+ All Categories
Home > Documents > The potential of fillers to mitigate GHG in Cement-based ...

The potential of fillers to mitigate GHG in Cement-based ...

Date post: 10-Jan-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
57
The potential of fillers to mitigate GHG in Cement-based materials Vanderley M. John Maria Alba Cincotto Rafael G Pileggi .....
Transcript

The potential of fillers to mitigate GHG in

Cement-based materials

Vanderley M. John

Maria Alba Cincotto

Rafael G Pileggi

.....

Background

• Prospective studies: • RoadMap Cement Industry - Brazil

• UNEP SBCI Working Group

• A candle-light guiding to a desirable the future.

• Our achievements are limited by our ambitions

• “Moore’s Law”

UNEP SBCI Low-Carbon Cement Working Group – Inaugural meeting

UNEP, Paris, March 18th 2015

Slag + Fly ash are not enough

Blast Furnace Slag & Cement

0,04

0,05

0,06

0,07

0,08

0,09

0,10

0,11

0,12

0,13

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

2002 2004 2006 2008 2010 2012 2014

Slag

/Ce

me

nt

Pro

du

ctio

n (

Mt)

M

ilhõ

es

Cement Blast furnace slag Pig iron Slag/Cement

Basic Blast Furnace Slag in Brazil

54,3

62

83

118

134

13,1 12,8

10,8

8,1 8,1

0

2

4

6

8

10

12

14

0

20

40

60

80

100

120

140

160

2010 2015 2020 2025 2030 2035 2040 2045 2050

Slag

/Ce

me

nt

(%)

Pro

du

ctio

n (

Mt)

Produção de cimento (Mt) Produção de aço (Mt)

Produção de gusa a coque (Mt) Geração de escoria básica de alto-forno (Mt)

Consumo de escória (Mt) Potencial de substituição(**)

Estimativa própria

Mineral Coal Consumption

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Co

al (M

t)

S. & C. America, Africa, Asia, Middle East Europe & EurasiaMajor Exporters South AfricaAustralia IndiaChina RussiaUSA

Coal energy in Brazil

• Historically low

• Gas is a preferred fossil fuel energy source

• 2013: • Use 1,6Mt 2,6% of cement (GNR)

• Availability ~2Mt ~3% of cement

• 2050 • ? 2-3Mt

• Quality is not the best.

Actual Clinker Substitution Rates WBCSD CSI companies

GNR (2013 data)

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

1.990 2.000 2.005 2.006 2.007 2.008 2.009 2.010 2.011 2.012 2.013

Limestone Slag Fly ash Puzzolana Others

2013 Slag 5% Fly ash 4% Limestone Filler 7% Puzzolana 2% Gypsum 4%

Fly Ash + Slag

• Global shortage & eventual local abundance

• <15% of cement

• Quality, contamination and logistics are crucial.

• Brazil: • shortage of slag and fly ash

• ~ 10%

Looking for other options

Availability of SCMs

0 1000 2000 3000 4000

Cement

Fly ash

Blast furnace slag

Natural pozzolana

Burnt shale

Silica fume

Rice husk ash

Metakaolin

Mill. tons/year

Used in cement

Reserve

Limestone & fillers

Figures from ~2013

(adapted from Prof. Karin Scrivener EPFL)

Calcined clays

Why fillers?

100 years old successful experience

Arrowrock Dam – USA – 1916

50% clinker subtitution by grounde granite (quartz)

History filler cement USA SAND - CEMENT

• USA 1912 to 1916 • "sand-cement" Bureau of Reclamation

• Arrowrock Dam on the Boise River

• Elephant Butte Dam, Rio Grande River in New Mexico

• 45% Granite ground to pass #20

• 55% coarse Cement

• Mixture interground 90% #200

• Cost: 30% reduction (1.63 x 2.36)

Meissner (1949)

+30 years standardized practice Max Limestone Filler in standards

[CELLRANGE]

[CELLRANGE]

[CELLRANGE]

[CELLRANGE]

[CELLRANGE]

2010

[CELLRANGE]

[CELLRANGE]

[CELLRANGE]

0 5 10 15 20 25 30 35 40

Brasil

China

Canada

USA

Nova Zelândia

Austrália

Argentina

África do Sul

Europa

Average Limestone Filler in Cement (GNR WBCSD CSI 2013)

0%

5%

10%

15%

20%

1990 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013

Brazil

EU 28

India

LA

Morocco

South America ex.Brazil

Thailand

United States

World

Why average values are << maximum?

