+ All Categories
Home > Documents > The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus...

The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus...

Date post: 25-Jul-2020
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
64
The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi [email protected] Purdue University Theo – p. 1/1
Transcript
Page 1: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

The Spiral of Theodorus,

Numerical Analysis, and Special Functions

Walter [email protected]

Purdue University

Theo – p. 1/19

Page 2: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Theodorus of

ca. 460–399 B.C.

Theo – p. 2/19

Page 3: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

spiral of Theodorus

−6 −4 −2 0 2 4 6−5

−4

−3

−2

−1

0

1

2

3

4

5

6

numerical analysis∞∑

k=1

1

k3/2 + k1/2

= 1.860025079221190307180695915717143324666524121523451493049199503 . . .

special functions

F (x) = e−x2

∫ x

0

et2dt Dawson′s integral

Theo – p. 3/19

Page 4: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

spiral of Theodorus

−6 −4 −2 0 2 4 6−5

−4

−3

−2

−1

0

1

2

3

4

5

6

numerical analysis∞∑

k=1

1

k3/2 + k1/2

= 1.860025079221190307180695915717143324666524121523451493049199503 . . .

special functions

F (x) = e−x2

∫ x

0

et2dt Dawson′s integral

Theo – p. 3/19

Page 5: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

spiral of Theodorus

−6 −4 −2 0 2 4 6−5

−4

−3

−2

−1

0

1

2

3

4

5

6

numerical analysis∞∑

k=1

1

k3/2 + k1/2

= 1.860025079221190307180695915717143324666524121523451493049199503 . . .

special functions

F (x) = e−x2

∫ x

0

et2dt Dawson′s integral

Theo – p. 3/19

Page 6: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

spiral of Theodorus

−6 −4 −2 0 2 4 6−5

−4

−3

−2

−1

0

1

2

3

4

5

6

numerical analysis∞∑

k=1

1

k3/2 + k1/2

= 1.860025079221190307180695915717143324666524121523451493049199503 . . .

special functions

F (x) = e−x2

∫ x

0

et2dt Dawson′s integral

Theo – p. 3/19

Page 7: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

discrete “spiral of Theodorus” (also known as

“Quadratwurzelschnecke”; Hlawka, 1980)

−3 −2 −1 0 1 2 3 4 5−4

−3

−2

−1

0

1

2

1

1

11

1

T0 T1

T2

T3T4

T5

Tn

Tn+1

T17

T18

parametric representation T (α) ∈ C, α ≥ 0

defining properties

T (n) = Tn

|Tn| =√

n|Tn+1 − Tn| = 1

n = 0, 1, 2, . . .

Theo – p. 4/19

Page 8: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

discrete “spiral of Theodorus” (also known as

“Quadratwurzelschnecke”; Hlawka, 1980)

−3 −2 −1 0 1 2 3 4 5−4

−3

−2

−1

0

1

2

1

1

11

1

T0 T1

T2

T3T4

T5

Tn

Tn+1

T17

T18

parametric representation T (α) ∈ C, α ≥ 0

defining properties

T (n) = Tn

|Tn| =√

n|Tn+1 − Tn| = 1

n = 0, 1, 2, . . .

Theo – p. 4/19

Page 9: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

discrete “spiral of Theodorus” (also known as

“Quadratwurzelschnecke”; Hlawka, 1980)

−3 −2 −1 0 1 2 3 4 5−4

−3

−2

−1

0

1

2

1

1

11

1

T0 T1

T2

T3T4

T5

Tn

Tn+1

T17

T18

parametric representation T (α) ∈ C, α ≥ 0

defining properties

T (n) = Tn

|Tn| =√

n|Tn+1 − Tn| = 1

n = 0, 1, 2, . . .

Theo – p. 4/19

Page 10: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

problem: Interpolate the discrete Theodorus spiral by a

smooth (or even analytic) spiral

solution (P.J. Davis, 1993; inspired by Euler’s work on the

gamma function)

T (α) =∞∏

k=1

1 + i/√

k

1 + i/√

k + α − 1, α ≥ 0 (i =

√−1)

properties

|T (α)| =√

α

T (α + 1) =(

1 + i√α

)

T (α)

“heart” of the spiral: T (α), 1 ≤ α ≤ 2

(Gronau, 2004) Davis’s function is the unique solution

of the above difference equation with |T (α)| and

arg T (α) monotonically increasing, and T (1) = 1.

Theo – p. 5/19

Page 11: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

problem: Interpolate the discrete Theodorus spiral by a

smooth (or even analytic) spiral

solution (P.J. Davis, 1993; inspired by Euler’s work on the

gamma function)

T (α) =∞∏

k=1

1 + i/√

k

1 + i/√

k + α − 1, α ≥ 0 (i =

√−1)

properties

|T (α)| =√

α

T (α + 1) =(

1 + i√α

)

T (α)

“heart” of the spiral: T (α), 1 ≤ α ≤ 2

(Gronau, 2004) Davis’s function is the unique solution

of the above difference equation with |T (α)| and

arg T (α) monotonically increasing, and T (1) = 1.

