plant construction and

transportation (minerals and metals) is associated with the same regions independent of where the

plant is located In other words fossil energy construction materials and fertilizers often do not

come from the same country they are used in This raises the question in how much the impact

created by this demand is taken into account by the policy-makers when promoting biogas or

setting the criteria for determining whether to call biogas a sustainable renewable energy

To sum these results up there are several observations relevant for tackling sustainability concerns

of biogas from energy crops

1 Production of biogas may have substantial effects in terms of land use and climate change

induced by a change in land use or deforestation This effect might come directly from growing

energy crops However it can also come eg from supporting energy production as long as

biogas production is not completely autonomous or does not cover the energy needed for the

cultivation of energy crops

2 For some feedstocks it is likely that at least a share of them is imported from other countries

therefore shifting the environmental impact away from the countries where a biogas plant is

located

3 For other resources necessary for biogas plant construction and cultivation of the energy crop

the majority of the impact is accrued to the same set of countries independent of the plant

location Therefore it is typically situated outside of the country where a biogas plant is

located

If one further looks at the future of biogas production and distribution there is already some

movement towards trading this fuel Examples are the plans of the German electric utilities

company RWE to trade biogas between Great Britain and the Netherlands (enformer 2018) and

inclusion of biogas and feedstocks in the portfolio of companies trading energy commodities (eg

ACT Commodities) However long-distance transportation options for biogas as discussed in

Section 21 can be somewhat limited compared to liquid biofuels For example to transport

biogas overseas it has to be compressed or liquified meaning the origin and destination ports need

to be equipped respectively and LNG vessels need to be employed This creates additional

9 Based on the data by the Observatory of Economic Complexity wwwoecworldenprofilecountryarg

(accessed 8 December 2019)

13

transportation costs compared to liquid fuels and lowers profitability of such trade Therefore it

is rather likely that biogas ndash provided it is produced in sufficient quantities ndash is first traded

regionally where grid connections exist or between already LNG-equipped locations Another

option is that instead of the final product the feedstock will be traded Trade in agricultural

products is very well established and the trend of trading energy crops for biofuels in general and

biogas in particular was already visible in Europe in the early 2010s (Kalt amp Kranzl 2012 Pagh-

Schlegel amp Elkjaeligr 2012)

In view of these considerations it is likely that the three observations outlined above will be

increasingly important in the future Therefore they need to be taken into account when promoting

biogas development around the world In the next section we will review how some existing

regulations are already able to tackle these challenges Based on this we will then formulate our

policy recommendations

5 Sustainable biogas policy the EUrsquos legal framework

51 Biofuels in EU law targets and sustainability criteria

The EU is widely reputed as a leader of international climate action (Bogojevic 2016) having

substantially contributed to the development of the international legal regime on climate change

(Oberthuumlr 2018) Renewable energy has traditionally represented a proactive area of the EUrsquos

policymaking as the RE targets were already enshrined in the 2001 Renewable Energy Directive

(RED 2001) and subsequently updated under the 2009 Renewable Energy Directive (RED 2009)

and the 2018 Renewable Energy Directive (RED 2018) Along with the general RE targets at the

Member State or at the EU level specific sub-targets have been enacted with a view of promoting

the energy transition in the transport sector At first such targets were enshrined in the 2003

Biofuels Directive (Biofuels Directive 2003) Subsequently targets for renewable energy in

transport have been incorporated into the RED 2009 and most recently a target of 14 renewable

energy in transport by 2030 is foreseen under Article 25(1) RED 2018

In order to reach their renewable energy targets several EU Member States have adopted different

kinds of support schemes such as feed-in tariffs (FIT) feed-in premium (FIP) tradable green

certificates and auctions (Banja et al 2019) Moreover further policy measures have also

contributed to a steady increase in the share of bioenergy in some cases specifically encouraging

the deployment of biogas and biomethane A case in point is the Alternative Fuels Infrastructure

Directive (AFID Directive) which includes minimum requirements for the build-up of refueling

points for liquid natural gas (LNG) and compressed natural gas (CNG) (Van Grinsven et al 2017)

As proven by the recent Eurostat data the EU policy activism has contributed to a steady increase

of the share of bioenergy (including energy from the agricultural biomass the forest biomass and

the renewable waste) which grew from 59 in 2005 to 103 in 2017 (Banja et al 2019)

However incentives for biofuels production have also triggered in some cases the conversion of

agricultural land into land dedicated to the cultivation of energy crops The biogas sector along

with other biofuels is part of this phenomenon determined inter alia by the higher methane yield

of energy crops compared to manure and other sources of agricultural waste In the case of

14

Germany for instance biogas production from energy crops significantly outweighs its production

from industrial and agricultural waste (Eyl-Mazzega et al 2019)

Following the adoption of the RED 2009 the EU legislator has taken specific countermeasures to

reduce the risks connected to an indiscriminate expansion of biofuel production from energy crops

Such measures known as lsquosustainability criteriarsquo address both lsquocarbon-relatedrsquo and lsquonon carbon-

relatedrsquo concerns In particular lsquocarbon-relatedrsquo encompasses the necessary reduction in the GHG

emissions that needs to be achieved by biofuels against their fossil fuel comparators (Olsen et al

2016) lsquoNon-carbon relatedrsquo concerns on the other hand pertain to nature conservation and

biodiversity aspects of land use also known as lsquodirect land-use changersquo (DLUC) as well as to the

risk that part of the demand for biofuels will be met by increasingly devoting land to agriculture

a phenomenon known as lsquoIndirect Land-Use Changersquo (ILUC) (European Commission 2010) The

RED 2009 took into account both carbon-related concerns and non-carbon related concerns with

the exclusion of ILUC It introduced a minimum standard of 35 GHG emission savings from

the use of biofuels and provided that lsquosustainablersquo biofuels could not be sourced from certain

protected areas (eg highly biodiverse grassland wetlands continuously forested areas) (RED

2009 Article 17) For what concerns ILUC instead the normative framework was integrated by

the adoption of the 2015 Indirect Land-Use Change Directive (ILUC Directive) It introduced an

overall 7 limit of biofuels from food crops as well as the category of lsquoadvanced biofuelsrsquo ie

biofuels that are not in competition with food crops (ILUC Directive recital (5))

Importantly the promotion of lsquosustainablersquo biofuels in the RED 2009 did not entail an absolute

ban on lsquonon-sustainablersquo biofuels Instead compliance with the sustainability criteria is required

for biofuels to enjoy a threefold set of benefits (a) accounting towards the accomplishment of the

national renewable energy targets (b) contributing to the fulfilment of renewable energy

obligations eg the mandatory share of renewable energy in transport (c) being eligible for

financial support

52 Sustainable biogas in the 2018 Renewable Energy Directive

In 2018 the EU adopted a new Renewable Energy Directive (RED 2018) which largely builds

upon the previous RED 2009 and enhances the legal framework for the promotion of advanced

biofuels Most notably the RED 2018 introduces a specific sub-target for a share of 35

advanced biofuels by 2030 (RED 2018 Article 25(1)) Under the RED 2018 advanced biofuels

can be counted for twice their energy content when calculating their contribution towards the target

for renewable energy in the transport sector Moreover the technological development and

deployment of advanced biofuels constitutes one of the elements to be included in the lsquoUnion

Bioenergy Sustainability Reportrsquo a biennial progress report to be released by the European

Commission from 2023 (Governance Regulation (2018) Annex X)

The RED 2018 is particularly relevant for what concerns biogas as it extends the need to comply

with non-carbon related sustainability criteria to biogas production In fact the previous RED 2009

only addressed the minimum GHG emissions savings of biogas (RED 2009 Annex V) while the

remainder of the sustainability criteria only referred to liquid biofuels The RED 2018 instead

applies the full range of sustainability criteria also to biogas production with an exemption for

small installations not exceeding a total rated thermal input of 2 MW (RED 2018 Article 29(1))

15

Analogously to the RED 2009 also in the RED 2018 compliance with the sustainability criteria is

necessary for bioenergy to account towards the renewable energy targets and to qualify for

financial support (RED 2018 Article 29(1)) For what specifically concerns ILUC the RED 2018

is supplemented by the Commission Delegated Regulation (EU) 2019807 (ILUC Delegated

Regulation) which sets specific criteria for the identification of respectively high- and low- ILUC

risk feedstock

6 Promoting biogas sustainability the case for sustainability criteria

beyond the EU legal framework

61 Global relevance of the EU sustainability criteria

The EU legal framework for biofuels sustainability is widely reputed as an example of lsquopioneeringrsquo

legislation (Kulovesi et al 2009) and one of the most comprehensive and advanced binding

sustainability schemes on a global scale (European Commission 2011) The global relevance of

the EU sustainability criteria emerges in particular from the fact that their validity is not limited to

the EU borders On the contrary for biofuels to enjoy the benefits mentioned above (see RED

2018 Article 29(1)) compliance with the sustainability criteria needs to be proven regardless of

whether the feedstock originates from within or outside the EU Such extraterritorial applicability

has given rise to a vivid debate related to the compatibility of the EU sustainability criteria with

international trade rules (Olsen et al 2016 Lydgate 2012 Scott 2011 Kulovesi et al 2009)

Conversely less scholarly attention has been devoted to the regulation of biofuels sustainability

outside the EU legal framework and especially in developing countries Undoubtedly for many

developing countries the EU represents an important export market for liquid biofuels (eg

bioethanol and biodiesel) Therefore the adoption of stringent sustainability criteria has the

potential to significantly affect biofuels production For instance the classification of palm oil

(often used as a feedstock for the production of biodiesel) as a high-ILUC risk feedstock under the

newly adopted ILUC Delegated Regulation has recently given rise to a legal complaint by

Indonesia currently pending before the WTO (WTO 2019) Despite the global significance of the

EU market this accounts only for a minority share of global biofuels trade (IEA 2019b)

Therefore the adoption of the sustainability criteria also in extra-EU jurisdictions would be a

crucial step to further mitigate the negative impacts associated with biofuels and biogas

production

In a few non-EU countries some progress has been registered in support of biofuels sustainability

This is the case for instance of Brazil Japan and the United States (Naiki 2016) On the contrary

sustainability criteria have rarely been adopted in the legal framework of developing countries A

survey of biofuel policies in East African countries for instance concludes that lsquogenerally

agrofuel investments have been insensitive to environmental and human rights concerns of

vulnerable populationsrsquo (Owino 2016) The same study holds that in the East African region

only Mozambique has put in place sustainability criteria in its biofuels policy known as the

lsquoMozambique Biofuel Sustainable Frameworkrsquo (MBSF) Even in the legislative framework of

developed countries biofuels sustainability is not taken into account to the same extent as in the

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 9: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

9

It must be noted that this brief comparison shows the ldquobest caserdquo scenario since ndash as mentioned

before ndash biogas from waste is the most sustainable biogas type (Omar 2017) The sustainability

of biogas from energy crops is on the contrary contestable even when judging on the mere basis

of the overall impact (Guo et al 2015 Roumlder 2016 de Andrade 2016 Achinas et al 2017) On

top of that the environmental impact of biogas generation from energy crops can potentially vary

in different regions of the world due to varying crop yields Therefore the rest of the paper will

specifically focus on the production of biogas from energy crops

3 Research design

We perform our analysis in two main steps First we investigate the environmental sustainability

of biogas from a regionalized perspective Second we review how existing policies tackle the

sustainability issues of biogas production We then combine the results of the two analyses to

suggest tailored policy recommendations aimed at enhancing biogas sustainability outside the EU

and particularly in developing countries

For our analysis of the environmental sustainability of biogas we assess the environmental impact

of its production ndash to which we will also refer to as footprint ndash along several impact categories

We use the Life Cycle Assessment (LCA) approach and the impact categories correspond to those

defined by the EU (JRC 2012) They will be specifically referred to below in connection with the

specific software we use Unlike other LCA studies we are looking at how the overall footprint is

distributed across the world and how this distribution changes if we move our hypothetical plant

to different locations Just like in the case of goods production one might expect GHG emissions

in biofuels production or environmental effects of crop cultivation to fall into international

responsibility (for goods see Pan et al (2008) for an example of Chinarsquos role in international trade

and GHG emissions) At the same time as will be shown later only a few countries deal with

biogas sustainability within their territories let alone from a cross-border perspective To grasp

the relevance and effects of this perspective we perform a regionalized LCA

We split the LCA analysis into further two steps We first compare the regional impacts for an

arbitrary (ldquoglobalrdquo) biogas plant location to examine if the patterns differ between the feedstocks

As it is primarily biogas from energy crops which raises sustainability questions in the literature

and in the public (Kline et al 2016) we only look at this group of feedstocks The two most often

analyzed energy crops are maize and sugar beet (see Hijazi et al 2016) Thus given the scope of

our paper we limit ourselves to these two feedstocks

We then focus specifically on several plant locations to investigate how the location changes the

pattern for the specific feedstock For that we analyze four plant locations in four different parts

of the world Brazil as the major biogas producer in the Latin America and among the developing

countries (due to the large country size we focused specifically on the state of Paranaacute where

UNIDO-GEF projects for biogas promotion have been active since 20154) China and Germany

as the major biogas producers in Asia and Europe respectively and Nigeria as the emerging biogas

producer and the seat of the African Biorenewable Association These countries represent very

different stages of economic development and one of the questions we want to test with our LCA

4 See eg the ldquoBiogas Applications for the Brazilian Agro-industryrdquo project at wwwthegeforgprojectbiogas-

applications-brazilian-agro-industry (accessed 27 October 2019)

10

analysis is if the sustainability concerns are equally relevant for both developed and developing

countries

We use the OpenLCA software and the ecoinvent database to perform the analysis5 The software

is capable of evaluating environmental impacts and other relevant environmental and economic

aspects for each part of the value chain from the extraction of material through transport and

production to the end-use The OpenLCA provides results along the impact categories as

recommended by JRC (2012) A brief overview of these categories is provided in Table A1 in

Appendix 1

For agricultural biogas the ecoinvent database only contains the processes for biogas plant

construction and production of biogas from animal manure For energy crops we have to create a

new process based on this existing one To analyze the effects of biogas production from maize

and sugar beet the process for manure was taken as a basis Specifically the inputs of agricultural

plant construction and of energy and heat to operate the digester were taken from that example

The input of feedstock was replaced with the respective energy crop as follows The amount of

feedstock needed for biogas production was calculated using the potential biogas yield from the

literature 066 m3kg of total solids for maize as in Hutňan (2016) and 0685 m3kg of total solids

for sugar beet as an average of the findings of Starke amp Hoffmann (2014) The share of total solids

in the fresh crops for the respective feedstocks was taken from Kreuger et al (2011) who provide

a comprehensive overview on a number of crops To specifically investigate potential regional

differences arising from varying soil productivity we added two input processes which were not

relevant for biogas from manure Firstly we account for the amount of land needed to grow the

energy crop based on the regional yields provided as GIS data by Monfreda et al (2008) in the

EarthStat project The spatial distribution of yields is illustrated in Figures A1 and A2 in Appendix

