+ All Categories
Home > Documents > The Quark Propagator in Superconducting...

The Quark Propagator in Superconducting...

Date post: 19-Oct-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
36
The Quark Propagator in Superconducting Phases Dominik Nickel 1 Reinhard Alkofer 2 Jochen Wambach 1,3 1 TU Darmstadt 2 U Graz 3 GSI Darmstadt Pairing in Fermionic Systems: Beyond the BCS Theory September 2005, Seattle GRAZ GRAZ UNI UNI Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 1 / 30
Transcript
  • The Quark Propagator in Superconducting Phases

    Dominik Nickel1

    Reinhard Alkofer2 Jochen Wambach1,3

    1TU Darmstadt 2U Graz 3GSI Darmstadt

    Pairing in Fermionic Systems: Beyond the BCS TheorySeptember 2005, Seattle

    GRAZGRAZUNIUNI

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 1 / 30

  • Outline

    1 Motivation and introduction

    2 The quark propagator in the chirally unbroken phase

    3 The quark propagator in the 2SC/CFL phase for massless quarks

    4 The quark propagator in the 2SC/CFL phase for massive quarks

    5 Summary and outlook

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 2 / 30

  • Outline

    1 Motivation and introduction

    2 The quark propagator in the chirally unbroken phase

    3 The quark propagator in the 2SC/CFL phase for massless quarks

    4 The quark propagator in the 2SC/CFL phase for massive quarks

    5 Summary and outlook

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 3 / 30

  • Motivation

    cold and dense quark matter expected to be a color superconductor⇒ investigations in

    NJL-type models(M. Alford, K. Rajagopal, F. Wilczek, 1998; R. Rapp, T. Schäfer, E. Shuryak, M. Velkovsky, 1998)

    weak coupling at asymptotically large densities( T. Schäfer, F. Wilczek, 1999; R. Pisarski, D. Rischke, 1999; D. Hong, V. Miransky, I. Shovkovy, L. Wijewardhana, 1999 )

    quark propagator provides information aboutdynamical symmetry breakingpressure, i.e. thermodynamical potentialexcitation spectrum. . .

    ⇒ Extend successful truncation scheme of DSE’s in vacuum to finitedensities!

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 4 / 30

  • Dyson-Schwinger equation for quark propagator

    −1=

    −1+ Γ

    our approach:approximate gluon propagator and quark-gluonvertex separately

    other approaches:weak coupling expansion( T. Schäfer, F. Wilczek, 1999; R. Pisarski, D. Rischke, 1999; D. Hong et al., 1999 )

    phenomenological coupling( C. Roberts, S. Schmidt, 2000 )

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 5 / 30

  • Approximation of quark-gluon vertex

    abelian vertex construction

    p q

    k = p− q

    ΓΓaµ(p, q; k = p − q) −→ i g Γ(k2) γµ

    λa

    2

    Γ(k2) determined byDSE studies including Yang-Mills sector in Landau gauge:

    chosen such thatpropagator multiplicative renormalizablecorrect anomalous dimension of mass function

    analysis of lattice QCD data for propagators in Landau gauge:invert DSE for Γ(k2) for given quark and gluon propagator

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 6 / 30

  • Approximation of quark-gluon vertex

    abelian vertex construction

    p q

    k = p− q

    ΓΓaµ(p, q; k = p − q) −→ i g Γ(k2) γµ

    λa

    2

    Γ(k2) determined byDSE studies including Yang-Mills sector in Landau gauge:

    chosen such thatpropagator multiplicative renormalizablecorrect anomalous dimension of mass function

    analysis of lattice QCD data for propagators in Landau gauge:invert DSE for Γ(k2) for given quark and gluon propagator

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 6 / 30

  • Approximation of gluon propagator

    vacuum gluon propagator in Landau gauge

    Dab vacµν (k) =Z (k2)

    k2Tµν(k) δab

    incorporate medium effects of particle-hole excitationsadd medium polarisation of bare quarks to inverse vacuum propagator:

    Dab−1µν = Dab vac−1µν + Γ

    medium gluon propagator in Landau gauge

    Dabµν(k) =(

    Z (k2)k2 + G(k)

    PTµν(k) +Z (k2)

    k2 + F (k)PLµν(k)