Theo – p. 5/19

Page 12: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

problem: Interpolate the discrete Theodorus spiral by a

smooth (or even analytic) spiral

solution (P.J. Davis, 1993; inspired by Euler’s work on the

gamma function)

T (α) =∞∏

k=1

1 + i/√

k

1 + i/√

k + α − 1, α ≥ 0 (i =

√−1)

properties

|T (α)| =√

α

T (α + 1) =(

1 + i√α

)

T (α)

“heart” of the spiral: T (α), 1 ≤ α ≤ 2

(Gronau, 2004) Davis’s function is the unique solution

of the above difference equation with |T (α)| and

arg T (α) monotonically increasing, and T (1) = 1.

Theo – p. 5/19

Page 13: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

problem: Interpolate the discrete Theodorus spiral by a

smooth (or even analytic) spiral

solution (P.J. Davis, 1993; inspired by Euler’s work on the

gamma function)

T (α) =∞∏

k=1

1 + i/√

k

1 + i/√

k + α − 1, α ≥ 0 (i =

√−1)

properties

|T (α)| =√

α

T (α + 1) =(

1 + i√α

)

T (α)

“heart” of the spiral: T (α), 1 ≤ α ≤ 2

(Gronau, 2004) Davis’s function is the unique solution

of the above difference equation with |T (α)| and

arg T (α) monotonically increasing, and T (1) = 1.

Theo – p. 5/19

Page 14: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

problem: Interpolate the discrete Theodorus spiral by a

smooth (or even analytic) spiral

solution (P.J. Davis, 1993; inspired by Euler’s work on the

gamma function)

T (α) =∞∏

k=1

1 + i/√

k

1 + i/√

k + α − 1, α ≥ 0 (i =

√−1)

properties

|T (α)| =√

α

T (α + 1) =(

1 + i√α

)

T (α)

“heart” of the spiral: T (α), 1 ≤ α ≤ 2

(Gronau, 2004) Davis’s function is the unique solution

of the above difference equation with |T (α)| and

arg T (α) monotonically increasing, and T (1) = 1.

Theo – p. 5/19

Page 15: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

problem: Interpolate the discrete Theodorus spiral by a

smooth (or even analytic) spiral

solution (P.J. Davis, 1993; inspired by Euler’s work on the

gamma function)

T (α) =∞∏

k=1

1 + i/√

k

1 + i/√

k + α − 1, α ≥ 0 (i =

√−1)

properties

|T (α)| =√

α

T (α + 1) =(

1 + i√α

)

T (α)

“heart” of the spiral: T (α), 1 ≤ α ≤ 2

(Gronau, 2004) Davis’s function is the unique solution

of the above difference equation with |T (α)| and

arg T (α) monotonically increasing, and T (1) = 1.Theo – p. 5/19

Page 16: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

a little bit of number theory

distribution of the angles

ϕn = ∠ T1T0Tn+1 =n∑

k=1

sin−1 1√k + 1

, n = 1, 2, 3, . . .

equidistribution (Hlawka, 1979)

The sequence {ϕn}∞n=1 is equidistributed mod 2π

more generally

ϕn(α) = ∠ T (α)T0T (α + n) =n∑

k=1

sin−1 1√k + α

1 < α < 2, n = 1, 2, 3, . . .

The sequence {ϕn(α)}∞n=1 is equidistributed mod 2π for

any α with 1 < α < 2 (Niederreiter, email Feb. 3, 2009)

Theo – p. 6/19

Page 17: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

a little bit of number theory

distribution of the angles

ϕn = ∠ T1T0Tn+1 =n∑

k=1

sin−1 1√k + 1

, n = 1, 2, 3, . . .

equidistribution (Hlawka, 1979)

The sequence {ϕn}∞n=1 is equidistributed mod 2π

more generally

ϕn(α) = ∠ T (α)T0T (α + n) =n∑

k=1

sin−1 1√k + α

1 < α < 2, n = 1, 2, 3, . . .

The sequence {ϕn(α)}∞n=1 is equidistributed mod 2π for

any α with 1 < α < 2 (Niederreiter, email Feb. 3, 2009)

Theo – p. 6/19

Page 18: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

a little bit of number theory

distribution of the angles

ϕn = ∠ T1T0Tn+1 =n∑

k=1

sin−1 1√k + 1

, n = 1, 2, 3, . . .

equidistribution (Hlawka, 1979)

The sequence {ϕn}∞n=1 is equidistributed mod 2π

more generally

ϕn(α) = ∠ T (α)T0T (α + n) =n∑

k=1

sin−1 1√k + α

1 < α < 2, n = 1, 2, 3, . . .