2 for maize and sugar beet respectively Secondly we add the process for transportation of the

feedstock to the plant For manure feedstocks it is typically assumed that manure is collected in a

barn (Lusk 1998 Homan 2012) so the transportation distance is negligible provided the biogas

plant is constructed not far from the barn For energy crops the same cannot be the case the crops

have to be delivered from the whole cultivation area and this distance needs to be accounted for

To do so we assumed the plant to be located within a square field where the crop is grown and

used the average distance within a square as the transportation distance choosing a lorry as means

of transport The estimation of the environmental impact was then done using the ILCD 20 2018

midpoint method The amount of biogas produced is normalized to 100 m3 for the sake of

comparability6

5 OpenLCA is a professional LCA and footprint software that has a variety of features and many available

databases An important advantage against other professional LCA software is that openLCA is an open access

software It is also endorsed by the US Environmental Protection Agency (cfpubepagovsiindexcfm) The

ecoinvent database is an extensive and comprehensive collection of datasets on life cycle inventory including a

large number of products production processes and value chains (see httpswwwecoinventorg for more

information on the database) 6 The results of a regionalized LCA reflect the contribution of different regions to the overall impact ie the

percentage share of the respective region Therefore scaling the amount of biogas up or down will not change

the results We experimented with 1 m3 100 m3 and 100000 m3 of biogas and the result was qualitatively always

the same

11

4 Regional impacts of biogas production

In this section we present the results of the regionalized LCA We start by briefly comparing the

overall impacts of biogas production from maize and sugar beet After that we focus on the results

in a regional perspective first with unknown plant location and then for four different plant

locations

Regarding the overall impact of biogas production from maize and sugar beet along the impact

categories listed in Table A1 it should be noted that maize has a much larger impact than sugar

beet on all categories The comparison is illustrated in Figures A3-A6 in Appendix 3 and this

result is in line with the findings outlined by Hijazi et al (2016) However the regional impacts

of the two feedstocks show quite some differentiation

The first finding is that the regional distribution of the impacts differs substantially between the

two agricultural feedstocks For the sake of brevity we only provide results for three impacts

which are also addressed in the EU sustainability criteria climate change due to land use and land

use change use of fossils as a resource and use of land as a resource The comparison is illustrated

in Figures A7-A9 in Appendix 4 The maps show relative contributions of the respective regions

to the overall impact the warmer the color on the map the larger the regionrsquos contribution7

In terms of land use and the LULUC-induced climate change (Figures A7-A8) the regional

variation follows quite closely the world industrialization patterns on the one hand and the

agricultural productivity on the other In case of maize the impact is most prominent in Argentina

both for land use and LULUC-induced climate change This is not surprising as on the one hand

Argentina is among the top five maize producers across world8 while on the other hand

Argentinian agriculture is responsible for 90 of the countryrsquos forest loss (Antoacuten et al 2019)

The latter is translated into the LULUC-induced climate change In the case of sugar beet the

LULUC-induced climate change is prominent in Brazil however there is no overlap with land use

as a resource This suggests that the effect is not due to sugar beet production which is also in line

with Figure A2 in Appendix 2 A closer investigation reveals that additional electricity production

for agriculture and the plant would have the highest LULUC-related environmental costs in Brazil

where the majority of electricity is supplied by hydropower and water reservoirs created for that

pose a number of environmental challenges (von Sperling 2012)

With regard to the use of fossil fuels (Figure A9) the major impacts are as could be expected in

the fuel- and mineral-exporting countries The impact comes on the one hand from the energy for

plant construction operation and from the fuel used for feedstock transportation On the other

hand it also reflects the resources for fertilizer production which is quite important in crop

agriculture

Turning to different plant locations the second important finding is that while certain impacts are

connected to plant location others are always attributed to the same regions The results of the

comparison for sugar beet are illustrated in Figures A10-A11 in Appendix 5 The results for maize

7 The drawback of the OpenLCA software is that it does not provide an exact scale for the regionalized results

The illustrative maps should therefore be considered as a qualitative not quantitative reference 8 Based on FAO data wwwfaoorgfaostatendataQC (accessed 8 December 2019)

12

are presented in Figures A12-A13 in Appendix 6 Again the higher contribution of a region to the

overall impact is marked with warmer colors For sugar beet particularly the effects related to

growing the energy crops ldquomoverdquo together with the plants (see the impact on the land use in Figure

A10) In the case of maize Argentina seems to be one of the source countries for the feedstock for

all four plant locations Unlike other major maize (corn) producers not only is Argentina the third

largest exporter of corn but also corn figures as the second largest category of Argentinian

exports9 At the same time part of the impact is still located in the country of the plant location

Another interesting observation in the cases of both maize and sugar beet is that the more

developed the country the lower the impact share This also overlaps with the distribution of yields

in Figures A1-A2 in Appendix 2

Turning to other resources the picture is similar to that with the undefined plant location Both for

maize and sugar beet especially the use of resources related to fertilizers plant construction and

transportation (minerals and metals) is associated with the same regions independent of where the

plant is located In other words fossil energy construction materials and fertilizers often do not

come from the same country they are used in This raises the question in how much the impact

created by this demand is taken into account by the policy-makers when promoting biogas or

setting the criteria for determining whether to call biogas a sustainable renewable energy

To sum these results up there are several observations relevant for tackling sustainability concerns

of biogas from energy crops

1 Production of biogas may have substantial effects in terms of land use and climate change

induced by a change in land use or deforestation This effect might come directly from growing

energy crops However it can also come eg from supporting energy production as long as

biogas production is not completely autonomous or does not cover the energy needed for the

cultivation of energy crops

2 For some feedstocks it is likely that at least a share of them is imported from other countries

therefore shifting the environmental impact away from the countries where a biogas plant is

located

3 For other resources necessary for biogas plant construction and cultivation of the energy crop

the majority of the impact is accrued to the same set of countries independent of the plant

location Therefore it is typically situated outside of the country where a biogas plant is

located

If one further looks at the future of biogas production and distribution there is already some

movement towards trading this fuel Examples are the plans of the German electric utilities

company RWE to trade biogas between Great Britain and the Netherlands (enformer 2018) and

inclusion of biogas and feedstocks in the portfolio of companies trading energy commodities (eg

ACT Commodities) However long-distance transportation options for biogas as discussed in

Section 21 can be somewhat limited compared to liquid biofuels For example to transport

biogas overseas it has to be compressed or liquified meaning the origin and destination ports need

to be equipped respectively and LNG vessels need to be employed This creates additional

9 Based on the data by the Observatory of Economic Complexity wwwoecworldenprofilecountryarg

(accessed 8 December 2019)

13

transportation costs compared to liquid fuels and lowers profitability of such trade Therefore it

is rather likely that biogas ndash provided it is produced in sufficient quantities ndash is first traded

regionally where grid connections exist or between already LNG-equipped locations Another

option is that instead of the final product the feedstock will be traded Trade in agricultural

products is very well established and the trend of trading energy crops for biofuels in general and

biogas in particular was already visible in Europe in the early 2010s (Kalt amp Kranzl 2012 Pagh-

Schlegel amp Elkjaeligr 2012)

In view of these considerations it is likely that the three observations outlined above will be

increasingly important in the future Therefore they need to be taken into account when promoting

biogas development around the world In the next section we will review how some existing

regulations are already able to tackle these challenges Based on this we will then formulate our

policy recommendations

5 Sustainable biogas policy the EUrsquos legal framework

51 Biofuels in EU law targets and sustainability criteria

The EU is widely reputed as a leader of international climate action (Bogojevic 2016) having

substantially contributed to the development of the international legal regime on climate change

(Oberthuumlr 2018) Renewable energy has traditionally represented a proactive area of the EUrsquos

policymaking as the RE targets were already enshrined in the 2001 Renewable Energy Directive

(RED 2001) and subsequently updated under the 2009 Renewable Energy Directive (RED 2009)

and the 2018 Renewable Energy Directive (RED 2018) Along with the general RE targets at the

Member State or at the EU level specific sub-targets have been enacted with a view of promoting

the energy transition in the transport sector At first such targets were enshrined in the 2003

Biofuels Directive (Biofuels Directive 2003) Subsequently targets for renewable energy in

transport have been incorporated into the RED 2009 and most recently a target of 14 renewable

energy in transport by 2030 is foreseen under Article 25(1) RED 2018

In order to reach their renewable energy targets several EU Member States have adopted different

kinds of support schemes such as feed-in tariffs (FIT) feed-in premium (FIP) tradable green

certificates and auctions (Banja et al 2019) Moreover further policy measures have also

contributed to a steady increase in the share of bioenergy in some cases specifically encouraging

the deployment of biogas and biomethane A case in point is the Alternative Fuels Infrastructure

Directive (AFID Directive) which includes minimum requirements for the build-up of refueling

points for liquid natural gas (LNG) and compressed natural gas (CNG) (Van Grinsven et al 2017)

As proven by the recent Eurostat data the EU policy activism has contributed to a steady increase

of the share of bioenergy (including energy from the agricultural biomass the forest biomass and

the renewable waste) which grew from 59 in 2005 to 103 in 2017 (Banja et al 2019)

However incentives for biofuels production have also triggered in some cases the conversion of

agricultural land into land dedicated to the cultivation of energy crops The biogas sector along

with other biofuels is part of this phenomenon determined inter alia by the higher methane yield

of energy crops compared to manure and other sources of agricultural waste In the case of

14

Germany for instance biogas production from energy crops significantly outweighs its production

from industrial and agricultural waste (Eyl-Mazzega et al 2019)

Following the adoption of the RED 2009 the EU legislator has taken specific countermeasures to

reduce the risks connected to an indiscriminate expansion of biofuel production from energy crops

Such measures known as lsquosustainability criteriarsquo address both lsquocarbon-relatedrsquo and lsquonon carbon-

relatedrsquo concerns In particular lsquocarbon-relatedrsquo encompasses the necessary reduction in the GHG

emissions that needs to be achieved by biofuels against their fossil fuel comparators (Olsen et al

2016) lsquoNon-carbon relatedrsquo concerns on the other hand pertain to nature conservation and

biodiversity aspects of land use also known as lsquodirect land-use changersquo (DLUC) as well as to the

risk that part of the demand for biofuels will be met by increasingly devoting land to agriculture

a phenomenon known as lsquoIndirect Land-Use Changersquo (ILUC) (European Commission 2010) The

RED 2009 took into account both carbon-related concerns and non-carbon related concerns with

the exclusion of ILUC It introduced a minimum standard of 35 GHG emission savings from

the use of biofuels and provided that lsquosustainablersquo biofuels could not be sourced from certain

protected areas (eg highly biodiverse grassland wetlands continuously forested areas) (RED

2009 Article 17) For what concerns ILUC instead the normative framework was integrated by

the adoption of the 2015 Indirect Land-Use Change Directive (ILUC Directive) It introduced an

overall 7 limit of biofuels from food crops as well as the category of lsquoadvanced biofuelsrsquo ie

biofuels that are not in competition with food crops (ILUC Directive recital (5))

Importantly the promotion of lsquosustainablersquo biofuels in the RED 2009 did not entail an absolute

ban on lsquonon-sustainablersquo biofuels Instead compliance with the sustainability criteria is required

for biofuels to enjoy a threefold set of benefits (a) accounting towards the accomplishment of the

national renewable energy targets (b) contributing to the fulfilment of renewable energy

obligations eg the mandatory share of renewable energy in transport (c) being eligible for

financial support

52 Sustainable biogas in the 2018 Renewable Energy Directive

In 2018 the EU adopted a new Renewable Energy Directive (RED 2018) which largely builds

upon the previous RED 2009 and enhances the legal framework for the promotion of advanced

biofuels Most notably the RED 2018 introduces a specific sub-target for a share of 35

advanced biofuels by 2030 (RED 2018 Article 25(1)) Under the RED 2018 advanced biofuels

can be counted for twice their energy content when calculating their contribution towards the target

for renewable energy in the transport sector Moreover the technological development and

deployment of advanced biofuels constitutes one of the elements to be included in the lsquoUnion

Bioenergy Sustainability Reportrsquo a biennial progress report to be released by the European

Commission from 2023 (Governance Regulation (2018) Annex X)

The RED 2018 is particularly relevant for what concerns biogas as it extends the need to comply

with non-carbon related sustainability criteria to biogas production In fact the previous RED 2009

only addressed the minimum GHG emissions savings of biogas (RED 2009 Annex V) while the

remainder of the sustainability criteria only referred to liquid biofuels The RED 2018 instead

applies the full range of sustainability criteria also to biogas production with an exemption for

small installations not exceeding a total rated thermal input of 2 MW (RED 2018 Article 29(1))

15

Analogously to the RED 2009 also in the RED 2018 compliance with the sustainability criteria is

necessary for bioenergy to account towards the renewable energy targets and to qualify for

financial support (RED 2018 Article 29(1)) For what specifically concerns ILUC the RED 2018

is supplemented by the Commission Delegated Regulation (EU) 2019807 (ILUC Delegated

Regulation) which sets specific criteria for the identification of respectively high- and low- ILUC

risk feedstock

6 Promoting biogas sustainability the case for sustainability criteria

beyond the EU legal framework

61 Global relevance of the EU sustainability criteria

The EU legal framework for biofuels sustainability is widely reputed as an example of lsquopioneeringrsquo

legislation (Kulovesi et al 2009) and one of the most comprehensive and advanced binding

sustainability schemes on a global scale (European Commission 2011) The global relevance of

the EU sustainability criteria emerges in particular from the fact that their validity is not limited to

the EU borders On the contrary for biofuels to enjoy the benefits mentioned above (see RED

2018 Article 29(1)) compliance with the sustainability criteria needs to be proven regardless of

whether the feedstock originates from within or outside the EU Such extraterritorial applicability

has given rise to a vivid debate related to the compatibility of the EU sustainability criteria with

international trade rules (Olsen et al 2016 Lydgate 2012 Scott 2011 Kulovesi et al 2009)

Conversely less scholarly attention has been devoted to the regulation of biofuels sustainability

outside the EU legal framework and especially in developing countries Undoubtedly for many

developing countries the EU represents an important export market for liquid biofuels (eg

bioethanol and biodiesel) Therefore the adoption of stringent sustainability criteria has the

potential to significantly affect biofuels production For instance the classification of palm oil

(often used as a feedstock for the production of biodiesel) as a high-ILUC risk feedstock under the

newly adopted ILUC Delegated Regulation has recently given rise to a legal complaint by

Indonesia currently pending before the WTO (WTO 2019) Despite the global significance of the

EU market this accounts only for a minority share of global biofuels trade (IEA 2019b)

Therefore the adoption of the sustainability criteria also in extra-EU jurisdictions would be a

crucial step to further mitigate the negative impacts associated with biofuels and biogas

production

In a few non-EU countries some progress has been registered in support of biofuels sustainability

