+ All Categories
Home > Documents > The Power of Communication: Energy-Efficient NoCs for FPGAs

The Power of Communication: Energy-Efficient NoCs for FPGAs

Date post: 25-Feb-2016
Category:
Upload: melita
View: 73 times
Download: 5 times
Share this document with a friend
Description:
The Power of Communication: Energy-Efficient NoCs for FPGAs. Mohamed ABDELFATTAH Vaughn BETZ. Outline. 1. Why NoCs on FPGAs?. 2. Embedded NoCs. 3. Power Analysis. 1. Why NoCs on FPGAs?. Motivation. Logic Blocks. Switch Blocks. Wires. Interconnect. 1. Why NoCs on FPGAs?. - PowerPoint PPT Presentation
Popular Tags:
36
The Power of Communication: Energy-Efficient NoCs for FPGAs Mohamed ABDELFATTAH Vaughn BETZ
Transcript
Page 1: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

The Power of Communication: Energy-Efficient NoCs for FPGAs

Mohamed ABDELFATTAHVaughn BETZ

Page 2: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

2

Outline

Why NoCs on FPGAs?

Embedded NoCs

Power Analysis

1

2

3

Page 3: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

3

Interconnect

Motivation1. Why NoCs on FPGAs?

Logic Blocks

Switch Blocks

Wires

Page 4: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

4

Motivation1. Why NoCs on FPGAs?

Logic Blocks

Switch Blocks

Wires

Hard Blocks:• Memory• Multiplier• Processor

Page 5: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

5

Motivation1. Why NoCs on FPGAs?

Logic Blocks

Switch Blocks

Wires

Hard InterfacesDDR/PCIe ..

Interconnect still the same

Hard Blocks:• Memory• Multiplier• Processor

1600 MHz

200 MHz

800 MHz

Page 6: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

6

MotivationDDR3 PHY and Controller

Problems:1. Bandwidth requirements for

hard logic/interfaces2. Timing closure

1. Why NoCs on FPGAs?PCIe Controller

Gigabit Ethernet

1600 MHz

200 MHz

800 MHz

Page 7: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

7

MotivationDDR3 PHY and Controller

Problems:1. Bandwidth requirements for

hard logic/interfaces2. Timing closure3. High interconnect utilization:

– Huge CAD Problem– Slow compilation– Power/area utilization

4. Wire speed not scaling:– Delay is interconnect-dominated

1. Why NoCs on FPGAs?PCIe Controller

Gigabit Ethernet

Page 8: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

Barcelona Los Angeles

Keep the “roads”, but add “freeways”.

Hard Blocks

Logic Cluster

Source: Google Earth

Page 9: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

9

DDR3 PHY and Controller

1. Why NoCs on FPGAs?PCIe Controller

Gigabit Ethernet

Problems:1. Bandwidth requirements for

hard logic/interfaces2. Timing closure3. High interconnect utilization:

– Huge CAD Problem– Slow compilation– Power/area utilization

4. Wire speed not scaling:– Delay is interconnect-dominated

FPGA with NoCNoC

Routers

Links Router forwards data packet

Router moves data to local interconnect

Page 10: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

10

DDR3 PHY and Controller

1. Why NoCs on FPGAs?PCIe Controller

Gigabit Ethernet

Problems:1. Bandwidth requirements for

hard logic/interfaces2. Timing closure3. High interconnect utilization:

– Huge CAD Problem– Slow compilation– Power/area utilization

4. Wire speed not scaling:– Delay is interconnect-dominated

5. Abstraction favours modularity:– Parallel compilation– Partial reconfiguration– Multi-chip interconnect

FPGA with NoC

Pre-design NoC to requirements NoC links are “re-usable” NoC is heavily “pipelined” NoC abstraction favors modularity

High bandwidth endpoints known

Page 11: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

11

DDR3 PHY and Controller

1. Why NoCs on FPGAs?PCIe Controller

Gigabit EthernetFPGA with NoC

Latency-tolerant communication NoC abstraction favors modularity

Problems:1. Bandwidth requirements for

hard logic/interfaces2. Timing closure3. High interconnect utilization:

– Huge CAD Problem– Slow compilation– Power/area utilization

4. Wire speed not scaling:– Delay is interconnect-dominated

5. Abstraction favours modularity:– Parallel compilation– Partial reconfiguration– Multi-chip interconnect

Previous work: Compelling area efficiency and performance

NoCs can simplify FPGA design

Does the NoC abstraction come at a high power cost?

Page 12: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

12

Outline

Why NoCs on FPGAs?

Embedded NoCs

Power Analysis

1

2

3

Mixed NoCs Hard NoCs

Page 13: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

Embedded NoCsFPGA

DDRx

Inte

rfac

ePC

Ie In

terf

ace

Router

Compute Module

Links(Hard or Soft)

Fabric

Port

(Hard or Soft)