The sequence {ϕn(α)}∞n=1 is equidistributed mod 2π for

any α with 1 < α < 2 (Niederreiter, email Feb. 3, 2009)

Theo – p. 6/19

Page 19: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

a little bit of number theory

distribution of the angles

ϕn = ∠ T1T0Tn+1 =n∑

k=1

sin−1 1√k + 1

, n = 1, 2, 3, . . .

equidistribution (Hlawka, 1979)

The sequence {ϕn}∞n=1 is equidistributed mod 2π

more generally

ϕn(α) = ∠ T (α)T0T (α + n) =n∑

k=1

sin−1 1√k + α

1 < α < 2, n = 1, 2, 3, . . .

The sequence {ϕn(α)}∞n=1 is equidistributed mod 2π for any

α with 1 < α < 2 (Niederreiter, email Feb. 3, 2009)

Theo – p. 6/19

Page 20: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

a little bit of number theory

distribution of the angles

ϕn = ∠ T1T0Tn+1 =n∑

k=1

sin−1 1√k + 1

, n = 1, 2, 3, . . .

equidistribution (Hlawka, 1979)

The sequence {ϕn}∞n=1 is equidistributed mod 2π

more generally

ϕn(α) = ∠ T (α)T0T (α + n) =n∑

k=1

sin−1 1√k + α

1 < α < 2, n = 1, 2, 3, . . .

The sequence {ϕn(α)}∞n=1 is equidistributed mod 2π for

any α with 1 < α < 2 (Niederreiter, email Feb. 3, 2009)

Theo – p. 6/19

Page 21: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

logarithmic derivative of T (α)

T ′(α)

T (α)=

∞∑

k=1

1 + i/√

k + α − 1

1 + i/√

k

d

(

1 + i/√

k

1 + i/√

k + α − 1

)

=∞∑

k=1

(1 + i/√

k + α − 1)i

2

(k + α − 1)−3/2

(1 + i/√

k + α − 1)2

=i

2

∞∑

k=1

1

(k + α − 1)(√

k + α − 1 + i)

=i

2

∞∑

k=1

√k + α − 1 − i

(k + α − 1)(k + α)

Theo – p. 7/19

Page 22: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

logarithmic derivative of T (α)

T ′(α)

T (α)=

∞∑

k=1

1 + i/√

k + α − 1

1 + i/√

k

d

(

1 + i/√

k

1 + i/√

k + α − 1

)

=∞∑

k=1

(1 + i/√

k + α − 1)i

2

(k + α − 1)−3/2

(1 + i/√

k + α − 1)2

=i

2

∞∑

k=1

1

(k + α − 1)(√

k + α − 1 + i)

=i

2

∞∑

k=1

√k + α − 1 − i

(k + α − 1)(k + α)

Theo – p. 7/19

Page 23: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

logarithmic derivative of T (α)

T ′(α)

T (α)=

∞∑

k=1

1 + i/√

k + α − 1

1 + i/√

k

d

(

1 + i/√

k

1 + i/√

k + α − 1

)

=∞∑

k=1

(1 + i/√

k + α − 1)i

2

(k + α − 1)−3/2

(1 + i/√

k + α − 1)2

=i

2

∞∑

k=1

1

(k + α − 1)(√

k + α − 1 + i)

=i

2

∞∑

k=1

√k + α − 1 − i

(k + α − 1)(k + α)

Theo – p. 7/19

Page 24: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

logarithmic derivative of T (α)

T ′(α)

T (α)=

∞∑

k=1

1 + i/√

k + α − 1

1 + i/√

k

d

(

1 + i/√

k

1 + i/√

k + α − 1

)

=∞∑

k=1

(1 + i/√

k + α − 1)i

2

(k + α − 1)−3/2

(1 + i/√

k + α − 1)2

=i

2

∞∑

k=1

1

(k + α − 1)(√

k + α − 1 + i)

=i

2

∞∑

k=1

√k + α − 1 − i

(k + α − 1)(k + α)

Theo – p. 7/19

Page 25: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

logarithmic derivative of T (α) (cont’)

=1

2

∞∑

k=1

1

(k + α − 1)(k + α)+

i

2

∞∑

k=1

1

(k + α − 1)3/2 + (k + α − 1)1/2

=1

2

∞∑

k=1

(

1

k + α − 1− 1

k + α

)

+i

2U(α)

=1

2α+

i

2U(α)

where

U(α) =∞∑

k=1

1

(k + α − 1)3/2 + (k + α − 1)1/2

Theo – p. 8/19

Page 26: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

logarithmic derivative of T (α) (cont’)

=1

2

∞∑

k=1

1

(k + α − 1)(k + α)+

i

2

∞∑

k=1

1

(k + α − 1)3/2 + (k + α − 1)1/2

=1

2

∞∑

k=1

(

1

k + α − 1− 1

k + α

)

+i

2U(α)

=1

2α+

i

2U(α)

where

U(α) =∞∑

k=1

1

(k + α − 1)3/2 + (k + α − 1)1/2

Theo – p. 8/19

Page 27: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

logarithmic derivative of T (α) (cont’)