Current filler technology:

Why average values are low?

• Interground limestone with clinker

• Limestone are smaller than binder fraction

• No PSD engineering is possible

It is a simple dilution! Little engineering on it.

Binder Dilution increases Porosity

0,30

0,35

0,40

0,45

0,50

1,00

1,01

1,02

1,03

1,04

1,05

1,06

0 10 20 30 40

Pas

te p

oro

sity

(v/

v)

Re

ativ

e p

aste

vo

lum

e (

v/v)

Filler Content (% w/w)

Density: Cement 3.1 g/cm³; Filler 2,6 g/cm;

Combined Water : 0,24g/g binder, w/solids constant

Porosity controls strength

0,29 0,39 0,49 0,59 0,69 0,79 0,89

10

20

30

40

50

60

0,1 0,2 0,3 0,4 0,5 0,6 0,7

Water/Binder

Co

mp

ress

ive

Str

en

gth

28

d (

MP

a)

Cement paste Porosity (v/v)

Dilution effect: Blended cements = lower strength

32 32

32

32

32

40 40

40

40

50

0%

20%

40%

60%

80%

100%

CPIIF CPIIE CPIIZ CPIII CPIV CPV

6-10% 6-44% 6-24% 40-75% 20-55% <5%

Class strength frequency of Brazilian Cements – A Google Search Daniel Reis, Pedro Abrão, VM John. June 2016. ©VM John

Lower cement strength, higher cement content in concrete

[CELLRANGE]

[CELLRANGE]

[CELLRANGE]

[CELLRANGE]

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

25 30 35 40 45 50

Re

lati

ve C

eme

nt

Co

nsu

mp

tio

n (

30

MP

a)

Cement Strength (MPa)

Daniel Reis, Pedro Abrão, VM John. June 2016. ©VM John

Simple clinker dilution may

Increase CO2 footprint of concrete

Clinker Mín Med Máx

CPII F 32 10,7 10,9 11,2

CPII F 40 8,9 9,1 9,3

CPII E 32 6,4 8,8 11,2

CPII E 40 5,4 7,4 9,3

CPII Z 32 8,9 10,0 11,2

CPII Z 40 7,5 8,4 9,3

CPIII 32 2,6 5,1 7,6

CPIII 40 2,2 4,3 6,3

CPV 40 9,4 9,7 10,0

CPIV 32 5,1 7,6 10,0

CPV 50 8,4 8,6 8,8

CO2 (kgCO2.m-3.MPa-1)

Model is conservative. Neglects differences in water demand for workability and SCMs. SCMs are carbon neutral. Cement demand for a 30MPa. Abrams curves from ABCP.

Daniel Reis, Pedro Abrão, VM John. June 2016. ©VM John

CO2 Intensity increase is confirmed by other studies

0

2

4

6

8

10

12

14

16

18

20

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

CO

2 (

kg

/m3

.MP

a)

Clinker fraction

Literature - International

Literature - Brazil

Dilution compensation

LEAP cements concept Low Emission, Advanced Performance

Terminology

• Binder: reactive, high-temperature, scarce material.

• Filler: grinded mineral, no thermal treatment, little or no hydration.

• Cement: combination of binders, fillers and dispersants admixtures.

LEAP fundamentals: A water minimization technology

Rheological behavior design

Particles Dispersion

Minimum highly reactive Binder

Particle packing

engineering

LEAP at the cement industry

• Separate grinding (multi-modal PSD) • Minimum Binder (clinker, slag, fly-ash)

• Maximization of inert fillers

• Disperser Admixture added during powder mixing

• Market segmentation • Cement mix-design accordingly to clients needs

Filler + Dispersion: Low water demand for given rheology

Typical cement LEAP cement + filler

Filler + Dispersion: Low water, low porosity, higher strength

Typical cement LEAP cement + filler

Lafarge low-binder concrete and pre-mix

LEAP and cement plants of the future

Cement Dry Mixer

Mill

Kiln Mill

Limestone

Clay

Fuel

Gypsum

Mills Limestone

Other inert

Other SCMs

Dispersant Inerts < 70%

Can be located close to consumer market

Demand growth supported

grinding facilities

Filler & CO2

• Filler reduces thermal energy

• Do not affect electricity consumption • Clinker require 2 grinding steps.