    )δab

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 7 / 30

  • Approximation of gluon propagator

    vacuum gluon propagator in Landau gauge

    Dab vacµν (k) =Z (k2)

    k2Tµν(k) δab

    incorporate medium effects of particle-hole excitationsadd medium polarisation of bare quarks to inverse vacuum propagator:

    Dab−1µν = Dab vac−1µν + Γ

    medium gluon propagator in Landau gauge

    Dabµν(k) =(

    Z (k2)k2 + G(k)

    PTµν(k) +Z (k2)

    k2 + F (k)PLµν(k)

    )δab

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 7 / 30

  • Approximation of gluon propagator

    vacuum gluon propagator in Landau gauge

    Dab vacµν (k) =Z (k2)

    k2Tµν(k) δab

    incorporate medium effects of particle-hole excitationsadd medium polarisation of bare quarks to inverse vacuum propagator:

    Dab−1µν = Dab vac−1µν + Γ

    medium gluon propagator in Landau gauge

    Dabµν(k) =(

    Z (k2)k2 + G(k)

    PTµν(k) +Z (k2)

    k2 + F (k)PLµν(k)

    )δab

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 7 / 30

  • Truncated Dyson-Schwinger equation

    ⇒ S−1(p) = Z2S−10 (p) +Z2

    3π3

    Zd4q γµS(q) γν

    „αs(k2)

    k2 + G(k)PTµν +

    αs(k2)k2 + F (k)

    PLµν

    «

    similar to HDLstrong running coupling

    αs(k2) =Z1FZ 22

    g2 Z (k2) Γ(k2)

    screening and damping included through

    mg(k2)2 =Nf µ2 αs(k2)

    π

    F (k) = 2 mg(k2)2 + . . .

    G(k) =π

    2mg(k2)2

    k4|~k |

    + . . .

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 8 / 30

  • Strong running coupling αs

    0 1 2 3 4 5 6 7 8 9

    10

    0 1 2 3 4 5

    αs(k

    2)

    k[GeV]

    DSE studieslatQCD data analysis

    with abelian vertex construction DSE studies underestimate chiralsymmetry breaking in vacuum (Mq ≈ 170MeV)(C.S. Fischer, R. Alkofer, 2003)

    lattice studies cannot constrain deep infrared(M.S. Bhagwat, M.A. Pichowsky, C.D. Roberts, P.C. Tandy, 2003)

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 9 / 30

  • Outline

    1 Motivation and introduction

    2 The quark propagator in the chirally unbroken phase

    3 The quark propagator in the 2SC/CFL phase for massless quarks

    4 The quark propagator in the 2SC/CFL phase for massive quarks

    5 Summary and outlook

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 10 / 30

  • The unbroken phase - I

    quasiparticle propagator in chiral limit:

    S−1 = S+−1γ4Λ+ + S−−1γ4Λ−

    S+−1 = −ip4 + µ− |~p|+ Σ+

    = −ip4(

    1− ImΣ+

    p4

    )+ µ− |~p|+ ReΣ+

    Static magnetic gluon exchange renders unbroken phase a non-Fermiliquid. leading non-analytic contribution:

    ImΣ+

    p4' − 4

    ∫k>|p−pF |

    dkαs(k2)k

    k2 + π2 m(k2)2|p4|

    −→p=pF

    49

    αs(Λ12)

    πln(|p4|Λ2

    )Λ1 ∝ |p4|

    13 dominating scale of contributions

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 11 / 30

  • The unbroken phase - II

    for coupling from DSE studies and µ = 1GeV:

    -2

    -1.5

    -1

    -0.5

    0 0.02 0.04 0.06 0.08 0.1

    ImΣ

    + +(p

    4,|

    ~p|=

    pF)/

    p4

    p4[GeV]

    numericalanalytical for α(µ2)analytical for α(0)

    -1.5

    -1

    -0.5

    0

    0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

    ImΣ

    + +(p

    4,|

    ~p|)/p4

    p4 = 15MeVp4 = 25MeVp4 = 50MeV

    |~p|[GeV]

    logarithmic divergence constrained to small energies(temperatures)sensitive to infrared behavior of strong couplingdependence on ~p included

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 12 / 30

  • Outline

    1 Motivation and introduction

    2 The quark propagator in the chirally unbroken phase

    3 The quark propagator in the 2SC/CFL phase for massless quarks

    4 The quark propagator in the 2SC/CFL phase for massive quarks

    5 Summary and outlook

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 13 / 30

  • Nambu-Gor’kov formalism

    In Nambu-Gor’kov space with bispinors Ψ =(ψψc

    ), the quark DSE

    S−1 = Z2S−10 + Z1F Σ

    includes the gap-equation

    Σ =

    (Σ+ Φ−

    Φ+ Σ−

    )= −

    ∫d4q

    (2π)4Γµ0 aS(q)Γ

    νb(p, q)D

    abµν(p − q).