=1

2

∞∑

k=1

1

(k + α − 1)(k + α)+

i

2

∞∑

k=1

1

(k + α − 1)3/2 + (k + α − 1)1/2

=1

2

∞∑

k=1

(

1

k + α − 1− 1

k + α

)

+i

2U(α)

=1

2α+

i

2U(α)

where

U(α) =∞∑

k=1

1

(k + α − 1)3/2 + (k + α − 1)1/2

Theo – p. 8/19

Page 28: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

T ′(α)

T (α)=

1

2α+

i

2U(α)

integrate from 1 to α>1

ln T (α) = ln(α1/2) +i

2

∫ α

1

U(α)dα

polar representation of T (α)

T (α) =√

α exp

(

i

2

∫ α

1

U(α)dα

)

, α > 1

since T ′(1) = 12

+ i2U(1), the slope of the tangent vector to the

spiral at α = 1 is

U(1) =∞∑

k=1

1

k3/2 + k1/2(Theodorus constant)

numerical analysis and special functions: compute and identify

U(α) =∑∞

k=11

(k+α−1)3/2+(k+α−1)1/2,∫ α

1U(α)dα for 1 < α < 2

Theo – p. 9/19

Page 29: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

T ′(α)

T (α)=

1

2α+

i

2U(α)

integrate from 1 to α>1

ln T (α) = ln(α1/2) +i

2

∫ α

1

U(α)dα

polar representation of T (α)

T (α) =√

α exp

(

i

2

∫ α

1

U(α)dα

)

, α > 1

since T ′(1) = 12

+ i2U(1), the slope of the tangent vector to the

spiral at α = 1 is

U(1) =∞∑

k=1

1

k3/2 + k1/2(Theodorus constant)

numerical analysis and special functions: compute and identify

U(α) =∑∞

k=11

(k+α−1)3/2+(k+α−1)1/2,∫ α

1U(α)dα for 1 < α < 2

Theo – p. 9/19

Page 30: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

T ′(α)

T (α)=

1

2α+

i

2U(α)

integrate from 1 to α>1

ln T (α) = ln(α1/2) +i

2

∫ α

1

U(α)dα

polar representation of T (α)

T (α) =√

α exp

(

i

2

∫ α

1

U(α)dα

)

, α > 1

since T ′(1) = 12

+ i2U(1), the slope of the tangent vector to the

spiral at α = 1 is

U(1) =∞∑

k=1

1

k3/2 + k1/2(Theodorus constant)

numerical analysis and special functions: compute and identify

U(α) =∑∞

k=11

(k+α−1)3/2+(k+α−1)1/2,∫ α

1U(α)dα for 1 < α < 2

Theo – p. 9/19

Page 31: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

T ′(α)

T (α)=

1

2α+

i

2U(α)

integrate from 1 to α>1

ln T (α) = ln(α1/2) +i

2

∫ α

1

U(α)dα

polar representation of T (α)

T (α) =√

α exp

(

i

2

∫ α

1

U(α)dα

)

, α > 1

since T ′(1) = 12

+ i2U(1), the slope of the tangent vector to the

spiral at α = 1 is

U(1) =∞∑

k=1

1

k3/2 + k1/2(Theodorus constant)

numerical analysis and special functions: compute and identify

U(α) =∑∞

k=11

(k+α−1)3/2+(k+α−1)1/2,∫ α

1U(α)dα for 1 < α < 2

Theo – p. 9/19

Page 32: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

T ′(α)

T (α)=

1

2α+

i

2U(α)

integrate from 1 to α>1

ln T (α) = ln(α1/2) +i

2

∫ α

1

U(α)dα

polar representation of T (α)

T (α) =√

α exp

(

i

2

∫ α

1

U(α)dα

)

, α > 1

since T ′(1) = 12

+ i2U(1), the slope of the tangent vector to the

spiral at α = 1 is

U(1) =∞∑

k=1

1

k3/2 + k1/2(Theodorus constant)

numerical analysis and special functions: compute and identify

U(α) =∑∞

k=11

(k+α−1)3/2+(k+α−1)1/2,∫ α

1U(α)dα for 1 < α < 2

Theo – p. 9/19

Page 33: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

first digressionsummation by integration (G. & Milovanovic, 1985)

s =∞∑

k=1

ak, ak = (Lf)(k)

s =∞∑

k=1

(Lf)(k) =∞∑

k=1

∫ ∞

0

e−ktf(t)dt

=

∫ ∞

0

(

∞∑

k=1

e−kt

)

f(t)dt =

∫ ∞

0

t

et − 1

f(t)

tdt

Thus∞∑

k=1

ak =

∫ ∞

0

f(t)

tε(t)dt, f = L−1a

ε(t) =t

et − 1Bose − Einstein distribution

Theo – p. 10/19

Page 34: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

first digressionsummation by integration (G. & Milovanovic, 1985)

s =∞∑

k=1

ak, ak = (Lf)(k)