This is the case for instance of Brazil Japan and the United States (Naiki 2016) On the contrary

sustainability criteria have rarely been adopted in the legal framework of developing countries A

survey of biofuel policies in East African countries for instance concludes that lsquogenerally

agrofuel investments have been insensitive to environmental and human rights concerns of

vulnerable populationsrsquo (Owino 2016) The same study holds that in the East African region

only Mozambique has put in place sustainability criteria in its biofuels policy known as the

lsquoMozambique Biofuel Sustainable Frameworkrsquo (MBSF) Even in the legislative framework of

developed countries biofuels sustainability is not taken into account to the same extent as in the

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 10: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

10

analysis is if the sustainability concerns are equally relevant for both developed and developing

countries

We use the OpenLCA software and the ecoinvent database to perform the analysis5 The software

is capable of evaluating environmental impacts and other relevant environmental and economic

aspects for each part of the value chain from the extraction of material through transport and

production to the end-use The OpenLCA provides results along the impact categories as

recommended by JRC (2012) A brief overview of these categories is provided in Table A1 in

Appendix 1

For agricultural biogas the ecoinvent database only contains the processes for biogas plant

construction and production of biogas from animal manure For energy crops we have to create a

new process based on this existing one To analyze the effects of biogas production from maize

and sugar beet the process for manure was taken as a basis Specifically the inputs of agricultural

plant construction and of energy and heat to operate the digester were taken from that example

The input of feedstock was replaced with the respective energy crop as follows The amount of

feedstock needed for biogas production was calculated using the potential biogas yield from the

literature 066 m3kg of total solids for maize as in Hutňan (2016) and 0685 m3kg of total solids

for sugar beet as an average of the findings of Starke amp Hoffmann (2014) The share of total solids

in the fresh crops for the respective feedstocks was taken from Kreuger et al (2011) who provide

a comprehensive overview on a number of crops To specifically investigate potential regional

differences arising from varying soil productivity we added two input processes which were not

relevant for biogas from manure Firstly we account for the amount of land needed to grow the

energy crop based on the regional yields provided as GIS data by Monfreda et al (2008) in the

EarthStat project The spatial distribution of yields is illustrated in Figures A1 and A2 in Appendix

2 for maize and sugar beet respectively Secondly we add the process for transportation of the

feedstock to the plant For manure feedstocks it is typically assumed that manure is collected in a

barn (Lusk 1998 Homan 2012) so the transportation distance is negligible provided the biogas

plant is constructed not far from the barn For energy crops the same cannot be the case the crops

have to be delivered from the whole cultivation area and this distance needs to be accounted for

To do so we assumed the plant to be located within a square field where the crop is grown and

used the average distance within a square as the transportation distance choosing a lorry as means

of transport The estimation of the environmental impact was then done using the ILCD 20 2018

midpoint method The amount of biogas produced is normalized to 100 m3 for the sake of

comparability6

5 OpenLCA is a professional LCA and footprint software that has a variety of features and many available

databases An important advantage against other professional LCA software is that openLCA is an open access

software It is also endorsed by the US Environmental Protection Agency (cfpubepagovsiindexcfm) The

ecoinvent database is an extensive and comprehensive collection of datasets on life cycle inventory including a

large number of products production processes and value chains (see httpswwwecoinventorg for more

information on the database) 6 The results of a regionalized LCA reflect the contribution of different regions to the overall impact ie the

percentage share of the respective region Therefore scaling the amount of biogas up or down will not change

the results We experimented with 1 m3 100 m3 and 100000 m3 of biogas and the result was qualitatively always

the same

11

4 Regional impacts of biogas production

In this section we present the results of the regionalized LCA We start by briefly comparing the

overall impacts of biogas production from maize and sugar beet After that we focus on the results

in a regional perspective first with unknown plant location and then for four different plant

locations

Regarding the overall impact of biogas production from maize and sugar beet along the impact

categories listed in Table A1 it should be noted that maize has a much larger impact than sugar

beet on all categories The comparison is illustrated in Figures A3-A6 in Appendix 3 and this

result is in line with the findings outlined by Hijazi et al (2016) However the regional impacts

of the two feedstocks show quite some differentiation

The first finding is that the regional distribution of the impacts differs substantially between the

two agricultural feedstocks For the sake of brevity we only provide results for three impacts

which are also addressed in the EU sustainability criteria climate change due to land use and land

use change use of fossils as a resource and use of land as a resource The comparison is illustrated

in Figures A7-A9 in Appendix 4 The maps show relative contributions of the respective regions

to the overall impact the warmer the color on the map the larger the regionrsquos contribution7

In terms of land use and the LULUC-induced climate change (Figures A7-A8) the regional

variation follows quite closely the world industrialization patterns on the one hand and the

agricultural productivity on the other In case of maize the impact is most prominent in Argentina

both for land use and LULUC-induced climate change This is not surprising as on the one hand

Argentina is among the top five maize producers across world8 while on the other hand

Argentinian agriculture is responsible for 90 of the countryrsquos forest loss (Antoacuten et al 2019)

The latter is translated into the LULUC-induced climate change In the case of sugar beet the

LULUC-induced climate change is prominent in Brazil however there is no overlap with land use

as a resource This suggests that the effect is not due to sugar beet production which is also in line

with Figure A2 in Appendix 2 A closer investigation reveals that additional electricity production

for agriculture and the plant would have the highest LULUC-related environmental costs in Brazil

where the majority of electricity is supplied by hydropower and water reservoirs created for that

pose a number of environmental challenges (von Sperling 2012)

With regard to the use of fossil fuels (Figure A9) the major impacts are as could be expected in

the fuel- and mineral-exporting countries The impact comes on the one hand from the energy for

plant construction operation and from the fuel used for feedstock transportation On the other

hand it also reflects the resources for fertilizer production which is quite important in crop

agriculture

Turning to different plant locations the second important finding is that while certain impacts are

connected to plant location others are always attributed to the same regions The results of the

comparison for sugar beet are illustrated in Figures A10-A11 in Appendix 5 The results for maize

7 The drawback of the OpenLCA software is that it does not provide an exact scale for the regionalized results

The illustrative maps should therefore be considered as a qualitative not quantitative reference 8 Based on FAO data wwwfaoorgfaostatendataQC (accessed 8 December 2019)

12

are presented in Figures A12-A13 in Appendix 6 Again the higher contribution of a region to the

overall impact is marked with warmer colors For sugar beet particularly the effects related to

growing the energy crops ldquomoverdquo together with the plants (see the impact on the land use in Figure

A10) In the case of maize Argentina seems to be one of the source countries for the feedstock for

all four plant locations Unlike other major maize (corn) producers not only is Argentina the third

largest exporter of corn but also corn figures as the second largest category of Argentinian

exports9 At the same time part of the impact is still located in the country of the plant location

Another interesting observation in the cases of both maize and sugar beet is that the more

developed the country the lower the impact share This also overlaps with the distribution of yields

in Figures A1-A2 in Appendix 2

Turning to other resources the picture is similar to that with the undefined plant location Both for

maize and sugar beet especially the use of resources related to fertilizers plant construction and

transportation (minerals and metals) is associated with the same regions independent of where the

plant is located In other words fossil energy construction materials and fertilizers often do not

come from the same country they are used in This raises the question in how much the impact

created by this demand is taken into account by the policy-makers when promoting biogas or

setting the criteria for determining whether to call biogas a sustainable renewable energy

To sum these results up there are several observations relevant for tackling sustainability concerns

of biogas from energy crops

1 Production of biogas may have substantial effects in terms of land use and climate change

induced by a change in land use or deforestation This effect might come directly from growing

energy crops However it can also come eg from supporting energy production as long as

biogas production is not completely autonomous or does not cover the energy needed for the

cultivation of energy crops

2 For some feedstocks it is likely that at least a share of them is imported from other countries

therefore shifting the environmental impact away from the countries where a biogas plant is

located

3 For other resources necessary for biogas plant construction and cultivation of the energy crop

the majority of the impact is accrued to the same set of countries independent of the plant

location Therefore it is typically situated outside of the country where a biogas plant is

located

If one further looks at the future of biogas production and distribution there is already some

movement towards trading this fuel Examples are the plans of the German electric utilities

company RWE to trade biogas between Great Britain and the Netherlands (enformer 2018) and

inclusion of biogas and feedstocks in the portfolio of companies trading energy commodities (eg

ACT Commodities) However long-distance transportation options for biogas as discussed in

Section 21 can be somewhat limited compared to liquid biofuels For example to transport

biogas overseas it has to be compressed or liquified meaning the origin and destination ports need

to be equipped respectively and LNG vessels need to be employed This creates additional

9 Based on the data by the Observatory of Economic Complexity wwwoecworldenprofilecountryarg

(accessed 8 December 2019)

13

transportation costs compared to liquid fuels and lowers profitability of such trade Therefore it

is rather likely that biogas ndash provided it is produced in sufficient quantities ndash is first traded

regionally where grid connections exist or between already LNG-equipped locations Another

option is that instead of the final product the feedstock will be traded Trade in agricultural

products is very well established and the trend of trading energy crops for biofuels in general and

biogas in particular was already visible in Europe in the early 2010s (Kalt amp Kranzl 2012 Pagh-

Schlegel amp Elkjaeligr 2012)

In view of these considerations it is likely that the three observations outlined above will be

increasingly important in the future Therefore they need to be taken into account when promoting

biogas development around the world In the next section we will review how some existing

regulations are already able to tackle these challenges Based on this we will then formulate our

policy recommendations

5 Sustainable biogas policy the EUrsquos legal framework

51 Biofuels in EU law targets and sustainability criteria

The EU is widely reputed as a leader of international climate action (Bogojevic 2016) having

substantially contributed to the development of the international legal regime on climate change

(Oberthuumlr 2018) Renewable energy has traditionally represented a proactive area of the EUrsquos

policymaking as the RE targets were already enshrined in the 2001 Renewable Energy Directive

(RED 2001) and subsequently updated under the 2009 Renewable Energy Directive (RED 2009)

and the 2018 Renewable Energy Directive (RED 2018) Along with the general RE targets at the

Member State or at the EU level specific sub-targets have been enacted with a view of promoting

the energy transition in the transport sector At first such targets were enshrined in the 2003

Biofuels Directive (Biofuels Directive 2003) Subsequently targets for renewable energy in

transport have been incorporated into the RED 2009 and most recently a target of 14 renewable

energy in transport by 2030 is foreseen under Article 25(1) RED 2018

In order to reach their renewable energy targets several EU Member States have adopted different

kinds of support schemes such as feed-in tariffs (FIT) feed-in premium (FIP) tradable green

certificates and auctions (Banja et al 2019) Moreover further policy measures have also

contributed to a steady increase in the share of bioenergy in some cases specifically encouraging

the deployment of biogas and biomethane A case in point is the Alternative Fuels Infrastructure

Directive (AFID Directive) which includes minimum requirements for the build-up of refueling

points for liquid natural gas (LNG) and compressed natural gas (CNG) (Van Grinsven et al 2017)

As proven by the recent Eurostat data the EU policy activism has contributed to a steady increase

of the share of bioenergy (including energy from the agricultural biomass the forest biomass and

the renewable waste) which grew from 59 in 2005 to 103 in 2017 (Banja et al 2019)

However incentives for biofuels production have also triggered in some cases the conversion of

agricultural land into land dedicated to the cultivation of energy crops The biogas sector along

with other biofuels is part of this phenomenon determined inter alia by the higher methane yield

of energy crops compared to manure and other sources of agricultural waste In the case of

14

Germany for instance biogas production from energy crops significantly outweighs its production

from industrial and agricultural waste (Eyl-Mazzega et al 2019)

Following the adoption of the RED 2009 the EU legislator has taken specific countermeasures to

reduce the risks connected to an indiscriminate expansion of biofuel production from energy crops

Such measures known as lsquosustainability criteriarsquo address both lsquocarbon-relatedrsquo and lsquonon carbon-

relatedrsquo concerns In particular lsquocarbon-relatedrsquo encompasses the necessary reduction in the GHG

emissions that needs to be achieved by biofuels against their fossil fuel comparators (Olsen et al

2016) lsquoNon-carbon relatedrsquo concerns on the other hand pertain to nature conservation and

biodiversity aspects of land use also known as lsquodirect land-use changersquo (DLUC) as well as to the

risk that part of the demand for biofuels will be met by increasingly devoting land to agriculture

a phenomenon known as lsquoIndirect Land-Use Changersquo (ILUC) (European Commission 2010) The

RED 2009 took into account both carbon-related concerns and non-carbon related concerns with

the exclusion of ILUC It introduced a minimum standard of 35 GHG emission savings from

the use of biofuels and provided that lsquosustainablersquo biofuels could not be sourced from certain

protected areas (eg highly biodiverse grassland wetlands continuously forested areas) (RED

2009 Article 17) For what concerns ILUC instead the normative framework was integrated by

the adoption of the 2015 Indirect Land-Use Change Directive (ILUC Directive) It introduced an

overall 7 limit of biofuels from food crops as well as the category of lsquoadvanced biofuelsrsquo ie

biofuels that are not in competition with food crops (ILUC Directive recital (5))

Importantly the promotion of lsquosustainablersquo biofuels in the RED 2009 did not entail an absolute

ban on lsquonon-sustainablersquo biofuels Instead compliance with the sustainability criteria is required

for biofuels to enjoy a threefold set of benefits (a) accounting towards the accomplishment of the

national renewable energy targets (b) contributing to the fulfilment of renewable energy

obligations eg the mandatory share of renewable energy in transport (c) being eligible for

financial support

52 Sustainable biogas in the 2018 Renewable Energy Directive

In 2018 the EU adopted a new Renewable Energy Directive (RED 2018) which largely builds

upon the previous RED 2009 and enhances the legal framework for the promotion of advanced

biofuels Most notably the RED 2018 introduces a specific sub-target for a share of 35

advanced biofuels by 2030 (RED 2018 Article 25(1)) Under the RED 2018 advanced biofuels

can be counted for twice their energy content when calculating their contribution towards the target

for renewable energy in the transport sector Moreover the technological development and

deployment of advanced biofuels constitutes one of the elements to be included in the lsquoUnion

Bioenergy Sustainability Reportrsquo a biennial progress report to be released by the European

Commission from 2023 (Governance Regulation (2018) Annex X)

The RED 2018 is particularly relevant for what concerns biogas as it extends the need to comply

with non-carbon related sustainability criteria to biogas production In fact the previous RED 2009

only addressed the minimum GHG emissions savings of biogas (RED 2009 Annex V) while the

remainder of the sustainability criteria only referred to liquid biofuels The RED 2018 instead

applies the full range of sustainability criteria also to biogas production with an exemption for

small installations not exceeding a total rated thermal input of 2 MW (RED 2018 Article 29(1))

15

Analogously to the RED 2009 also in the RED 2018 compliance with the sustainability criteria is

necessary for bioenergy to account towards the renewable energy targets and to qualify for

financial support (RED 2018 Article 29(1)) For what specifically concerns ILUC the RED 2018

is supplemented by the Commission Delegated Regulation (EU) 2019807 (ILUC Delegated