    → room for diquark condensation (through finite Φ’s)

    → apply same truncations as in the unbroken case

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 14 / 30

  • Dirac and Color-Flavor structure in chiral limit

    Dirac structureT - and χ- symmetric, even-parity and color-flavor symmetric(R. Pisarski, D. Rischke, 1999)

    Σi = −i ~p · ~γ ΣA,i − i ωpγ4 ΣC,i = γ4(Σ+i Λ

    + + Σ−i Λ−)

    φi =(φC,i + γ4 p̂ · ~γ φA,i

    )γ5 = γ5

    (φ+i Λ

    + + φ−i Λ−)

    color-flavor structure of gap functions (similar for Σ+)

    2SC with 3 flavors: Φ+ =Z2Z1F

    φ2SC λ2 ⊗ τ2

    CFL: Φ+ =Z2Z1F

    (φ3̄

    ∑A

    λA ⊗ τA + φ6∑

    S

    λS ⊗ τS

    )

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 15 / 30

  • Dirac and Color-Flavor structure in chiral limit

    Dirac structureT - and χ- symmetric, even-parity and color-flavor symmetric(R. Pisarski, D. Rischke, 1999)

    Σi = −i ~p · ~γ ΣA,i − i ωpγ4 ΣC,i = γ4(Σ+i Λ

    + + Σ−i Λ−)

    φi =(φC,i + γ4 p̂ · ~γ φA,i

    )γ5 = γ5

    (φ+i Λ

    + + φ−i Λ−)

    color-flavor structure of gap functions (similar for Σ+)

    2SC with 3 flavors: Φ+ =Z2Z1F

    φ2SC λ2 ⊗ τ2

    CFL: Φ+ =Z2Z1F

    (φ3̄

    ∑A

    λA ⊗ τA + φ6∑

    S

    λS ⊗ τS

    )

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 15 / 30

  • Gap-functions on the Fermi surface - I

    analytical result in weak coupling (Q. Wang, D. Rischke, 2001):

    φ+weak = 512 π4(

    2Nf g2

    ) 52

    e−π2+4

    8 µ e− 3π

    2√

    2g ×{

    1 2SC2−1/3CFL

    . . . with αs from DSE studies:

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 1 2 3 4 5 6 7 8 9 10

    φ(p

    4=

    0,p

    3=

    pf)[M

    eV]

    µ[GeV]

    φ+

    φ−

    φ+weak

    0

    10

    20

    30

    40

    50

    60

    0 1 2 3 4 5 6 7 8 9 10

    φ(p

    4=

    0,p

    3=

    pf)[M

    eV]

    µ[GeV]

    φ+weak

    φ+3̄

    φ−3̄

    φ+6φ−6

    2SC CFL

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 16 / 30

  • Gap-functions on the Fermi surface - II

    . . . with αs from lattice QCD studies:

    0

    20

    40

    60

    80

    100

    0 1 2 3 4 5 6 7 8 9 10

    φ(p

    4=

    0,p

    3=

    pf)[M

    eV]

    µ[GeV]

    φ+

    φ−

    φ+weak

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 1 2 3 4 5 6 7 8 9 10

    φ(p

    4=

    0,p

    3=

    pf)[M

    eV]

    µ[GeV]

    φ+weak

    φ+3̄

    φ−3̄

    φ+6φ−6

    2SC CFL

    huge deviations from extrapolated weak coupling result!φ+2SC(µ ≈ 400MeV) > 60MeV!ratio of φ+

    3̄to φ+2SC similar to weak coupling result

    large values for anti-quasiparticle pairing

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 17 / 30

  • Momentum dependence of gap-functions

    relative dependence of φ+2SC on |~p| on Fermi surface (p4 = 0):