s =∞∑

k=1

(Lf)(k) =∞∑

k=1

∫ ∞

0

e−ktf(t)dt

=

∫ ∞

0

(

∞∑

k=1

e−kt

)

f(t)dt =

∫ ∞

0

t

et − 1

f(t)

tdt

Thus∞∑

k=1

ak =

∫ ∞

0

f(t)

tε(t)dt, f = L−1a

ε(t) =t

et − 1Bose − Einstein distribution

Theo – p. 10/19

Page 35: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

first digressionsummation by integration (G. & Milovanovic, 1985)

s =∞∑

k=1

ak, ak = (Lf)(k)

s =∞∑

k=1

(Lf)(k) =∞∑

k=1

∫ ∞

0

e−ktf(t)dt

=

∫ ∞

0

(

∞∑

k=1

e−kt

)

f(t)dt =

∫ ∞

0

t

et − 1

f(t)

tdt

Thus∞∑

k=1

ak =

∫ ∞

0

f(t)

tε(t)dt, f = L−1a

ε(t) =t

et − 1Bose − Einstein distribution

Theo – p. 10/19

Page 36: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

first digressionsummation by integration (G. & Milovanovic, 1985)

s =∞∑

k=1

ak, ak = (Lf)(k)

s =∞∑

k=1

(Lf)(k) =∞∑

k=1

∫ ∞

0

e−ktf(t)dt

=

∫ ∞

0

(

∞∑

k=1

e−kt

)

f(t)dt =

∫ ∞

0

t

et − 1

f(t)

tdt

Thus∞∑

k=1

ak =

∫ ∞

0

f(t)

tε(t)dt, f = L−1a

ε(t) =t

et − 1Bose − Einstein distribution

Theo – p. 10/19

Page 37: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Theodorus: ak =1

k3/2 + k1/2=

k−1/2

k + 1

convolution theorem for Laplace transform

Lg · Lh = Lg ∗ h, (g ∗ h)(t) =

∫ t

0

g(τ)h(t − τ)dτ

application to ak

k−1/2 =(

L t−1/2

√π

)

(k)

1

k + 1=(

L e−t)

(k)

ak =(

L t−1/2

√π

)

(k) · (L e−t) (k)

=1√π

(

L∫ t

0

τ−1/2e−(t−τ)dτ

)

(k)

Theo – p. 11/19

Page 38: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Theodorus: ak =1

k3/2 + k1/2=

k−1/2

k + 1

convolution theorem for Laplace transform

Lg · Lh = Lg ∗ h, (g ∗ h)(t) =

∫ t

0

g(τ)h(t − τ)dτ

application to ak

k−1/2 =(

L t−1/2

√π

)

(k)

1

k + 1=(

L e−t)

(k)

ak =(

L t−1/2

√π

)

(k) · (L e−t) (k)

=1√π

(

L∫ t

0

τ−1/2e−(t−τ)dτ

)

(k)

Theo – p. 11/19

Page 39: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Theodorus: ak =1

k3/2 + k1/2=

k−1/2

k + 1

convolution theorem for Laplace transform

Lg · Lh = Lg ∗ h, (g ∗ h)(t) =

∫ t

0

g(τ)h(t − τ)dτ

application to ak

k−1/2 =(

L t−1/2

√π

)

(k)

1

k + 1=(

L e−t)

(k)

ak =(

L t−1/2

√π

)

(k) · (L e−t) (k)

=1√π

(

L∫ t

0

τ−1/2e−(t−τ)dτ

)

(k)

Theo – p. 11/19

Page 40: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Theodorus (cont’)

f(t) =1√π

e−t

∫ t

0

τ−1/2eτdτ

=2√π

e−t

√t

0

ex2

dx =2√π

F (√

t)

∞∑

k=1

1

k3/2 + k1/2=

∫ ∞

0

f(t)

tε(t)dt =

2√π

∫ ∞

0

F (√

t)√t

w(t)dt

w(t) = t−1/2ε(t) =t1/2

et − 1

Theo – p. 12/19

Page 41: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Theodorus (cont’)

f(t) =1√π

e−t

∫ t

0

τ−1/2eτdτ

=2√π

e−t

√t

0

ex2

dx =2√π

F (√

t)

∞∑

k=1

1

k3/2 + k1/2=

∫ ∞

0

f(t)

tε(t)dt =

2√π

∫ ∞

0

F (√

t)√t

w(t)dt

w(t) = t−1/2ε(t) =t1/2

et − 1

Theo – p. 12/19

Page 42: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Theodorus (cont’)

f(t) =1√π

e−t

∫ t

0

τ−1/2eτdτ

=2√π

e−t

√t

0

ex2

dx =2√π

F (√

t)

∞∑

k=1

1

k3/2 + k1/2=

∫ ∞

0

f(t)

tε(t)dt =

2√π

∫ ∞

0

F (√

t)√t

w(t)dt

w(t) = t−1/2ε(t) =t1/2

et − 1

Theo – p. 12/19

Page 43: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

second digressionGaussian quadrature n-point quadrature formula

∫ ∞

0

g(t)w(t)dt =n∑

k=1

λ(n)k g(τ

(n)k ), g ∈ P2n−1

orthogonal polynomials

(πk, π`) = 0, k 6= `, where (u, v) =

∫ ∞

0

u(t)v(t)w(t)dt

three-term recurrence relation

πk+1(t) = (t − αk)πk(t) − βkπk−1(t), k = 0, 1, 2, . . .