Regulation) which sets specific criteria for the identification of respectively high- and low- ILUC

risk feedstock

6 Promoting biogas sustainability the case for sustainability criteria

beyond the EU legal framework

61 Global relevance of the EU sustainability criteria

The EU legal framework for biofuels sustainability is widely reputed as an example of lsquopioneeringrsquo

legislation (Kulovesi et al 2009) and one of the most comprehensive and advanced binding

sustainability schemes on a global scale (European Commission 2011) The global relevance of

the EU sustainability criteria emerges in particular from the fact that their validity is not limited to

the EU borders On the contrary for biofuels to enjoy the benefits mentioned above (see RED

2018 Article 29(1)) compliance with the sustainability criteria needs to be proven regardless of

whether the feedstock originates from within or outside the EU Such extraterritorial applicability

has given rise to a vivid debate related to the compatibility of the EU sustainability criteria with

international trade rules (Olsen et al 2016 Lydgate 2012 Scott 2011 Kulovesi et al 2009)

Conversely less scholarly attention has been devoted to the regulation of biofuels sustainability

outside the EU legal framework and especially in developing countries Undoubtedly for many

developing countries the EU represents an important export market for liquid biofuels (eg

bioethanol and biodiesel) Therefore the adoption of stringent sustainability criteria has the

potential to significantly affect biofuels production For instance the classification of palm oil

(often used as a feedstock for the production of biodiesel) as a high-ILUC risk feedstock under the

newly adopted ILUC Delegated Regulation has recently given rise to a legal complaint by

Indonesia currently pending before the WTO (WTO 2019) Despite the global significance of the

EU market this accounts only for a minority share of global biofuels trade (IEA 2019b)

Therefore the adoption of the sustainability criteria also in extra-EU jurisdictions would be a

crucial step to further mitigate the negative impacts associated with biofuels and biogas

production

In a few non-EU countries some progress has been registered in support of biofuels sustainability

This is the case for instance of Brazil Japan and the United States (Naiki 2016) On the contrary

sustainability criteria have rarely been adopted in the legal framework of developing countries A

survey of biofuel policies in East African countries for instance concludes that lsquogenerally

agrofuel investments have been insensitive to environmental and human rights concerns of

vulnerable populationsrsquo (Owino 2016) The same study holds that in the East African region

only Mozambique has put in place sustainability criteria in its biofuels policy known as the

lsquoMozambique Biofuel Sustainable Frameworkrsquo (MBSF) Even in the legislative framework of

developed countries biofuels sustainability is not taken into account to the same extent as in the

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 11: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

11

4 Regional impacts of biogas production

In this section we present the results of the regionalized LCA We start by briefly comparing the

overall impacts of biogas production from maize and sugar beet After that we focus on the results

in a regional perspective first with unknown plant location and then for four different plant

locations

Regarding the overall impact of biogas production from maize and sugar beet along the impact

categories listed in Table A1 it should be noted that maize has a much larger impact than sugar

beet on all categories The comparison is illustrated in Figures A3-A6 in Appendix 3 and this

result is in line with the findings outlined by Hijazi et al (2016) However the regional impacts

of the two feedstocks show quite some differentiation

The first finding is that the regional distribution of the impacts differs substantially between the

two agricultural feedstocks For the sake of brevity we only provide results for three impacts

which are also addressed in the EU sustainability criteria climate change due to land use and land

use change use of fossils as a resource and use of land as a resource The comparison is illustrated

in Figures A7-A9 in Appendix 4 The maps show relative contributions of the respective regions

to the overall impact the warmer the color on the map the larger the regionrsquos contribution7

In terms of land use and the LULUC-induced climate change (Figures A7-A8) the regional

variation follows quite closely the world industrialization patterns on the one hand and the

agricultural productivity on the other In case of maize the impact is most prominent in Argentina

both for land use and LULUC-induced climate change This is not surprising as on the one hand

Argentina is among the top five maize producers across world8 while on the other hand

Argentinian agriculture is responsible for 90 of the countryrsquos forest loss (Antoacuten et al 2019)

The latter is translated into the LULUC-induced climate change In the case of sugar beet the

LULUC-induced climate change is prominent in Brazil however there is no overlap with land use

as a resource This suggests that the effect is not due to sugar beet production which is also in line

with Figure A2 in Appendix 2 A closer investigation reveals that additional electricity production

for agriculture and the plant would have the highest LULUC-related environmental costs in Brazil

where the majority of electricity is supplied by hydropower and water reservoirs created for that

pose a number of environmental challenges (von Sperling 2012)

With regard to the use of fossil fuels (Figure A9) the major impacts are as could be expected in

the fuel- and mineral-exporting countries The impact comes on the one hand from the energy for

plant construction operation and from the fuel used for feedstock transportation On the other

hand it also reflects the resources for fertilizer production which is quite important in crop

agriculture

Turning to different plant locations the second important finding is that while certain impacts are

connected to plant location others are always attributed to the same regions The results of the

comparison for sugar beet are illustrated in Figures A10-A11 in Appendix 5 The results for maize

7 The drawback of the OpenLCA software is that it does not provide an exact scale for the regionalized results

The illustrative maps should therefore be considered as a qualitative not quantitative reference 8 Based on FAO data wwwfaoorgfaostatendataQC (accessed 8 December 2019)

12

are presented in Figures A12-A13 in Appendix 6 Again the higher contribution of a region to the

overall impact is marked with warmer colors For sugar beet particularly the effects related to

growing the energy crops ldquomoverdquo together with the plants (see the impact on the land use in Figure

A10) In the case of maize Argentina seems to be one of the source countries for the feedstock for

all four plant locations Unlike other major maize (corn) producers not only is Argentina the third

largest exporter of corn but also corn figures as the second largest category of Argentinian

exports9 At the same time part of the impact is still located in the country of the plant location

Another interesting observation in the cases of both maize and sugar beet is that the more

developed the country the lower the impact share This also overlaps with the distribution of yields

in Figures A1-A2 in Appendix 2

Turning to other resources the picture is similar to that with the undefined plant location Both for

maize and sugar beet especially the use of resources related to fertilizers plant construction and

transportation (minerals and metals) is associated with the same regions independent of where the

plant is located In other words fossil energy construction materials and fertilizers often do not

come from the same country they are used in This raises the question in how much the impact

created by this demand is taken into account by the policy-makers when promoting biogas or

setting the criteria for determining whether to call biogas a sustainable renewable energy

To sum these results up there are several observations relevant for tackling sustainability concerns

of biogas from energy crops

1 Production of biogas may have substantial effects in terms of land use and climate change

induced by a change in land use or deforestation This effect might come directly from growing

energy crops However it can also come eg from supporting energy production as long as

biogas production is not completely autonomous or does not cover the energy needed for the

cultivation of energy crops

2 For some feedstocks it is likely that at least a share of them is imported from other countries

therefore shifting the environmental impact away from the countries where a biogas plant is

located

3 For other resources necessary for biogas plant construction and cultivation of the energy crop

the majority of the impact is accrued to the same set of countries independent of the plant

location Therefore it is typically situated outside of the country where a biogas plant is

located

If one further looks at the future of biogas production and distribution there is already some

movement towards trading this fuel Examples are the plans of the German electric utilities

company RWE to trade biogas between Great Britain and the Netherlands (enformer 2018) and

inclusion of biogas and feedstocks in the portfolio of companies trading energy commodities (eg

ACT Commodities) However long-distance transportation options for biogas as discussed in

Section 21 can be somewhat limited compared to liquid biofuels For example to transport

biogas overseas it has to be compressed or liquified meaning the origin and destination ports need

to be equipped respectively and LNG vessels need to be employed This creates additional

9 Based on the data by the Observatory of Economic Complexity wwwoecworldenprofilecountryarg

(accessed 8 December 2019)

13

transportation costs compared to liquid fuels and lowers profitability of such trade Therefore it

is rather likely that biogas ndash provided it is produced in sufficient quantities ndash is first traded

regionally where grid connections exist or between already LNG-equipped locations Another

option is that instead of the final product the feedstock will be traded Trade in agricultural

products is very well established and the trend of trading energy crops for biofuels in general and

biogas in particular was already visible in Europe in the early 2010s (Kalt amp Kranzl 2012 Pagh-

Schlegel amp Elkjaeligr 2012)

In view of these considerations it is likely that the three observations outlined above will be

increasingly important in the future Therefore they need to be taken into account when promoting

biogas development around the world In the next section we will review how some existing

regulations are already able to tackle these challenges Based on this we will then formulate our

policy recommendations

5 Sustainable biogas policy the EUrsquos legal framework

51 Biofuels in EU law targets and sustainability criteria

The EU is widely reputed as a leader of international climate action (Bogojevic 2016) having

substantially contributed to the development of the international legal regime on climate change

(Oberthuumlr 2018) Renewable energy has traditionally represented a proactive area of the EUrsquos

policymaking as the RE targets were already enshrined in the 2001 Renewable Energy Directive

(RED 2001) and subsequently updated under the 2009 Renewable Energy Directive (RED 2009)

and the 2018 Renewable Energy Directive (RED 2018) Along with the general RE targets at the

Member State or at the EU level specific sub-targets have been enacted with a view of promoting

the energy transition in the transport sector At first such targets were enshrined in the 2003

Biofuels Directive (Biofuels Directive 2003) Subsequently targets for renewable energy in

transport have been incorporated into the RED 2009 and most recently a target of 14 renewable

energy in transport by 2030 is foreseen under Article 25(1) RED 2018

In order to reach their renewable energy targets several EU Member States have adopted different

kinds of support schemes such as feed-in tariffs (FIT) feed-in premium (FIP) tradable green

certificates and auctions (Banja et al 2019) Moreover further policy measures have also

contributed to a steady increase in the share of bioenergy in some cases specifically encouraging

the deployment of biogas and biomethane A case in point is the Alternative Fuels Infrastructure

Directive (AFID Directive) which includes minimum requirements for the build-up of refueling

points for liquid natural gas (LNG) and compressed natural gas (CNG) (Van Grinsven et al 2017)

As proven by the recent Eurostat data the EU policy activism has contributed to a steady increase

of the share of bioenergy (including energy from the agricultural biomass the forest biomass and

the renewable waste) which grew from 59 in 2005 to 103 in 2017 (Banja et al 2019)

However incentives for biofuels production have also triggered in some cases the conversion of

agricultural land into land dedicated to the cultivation of energy crops The biogas sector along

with other biofuels is part of this phenomenon determined inter alia by the higher methane yield

of energy crops compared to manure and other sources of agricultural waste In the case of

14

Germany for instance biogas production from energy crops significantly outweighs its production

from industrial and agricultural waste (Eyl-Mazzega et al 2019)

Following the adoption of the RED 2009 the EU legislator has taken specific countermeasures to

reduce the risks connected to an indiscriminate expansion of biofuel production from energy crops

Such measures known as lsquosustainability criteriarsquo address both lsquocarbon-relatedrsquo and lsquonon carbon-

relatedrsquo concerns In particular lsquocarbon-relatedrsquo encompasses the necessary reduction in the GHG

emissions that needs to be achieved by biofuels against their fossil fuel comparators (Olsen et al

2016) lsquoNon-carbon relatedrsquo concerns on the other hand pertain to nature conservation and

biodiversity aspects of land use also known as lsquodirect land-use changersquo (DLUC) as well as to the

risk that part of the demand for biofuels will be met by increasingly devoting land to agriculture

a phenomenon known as lsquoIndirect Land-Use Changersquo (ILUC) (European Commission 2010) The

RED 2009 took into account both carbon-related concerns and non-carbon related concerns with

the exclusion of ILUC It introduced a minimum standard of 35 GHG emission savings from

the use of biofuels and provided that lsquosustainablersquo biofuels could not be sourced from certain

protected areas (eg highly biodiverse grassland wetlands continuously forested areas) (RED

2009 Article 17) For what concerns ILUC instead the normative framework was integrated by

the adoption of the 2015 Indirect Land-Use Change Directive (ILUC Directive) It introduced an

overall 7 limit of biofuels from food crops as well as the category of lsquoadvanced biofuelsrsquo ie

biofuels that are not in competition with food crops (ILUC Directive recital (5))

Importantly the promotion of lsquosustainablersquo biofuels in the RED 2009 did not entail an absolute

ban on lsquonon-sustainablersquo biofuels Instead compliance with the sustainability criteria is required

for biofuels to enjoy a threefold set of benefits (a) accounting towards the accomplishment of the

national renewable energy targets (b) contributing to the fulfilment of renewable energy

obligations eg the mandatory share of renewable energy in transport (c) being eligible for

financial support

52 Sustainable biogas in the 2018 Renewable Energy Directive

In 2018 the EU adopted a new Renewable Energy Directive (RED 2018) which largely builds

upon the previous RED 2009 and enhances the legal framework for the promotion of advanced

biofuels Most notably the RED 2018 introduces a specific sub-target for a share of 35

advanced biofuels by 2030 (RED 2018 Article 25(1)) Under the RED 2018 advanced biofuels

can be counted for twice their energy content when calculating their contribution towards the target

for renewable energy in the transport sector Moreover the technological development and

deployment of advanced biofuels constitutes one of the elements to be included in the lsquoUnion

Bioenergy Sustainability Reportrsquo a biennial progress report to be released by the European

Commission from 2023 (Governance Regulation (2018) Annex X)

The RED 2018 is particularly relevant for what concerns biogas as it extends the need to comply

with non-carbon related sustainability criteria to biogas production In fact the previous RED 2009

only addressed the minimum GHG emissions savings of biogas (RED 2009 Annex V) while the

remainder of the sustainability criteria only referred to liquid biofuels The RED 2018 instead

applies the full range of sustainability criteria also to biogas production with an exemption for

small installations not exceeding a total rated thermal input of 2 MW (RED 2018 Article 29(1))

15

Analogously to the RED 2009 also in the RED 2018 compliance with the sustainability criteria is

necessary for bioenergy to account towards the renewable energy targets and to qualify for

financial support (RED 2018 Article 29(1)) For what specifically concerns ILUC the RED 2018

is supplemented by the Commission Delegated Regulation (EU) 2019807 (ILUC Delegated

Regulation) which sets specific criteria for the identification of respectively high- and low- ILUC

risk feedstock

6 Promoting biogas sustainability the case for sustainability criteria

beyond the EU legal framework

61 Global relevance of the EU sustainability criteria

The EU legal framework for biofuels sustainability is widely reputed as an example of lsquopioneeringrsquo

legislation (Kulovesi et al 2009) and one of the most comprehensive and advanced binding

sustainability schemes on a global scale (European Commission 2011) The global relevance of

the EU sustainability criteria emerges in particular from the fact that their validity is not limited to

the EU borders On the contrary for biofuels to enjoy the benefits mentioned above (see RED

2018 Article 29(1)) compliance with the sustainability criteria needs to be proven regardless of

whether the feedstock originates from within or outside the EU Such extraterritorial applicability

has given rise to a vivid debate related to the compatibility of the EU sustainability criteria with

international trade rules (Olsen et al 2016 Lydgate 2012 Scott 2011 Kulovesi et al 2009)