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.5 1 1.5 2

    0.95

    1

    0.99 1 1.01

    φ+(p

    4=

    0,|

    ~p|)/φ

    +(p

    4=

    0,|

    ~p|=

    pf)

    0.5GeV1GeV

    10GeV

    |~p|/pf

    weak coupling regime: gap function concentrated around Fermimomentum (colinear scattering dominates)strong coupling regime: no scale separation (ΛQCD ≈ pF )

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 18 / 30

  • Spectral functions via Maximum Entropy Method

    dispersion relation for masslessfermions:

    S+(|~p|, p4) = −Z ∞−∞

    dω2π

    ρ(|~p|, ω)−ip4 + µ− ω

    Fredholm equation (1st kind):→ need positivity of ρ for inversion→ MEM

    for gapped 2SC at µ = 1GeV:

    0.6 0.8 1. 1.2p[GeV]

    0.6

    0.8

    1.

    1.2

    1.4

    .

    ω[G

    eV]

    access to dispersion relation and width of quasiparticlesparticle/holes vanishing below/above Fermi momentasmall group velocity (≈ .5c)

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 19 / 30

  • Spectral functions via Maximum Entropy Method

    dispersion relation for masslessfermions:

    S+(|~p|, p4) = −Z ∞−∞

    dω2π

    ρ(|~p|, ω)−ip4 + µ− ω

    Fredholm equation (1st kind):→ need positivity of ρ for inversion→ MEM

    for gapped 2SC at µ = 1GeV:

    0.6 0.8 1. 1.2p[GeV]

    0.6

    0.8

    1.

    1.2

    1.4

    .

    ω[G

    eV]

    access to dispersion relation and width of quasiparticlesparticle/holes vanishing below/above Fermi momentasmall group velocity (≈ .5c)

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 19 / 30

  • Spectral functions via Maximum Entropy Method

    dispersion relation for masslessfermions:

    S+(|~p|, p4) = −Z ∞−∞

    dω2π

    ρ(|~p|, ω)−ip4 + µ− ω

    Fredholm equation (1st kind):→ need positivity of ρ for inversion→ MEM

    for gapped 2SC at µ = 1GeV:

    0.6 0.8 1. 1.2p[GeV]

    0.6

    0.8

    1.

    1.2

    1.4

    .

    ω[G

    eV]

    access to dispersion relation and width of quasiparticlesparticle/holes vanishing below/above Fermi momentasmall group velocity (≈ .5c)

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 19 / 30

  • Occupation number and number densities

    density given by

    ρ =

    ∫d4p

    (2π)4Tr(Z2γ4S+(p)

    )=∑

    i

    gi(2π)3

    ∫d3p ni(p) =:

    ∑i

    gi6π2

    p3i

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.6 0.8 1 1.2 1.4

    |~p|[GeV]

    n(|

    ~p|)

    gapped 2SC

    ungapped 2SCunbroken

    µ = 1GeV

    unbroken phase non-Fermi liquidLuttinger’s theorem not valid, i.e. pi 6= pF

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 20 / 30

  • Coherence lengths

    extract coherence length from diquark correlator

    〈〈ψ(x)T CMiψ(y)〉〉 =Z

    d4p(2π)4

    eip(x−y) MiXe=±

    T +i,e(p) Λe~p

    by

    ξ2i,e =

    ∫d4p |∇~pT +i,e(p)|2∫

    d4p |T +i,e(p)|2

    0

    5

    10

    15

    20

    25

    30

    0 1 2

    µ[GeV]

    ξ i,+

    i

    2SCCFL octet

    CFL singlet ξ+/λ ∼ O(10)→ BEC-BCS transition?even smaller with couplingfrom lattice studies

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 21 / 30

  • UV-behavior of gap-functions

    For µ, φ,ΛQCD � p the gap-equation takes the formXi

    φ+C,i(p)Mi ' −3

    16π

    Xi

    λTa Miλa

    αs(p2)

    p2

    Z p2dq2 φ+C,i(q) +

    Zp2

    dq2αs(q2)φ+C,i(q)

    q2

    !,

    with regular asymptotic form

    φ+C,i(p) ∝1p2

    (ln(

    p2

    Λ2

    ))γφ−1and

    γφ =

    {γm2 attractive channel

    −γm4 repulsive channel,

    where γm = 12/(33− 2Nf ).