π−1(t) = 0, π0(t) = 1

where αk = αk(w) ∈ R, βk = βk(w) > 0, β0 =∫∞

0w(t)dt

Theo – p. 13/19

Page 44: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

second digressionGaussian quadrature n-point quadrature formula

∫ ∞

0

g(t)w(t)dt =n∑

k=1

λ(n)k g(τ

(n)k ), g ∈ P2n−1

orthogonal polynomials

(πk, π`) = 0, k 6= `, where (u, v) =

∫ ∞

0

u(t)v(t)w(t)dt

three-term recurrence relation

πk+1(t) = (t − αk)πk(t) − βkπk−1(t), k = 0, 1, 2, . . .

π−1(t) = 0, π0(t) = 1

where αk = αk(w) ∈ R, βk = βk(w) > 0, β0 =∫∞

0w(t)dt

Theo – p. 13/19

Page 45: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

second digressionGaussian quadrature n-point quadrature formula

∫ ∞

0

g(t)w(t)dt =n∑

k=1

λ(n)k g(τ

(n)k ), g ∈ P2n−1

orthogonal polynomials

(πk, π`) = 0, k 6= `, where (u, v) =

∫ ∞

0

u(t)v(t)w(t)dt

three-term recurrence relation

πk+1(t) = (t − αk)πk(t) − βkπk−1(t), k = 0, 1, 2, . . .

π−1(t) = 0, π0(t) = 1

where αk = αk(w) ∈ R, βk = βk(w) > 0, β0 =∫∞

0w(t)dt

Theo – p. 13/19

Page 46: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Jacobi matrix

Jn(w) =

α0 β1 0

β1 α1 β2

β2 α2. . .

. . . . . . βn−10 βn−1 αn−1

Gaussian nodes and weights (Golub & Welsch, 1969)

τ(n)k = eigenvalues of Jn, λ

(n)k = β0v

2k,1

vk,1 = first component of (normalized) eigenvector vk

moments of w

µk =

∫ ∞

0

tkw(t)dt, k = 0, 1, . . . , 2n − 1

Chebyshev algorithm

{µk}2n−1k=0 7→ {αk, βk}n−1

k=0

Theo – p. 14/19

Page 47: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Jacobi matrix

Jn(w) =

α0 β1 0

β1 α1 β2

β2 α2. . .

. . . . . . βn−10 βn−1 αn−1

Gaussian nodes and weights (Golub & Welsch, 1969)

τ(n)k = eigenvalues of Jn, λ

(n)k = β0v

2k,1

vk,1 = first component of (normalized) eigenvector vk

moments of w

µk =

∫ ∞

0

tkw(t)dt, k = 0, 1, . . . , 2n − 1

Chebyshev algorithm

{µk}2n−1k=0 7→ {αk, βk}n−1

k=0

Theo – p. 14/19

Page 48: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Jacobi matrix

Jn(w) =

α0 β1 0

β1 α1 β2

β2 α2. . .

. . . . . . βn−10 βn−1 αn−1

Gaussian nodes and weights (Golub & Welsch, 1969)

τ(n)k = eigenvalues of Jn, λ

(n)k = β0v

2k,1

vk,1 = first component of (normalized) eigenvector vk

moments of w

µk =

∫ ∞

0

tkw(t)dt, k = 0, 1, . . . , 2n − 1

Chebyshev algorithm

{µk}2n−1k=0 7→ {αk, βk}n−1

k=0

Theo – p. 14/19

Page 49: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Jacobi matrix

Jn(w) =

α0 β1 0

β1 α1 β2

β2 α2. . .

. . . . . . βn−10 βn−1 αn−1

Gaussian nodes and weights (Golub & Welsch, 1969)

τ(n)k = eigenvalues of Jn, λ

(n)k = β0v

2k,1

vk,1 = first component of (normalized) eigenvector vk

moments of w

µk =

∫ ∞

0

tkw(t)dt, k = 0, 1, . . . , 2n − 1

Chebyshev algorithm

{µk}2n−1k=0 7→ {αk, βk}n−1

k=0

Theo – p. 14/19

Page 50: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

numerical results for Gaussian quadrature (in 15D-arithmetic)

µk =

∫ ∞

0

tkw(t)dt =

∫ ∞

0

tk+1/2

et − 1dt = Γ(k + 3/2)ζ(k + 3/2)

∞∑

k=1

1

k3/2 + k1/2=

2√π

∫ ∞

0

[F (√

t)/√

t ] w(t)

sn =2√π

n∑

k=1

λ(n)k F

(√

τ(n)k

)

/

τ(n)k

n sn5 1.85997. . .