Conversely less scholarly attention has been devoted to the regulation of biofuels sustainability

outside the EU legal framework and especially in developing countries Undoubtedly for many

developing countries the EU represents an important export market for liquid biofuels (eg

bioethanol and biodiesel) Therefore the adoption of stringent sustainability criteria has the

potential to significantly affect biofuels production For instance the classification of palm oil

(often used as a feedstock for the production of biodiesel) as a high-ILUC risk feedstock under the

newly adopted ILUC Delegated Regulation has recently given rise to a legal complaint by

Indonesia currently pending before the WTO (WTO 2019) Despite the global significance of the

EU market this accounts only for a minority share of global biofuels trade (IEA 2019b)

Therefore the adoption of the sustainability criteria also in extra-EU jurisdictions would be a

crucial step to further mitigate the negative impacts associated with biofuels and biogas

production

In a few non-EU countries some progress has been registered in support of biofuels sustainability

This is the case for instance of Brazil Japan and the United States (Naiki 2016) On the contrary

sustainability criteria have rarely been adopted in the legal framework of developing countries A

survey of biofuel policies in East African countries for instance concludes that lsquogenerally

agrofuel investments have been insensitive to environmental and human rights concerns of

vulnerable populationsrsquo (Owino 2016) The same study holds that in the East African region

only Mozambique has put in place sustainability criteria in its biofuels policy known as the

lsquoMozambique Biofuel Sustainable Frameworkrsquo (MBSF) Even in the legislative framework of

developed countries biofuels sustainability is not taken into account to the same extent as in the

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 12: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

12

are presented in Figures A12-A13 in Appendix 6 Again the higher contribution of a region to the

overall impact is marked with warmer colors For sugar beet particularly the effects related to

growing the energy crops ldquomoverdquo together with the plants (see the impact on the land use in Figure

A10) In the case of maize Argentina seems to be one of the source countries for the feedstock for

all four plant locations Unlike other major maize (corn) producers not only is Argentina the third

largest exporter of corn but also corn figures as the second largest category of Argentinian

exports9 At the same time part of the impact is still located in the country of the plant location

Another interesting observation in the cases of both maize and sugar beet is that the more

developed the country the lower the impact share This also overlaps with the distribution of yields

in Figures A1-A2 in Appendix 2

Turning to other resources the picture is similar to that with the undefined plant location Both for

maize and sugar beet especially the use of resources related to fertilizers plant construction and

transportation (minerals and metals) is associated with the same regions independent of where the

plant is located In other words fossil energy construction materials and fertilizers often do not

come from the same country they are used in This raises the question in how much the impact

created by this demand is taken into account by the policy-makers when promoting biogas or

setting the criteria for determining whether to call biogas a sustainable renewable energy

To sum these results up there are several observations relevant for tackling sustainability concerns

of biogas from energy crops

1 Production of biogas may have substantial effects in terms of land use and climate change

induced by a change in land use or deforestation This effect might come directly from growing

energy crops However it can also come eg from supporting energy production as long as

biogas production is not completely autonomous or does not cover the energy needed for the

cultivation of energy crops

2 For some feedstocks it is likely that at least a share of them is imported from other countries

therefore shifting the environmental impact away from the countries where a biogas plant is

located

3 For other resources necessary for biogas plant construction and cultivation of the energy crop

the majority of the impact is accrued to the same set of countries independent of the plant

location Therefore it is typically situated outside of the country where a biogas plant is

located

If one further looks at the future of biogas production and distribution there is already some

movement towards trading this fuel Examples are the plans of the German electric utilities

company RWE to trade biogas between Great Britain and the Netherlands (enformer 2018) and

inclusion of biogas and feedstocks in the portfolio of companies trading energy commodities (eg

ACT Commodities) However long-distance transportation options for biogas as discussed in

Section 21 can be somewhat limited compared to liquid biofuels For example to transport

biogas overseas it has to be compressed or liquified meaning the origin and destination ports need

to be equipped respectively and LNG vessels need to be employed This creates additional

9 Based on the data by the Observatory of Economic Complexity wwwoecworldenprofilecountryarg

(accessed 8 December 2019)

13

transportation costs compared to liquid fuels and lowers profitability of such trade Therefore it

is rather likely that biogas ndash provided it is produced in sufficient quantities ndash is first traded

regionally where grid connections exist or between already LNG-equipped locations Another

option is that instead of the final product the feedstock will be traded Trade in agricultural

products is very well established and the trend of trading energy crops for biofuels in general and

biogas in particular was already visible in Europe in the early 2010s (Kalt amp Kranzl 2012 Pagh-

Schlegel amp Elkjaeligr 2012)

In view of these considerations it is likely that the three observations outlined above will be

increasingly important in the future Therefore they need to be taken into account when promoting

biogas development around the world In the next section we will review how some existing

regulations are already able to tackle these challenges Based on this we will then formulate our

policy recommendations

5 Sustainable biogas policy the EUrsquos legal framework

51 Biofuels in EU law targets and sustainability criteria

The EU is widely reputed as a leader of international climate action (Bogojevic 2016) having

substantially contributed to the development of the international legal regime on climate change

(Oberthuumlr 2018) Renewable energy has traditionally represented a proactive area of the EUrsquos

policymaking as the RE targets were already enshrined in the 2001 Renewable Energy Directive

(RED 2001) and subsequently updated under the 2009 Renewable Energy Directive (RED 2009)

and the 2018 Renewable Energy Directive (RED 2018) Along with the general RE targets at the

Member State or at the EU level specific sub-targets have been enacted with a view of promoting

the energy transition in the transport sector At first such targets were enshrined in the 2003

Biofuels Directive (Biofuels Directive 2003) Subsequently targets for renewable energy in

transport have been incorporated into the RED 2009 and most recently a target of 14 renewable

energy in transport by 2030 is foreseen under Article 25(1) RED 2018

In order to reach their renewable energy targets several EU Member States have adopted different

kinds of support schemes such as feed-in tariffs (FIT) feed-in premium (FIP) tradable green

certificates and auctions (Banja et al 2019) Moreover further policy measures have also

contributed to a steady increase in the share of bioenergy in some cases specifically encouraging

the deployment of biogas and biomethane A case in point is the Alternative Fuels Infrastructure

Directive (AFID Directive) which includes minimum requirements for the build-up of refueling

points for liquid natural gas (LNG) and compressed natural gas (CNG) (Van Grinsven et al 2017)

As proven by the recent Eurostat data the EU policy activism has contributed to a steady increase

of the share of bioenergy (including energy from the agricultural biomass the forest biomass and

the renewable waste) which grew from 59 in 2005 to 103 in 2017 (Banja et al 2019)

However incentives for biofuels production have also triggered in some cases the conversion of

agricultural land into land dedicated to the cultivation of energy crops The biogas sector along

with other biofuels is part of this phenomenon determined inter alia by the higher methane yield

of energy crops compared to manure and other sources of agricultural waste In the case of

14

Germany for instance biogas production from energy crops significantly outweighs its production

from industrial and agricultural waste (Eyl-Mazzega et al 2019)

Following the adoption of the RED 2009 the EU legislator has taken specific countermeasures to

reduce the risks connected to an indiscriminate expansion of biofuel production from energy crops

Such measures known as lsquosustainability criteriarsquo address both lsquocarbon-relatedrsquo and lsquonon carbon-

relatedrsquo concerns In particular lsquocarbon-relatedrsquo encompasses the necessary reduction in the GHG

emissions that needs to be achieved by biofuels against their fossil fuel comparators (Olsen et al

2016) lsquoNon-carbon relatedrsquo concerns on the other hand pertain to nature conservation and

biodiversity aspects of land use also known as lsquodirect land-use changersquo (DLUC) as well as to the

risk that part of the demand for biofuels will be met by increasingly devoting land to agriculture

a phenomenon known as lsquoIndirect Land-Use Changersquo (ILUC) (European Commission 2010) The

RED 2009 took into account both carbon-related concerns and non-carbon related concerns with

the exclusion of ILUC It introduced a minimum standard of 35 GHG emission savings from

the use of biofuels and provided that lsquosustainablersquo biofuels could not be sourced from certain

protected areas (eg highly biodiverse grassland wetlands continuously forested areas) (RED

2009 Article 17) For what concerns ILUC instead the normative framework was integrated by

the adoption of the 2015 Indirect Land-Use Change Directive (ILUC Directive) It introduced an

overall 7 limit of biofuels from food crops as well as the category of lsquoadvanced biofuelsrsquo ie

biofuels that are not in competition with food crops (ILUC Directive recital (5))

Importantly the promotion of lsquosustainablersquo biofuels in the RED 2009 did not entail an absolute

ban on lsquonon-sustainablersquo biofuels Instead compliance with the sustainability criteria is required

for biofuels to enjoy a threefold set of benefits (a) accounting towards the accomplishment of the

national renewable energy targets (b) contributing to the fulfilment of renewable energy

obligations eg the mandatory share of renewable energy in transport (c) being eligible for

financial support

52 Sustainable biogas in the 2018 Renewable Energy Directive

In 2018 the EU adopted a new Renewable Energy Directive (RED 2018) which largely builds

upon the previous RED 2009 and enhances the legal framework for the promotion of advanced

biofuels Most notably the RED 2018 introduces a specific sub-target for a share of 35

advanced biofuels by 2030 (RED 2018 Article 25(1)) Under the RED 2018 advanced biofuels

can be counted for twice their energy content when calculating their contribution towards the target

for renewable energy in the transport sector Moreover the technological development and

deployment of advanced biofuels constitutes one of the elements to be included in the lsquoUnion

Bioenergy Sustainability Reportrsquo a biennial progress report to be released by the European

Commission from 2023 (Governance Regulation (2018) Annex X)

The RED 2018 is particularly relevant for what concerns biogas as it extends the need to comply

with non-carbon related sustainability criteria to biogas production In fact the previous RED 2009

only addressed the minimum GHG emissions savings of biogas (RED 2009 Annex V) while the

remainder of the sustainability criteria only referred to liquid biofuels The RED 2018 instead

applies the full range of sustainability criteria also to biogas production with an exemption for

small installations not exceeding a total rated thermal input of 2 MW (RED 2018 Article 29(1))

15

Analogously to the RED 2009 also in the RED 2018 compliance with the sustainability criteria is

necessary for bioenergy to account towards the renewable energy targets and to qualify for

financial support (RED 2018 Article 29(1)) For what specifically concerns ILUC the RED 2018

is supplemented by the Commission Delegated Regulation (EU) 2019807 (ILUC Delegated

Regulation) which sets specific criteria for the identification of respectively high- and low- ILUC

risk feedstock

6 Promoting biogas sustainability the case for sustainability criteria

beyond the EU legal framework

61 Global relevance of the EU sustainability criteria

The EU legal framework for biofuels sustainability is widely reputed as an example of lsquopioneeringrsquo

legislation (Kulovesi et al 2009) and one of the most comprehensive and advanced binding

sustainability schemes on a global scale (European Commission 2011) The global relevance of

the EU sustainability criteria emerges in particular from the fact that their validity is not limited to

the EU borders On the contrary for biofuels to enjoy the benefits mentioned above (see RED

2018 Article 29(1)) compliance with the sustainability criteria needs to be proven regardless of

whether the feedstock originates from within or outside the EU Such extraterritorial applicability

has given rise to a vivid debate related to the compatibility of the EU sustainability criteria with

international trade rules (Olsen et al 2016 Lydgate 2012 Scott 2011 Kulovesi et al 2009)

Conversely less scholarly attention has been devoted to the regulation of biofuels sustainability

outside the EU legal framework and especially in developing countries Undoubtedly for many

developing countries the EU represents an important export market for liquid biofuels (eg

bioethanol and biodiesel) Therefore the adoption of stringent sustainability criteria has the

potential to significantly affect biofuels production For instance the classification of palm oil

(often used as a feedstock for the production of biodiesel) as a high-ILUC risk feedstock under the

newly adopted ILUC Delegated Regulation has recently given rise to a legal complaint by

Indonesia currently pending before the WTO (WTO 2019) Despite the global significance of the

EU market this accounts only for a minority share of global biofuels trade (IEA 2019b)

Therefore the adoption of the sustainability criteria also in extra-EU jurisdictions would be a

crucial step to further mitigate the negative impacts associated with biofuels and biogas

production

In a few non-EU countries some progress has been registered in support of biofuels sustainability

This is the case for instance of Brazil Japan and the United States (Naiki 2016) On the contrary

sustainability criteria have rarely been adopted in the legal framework of developing countries A

survey of biofuel policies in East African countries for instance concludes that lsquogenerally

agrofuel investments have been insensitive to environmental and human rights concerns of

vulnerable populationsrsquo (Owino 2016) The same study holds that in the East African region

only Mozambique has put in place sustainability criteria in its biofuels policy known as the

lsquoMozambique Biofuel Sustainable Frameworkrsquo (MBSF) Even in the legislative framework of

developed countries biofuels sustainability is not taken into account to the same extent as in the

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 13: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

13

transportation costs compared to liquid fuels and lowers profitability of such trade Therefore it

is rather likely that biogas ndash provided it is produced in sufficient quantities ndash is first traded

regionally where grid connections exist or between already LNG-equipped locations Another

option is that instead of the final product the feedstock will be traded Trade in agricultural

products is very well established and the trend of trading energy crops for biofuels in general and

biogas in particular was already visible in Europe in the early 2010s (Kalt amp Kranzl 2012 Pagh-

Schlegel amp Elkjaeligr 2012)

In view of these considerations it is likely that the three observations outlined above will be

increasingly important in the future Therefore they need to be taken into account when promoting

biogas development around the world In the next section we will review how some existing

regulations are already able to tackle these challenges Based on this we will then formulate our

policy recommendations

5 Sustainable biogas policy the EUrsquos legal framework

51 Biofuels in EU law targets and sustainability criteria

The EU is widely reputed as a leader of international climate action (Bogojevic 2016) having

substantially contributed to the development of the international legal regime on climate change

(Oberthuumlr 2018) Renewable energy has traditionally represented a proactive area of the EUrsquos

policymaking as the RE targets were already enshrined in the 2001 Renewable Energy Directive

(RED 2001) and subsequently updated under the 2009 Renewable Energy Directive (RED 2009)

and the 2018 Renewable Energy Directive (RED 2018) Along with the general RE targets at the

Member State or at the EU level specific sub-targets have been enacted with a view of promoting

the energy transition in the transport sector At first such targets were enshrined in the 2003

Biofuels Directive (Biofuels Directive 2003) Subsequently targets for renewable energy in

transport have been incorporated into the RED 2009 and most recently a target of 14 renewable

energy in transport by 2030 is foreseen under Article 25(1) RED 2018

In order to reach their renewable energy targets several EU Member States have adopted different

kinds of support schemes such as feed-in tariffs (FIT) feed-in premium (FIP) tradable green

certificates and auctions (Banja et al 2019) Moreover further policy measures have also

contributed to a steady increase in the share of bioenergy in some cases specifically encouraging

the deployment of biogas and biomethane A case in point is the Alternative Fuels Infrastructure

