+ All Categories
Home > Documents > The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal...

The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal...

Date post: 18-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
19
The SIMRI project A versatile and interactive MRI simulator * H. Benoit-Cattin 1 , G. Collewet 2 , B. Belaroussi 1 , H. Saint-Jalmes 3 , C. Odet 1 1 CREATIS, UMR CNRS #5515, U 630 Inserm, INSA Lyon, UCB Lyon 2 CEMAGREF, Food process Engineering Research Unit, Rennes 3 LMRMN-MIB, UMR CNRS 5012, UCB Lyon * JMR, 173 (2005) 97-115 COST B21 Meeting, Lodz, 6-9 Oct. 2005 2/32 1. Context 2. SIMRI overview 3. Simulation results 4. Simulator implementation 5. Perspectives
Transcript
Page 1: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

The SIMRI projectA versatile and interactive MRI

simulator *

H. Benoit-Cattin 1, G. Collewet 2, B. Belaroussi 1, H. Saint-Jalmes 3, C. Odet 1

1 CREATIS, UMR CNRS #5515, U 630 Inserm, INSA Lyon, UCB Lyon2 CEMAGREF, Food process Engineering Research Unit, Rennes3 LMRMN-MIB, UMR CNRS 5012, UCB Lyon

* JMR, 173 (2005) 97-115

COST B21 Meeting, Lodz, 6-9 Oct. 2005

2/32

1. Context

2. SIMRI overview

3. Simulation results

4. Simulator implementation

5. Perspectives

Page 2: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

3/32

MR Imaging• Recent and complex technique• Based on protons magnetization• High static field + RF excitations• Contrast imaging adapted to soft tissue

• Images +- artéfacts• Objects (Chemical shift, susceptibility, motion)• Imaging device (Field, RF inhomogeneity, gradient non linearity)

1. Context

4/32

MRI simulation• Better understanding of MRI images• Pedagogic purposes• Conception, calibration and test of MRI sequences• MRI Images with a « ground truth »

• Artifacts impact and correction• Image processing assessment (segmentation, quantification)

• Main works• 1D MRI simulation [Bittoun-81]• 2D MRI simulation [Olsson-95]• Simulation with a distributed implementation [Brenner-97]• 3D brain MRI simulation [Kwan-99]• Susceptibility and MRI simulation [Yoder-02-04]

Page 3: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

5/32

2. Simulator overview

2.1. SIMRI overview

2.2. Virtual object description

2.3. Static field and field inhomogeneity

2.4. MRI sequence

2.5. Magnetization kernel

2.6. T2* effect

2.7. Noise and filtering

6/32

2.1. SIMRI overview

Magnetizationcomputation

kernel

Reconstructionalgorithm

MRimage

Virtualobject

(i,ρ,T1,T2)k space

(RF signals)

Filtering

Noise

MRI Sequence• RF Pulse• Gradient• Precession• Acquisition

B0 +(∆B0 map)

Page 4: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

7/32

2.2. Virtual object description

Virtualobject

(i,ρ,T1,T2)

• 3D volume of physical parameters• ρ, proton density• T1, T2, spin relaxation constant• 1 to N components (Chem. Shift, partial volume effect)• Object dimension, component resonance frequency• ∆Bs : susceptibility associated field

• Synthetic objects perfectly known• Sphere, ellipse, cube …• Adapted McGill brain phantom 2563

• Real images segmentation + (T1,T2 maps) objects

8/32

• linked to the main field inhomogeneity

• linked to the intra-voxel inhomogeneity,It induces a T2* FID weighting

• linked to the susceptibility variation

2.3. Static field and field inhomogeneity

zrBzrBzrB srrrrrr )()()( 0∆+∆=∆

iBTT∆+= γ

22

1*

1tBie ∆−γ

)(0 rB r∆

)(rBsr

iB∆

Page 5: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

9/32

2.4. MRI sequence

4 types of event within C language functions• Free precession (duration)