15 1.86002507922117. . .25 1.860025079221190307180689. . .35 1.860025079221190307180695915717141. . .45 1.8600250792211903071806959157171433246665235. . .55 1.8600250792211903071806959157171433246665241215234513. . .65 1.86002507922119030718069591571714332466652412152345149304919944. . .75 1.860025079221190307180695915717143324666524121523451493049199503. . .

Theo – p. 15/19

Page 51: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

numerical results for Gaussian quadrature (in 15D-arithmetic)

µk =

∫ ∞

0

tkw(t)dt =

∫ ∞

0

tk+1/2

et − 1dt = Γ(k + 3/2)ζ(k + 3/2)

∞∑

k=1

1

k3/2 + k1/2=

2√π

∫ ∞

0

[F (√

t)/√

t ] w(t)

sn =2√π

n∑

k=1

λ(n)k F

(√

τ(n)k

)

/

τ(n)k

n sn5 1.85997. . .

15 1.86002507922117. . .25 1.860025079221190307180689. . .35 1.860025079221190307180695915717141. . .45 1.8600250792211903071806959157171433246665235. . .55 1.8600250792211903071806959157171433246665241215234513. . .65 1.86002507922119030718069591571714332466652412152345149304919944. . .75 1.860025079221190307180695915717143324666524121523451493049199503. . .

Theo – p. 15/19

Page 52: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

numerical results for Gaussian quadrature (in 15D-arithmetic)

µk =

∫ ∞

0

tkw(t)dt =

∫ ∞

0

tk+1/2

et − 1dt = Γ(k + 3/2)ζ(k + 3/2)

∞∑

k=1

1

k3/2 + k1/2=

2√π

∫ ∞

0

[F (√

t)/√

t ] w(t)

sn =2√π

n∑

k=1

λ(n)k F

(√

τ(n)k

)

/

τ(n)k

n sn5 1.85997. . .

15 1.86002507922117. . .25 1.860025079221190307180689. . .35 1.860025079221190307180695915717141. . .45 1.8600250792211903071806959157171433246665235. . .55 1.8600250792211903071806959157171433246665241215234513. . .65 1.86002507922119030718069591571714332466652412152345149304919944. . .75 1.860025079221190307180695915717143324666524121523451493049199503. . .

Theo – p. 15/19

Page 53: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

computation and identification of U(α) and∫ α

1U(α)dα

(k + α − 1)−1/2

(k + α − 1) + 1=

1√π

(

L∫ t

0

τ−1/2e−(t−τ)dτ

)

(k + α − 1)

applying the shift property for Laplace transform

(Lg) (s + b) =(

L e−btg(t))

(s)

yields

(k + α − 1)−1/2

(k + α − 1) + 1=

1√πL(

e−αt

∫ t

0

τ−1/2eτdτ

)

(k)

hence

f(t) =1√π

e−αt

∫ t

0

τ−1/2eτdτ =2√π

e−(α−1)tF (√

t)

Theo – p. 16/19

Page 54: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

computation and identification of U(α) and∫ α

1U(α)dα

(k + α − 1)−1/2

(k + α − 1) + 1=

1√π

(

L∫ t

0

τ−1/2e−(t−τ)dτ

)

(k + α − 1)

applying the shift property for Laplace transform

(Lg) (s + b) =(

L e−btg(t))

(s)

yields

(k + α − 1)−1/2

(k + α − 1) + 1=

1√πL(

e−αt

∫ t

0

τ−1/2eτdτ

)

(k)

hence

f(t) =1√π

e−αt

∫ t

0

τ−1/2eτdτ =2√π

e−(α−1)tF (√

t)

Theo – p. 16/19

Page 55: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

computation and identification of U(α) and∫ α

1U(α)dα

(k + α − 1)−1/2

(k + α − 1) + 1=

1√π

(

L∫ t

0

τ−1/2e−(t−τ)dτ

)

(k + α − 1)

applying the shift property for Laplace transform

(Lg) (s + b) =(

L e−btg(t))

(s)

yields

(k + α − 1)−1/2

(k + α − 1) + 1=

1√πL(

e−αt

∫ t

0

τ−1/2eτdτ

)

(k)

hence

f(t) =1√π

e−αt

∫ t

0

τ−1/2eτdτ =2√π

e−(α−1)tF (√

t)

Theo – p. 16/19

Page 56: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

U(α) =

∫ ∞

0

f(t)

tε(t)dt =

2√π

∫ ∞

0

e−(α−1)t F (√

t)√t

w(t)dt

w(t) =t1/2

et − 1, 1 ≤ α < 2

identification of U(α) as a Laplace transform

U(α) = (Lu) (α − 1), u(t) =2√π

F (√

t)√t

w(t)

the integral of U(α)