Directive (AFID Directive) which includes minimum requirements for the build-up of refueling

points for liquid natural gas (LNG) and compressed natural gas (CNG) (Van Grinsven et al 2017)

As proven by the recent Eurostat data the EU policy activism has contributed to a steady increase

of the share of bioenergy (including energy from the agricultural biomass the forest biomass and

the renewable waste) which grew from 59 in 2005 to 103 in 2017 (Banja et al 2019)

However incentives for biofuels production have also triggered in some cases the conversion of

agricultural land into land dedicated to the cultivation of energy crops The biogas sector along

with other biofuels is part of this phenomenon determined inter alia by the higher methane yield

of energy crops compared to manure and other sources of agricultural waste In the case of

14

Germany for instance biogas production from energy crops significantly outweighs its production

from industrial and agricultural waste (Eyl-Mazzega et al 2019)

Following the adoption of the RED 2009 the EU legislator has taken specific countermeasures to

reduce the risks connected to an indiscriminate expansion of biofuel production from energy crops

Such measures known as lsquosustainability criteriarsquo address both lsquocarbon-relatedrsquo and lsquonon carbon-

relatedrsquo concerns In particular lsquocarbon-relatedrsquo encompasses the necessary reduction in the GHG

emissions that needs to be achieved by biofuels against their fossil fuel comparators (Olsen et al

2016) lsquoNon-carbon relatedrsquo concerns on the other hand pertain to nature conservation and

biodiversity aspects of land use also known as lsquodirect land-use changersquo (DLUC) as well as to the

risk that part of the demand for biofuels will be met by increasingly devoting land to agriculture

a phenomenon known as lsquoIndirect Land-Use Changersquo (ILUC) (European Commission 2010) The

RED 2009 took into account both carbon-related concerns and non-carbon related concerns with

the exclusion of ILUC It introduced a minimum standard of 35 GHG emission savings from

the use of biofuels and provided that lsquosustainablersquo biofuels could not be sourced from certain

protected areas (eg highly biodiverse grassland wetlands continuously forested areas) (RED

2009 Article 17) For what concerns ILUC instead the normative framework was integrated by

the adoption of the 2015 Indirect Land-Use Change Directive (ILUC Directive) It introduced an

overall 7 limit of biofuels from food crops as well as the category of lsquoadvanced biofuelsrsquo ie

biofuels that are not in competition with food crops (ILUC Directive recital (5))

Importantly the promotion of lsquosustainablersquo biofuels in the RED 2009 did not entail an absolute

ban on lsquonon-sustainablersquo biofuels Instead compliance with the sustainability criteria is required

for biofuels to enjoy a threefold set of benefits (a) accounting towards the accomplishment of the

national renewable energy targets (b) contributing to the fulfilment of renewable energy

obligations eg the mandatory share of renewable energy in transport (c) being eligible for

financial support

52 Sustainable biogas in the 2018 Renewable Energy Directive

In 2018 the EU adopted a new Renewable Energy Directive (RED 2018) which largely builds

upon the previous RED 2009 and enhances the legal framework for the promotion of advanced

biofuels Most notably the RED 2018 introduces a specific sub-target for a share of 35

advanced biofuels by 2030 (RED 2018 Article 25(1)) Under the RED 2018 advanced biofuels

can be counted for twice their energy content when calculating their contribution towards the target

for renewable energy in the transport sector Moreover the technological development and

deployment of advanced biofuels constitutes one of the elements to be included in the lsquoUnion

Bioenergy Sustainability Reportrsquo a biennial progress report to be released by the European

Commission from 2023 (Governance Regulation (2018) Annex X)

The RED 2018 is particularly relevant for what concerns biogas as it extends the need to comply

with non-carbon related sustainability criteria to biogas production In fact the previous RED 2009

only addressed the minimum GHG emissions savings of biogas (RED 2009 Annex V) while the

remainder of the sustainability criteria only referred to liquid biofuels The RED 2018 instead

applies the full range of sustainability criteria also to biogas production with an exemption for

small installations not exceeding a total rated thermal input of 2 MW (RED 2018 Article 29(1))

15

Analogously to the RED 2009 also in the RED 2018 compliance with the sustainability criteria is

necessary for bioenergy to account towards the renewable energy targets and to qualify for

financial support (RED 2018 Article 29(1)) For what specifically concerns ILUC the RED 2018

is supplemented by the Commission Delegated Regulation (EU) 2019807 (ILUC Delegated

Regulation) which sets specific criteria for the identification of respectively high- and low- ILUC

risk feedstock

6 Promoting biogas sustainability the case for sustainability criteria

beyond the EU legal framework

61 Global relevance of the EU sustainability criteria

The EU legal framework for biofuels sustainability is widely reputed as an example of lsquopioneeringrsquo

legislation (Kulovesi et al 2009) and one of the most comprehensive and advanced binding

sustainability schemes on a global scale (European Commission 2011) The global relevance of

the EU sustainability criteria emerges in particular from the fact that their validity is not limited to

the EU borders On the contrary for biofuels to enjoy the benefits mentioned above (see RED

2018 Article 29(1)) compliance with the sustainability criteria needs to be proven regardless of

whether the feedstock originates from within or outside the EU Such extraterritorial applicability

has given rise to a vivid debate related to the compatibility of the EU sustainability criteria with

international trade rules (Olsen et al 2016 Lydgate 2012 Scott 2011 Kulovesi et al 2009)

Conversely less scholarly attention has been devoted to the regulation of biofuels sustainability

outside the EU legal framework and especially in developing countries Undoubtedly for many

developing countries the EU represents an important export market for liquid biofuels (eg

bioethanol and biodiesel) Therefore the adoption of stringent sustainability criteria has the

potential to significantly affect biofuels production For instance the classification of palm oil

(often used as a feedstock for the production of biodiesel) as a high-ILUC risk feedstock under the

newly adopted ILUC Delegated Regulation has recently given rise to a legal complaint by

Indonesia currently pending before the WTO (WTO 2019) Despite the global significance of the

EU market this accounts only for a minority share of global biofuels trade (IEA 2019b)

Therefore the adoption of the sustainability criteria also in extra-EU jurisdictions would be a

crucial step to further mitigate the negative impacts associated with biofuels and biogas

production

In a few non-EU countries some progress has been registered in support of biofuels sustainability

This is the case for instance of Brazil Japan and the United States (Naiki 2016) On the contrary

sustainability criteria have rarely been adopted in the legal framework of developing countries A

survey of biofuel policies in East African countries for instance concludes that lsquogenerally

agrofuel investments have been insensitive to environmental and human rights concerns of

vulnerable populationsrsquo (Owino 2016) The same study holds that in the East African region

only Mozambique has put in place sustainability criteria in its biofuels policy known as the

lsquoMozambique Biofuel Sustainable Frameworkrsquo (MBSF) Even in the legislative framework of

developed countries biofuels sustainability is not taken into account to the same extent as in the

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 14: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

14

Germany for instance biogas production from energy crops significantly outweighs its production

from industrial and agricultural waste (Eyl-Mazzega et al 2019)

Following the adoption of the RED 2009 the EU legislator has taken specific countermeasures to

reduce the risks connected to an indiscriminate expansion of biofuel production from energy crops

Such measures known as lsquosustainability criteriarsquo address both lsquocarbon-relatedrsquo and lsquonon carbon-

relatedrsquo concerns In particular lsquocarbon-relatedrsquo encompasses the necessary reduction in the GHG

emissions that needs to be achieved by biofuels against their fossil fuel comparators (Olsen et al

2016) lsquoNon-carbon relatedrsquo concerns on the other hand pertain to nature conservation and

biodiversity aspects of land use also known as lsquodirect land-use changersquo (DLUC) as well as to the

risk that part of the demand for biofuels will be met by increasingly devoting land to agriculture

a phenomenon known as lsquoIndirect Land-Use Changersquo (ILUC) (European Commission 2010) The

RED 2009 took into account both carbon-related concerns and non-carbon related concerns with

the exclusion of ILUC It introduced a minimum standard of 35 GHG emission savings from

the use of biofuels and provided that lsquosustainablersquo biofuels could not be sourced from certain

protected areas (eg highly biodiverse grassland wetlands continuously forested areas) (RED

2009 Article 17) For what concerns ILUC instead the normative framework was integrated by

the adoption of the 2015 Indirect Land-Use Change Directive (ILUC Directive) It introduced an

overall 7 limit of biofuels from food crops as well as the category of lsquoadvanced biofuelsrsquo ie

biofuels that are not in competition with food crops (ILUC Directive recital (5))

Importantly the promotion of lsquosustainablersquo biofuels in the RED 2009 did not entail an absolute

ban on lsquonon-sustainablersquo biofuels Instead compliance with the sustainability criteria is required

for biofuels to enjoy a threefold set of benefits (a) accounting towards the accomplishment of the

national renewable energy targets (b) contributing to the fulfilment of renewable energy

obligations eg the mandatory share of renewable energy in transport (c) being eligible for

financial support

52 Sustainable biogas in the 2018 Renewable Energy Directive

In 2018 the EU adopted a new Renewable Energy Directive (RED 2018) which largely builds

upon the previous RED 2009 and enhances the legal framework for the promotion of advanced

biofuels Most notably the RED 2018 introduces a specific sub-target for a share of 35

advanced biofuels by 2030 (RED 2018 Article 25(1)) Under the RED 2018 advanced biofuels

can be counted for twice their energy content when calculating their contribution towards the target

for renewable energy in the transport sector Moreover the technological development and

deployment of advanced biofuels constitutes one of the elements to be included in the lsquoUnion

Bioenergy Sustainability Reportrsquo a biennial progress report to be released by the European

Commission from 2023 (Governance Regulation (2018) Annex X)

The RED 2018 is particularly relevant for what concerns biogas as it extends the need to comply

with non-carbon related sustainability criteria to biogas production In fact the previous RED 2009

only addressed the minimum GHG emissions savings of biogas (RED 2009 Annex V) while the

remainder of the sustainability criteria only referred to liquid biofuels The RED 2018 instead

applies the full range of sustainability criteria also to biogas production with an exemption for

small installations not exceeding a total rated thermal input of 2 MW (RED 2018 Article 29(1))

15

Analogously to the RED 2009 also in the RED 2018 compliance with the sustainability criteria is

necessary for bioenergy to account towards the renewable energy targets and to qualify for

financial support (RED 2018 Article 29(1)) For what specifically concerns ILUC the RED 2018

is supplemented by the Commission Delegated Regulation (EU) 2019807 (ILUC Delegated

Regulation) which sets specific criteria for the identification of respectively high- and low- ILUC

risk feedstock

6 Promoting biogas sustainability the case for sustainability criteria

beyond the EU legal framework

61 Global relevance of the EU sustainability criteria

The EU legal framework for biofuels sustainability is widely reputed as an example of lsquopioneeringrsquo

legislation (Kulovesi et al 2009) and one of the most comprehensive and advanced binding

sustainability schemes on a global scale (European Commission 2011) The global relevance of

the EU sustainability criteria emerges in particular from the fact that their validity is not limited to

the EU borders On the contrary for biofuels to enjoy the benefits mentioned above (see RED

2018 Article 29(1)) compliance with the sustainability criteria needs to be proven regardless of

whether the feedstock originates from within or outside the EU Such extraterritorial applicability

has given rise to a vivid debate related to the compatibility of the EU sustainability criteria with

international trade rules (Olsen et al 2016 Lydgate 2012 Scott 2011 Kulovesi et al 2009)

Conversely less scholarly attention has been devoted to the regulation of biofuels sustainability

outside the EU legal framework and especially in developing countries Undoubtedly for many

developing countries the EU represents an important export market for liquid biofuels (eg

bioethanol and biodiesel) Therefore the adoption of stringent sustainability criteria has the

potential to significantly affect biofuels production For instance the classification of palm oil

(often used as a feedstock for the production of biodiesel) as a high-ILUC risk feedstock under the

newly adopted ILUC Delegated Regulation has recently given rise to a legal complaint by

Indonesia currently pending before the WTO (WTO 2019) Despite the global significance of the

EU market this accounts only for a minority share of global biofuels trade (IEA 2019b)

Therefore the adoption of the sustainability criteria also in extra-EU jurisdictions would be a

crucial step to further mitigate the negative impacts associated with biofuels and biogas

production

In a few non-EU countries some progress has been registered in support of biofuels sustainability

This is the case for instance of Brazil Japan and the United States (Naiki 2016) On the contrary

sustainability criteria have rarely been adopted in the legal framework of developing countries A

survey of biofuel policies in East African countries for instance concludes that lsquogenerally

agrofuel investments have been insensitive to environmental and human rights concerns of

vulnerable populationsrsquo (Owino 2016) The same study holds that in the East African region

only Mozambique has put in place sustainability criteria in its biofuels policy known as the

lsquoMozambique Biofuel Sustainable Frameworkrsquo (MBSF) Even in the legislative framework of

developed countries biofuels sustainability is not taken into account to the same extent as in the

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 15: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

15

Analogously to the RED 2009 also in the RED 2018 compliance with the sustainability criteria is

necessary for bioenergy to account towards the renewable energy targets and to qualify for

financial support (RED 2018 Article 29(1)) For what specifically concerns ILUC the RED 2018

is supplemented by the Commission Delegated Regulation (EU) 2019807 (ILUC Delegated

Regulation) which sets specific criteria for the identification of respectively high- and low- ILUC

risk feedstock

6 Promoting biogas sustainability the case for sustainability criteria

beyond the EU legal framework

61 Global relevance of the EU sustainability criteria

The EU legal framework for biofuels sustainability is widely reputed as an example of lsquopioneeringrsquo

legislation (Kulovesi et al 2009) and one of the most comprehensive and advanced binding

sustainability schemes on a global scale (European Commission 2011) The global relevance of

the EU sustainability criteria emerges in particular from the fact that their validity is not limited to

the EU borders On the contrary for biofuels to enjoy the benefits mentioned above (see RED

2018 Article 29(1)) compliance with the sustainability criteria needs to be proven regardless of

whether the feedstock originates from within or outside the EU Such extraterritorial applicability

has given rise to a vivid debate related to the compatibility of the EU sustainability criteria with

international trade rules (Olsen et al 2016 Lydgate 2012 Scott 2011 Kulovesi et al 2009)

Conversely less scholarly attention has been devoted to the regulation of biofuels sustainability

outside the EU legal framework and especially in developing countries Undoubtedly for many

developing countries the EU represents an important export market for liquid biofuels (eg

bioethanol and biodiesel) Therefore the adoption of stringent sustainability criteria has the

potential to significantly affect biofuels production For instance the classification of palm oil

(often used as a feedstock for the production of biodiesel) as a high-ILUC risk feedstock under the

newly adopted ILUC Delegated Regulation has recently given rise to a legal complaint by

Indonesia currently pending before the WTO (WTO 2019) Despite the global significance of the

EU market this accounts only for a minority share of global biofuels trade (IEA 2019b)

Therefore the adoption of the sustainability criteria also in extra-EU jurisdictions would be a

crucial step to further mitigate the negative impacts associated with biofuels and biogas

production

In a few non-EU countries some progress has been registered in support of biofuels sustainability