2. Embedded NoCs

“Mixed” NoC

“Hard” NoC

Soft LinksHard Routers

Hard LinksHard Routers =++

=“Soft” NoCSoft LinksSoft Routers + =

Page 14: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

14

Soft Hard

FPGA CAD Tools ASIC CAD Tools

Design Compiler

Area

Speed

Power?Power

Methodology

Toggle rates

Gate-level simulation Gate-level simulation

Mixed

HSPICE

Page 15: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

15

Router Logic

Programmable Interconnect

FPGA

Router

Mixed NoCs2. Embedded NoCs

Logic blocks

Baseline Router

Programmable“soft” interconnect

Width VCs Ports Buffer

32 2 5 10/VC

“Mixed” NoCSoft LinksHard Routers + =

Page 16: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

16

Router Logic

Programmable Interconnect

FPGA

Router

Mixed NoCs2. Embedded NoCs

Router Logic

16“Mixed” NoCSoft LinksHard Routers + =

Page 17: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

17

Router Logic

Programmable Interconnect

Router

Assumed a mesh Can form any topology

FPGA

Mixed NoCs2. Embedded NoCs

Special FeatureConfigurable topology

Page 18: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

18

Router Logic

Dedicated Interconnect

FPGA

Router

Hard NoCs2. Embedded NoCs

Logic blocks

Dedicated “hard” interconnect

Programmable“soft” interconnect

18“Hard” NoCHard LinksHard Routers + =

Page 19: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

19

Router Logic

Dedicated Interconnect

FPGA

Router

Hard NoCs2. Embedded NoCs

Router Logic

19“Hard” NoCHard LinksHard Routers + =

Page 20: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

20

Router Logic

Dedicated Interconnect

FPGA

Router

Hard NoCs2. Embedded NoCs

Low-V mode

1.1 V0.9 V

Save 33% Dynamic Power

Special Feature

~15% slower

20“Hard” NoCHard LinksHard Routers + =

Page 21: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

21

Outline

Why NoCs on FPGAs?

Embedded NoCs

1

2

Power Analysis

ComponentsAnalysis

3

System Analysis

Page 22: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

Soft, Mixed and Hard

22

Area Gap

Speed Gap

Power Gap

Mixed Hard (Low-V)Soft

20X – 23X smaller

5X – 6X faster

9X 11X (15X)

Speed

Area

Speed

Bisection BW

1. Power-aware design 2. NoC power budget 3. Comparison

~ 1.5% of FPGA33% of FPGA

730 – 940 MHz166 MHz

~ 50 GB/s~ 10 GB/s

Aver

age

64 –

NoC

1X

Investigate BW and power together

Page 23: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

23

Power-Aware NoC Design Total BW = 250 GBps Most Efficient NoC?

3. Power Analysis

Links Power

Routers Power

Wider Links, Fewer Routers

Page 24: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

24

Power-Aware NoC Design Total BW = 250 GBps Most Efficient NoC?

3. Power Analysis

Page 25: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

25

Power-Aware NoC Design Total BW = 250 GBps Most Efficient NoC?

3. Power Analysis

Page 26: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

26

NoC Power BudgetSoft NoC Mixed NoC Hard NoC Hard NoC (Low-V)

17.4 W

250 GB/s total bandwidth

Typical FPGA Dynamic Power

3. Power Analysis

123%How much is used for system-level communication?

Page 27: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

27

NoC Power BudgetSoft NoC Mixed NoC Hard NoC Hard NoC (Low-V)

17.4 W

NoC

250 GB/s total bandwidth 15%

Typical FPGA Dynamic Power

3. Power Analysis

123%

Page 28: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

28

NoC Power Budget3. Power Analysis

NoC

17.4 WTypical FPGA

Dynamic Power

Soft NoC Mixed NoC Hard NoC Hard NoC (Low-V)250 GB/s total bandwidth 15%123% 11%

Page 29: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

29

NoC Power Budget3. Power Analysis

NoC

17.4 WTypical FPGA

Dynamic Power

Soft NoC Mixed NoC Hard NoC Hard NoC (Low-V)250 GB/s total bandwidth 15%123% 11% 7%

Page 30: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

30

Bandwidth in Perspective

14.6 GB/s

14.6 GB/s

14.6 GB/s

14.6 GB/s

17 G

B/s17

GB/s

17 G

B/s

17 G

B/s

DDR3 Module 1

PCIe Module 2

Full theoretical BW

126 GB/sAggregate Bandwidth

3.5%NoC Power Budget

Cross whole chip!

3. Power Analysis

Page 31: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

31

FPGA Interconnect

1 1

Point-to-point Links

Broadcast

1 1

n

Multiple Masters

1

1Mux + Arbiter

n

Multiple Masters, Multiple Slaves

1 1Mux + Arbiter

n nMux + Arbiter

Interconnect = Just wires Interconnect = Wires + Logic Interconnect = NoC

1 .. .. ..

.. .. .. ..

.. .. ..

.. .. .. n

..Compare “wires” interconnect to NoCs

3. Power Analysis

Page 32: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

32

NoC Power vs. FPGA Interconnect

Hard and Mixed NoCs very compelling

Length of 1 NoC Link1 % area overhead on Stratix 5

Runs at 730-943 MHz

Power on-par with simplest FPGA interconnect

3. Power Analysis

200 MHz

High Performance / Packet Switched

Page 33: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

1

2

3

Big city needs freeways to handle traffic

Area: 20-23X

Why NoCs on FPGAs?

Embedded NoCs: Mixed & Hard

Power Analysis

Speed: 5-6X Power: 9-15X

• Power-aware design of embedded NoCs• Power Budget for 100 GB/s: 3-7%• Point-to-point soft Links: 4.7 mJ/GB• Embedded NoCs: 4.5 – 10.4 mJ/GB

Page 34: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

34

eecg.utoronto.ca/~mohamed/noc_designer.html

Page 35: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

35

Thank You!eecg.utoronto.ca/~mohamed/noc_designer.html

Page 36: The Power of Communication:  Energy-Efficient  NoCs  for FPGAs

Recommended