∫ α

1

U(α)dα =2(α − 1)√

π

∫ ∞

0

1 − e−(α−1)t

(α − 1)t

F (√

t)√t

w(t)dt

Theo – p. 17/19

Page 57: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

U(α) =

∫ ∞

0

f(t)

tε(t)dt =

2√π

∫ ∞

0

e−(α−1)t F (√

t)√t

w(t)dt

w(t) =t1/2

et − 1, 1 ≤ α < 2

identification of U(α) as a Laplace transform

U(α) = (Lu) (α − 1), u(t) =2√π

F (√

t)√t

w(t)

the integral of U(α)

∫ α

1

U(α)dα =2(α − 1)√

π

∫ ∞

0

1 − e−(α−1)t

(α − 1)t

F (√

t)√t

w(t)dt

Theo – p. 17/19

Page 58: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

U(α) =

∫ ∞

0

f(t)

tε(t)dt =

2√π

∫ ∞

0

e−(α−1)t F (√

t)√t

w(t)dt

w(t) =t1/2

et − 1, 1 ≤ α < 2

identification of U(α) as a Laplace transform

U(α) = (Lu) (α − 1), u(t) =2√π

F (√

t)√t

w(t)

the integral of U(α)

∫ α

1

U(α)dα =2(α − 1)√

π

∫ ∞

0

1 − e−(α−1)t

(α − 1)t

F (√

t)√t

w(t)dt

Theo – p. 17/19

Page 59: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Epilogue• summation theory can be generalized to series

s+ =∞∑

k=1

kν−1r(k), s− =∞∑

k=1

(−1)kkν−1r(k), 0 < ν < 1

where r(k) is a rational function

• regularizing transformation (J. Waldvogel, in preparation)

α = r2, r ∈ R

then

T (α) = T (r2) =1 + i

1 + i/r

∞∏

k=2

1 + i/√

k

1 + i/√

r2 + k − 1

is analytic for r ∈ C \ [i, i∞] ∪ [−i,−i∞]

r > 0: spiral of Theodorusr < 0: analytic continuation of the spiral

Theo – p. 18/19

Page 60: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Epilogue• summation theory can be generalized to series

s+ =∞∑

k=1

kν−1r(k), s− =∞∑

k=1

(−1)kkν−1r(k), 0 < ν < 1

where r(k) is a rational function

• regularizing transformation (J. Waldvogel, in preparation)

α = r2, r ∈ R

then

T (α) = T (r2) =1 + i

1 + i/r

∞∏

k=2

1 + i/√

k

1 + i/√

r2 + k − 1

is analytic for r ∈ C \ [i, i∞] ∪ [−i,−i∞]

r > 0: spiral of Theodorusr < 0: analytic continuation of the spiral

Theo – p. 18/19

Page 61: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Epilogue• summation theory can be generalized to series

s+ =∞∑

k=1

kν−1r(k), s− =∞∑

k=1

(−1)kkν−1r(k), 0 < ν < 1

where r(k) is a rational function

• regularizing transformation (J. Waldvogel, in preparation)

α = r2, r ∈ R

then

T (α) = T (r2) =1 + i

1 + i/r

∞∏

k=2

1 + i/√

k

1 + i/√

r2 + k − 1

is analytic for r ∈ C \ [i, i∞] ∪ [−i,−i∞]

r > 0: spiral of Theodorusr < 0: analytic continuation of the spiral

Theo – p. 18/19

Page 62: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Epilogue• summation theory can be generalized to series

s+ =∞∑

k=1

kν−1r(k), s− =∞∑

k=1

(−1)kkν−1r(k), 0 < ν < 1

where r(k) is a rational function

• regularizing transformation (J. Waldvogel, in preparation)

α = r2, r ∈ R

then

T (α) = T (r2) =1 + i

1 + i/r

∞∏

k=2

1 + i/√

k

1 + i/√

r2 + k − 1

is analytic for r ∈ C \ [i, i∞] ∪ [−i,−i∞]

r > 0: spiral of Theodorus

r < 0: analytic continuation of the spiral

Theo – p. 18/19

Page 63: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

Epilogue• summation theory can be generalized to series

s+ =∞∑

k=1

kν−1r(k), s− =∞∑

k=1

(−1)kkν−1r(k), 0 < ν < 1

where r(k) is a rational function

• regularizing transformation (J. Waldvogel, in preparation)

α = r2, r ∈ R

then

T (α) = T (r2) =1 + i

1 + i/r

∞∏

k=2

1 + i/√

k

1 + i/√

r2 + k − 1

is analytic for r ∈ C \ [i, i∞] ∪ [−i,−i∞]

r > 0: spiral of Theodorusr < 0: analytic continuation of the spiral

Theo – p. 18/19

Page 64: The Spiral of Theodorus, Numerical Analysis, and …problem: Interpolate the discrete Theodorus spiral by a smooth (or even analytic) spiral solution (P.J. Davis, 1993; inspired by

twin-spiral of Theodorus

−6 −4 −2 0 2 4 6−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Theo – p. 19/19


Recommended