This is the case for instance of Brazil Japan and the United States (Naiki 2016) On the contrary

sustainability criteria have rarely been adopted in the legal framework of developing countries A

survey of biofuel policies in East African countries for instance concludes that lsquogenerally

agrofuel investments have been insensitive to environmental and human rights concerns of

vulnerable populationsrsquo (Owino 2016) The same study holds that in the East African region

only Mozambique has put in place sustainability criteria in its biofuels policy known as the

lsquoMozambique Biofuel Sustainable Frameworkrsquo (MBSF) Even in the legislative framework of

developed countries biofuels sustainability is not taken into account to the same extent as in the

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 16: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

16

EU sustainability criteria In the United States for instance sustainability considerations have been

mostly included in the policy framework of a limited number of States such as California whereas

less ambitious legislation has been adopted at the federal level (Endres 2010) Therefore it seems

fair to conclude that the EU sustainability criteria represent the highest available normative

standard (Lin 2011)

In numerous developing countries the adoption of sustainability criteria is often trumped by the

perception that these might represent a trade barrier slowing down the development of the biofuels

market (Owino 2016) However previous studies have shown that the indiscriminate promotion

of all biofuels without taking into account the risks associated to land-use change (LUC) and

indirect land-use change (ILUC) may turn out to be most harmful particularly for developing

countries (Koumlppen et al 2013)

In this connection UNIDOrsquos work in partnership with the Food and Agriculture Organization

(FAO) and the United Nations Environment Programme (UNEP) has already provided a precious

contribution for the development of a lsquoBiofuels Screening Toolkitrsquo a list of 11 sustainability

criteria whose adoption is recommended to national policy-makers (ibid) Such criteria partly

coincide with those foreseen under the EU framework but also address further aspects that are not

included in the EU sustainability criteria (eg the EU criteria only cover environmental

considerations whereas the lsquoBiofuels Screening Toolkitrsquo also takes into account social

considerations)

62 The way forward for sustainable biogas policies

In this section we build upon the LCA analysis on biogas sustainability and the legal analysis on

the EU sustainability criteria conducted thus far and propose three key takeaways emerging from

our interdisciplinary analysis These we believe will support the further development of the

lsquoBiofuels Screening Toolkitrsquo (or a similar policy instrument) by UNIDO and its partner

Organizations

Our LCA analysis has shown that the land use and the LULUC-related climate change can become

a concern in any country that indiscriminately promotes biogas regardless of the feedstock used

Moreover the impact of biogas production might cross the borders even if the plants are located

in a single country The issue is likely to become more and more significant in light of the rapid

growth of the biogas industry Overall the EU sustainability criteria represent an appropriate

solution to this problem as they set a limit on land use for biofuels production set targets on GHG

emission savings and apply these rules independently of the location where biofuels and biogas

are produced This way the EU ensures sustainable production of biofuels and biogas not only

within its borders but also for biofuels and biogas produced elsewhere and exported into the EU

market As a result it is possible to conceive two possible reactions from third countries On the

one hand third countries may propose legal challenges against the EU sustainability criteria

claiming alleged violations of WTO rules On the other hand third countries may also adopt

sustainability criteria in their legal framework and contribute to the enhancement of biofuels and

biogas sustainability The following three recommendations reveal how the EU sustainability

criteria can be used as a model to be adopted in extra-EU jurisdictions

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 17: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

17

Recommendation 1 Promote the adoption of legally binding sustainability criteria in extra-EU

jurisdictions

Compliance with sustainability criteria can be a voluntary self-driven choice of economic

operators or be mandated by legislative provisions The EU sustainability criteria for biofuels and

biogas represent a hybrid case as compliance is not formally mandatory yet it is an essential

requirement to receive financial support (Article 29(1) RED 2018) Moreover the EU

sustainability criteria are an example of a so-called meta-regulation since the European

Commission does not directly test biofuelsrsquo compliance with the sustainability criteria relying

instead on a number of external certification schemes (Lin 2011) Such model has given rise to

critique especially in light of the risk of proliferation of industry-driven sustainability standards

(Stattman et al 2018) However such concerns are balanced by the fact that despite the central

role played by private actors verification schemes are subject to regular monitoring by the

European Commission and need to be aligned with the sustainability criteria enacted in legal

provisions Thus the presence of a legislative basis is a key element to ensure a level playing field

for the monitoring of biofuelsrsquo sustainability Here the legal criteria serve as a common

denominator with which private sustainability schemes need to comply Moreover the fact that

legal rules assign clear benefits for compliance with the sustainability criteria drives the demand

for sustainability certifications thus informing the choices of private economic operators

Ultimately the EU sustainability criteria appear well-suited to address the sustainability concerns

pointed out in Section 4 also with regard to their extraterritorial applicability which incorporates

sustainability concerns independently from the place of production of biofuels and biogas

In light of the above the enactment of sustainability criteria in binding legislative provisions

represents a positive pathway to increase sustainability in the biofuels sector It is important that

at the very least legislative norms provide the minimum requirements for biofuels to be certified

as sustainable At the same time it is possible to modulate sustainability schemes in such a way

that they do not impose an exceptional burden on the public sector An example would be the use

of meta-standards as it is the case in the EU sustainability criteria

Recommendation 2 Support a single and clear definition of lsquoadvancedrsquo biofuels and biogas

At present there is a lack of clarity over the definition of lsquoadvancedrsquo biofuels An analysis

conducted by the United States Department of Agriculture shows that there is no univocal

definition of lsquoadvancedrsquo biofuels across different jurisdictions (United States Department of

Agriculture 2019) The RED 2018 defines lsquoadvancedrsquo biofuels as those making use of a selected

list of feedstocks illustrated in Annex IX Part A In the RED 2018 such biofuels are specifically

incentivized as they can be accounted for twice their energy content towards the renewable energy

targets It is important that when enacting biofuels sustainability criteria a clear definition is

provided of what constitutes lsquoadvancedrsquo biofuels taking into account the regional impact of a

given feedstock (see Section 4) This also means that in any jurisdiction this definition should not

discriminate between inland and foreign biofuels or feedstocks One might also say sustainable

consumption of biofuels should be promoted with these criteria regardless of where they are

produced This way not only the respective countries will contribute to biofuels sustainability

across the borders but also their main trading partners in the sector will have better incentives to

introduce the sustainability criteria in their jurisdictions Connected to that the goal should be to

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 18: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

18

advance a harmonized definition of lsquoadvancedrsquo biofuels through plurilateral or multilateral

agreements If international consensus can be found around a single definition of lsquoadvanced

biofuelsrsquo this may help tackle protectionist policies in biofuel trade as lsquoadvancedrsquo biofuels

produced in one country will be considered as such also in other jurisdictions

Finally the EU sustainability criteria as amended under the RED 2018 specifically address the

sustainability of biogas along with other biofuels The technical section of this paper has shown

that the environmental sustainability of biogas production cannot be neglected Hence the

sustainability criteria to be enacted in the legislative framework of extra-EU countries need to

specifically cover the biogas sector in their definition of lsquoadvancedrsquo biofuels

Recommendation 3 Link the adoption of sustainability criteria in developing countries with

facilitated access to development finance

The enactment of the sustainability criteria shall serve not as a barrier but as an opportunity for

developing countries to increase their investments in the bioenergy sector (Owino 2016)

International organizations and multilateral financial institutions can play a key role in ensuring

that funds are allocated to investments in sustainable bioenergy For instance the EU recently

revised its Common Agricultural Policy (CAP) requiring that Member States establish maximum

thresholds for the use of cereals and other starch rich crops sugars and oil crops (including silage

maize) in order for biogas to receive financial support from the European Agricultural Fund for

Rural Development (EAFRD) (European Commission 2014 Commission Delegated Regulation

2014) The deployment of a similar mechanism on the international plane should similarly be

encouraged for instance by linking financial support for biogas projects to the adoption of

sustainability criteria in domestic legislation In this regard UNIDO also in partnership with other

international organizations and multilateral development banks (MDBs) should actively support

the adoption of sustainability criteria in the developing countries as a condition to gain access to

international funding for biofuels and biogas projects

7 Conclusion

This research moved from the consideration that climate change is an urgent threat calling for a

radical transition in the energy sector Biofuels and biogas in particular have been identified as

promising solutions to reduce GHG emissions with particular regard to their application in the

transport sector and the potential to foster the development of a circular waste economy At the

same time their production can also give rise to significant sustainability threats

The interdisciplinary analysis carried out in this paper has focused in particular on the

environmental sustainability of biogas Through the development of an LCA analysis this paper

has analyzed the regionalized impact of biogas production against the environmental indicators

included in the latest EU Renewable Energy Directive (RED 2018) namely GHG emissions

reduction land-use change (LUC) and indirect land-use change (ILUC) The regionalized LCA

analysis has shown that biogas production may have substantial effects in terms of land use and

LULUC-related climate change both directly and indirectly Sometimes these effects ndash but

especially the impacts of the use of other resources ndash are shifted away from the countries where

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 19: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

19

biogas production is located This makes the potential sustainability threats of biofuels production

an international issue

Based on these results the second part of this paper has provided an in-depth review of the EU

legislation for the promotion of sustainable biogas and biofuels addressing the most notable

features of the EU framework compared to some extra-EU regulatory experiences We found that

the EU framework can serve as a notable example for promoting sustainability in the biofuels

sector

On the basis of this combined analysis this paper has provided three policy recommendations for

UNIDO to promote the adoption of sustainability criteria in extra-EU jurisdictions with a special

focus on developing countries

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 20: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

20

Bibliography

Achinas S V Achinas amp G J W Euverink (2017) A Technological Overview of Biogas

Production from Biowaste Engineering 3 (3) 299ndash307

httpsdoiorg101016JENG201703002

Ali R T M N T Mansur N H Baharudin amp S I S Hassan (2016) Environmental impacts

of renewable energy In Electric Renewable Energy Systems edited by M H Rashid 519-

546 Academic Press httpsdoiorg101016B978-0-12-804448-300021-9

AFID Directive (2014) Directive 201494EU of the European parliament and of the Council on

the deployment of alternative fuels infrastructure OJ L 307 28102014 p 1ndash20

Ammenberg J Bohn I amp Roozbeh F (2017) Systematic Assessment of Feedstock for an

Expanded Biogas Production A Multi-Criteria Approach Biogas Research Center Linkoumlping

University httpwwwdiva-portalorgsmashgetdiva21156008FULLTEXT01pdf

de Andrade PP (2016) Biofuelsrsquo Legal and Political Framework in Brazil A Critical Review

through a Sustainable Development Lens In The Law and Policy of Biofuels edited by Y Le

Bouthillier A Cowie P Martin and H McLeod-Kilmurray 81ndash101 Cheltenham

Northhampton MA Edward Elgar Publishing

httpsdoiorg104337978178254455500013

Antoacuten J D Cervantes-Godoy F Bossard amp S Guerrero (2019) Agricultural Policies in

Argentina OECD Trade and Agriculture Directorate report TADCA(2018)9FINAL

Banja M R Sikkema amp M Jeacutegard (2019) Biomass for energy in the EU ndash The support

framework Energy Policy 131 215-228 httpsdoiorg101016jenpol201904038

Biofuels Directive (2003) Directive 200330EC of the European parliament and of the Council

on the promotion of the use of biofuels or other renewable fuels for transport OJ L 123

1752003 p 42ndash46

Bogojevic S (2016) Climate Change Law and Policy in the European Union In The Oxford

Handbook of International Climate Law edited by K R Gray R Tarasofsky and C Carlarne

671-92 Oxford Oxford University Press

Commission Delegated Regulation (2014) (EU) 8072014 Commission Delegated Regulation

(EU) No 8072014 of 11 March 2014 supplementing Regulation (EU) No 13052013 of the

European Parliament and of the Council on support for rural development by the European

Agricultural Fund for Rural Development (EAFRD) and introducing transitional provisions

OJ L 227 3172014 p 1ndash17

Creutzig F N H Ravindranath G Berndes S Bolwig R Bright F Cherubini H Chum et al

(2015) Bioenergy and Climate Change Mitigation An Assessment Global Change Biology

Bioenergy 7 (5) 916ndash44 httpsdoiorg101111gcbb12205

enformer (2018) RWE launches international biogas trading 20 April 2018 httpswwwen-

formercomenrwe-launches-international-biogas-trading accessed 8 December 2019

Endres JM (2010) Clearing the Air the Meta-Standard Approach to Ensuring Biofuels

Environmental and Social Sustainability Virginia Environmental Law Journal 28 73-120

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 21: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

21

European Commission (2010) COM(2010) 811 final Report from the Commission on Indirect

Land-Use Change Related to Biofuels and Bioliquids httpseur-

lexeuropaeuLexUriServLexUriServdouri=COM20100811FINENPDF

European Commission (2011) SEC(2011) 129 final Commission Staff Working Document ndash

Report on the Operation of the Mass Balance Verification Method for the Biofuels and

Bioliquids Sustainability Scheme in Accordance with Article 18(2) of Directive 200928EC

httpwwweuroparleuropaeuRegDatadocs_autres_institutionscommission_europeennes

ec20110129COM_SEC(2011)0129_ENpdf

European Commission (2014) SWD(2014) 259 final State of play on the sustainability of solid

and gaseous biomass used for electricity heating and cooling in the EU

httpseceuropaeuenergysitesenerfiles2014_biomass_state_of_play_pdf accessed 5

December 2019

Eyl-Mazzega M amp C Mathieu (eds) lsquoBiogas and Biomethane in Europersquo ndash Lessons from

Denmark Germany and Italyrsquo Eacutetudes de lrsquoIfri Ifri April 2019

httpswwwifriorgsitesdefaultfilesatomsfilesmathieu_eyl-

mazzega_biomethane_2019pdf accessed 21 October 2019

Global Markets Insights (2019) World Biogas Market Value to Cross $110 billion by 2025

Available at httpswwwgminsightscomindustry-analysisbiogas-market accessed 16

December 2019

Governance Regulation (2018) Regulation (EU) 20181999 of the European Parliament and of

the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action

amending Regulations (EC) No 6632009 and (EC) No 7152009 of the European Parliament

and of the Council Directives 9422EC 9870EC 200931EC 200973EC 201031EU

201227EU and 201330EU of the European Parliament and of the Council Council

Directives 2009119EC and (EU) 2015652 and repealing Regulation (EU) No 5252013 of

the European Parliament and of the Council OJ L 328 21122018 p 1ndash77

Guo M W Song amp J Buhain (2015) Bioenergy and Biofuels History Status and Perspective

Renewable and Sustainable Energy Reviews 42 712ndash25

httpsdoiorg101016jrser201410013

Hannouf M amp G Assefa (2017) Life Cycle Sustainability Assessment for Sustainability

Improvements A Case Study of High-Density Polyethylene Production in Alberta Canada