• Filler one, more sophisticated grading

• Filler ~0,02 tCO2/t

• Clínquer ~0,85 tCO2/t

• For every 10% filler, 8,3% less CO2, same or higher strength

Filler & CAPEX

• IEA GHG Cost Model

• Filler (% pure cement cost) • CAPEX <37%

• Operational <33%

• Dispersant: 1-2% of the cost?

• Every 10% of filler 6,5% cost reduction

IEA GHG R&D Programme. CO2 capture in the Cement Industry. (International Energy Agency(IEA), 2008). at <http://ieaghg.org/docs/General_Docs/Reports/2008-3.pdf>

LEAP Approach HOW MUCH FILLER?

Exploratory test:

Fillers Mineralogy Mineral D90 Density BET (m²/g)

Dolomite (3) 10 - 85 2,82 0.5-4.42

Limestone (4) 7-15 2,7 1.3-10

Nepheline (1) 7 2,62 3,7

Quartz (2) 1,9-3,6 2,65 1-4.1

Cristobalite 7,6 2.35 3.9

Granite (4) 41-56 2.67 1.7-2.8

Cements (2) 34-42 3,1 0.8-1.8

50% mass substitution w/b = 0.5 and lower Dispersant (superplasticizer) Paste

Damineli, B. L. Concepts for formulation of low-binder concretes. PhD Thesis, USP 2013)

Efffect of 50% filler on Strength

water/binder=0.5

0

10

20

30

40

50

60

70

80

90

100

Cr1 NS1 C3 C4 Q2 Q1 C2 C1 D1 D2 D3 G1 G2 G3 G4 Cem1

Co

mp

ressiv

e s

tren

gth

(M

pa)

Limestone

Dolomite

Quartz

Granite

Cristobalite

Nepheline Syenite

Cement

A

B

C

D

E

Damineli, B. L. Concepts for formulation of low-binder concretes. PhD Thesis, USP 2013)

Water reduction can compensate dilution

(Sanytsky et all. 2015)

Refractory Castables Binder Content

0

5

10

15

20

25

30

35

1950 1960 1970 2000

Lee et all Castable refractory concretes Int Materials Reviews 2001 Vol. 46 No. 3

LEAP approach in structural concretes How much binder is needed for structural ?concrete

Binder Intensity

• Binder: reactive materials • clinker, gypsum, slag, pozzolans

• No limestone filler

• Performance: • Compressive strength, cylinder, 28 days

• Service life...

CO2 Intensity

• CO2: cradle to gate • clinker, gypsum, slag, pozzolans

• Performance: • Compressive strength

• Service life...

0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

0 20 40 60 80 100 120

BI

(kg

.m-3

.MP

a-1

)

Compressive strenght (MPa)

Literature - Brazil

Literature - International

Ready-mix concrete 1

Ready-mix concrete 2

250kg/m³

Conventional technology Binder intensity 29 Countries

DAMINELI, B. L. KEMEID, F. M. AGUIAR, P. S.; JOHN, VANDERLEY M. Measuring the eco-efficiency of cement use. Cement and Concrete Composites, v. 32, n. 8, p. 555-562, 2010.

Cement use efficiency LEAP - low binder concretes

0,0

2,5

5,0

7,5

10,0

12,5

15,0

17,5

20,0

0 20 40 60 80 100 120

BI

(kg

.m-3

.MP

a-1

)

Compressive strenght (MPa)

Literature - BrazilLiterature - InternationalReady-mix concrete 1Ready-mix concrete 2Laboratory of Microstructure - USPStarkast BetongLow resistance / low impact

250kg/m³ 250kg/m³

DAMINELI, B. L. - D.Sc. Thesis, 2013 (to be published) . Slump> 150mm Proske et al. Approach for eco-friendly concretes with reduced water and cement content. ICCS 2013. p288 . Slump> ~55mm

VOGT, C. Ultrafine particles in concrete:. KTH Dr. Eng. Thesis 2010. 155 p

LEAP concrete - CO2 Intensity

(USP results only )