• Precession + gradient (x,y,z)

• RF pulse +- gradient- Constant pulse (duration, flip angle, rotation axis)

- Sinc shaped pulse (duration, number of lobes, number of

point)

- User shaped pulse (file, constant pulse list)

• 1D signal acquisition step (number of points,

bandwidth, readout gradient, k space position)

10/32

2.5. Magnetization kernel

−−×=

10

2

2

/)(//

).(TMM

TMTM

BMdtMd

z

y

xrrr

γ

),(..).().(),( trMRRRotRotttrM RFrelaxizgzrrrr

θθ=∆+

RFacquisition

)(tMr

)( 1tMr

)( 2tMr

Magnetic event

k-space filling

Do PulseDo GradientDo Waiting

Kernel is based on the Bloch Equation

and on their discrete time solution

Page 6: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

11/32

Lorenzian distribution of isochromats

FID weighting

Spin refocusing, Spin Echo

2.6. T2* effect, limited spin number

iBTT∆+= γ

22

1*

1tBie ∆−γ

α1 α2

t

exp(- B )∆ τi

a) b) c)τ=0

(τ τ= +t) (τ τ= +t)τ τ=-(τ τ= +t)

TE/2 TE/2

12/32

2.7. Noise and filtering

Thermal noise White Gaussian noise in the k-space

K-space filtering Hamming (or any digital filter), prevent ringing

ReconstructionFFT

Page 7: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

13/32

3. Simulation results

3.1. Echo train

3.2. Contrast in GE and SE imaging

3.3. True Fisp imaging

3.4. Chemical shift artifact

3.5. Susceptibility artifact

14/32

3.1. Echo train and T2*

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

1000

2000

3000

4000

5000

6000

|M|

xy

T2

90° 180° 180° 180° 180° 180°

te

t(s)

te/2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.090

500

1000

1500

2000

2500

3000

3500

t(s)

|M|

xy

T2

T *2

90°Gx

tete/2

Simulated signal obtained after a gradient echo pulse sequence. It is composed of a train of T2* weighted gradient echoes. The intra-voxel inhomogeneity is set to 10-6 T and the main field to 1 T.

Simulated signal obtained after a CPMG sequence. It is composed of a train of spin echoes T2 weighted. The intra-voxel inhomogeneity is set to 10-6 T and the main field to 1 T.

Page 8: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

15/32

3.2. Contrast in SE and GE imaging

SE sequence

GE sequence

16/32

McGill Brain phantom10 tissues profiles

Page 9: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

17/32

3.3. True Fisp imaging

18/32

3.4. Chemical shift artifact

ππ )12(2 +=⋅∆⋅ kTEf

Water and fat signals in phase opposition !

Page 10: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

19/32

3.5. Susceptibility artifact

Geometric distortions+ Intensity loss

20/32

4. Simulator implementation

3.1. Code organization

3.2. Sequence programming

3.3. Acquisition programming

3.4. 1D interactive simulation

3.5. Distributed implementation

Page 11: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

21/32

3.1. Code organization

• ANSI C language• Running on Linux and windows OS• Independent module organization• Linked in a dll wrapped for being used with python for the 1D

interface• Parallelized using MPI to run on grid, cluster, multiprocessors.

22/32

3.2. Sequence programming

Page 12: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

23/32

3.3. Acquisition programming

24/32

3.4. 1D interactive simulation

Page 13: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

25/32

The Spin Player

26/32

3.5. Distributed implementationTime is the enemy !

• Simulation time ])..).[(...( exs NPNMZYXcTacqTexcT +=+≈

• 2D Image (NxN) - Nx2 time x16- 10242 = 2.3 days- High resolution : small cluster

• 3D image(NxNxN) - Nx2 time x 64- 1283 = 9.3 days / 5123 = 104 years !- High resolution large scale data grid