MDPI Journal of Sustainability 9 2332 doi103390su9122332

Hijazi O S Munro B Zerhusen amp M Effenberger (2016) Review of Life Cycle Assessment

for Biogas Production in Europe Renewable and Sustainable Energy Reviews 54 1291ndash1300

httpsdoiorg101016jrser201510013

Homan E (2012) Biogas from Manure PennState Extension httpsextensionpsuedubiogas-

from-manure accessed 13 December 2019

Hutňan M (2016) Maize Silage as Substrate for Biogas Production In Advances in Silage

Production and Utilization edited by Thiago Da Silva 173ndash96

IEA (2019a) CO2 Emissions from Fuel Combustion 2019 Highlights

httpswebstoreieaorgco2-emissions-from-fuel-combustion-2019-highlights

IEA (2019b) Transport Biofuels httpswwwieaorgreportstracking-transport-2019transport-

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 22: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

22

biofuels

ILUC Directive (2015) Directive (EU) 20151513 of the European Parliament and of the Council

of 9 September 2015 amending Directive 9870EC relating to the quality of petrol and diesel

fuels and amending Directive 200928EC on the promotion of the use of energy from

renewable sources OJ L 239 1592015 p 1ndash29

ILUC Delegated Regulation (2019) Commission Delegated Regulation (EU) 2019807 of 13

March 2019 supplementing Directive (EU) 20182001 of the European Parliament and of the

Council as regards the determination of high indirect land-use change-risk feedstock for which

a significant expansion of the production area into land with high carbon stock is observed

and the certification of low indirect land-use change-risk biofuels bioliquids and biomass

fuels OJ L 133 2152019 p 1ndash7

IPCC (2018) Special Report Global Warming of 15 degC Geneva Switzerland World

Meteorological Organization httpswwwipccchsr15 accessed 21 October 2019

IRENA (2009) Statute of the International Renewable Energy Agency IRENAFCStatute

IRENA (2018) Renewable Energy Statistics 2018 httpswwwirenaorgpublications2018

JulRenewable-Energy-Statistics-2018 accessed 30 October 2019

Jacopo B M Negri M Fiala amp S Gonzaacutelez-Garciacutea (2013) Anaerobic digestion of different

feedstocks Impact on Energetic and Environmental Balances of Biogas Process Science of

the Total Environment 463ndash464 (2013) 541ndash551 accessed 16 December 2019

Jiřiacute H O Faldiacuteka Z Chvaacutetalovaacuteb E Kasema amp O Trenz (2016) Sustainability Assessment of

Biogas plants Sixth International Symposium on Energy from Biomass and Waste Vernice

Italy

JRC (2012) Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment

Methods Database and Supporting Information JRC Technical Notes EUR 25167

Kalt G amp L Kranzl (2012) An Assessment of International Trade Related to Bioenergy Use in

Austria ndash Methodological Aspects Recent Developments and the Relevance of Indirect Trade

Energy Policy 46 (2012) 537-49 httpdxdoiorg101016jenpol201204026

Kline K L S Msangi V H Dale J Woods G M Souza P Osseweijer J S Clancy J A

Hilbert F X Johnson P C McDonnell amp H K Mugera (2016) Reconciling Food Security

and Bioenergy Priorities for Action Global Change Biology Bioenergy 9(3) 557-76

Global Potential for Biomethane Production with Carbon Capture Transport and Storage up to

2050 Energy Procedia 37 6043ndash52 httpsdoiorg101016jegypro201306533

Koumlppen S S Markwardt amp H Fehrenbach (2013) Biofuels Screening Toolkit Guidelines for

Decision Makers Institute for Energy and Environmental Research Heidelberg GmbH

httpswwwunidoorgsitesdefaultfiles2014-

03Guidelines_for_Decision_Makers__FINAL_WEB_20022014_0pdf

Kreuger E I A Nges amp L Bjoumlrnsson (2011) Ensiling of Crops for Biogas Production Effects

on Methane Yield and Total Solids Determination Biotechnology for Biofuels 4 (44) 1ndash8

httpsdoiorg1011861754-6834-4-44

Kulovesi K E Morgera amp M Muntildeoz (2011) Environmental Integration and Multi-Faceted

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 23: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

23

International Dimensions of EU Law Unpacking the EUrsquos 2009 Climate and Energy Package

Common Market Law Review 48 829ndash891

Lin Jolene (2011) Governing Biofuels A Principal-Agent Analysis of the European Union

Biofuels Certification Regime and the Clean Development Mechanism Journal of

Environmental Law 24 43-73 httpsdoi101093jeleqr025

Lusk P (1998) Methane Recovery from Animal Manures The Current Opportunities Casebook

NREL Report SR-580-25145 httpswwwnrelgovdocsfy99osti25145pdf accessed 13

December 2019

Lydgate EB (2012) Biofuels Sustainability and Trade-Related Regulatory Chill Journal of

International Economic Law 15(1) 157-180 httpsdoi101093jieljgs007

Lyng K amp A Brekke (2019) Environmental Life Cycle Assessment of Biogas as a Fuel for

Transport Compared with Alternative Fuels Energies 12 (3) 532

httpsdoiorg103390en12030532

Monfreda C N Ramankutty amp J A Foley (2008) Farming the Planet 2 Geographic

Distribution of Crop Areas Yields Physiological Types and Net Primary Production in the

Year 2000 Global Biogeochemical Cycles 22 1ndash19 httpsdoiorg1010292007GB002947

Muzenda E (2014) Bio-Methane Generation from Organic Waste A Review Proceedings of the

World Congress on Engineering and Computer Science II 22ndash24

httpwwwiaengorgpublicationWCECS2014WCECS2014_pp647-652pdf

Naiki Y (2016) Trade and Bioenergy Explaining and Assessing the Regime Copmlex for

Sustainable Bioenergy European Journal of International Law 27(1) 129-159

Oberthuumlr S amp L Groen (2018) Explaining goal achievement in international negotiations the

EU and the Paris Agreement on climate change Journal of European Public Policy 25 (2018)

708-727 httpsdoiorg1010801350176320171291708

Olsen BE amp A Roslashnne (2016) The EU Legal Regime for Biofuels In The Law and Policy of

Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-Kilmurray

Chelthenham Edward Elgar

Omer A M (2017) Biogas technology for sustainable energy generation development and

perspectives MOJ App Bio Biomech 1(4)137‒148

httpsdoiorg1015406mojabb20170100022

Owino R O (2016) Agrofuel Law and Policy in East Africa Assessing Avenues for Sustainability In

The Law and Policy of Biofuels edited by Y Le Bouthillier A Cowie P Martin amp H McLeod-

Kilmurray Chelthenham Edward Elgar

Pagh-Schlegel P amp K Elkjaeligr (2012) Danish Farmers Make a Big Profit from Growing Maize for

German Biogas (In Danish original title Danske landmaelignd tjener tykt paring at dyrke majs til tysk

biogas) 10 December 2012 httpswwwinformationdkindland201212danske-landmaend-

tjener-tykt-paa-dyrke-majs-tysk-biogas accessed 8 December 2019

Pan J J Phillips amp Y Chen (2008) Chinarsquos Balance of Emissions Embodied in Trade Approaches

to Measurement and Allocating International Responsibility Oxford Review of Economic Policy 24

(2) 354ndash76

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 24: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

24

Purvis B Y Mao amp D Robinson (2018) Three pillars of sustainability in search of conceptual

origins Sustainability Science ISSN 1862-4065 httpsdoiorg101007s11625-018-0627-5

RED 2001 (2001) Directive 200177EC of the European Parliament and of the Council of 27

September 2001 on the promotion of electricity produced from renewable energy sources in

the internal electricity market OJ L 283 27102001 p 33ndash40

RED 2009 Directive 200928EC of the European Parliament and of the Council of 23 April 2009

on the promotion of the use of energy from renewable sources and amending and subsequently

repealing Directives 200177EC and 200330EC OJ L 140 562009 p 16ndash62

RED 2018 Directive (EU) 20182001 of the European Parliament and of the Council of 11

December 2018 on the promotion of the use of energy from renewable sources (recast) OJ L

328 21122018 p 82ndash209

Roumlder M (2016) More than Food or Fuel Stakeholder Perceptions of Anaerobic Digestion and

Land Use a Case Study from the United Kingdom Energy Policy 97 (2016) 73ndash81

httpsdoiorg101016jenpol201607003

Roggenkamp M J Sandholt amp D G Tempelman (2018) Innovation in the EU Gas Sector

Injection of Biomethane into the Natural Gas System In Innovation in Energy Law and

Technology Dynamic Solutions for Energy Transitions edited by D Zillman L Godden L

Paddock amp M Roggenkamp 262ndash83 Oxford Oxford University Press

Scott J (2011) The Multilevel Governance of Climate Change In The Evolution of EU Law

edited by P Craig amp G de Burca Oxford Oxford University Press

von Sperling E (2012) Hydropower in Brazil Overview of Positive and Negative Environmental

Aspects Energy Procedia 18 (2012) 110ndash18 httpsdoiorg101016jegypro201205023

Starke P amp C M Hoffmann (2014) Yield Parameters of Beta Beets as a Basis to Estimate the

Biogas Yield Agriculture 139 (3) 169ndash76

Stattman SL A Gupta L Partzsch amp P Oosterveer (2018) Toward Sustainable Biofuels in

the European Union Lessons from a Decade of Hybrid Biofuel Governance Sustainability

10(11) (2018) 4111

Svensson M (2013) Biomethane for Transport Applications In The Biogas Handbook Science

Production and Applications edited by A Wellinger J Murphy amp D Baxter 428ndash43

Woodhead Publishing Limited httpsdoiorg10153397808570974153428

UNFCCC (2015) Paris Agreement UNFCCC COP Report No 21 Addenum at 21 UN Doc

FCCCCP201510Add 1 (Jan 29 2016)

United Nations (2015) United Nations General Assembly ARES701 - Transforming our world

the 2030 Agenda for Sustainable Development

United States Department of Agriculture (2019) Global Agricultural Information Network Brazil

Biofuels Annual 2019 httpswwwfasusdagovdatabrazil-biofuels-annual-5

Van Grinsven A C Leguijt amp J Tallat-Kelpsaite (2017) Supporting Mechanisms for the

Development of Biomethane in Transport Delft CE Delft

httpswwwcedelfteuenpublications1946supporting-mechanisms-for-the-development-

of-biomethane-in-transport

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 25: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

25

Wang T (2019) Production of biogas worldwide from 2000 to 2017 (in exajoules) Statistica

report httpswwwstatistacomstatistics481791biogas-production-worldwide accessed 4

December 2019

Wilken D F Strippel F Hofmann M Maciejczyk L Klinkmuumlller L Wagner G Bontempo

et al (2017) Biogas to Biomethane Edited by Fachverband Biogas e V Fachverband Biogas

e V httpswwwbiogas-to-biomethanecomDownloadBTBpdf

WTO (2019) European Union ndash Certain Measures Concerning Palm Oil and Oil Palm Crop-

Based Biofuels Request for consultations by Indonesia WTDS5931

Zhou K Somboon C amp F Verpoort (2017) Alternative Materials in Technologies for Biogas

Upgrading via CO 2 Capture Renewable and Sustainable Energy Reviews 79 (June) 1414-

41 httpsdoiorg101016jrser201705198

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 26: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

26

Appendix

1 OpenLCA impact categories

Group Impact category Unit

climate change biogenic kg CO2-Eq

fossil kg CO2-Eq

land use and land use change kg CO2-Eq

total kg CO2-Eq

ecosystem quality freshwater and terrestrial acidification mol H+-Eq

freshwater ecotoxicity CTU

freshwater eutrophication kg P-Eq

marine eutrophication kg N-Eq

terrestrial eutrophication mol N-Eq

human health carcinogenic effects CTUh

ionising radiation kg U235-Eq

non - carciogenic effects CTUh

ozone layer depletion kg CFC-11-Eq

photochemical ozone creation kg NMVOC-Eq

respiratory effects inorganics disease incidence

resources dissipated water m3 water-Eq

fossils MJ

land use points

minerals and metals kg Sb-Eq

Table A1 Impact categories for LCA-analysis with OpenLCA

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 27: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

27

2 Maize and sugar beet yields around the world

Figure A1 Yields of maize in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

Figure A2 Yields of sugar beet in tons per hectare Source GADM (base map) amp EarthStatorg (yield data)

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 28: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

28

3 Overall impact of biogas production Maize vs sugar beet

Figure A3 Impact of production of 1m3 of biogas with different feedstocks on climate change

Figure A4 Impact of production of 1m3 of biogas with different feedstocks on the use of resources

0

2

4

6

8

10

12

Biogenic Fossil LULUC Total

Climate change kg CO2-Eq

Maize Sugarbeet

0

005

01

015

02

025

03

Dissipated water 100m3 water-Eq

Fossils 100 MJ Land use 10000points

Minerals and metalsg Sb-Eq

Use of resources

Maize Sugarbeet

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 29: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

29

Figure A5 Impact of production of 1m3 of biogas with different feedstocks on the ecosystem quality

Figure A6 Impact of production of 1m3 of biogas with different feedstocks on the human health

0

1

2

3

4

5

6

7

8

Freshwater andterrestrial

acidification molH+-Eq

Freshwaterecotoxicity CTU

Freshwatereutrophication g

P-Eq

Marineeutrophication

10 g N-Eq

Terrestrialeutrophication

mol N-Eq

Ecosystem quality

Maize Sugarbeet

-005

0

005

01

015

02

Carcinogeniceffects mio

CTUh

Ionisingradiation kg

U235-Eq

Non-carcinogeniceffects 10000

CTUh

Ozone layerdepletion mg

CFC-11-Eq

Photochemicalozone creationkg NMVOC-Eq

Respiratoryeffects

inorganics10000 disease

incidences

Human health

Maize Sugarbeet

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 30: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

30

4 Regional impacts of biogas production (ldquoglobalrdquo plant location)10

Figure A7 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on climate change through

land use and land use change

Figure A8 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (land)

Figure A9 Regional contributions to the impact of biogas production from maize (left) and sugar beet (right) on resource use (fossils)

10

The maps in this and further appendices show relative contributions of the respective regions to the overall

impact red stands for high contribution blue ndash for low contribution The drawback of the OpenLCA software is that

it does not provide an exact scale for the regionalized results The illustrative maps should therefore be considered

as a qualitative not quantitative reference

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 31: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

31

5 Regional impacts of biogas production from sugar beet different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A10 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (land)

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 32: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

32

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A11 Regional contributions to the impact of biogas production from sugar beet in Brazil China Germany and Nigeria on resource use (fossils)

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 33: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

33

6 Regional impacts of biogas production from maize different plant locations

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A12 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (land)

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)

Page 34: The Phantom Menace: Bridging the Regulatory Gap for ...€¦ · The Phantom Menace: Bridging the Regulatory Gap for Sustainable Biogas Alessandro Monti, Daniel Oderinde & Maria Polugodina

34

a Brazil (Paranaacute) b China

c Germany d Nigeria

Figure A13 Regional contributions to the impact of biogas production from maize in Brazil China Germany and Nigeria on resource use (fossils)


Recommended