0

2

4

6

8

10

12

14

16

18

20

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

CI (k

g/m

3.M

Pa

)

Clinker fraction

Literature - International

Literature - Brazil

Laboratory results

T Proske’s (TU Darmstadt) Concretes

CS (MPa) Filler (%)

Paste kg/m³ w/c Bi

Binder Filler Cement Water

20 (15,5)

75 90 270 360 141 1,57 5,8

0 220 220 199 0,90 14,2

40 (37,8)

60 145 269 404 123 0,85 3,9

0 265 265 185 0,70 7,2

70 (67,6)

50 225 225 550 114 0,51 3,3 0 330 330 164 0,50 4,9

Proske et al. Approach for eco-friendly concretes with reduced water and cement content. ICCS 2013. p288 .

Slump ~55mm, CEM I 52,5 R, Paste volume 0,270m³/m³

30-50% binder, low water, more cement (50-66%)

T Proske’s Volume phase composition

[CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE] [CELLRANGE]

[CELLRANGE]

[CELLRANGE] [CELLRANGE]

[CELLRANGE]

[CELLRANGE] [CELLRANGE]

[CELLRANGE]

[CELLRANGE] [CELLRANGE] [CELLRANGE]

[CELLRANGE] [CELLRANGE] [CELLRANGE]

0,0

0,2

0,4

0,6

0,8

1,0

20F 40F 70F 20 40 70

Vo

lum

e f

ract

ion

Binder Filler Water

Data from Proske et al. Approach for eco-friendly concretes with reduced water and cement content. ICCS 2013. p288 .

T Proske’s Cement Paste Porosity

0,54 0,64

0,73

0,41 0,49

0,61

0,46 0,36

0,27

0,59 0,51

0,39

0,0

0,2

0,4

0,6

0,8

1,0

20F 40F 70F 20 40 70

Soilds Binder

Data from Proske et al. Approach for eco-friendly concretes with reduced water and cement content. ICCS 2013. p288 .

Binder content and durability

Carbonation and chloride diffusion f(CS) Wassermann et all (2009) binder > 220 kg/m³

Proske (2013) binder > ~170kg/m³

Binder content and Carbonation

Desirable for concrete not steel reinforced Mortar

Fibre-cement

Pavements

Can capture up to 60% of CO2 from cement production!

Cement in reinforced concrete (Brazil)

mortar 40%

Other 20%

reinforced concrete

25%

plain concrete 15%

Concrete 40%

How much filler can we add?

Conventional dilution

• Up to 30-35%

• All major players do have international experience

• It is not reasonable keep filler amount bellow 35%

• We have a social responsibility of an immediate action

LEAP technology

• Depends on market

• Up to 70% • Mortar

• Unreinforced structural concrete (even 70 MPa)

• Reinforced concrete in dry environment

• A progressive approach: learn, improve, advance.

LEAP technology may be captured by filler producers

• Cost reduction on products formulation • Cement R$350-400/t

• Filler R$160/t

• Admixture

• Some filler suppliers

Calcined clay + limestone filler

• Rheology improvement: less water, better strength

• Chemical reaction – monocarboaluminate

A + CĈ + 3CH + H ⇒C3ACĈH12

• Proportion • Stoichiometric > 2 pozzolan : 1 limestone

• Rheology ?

• Need to adjust standard immediately

Antoni et all. Cement substitution by a combination of metakaolin and limestone Cem Concr Res 42 (2012) 1579–1589 http://dx.doi.org/10.1016/j.cemconres.2012.09.006

CO2 mitigation Calcined Clay + Limestone Filler

55

Sanchez, UCLV Cuba, K. Scrivener EPFL, Emission reduction for two trial production in Cuba (Siguaney and Cienfuegos)

www.lc3.ch

High-filler & CO2

• Lower CO2 in cement production (up to 65%).

• Lower CO2 in cement-based materials.

• Lower production costs (~35%).

• Higher CO2 capture rate.

• Higher cement sales.

Filler in the Roadmap – a reasonable proposition

• Ambition: no increase in absolute CO2 emission

• Immediate adoption European standard 35% filler

• ~15-20% average in 2020

• 30% average 2030

• 40% average 2050

• Research plan do solve problems • Durability engineering

• Robustness of admixture


Recommended