Page 14: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

27/32

• A “Divide & Conquer “ parallelisation scheme • Based on the free library MPI, transparent at a user level• Allowing run on single PC, PC cluster, grid architecture, massively parallel machine

• Work done in the context of European grid projects- DATAGRID Project (2001-03)- EGEE Project (2003-05)

Simulationweb portal

28/32

5. Conlusion

An operational MRI simulator• 1D-2D-3D • Sequences (SE, GE, Turbo, TFisp, STIR)• Artifacts : Chemical shift, susceptibility, static field• B0 , T2*, Off-On resonance• Versatile, Parallelized, Interactive and GPL !

Page 15: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

29/32

6. Perspectives

Main perspectives• Anatomic object design Sequence tuning

Image processing evaluation• Molecular imaging susceptibility and Cell. Con. agent

• New sequences / Interface with ODIN project• RF / Antennas• Artifact correction• Flow , Diffusion & Perfusion ?

30/32

Page 16: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

31/32

Field map estimation

Object( ki )

Boundary Integral

SIMRI

−= ∫∑

= k Face

NbFace

1kΩ q)dsq(P,C oB n∆Xm

4π1(P)δ Xm(P)oB(P)B

Boundary element

[Yoder02]

[Balac04]

)(rBsr

sB∆

Acquisition [Kanayama_96]- 2 EG phase images with TE1,

TE2- ∆Φ + unwrap [Jenkinson_03] > ∆B0

32/32

−=

1000cossin0sincos

)( θθθθ

θzRot∫∆+

=tt

tg dGr ττγθ )(..

rr

trBi ∆∆= ).(. rγθ

=∆

∆−

∆−

)(

)(

)(

1

2

2

100

00

00

rTt

rTt

rTt

relax

e

e

e

Rr

r

r

)().().( φαφ −= zxzRF RotRotRotR

( )2

2.'

+∆−=ταωτα

gradient effect

Relaxation effect

Inhomogeneity effect

Pulse effect

Off-resonance effect

Page 17: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

33/32

• K-space acquisition - One point is obtained by summation all over the object

- Next point is obtained after a time step ∆t, the sampling rate

∑∑ +=rr

ytrMjxtrMtsrr

rrrrrr).,().,(][

34/32

3.5. Distributed implementationTime is the enemy !

• Simulation time ])..).[(...( exs NPNMZYXcTacqTexcT +=+≈

• 2D Image (NxN) - Nx2 time x16- 10242 = 2.3 days- High resolution : small cluster

• 3D image(NxNxN) - Nx2 time x 64- 1283 = 9.3 days / 5123 = 104 years !- High resolution large scale data grid

Page 18: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

35/32

• A “Divide & Conquer “ parallelisation scheme • Based on the free library MPI• Transparent at a user level• Allowing run on single PC, PC cluster, grid architecture, massively parallel machine

Virtualobject

Master node

Computing node N1

Computing node Ni

Computing node NN

Seq.Seq.

Seq.Seq.

Seq.Seq.

11

ii

N-1

ΣRec.FFT

Master node

RF signalcontributions

RF signalcontributions

s1

si

sN-1

Virtual objectportions

Virtual objectportions

MRISeq.

MRIimage

k space

36/32

• Some test results :- PC cluster CREATIS : 8 (PIII-1Ghz) + 10 (PIV-2,6 Ghz)- CINES parallel machine : 64 to 128 nodes, RI 4000-500 Mhz- IN2P3 through EGEE grid interface : 9 AMD Opteron 2.2 Ghz

- 1283 : 8h30 on a 128 proc. CINES machine

• Work done in the context of European grid projects- DATAGRID Project (2001-03)- EGEE Project (2003-05)

Page 19: The SIMRI project A versatile and interactive MRI simulator€¦ · FFT Master node RF signal contributions s 1 s i s N-1 Virtual object portions MRI Seq. MRI image k space 36/32

37/32


Recommended