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 22 / 30

  • Which is the preferred phase?

    effective potential, i.e. the negative pressure, via"Cornwall-Jackiw-Tomboulis" formalism:

    A[S] = −12

    Trp,D,c,f ,NLnS−1 +14

    Trp,D,c,f ,N(

    1− S−10 S)

    pressure difference between 2SC and CFL to unbroken phase:

    0

    0.0005

    0.001

    0.0015

    0.002

    0 0.5 1 1.5 2 2.5 3

    CFL2SC

    µ[GeV]

    ∆p[G

    eV4]

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 23 / 30

  • Outline

    1 Motivation and introduction

    2 The quark propagator in the chirally unbroken phase

    3 The quark propagator in the 2SC/CFL phase for massless quarks

    4 The quark propagator in the 2SC/CFL phase for massive quarks

    5 Summary and outlook

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 24 / 30

  • Dirac and Color-Flavor structure with massive strangequarks

    Dirac strutureself-energy and gap-function in T - symmetric, even-parity andcolor-flavor symmetric phase parametized by(R. Pisarski, D. Rischke, 1999):

    Σi = −i~p · ~γ ΣA,i − iγ4 (p4 + iµ) ΣC,i + ΣB,i + γ4 ~p · ~γ ΣD,iφi = (γ4 p̂ · ~γ φA + γ4 φB + φC + p̂ · ~γ φD) γ5

    → selfconsistent, dynamical treatment of mass function!→ is there a simple physical interpretation for this functions?

    color-flavor strutureextend ansatz from (M. Alford, J. Berges, K. Rajagopal, 1999) tobecome selfconsistent

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 25 / 30

  • Dependence of pressure difference on ms

    -2e-05

    0

    2e-05

    4e-05

    0 50 100 150 200

    ms(ν = 2GeV)[MeV]

    ∆p[G

    eV4]

    2SCµ = 300MeVµ = 400MeV

    first order phase transition at critical strange quark mass

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 26 / 30

  • Critical strange quark mass

    0

    50

    100

    150

    200

    250

    300 350 400 450 500

    ms(ν

    =2G

    eV)[M

    eV]

    µ[MeV]

    ms,critical

    ms, PDG’04

    2SC favored

    CFL favored

    light quark screen interaction also in strange quark sector→ only small dynamical chiral symmetry breaking (different to NJL)!!!→ 2SC never favored?

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 27 / 30

  • Outline

    1 Motivation and introduction

    2 The quark propagator in the chirally unbroken phase

    3 The quark propagator in the 2SC/CFL phase for massless quarks

    4 The quark propagator in the 2SC/CFL phase for massive quarks

    5 Summary and outlook

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 28 / 30

  • Summary and outlook

    Summaryselfconsistent solution of DSE by approximating gluon propagator,incorporating medium effectsaccess to exitation spectrum via MEMhuge deviations from extrapolated weak coupling results2SC phase for physical strange quark mass?

    Outlookspin-1 phasestemperatureneutralityincorporate Meissner effect(quasiparticle RPA, fully selfconsistent incl. of Yang-Mills sector)

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 29 / 30

  • Color-Flavor structure with massive strange quarks

    Extend ansatz from (M. Alford, J. Berges, K. Rajagopal, 1999):

    Σ =

    0BBBBBBBBBBB@

    b + e b c1b b + e c1c2 c2 d

    ee

    fg

    fg

    1CCCCCCCCCCCA, Φ =

    0BBBBBBBBBBB@

    b + e b c1b b + e c1c2 c2 d

    ee

    f1f2

    f1f2

    1CCCCCCCCCCCA,

    where rows and columns correspond to

    (color , flavor) = (r , u), (g, d), (b, s), (r , d), (g, u), (r , s), (b, u), (g, s), (b, d).

    Dominik Nickel (TU Darmstadt) Seattle Sept. 2005 30 / 30

    OutlineMotivation and introductionThe quark propagator in the chirally unbroken phaseThe quark propagator in the 2SC/CFL phase for massless quarksThe quark propagator in the 2SC/CFL phase for massive quarksSummary and outlook


Recommended