+ All Categories
Home > Documents > The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002)...

The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002)...

Date post: 20-Dec-2015
Category:
View: 222 times
Download: 5 times
Share this document with a friend
Popular Tags:
31
three classical mechanisms for protein fold (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)
Transcript
Page 1: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

The three classical mechanisms for protein folding

(Fersht and Daggett, Cell 108, 573-582, 2002)

(hierarchial)

Page 2: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Energy landscape of protein folding

rugged landscape: multi-state folding

A rugged landscape with kinetic traps, energy barriers, and some narrow throughway paths to native. Folding can be multistate

idealized funnel landscape

(K. Dill)

As the chain forms increasing numbers of intrachain contacts, and lowers its internalfree energy, its conformational freedom is also reduced

Page 3: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

The folding energy landscape of a protein

Page 4: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Goodsell 1991, TiBS(16): 203-206

Macromolecular crowding

(approx. 300 mg/ml)

Page 5: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Major chaperones and their interactions with substrates

?

Page 6: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

The GroEL-GroES chaperone machine

GroEL proteins(subunits)

GroEL complex (double ring with 7 GroEL/ring)

Active complex

GroES complex (single ring with 7 GroES/ring)

GroES proteins(subunits)

ATP

Page 7: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Protein folding by GroEL and GroES

GroELGroEL with

unfolded polypeptideGroEL:GroES with

enclosed polypeptide

The folding activity is ATP-dependent!

U. Hartl

∆t = 15 sec

Page 8: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Zur Anzeige wird der QuickTime™ Dekompressor “GIF”

benötigt.Zur Anzeige wird der QuickTime™

Dekompressor “GIF” benötigt.

Page 9: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Zur Anzeige wird der QuickTime™ Dekompressor “GIF”

benötigt.

H. Saibil

Conformational changes induced by nucleotide and GroES(model based on cryo electron microscopy)

Page 10: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)
Page 11: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Hsp70

Cellular roles of Hsp70 chaperone systems

aggregation prevention

disaggregation

refolding

degradation

stress-related functions

de novo folding

translocation

assembly and disassembly

regulation of activity

regulated degradation

house-keeping functions

wide range of substrate conformers

unfolded - folding intermediates - aggregated - native

Page 12: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Functional cycle of DnaK

ATP

ADP + P

ATP

ADP·P

Unfolded protein substrate

ATPase domain Substrate binding domain

DnaJGrpE

Page 13: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

QuickTime™ and aVideo decompressor

are needed to see this picture.

Page 14: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Substrate binding domain of DnaK

Page 15: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

activity & stability controlof folded proteins(Hsp70 & Hsp90)

regular folding pathways

quality control of misfolded proteins

chaperones

Page 16: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Hsp70-Hsp90 activation cycle

ligandactive

Hsp90

client

Hsp70

Function of cochaperones:

> Targeting factor> Adaptor> Regulator Hsp40

Hip

Bag-1

Hop

Aha1

p23

immunophilinscdc37

Page 17: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

The Hsp70-Hsp90 chaperone machine:a regulator for signal transduction and cell cycle

Mayer & Bukau 1999 Curr. Biol.

c-Src control of cell proliferation

plasma membrane90

37

stressHSF

nucleus

activation ofgene expression

steroid

SHRnucleus

Cdk4

cyclin D

control of G1-progression

nucleus

hemeP

eIF-2-kinase control of translation

initiation

cytosol

Ras

Raf-1activation ofMAP-kinase pathway

plasmamembrane

P

9037

9037

9037

9037

90

9023

inactive active

activation ofgene expression

Hsp70Hsp90

>120 different targets!!!!

Page 18: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Transcription factorsSteroid hormone receptors: AR, ER, GR, MR, PROther nuclear receptors: AhR, RARHeme activator protein (Hap1)HSF-1Hypoxia-inducible factor-1aMTG8 myeloid leukemia proteinp53SimSV40 large T antigenTumor promotor-specific binding proteinv-erbA

PolymerasesTelomeraseHepatitis B virus reverse transcriptaseDNA-polymerase

3-Phosphoinositide-dependent kinase-1AktAurora BBcr-AblCalmodulin-regulated eEF-2 kinaseCasein kinase IIChk1c-MosDeath domain kinase RIPFlt3Focal adhesion kinaseGRK2Ire1IB kinases ,,,Kinase suppressor of ras (KSR)MEK (MAP kinase kinase)MEKK1, MEKK3Mik1MOK, MAK, MRKPhosphatidylinositol 4-kinasePim-1Polo mitotic kinaseSevenless PTKTAK1TBK1trkBWee1, Swe1

KinasesSrc-family kinases: Fps, Fes, Fgr, v-Src, c-Src, Hck, p56lck, YesCycline dependent kinases: Cdc2, Cdk4, Cdk6, Cdk9Receptor tyrosin kinases: EGFR, ErbB2, IGF-R, Insulin receptor,PDGFR, VEGFR2Raf family kinases: v-Raf, c-Raf, B-Raf, Gag-Mil, Ste11eIF-2 kinases: HRI, Gcn2, Perk, PKR

Hsp70/Hsp90 clients

Page 19: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

OthersAminoacyl t-RNA synthetaseApaf-1Apoprotein BAtrial natriuretic peptide receptorBidCalponinCentrin/centrosomeCna2 (catalytic subunit of calcineurin)CFTRCtf13/Skp1 component of CBF3Cytoskeletttal proteins: actin, tubulin, myosineNOS, iNOS, nNOS Erythrocyte membrane protein (Plasmodium falciparum)Fanconi anemia group C proteinG protein G0, G12Guanylate cyclase (-subunit)HETE binding complexHistones H1, H2A, H2B, H3, H4Lysosomal membraneMacrophage scavenger receptorMdm2MMP2MTG8NB-LRR proteins RPM1 and RPS2Neuropeptide Y

P2X7 purinergic receptor Pancreatic bile salt-dependent lipasePB2 subunit of influenza RNA pol.Protease-activated receptor 1 (PAR-1)ProteasomeRab-GDIRal-binding protein 1Reovirus protein s1SKP2 complexiessurvivinTau proteinThiopurine S-methyltransferaseThyroglobulinTLR4/MD-2 complexVaccinia core protein 4a

http://www.picard.ch/downloads/downloads.htmWegele, et al. 2004 Rev. Physiol. Biochem. Pharmacol.

Hsp70/Hsp90 clients

Page 20: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

E-Cadherin

Frizzo

ed

IGF

-R EG

FR

Cyt

oki

ne-

R

Fas

Wnt

Cell Adhesion

Survival Receptor

Growth Receptor Cytokines

Death Factor

Disheveled

GSK-3

APC

-Catenin

-Catenin

-Catenin/LEF

PI3K

PDK1

AKT

IKK

IB

NFB

Src Grb2SOS

RAS

RalRaf

Cdc42

MEK

Erk

Elk

JAKs

Stat3,5

Bcl2/Bax FADD

CytC Casp 8

Apaf-1/CytC/Casp 9

Casp 3

Gene expression

Zhang & Burrows 2004 J. Mol. Med.

Signal transduction pathways related to tumor progression

Page 21: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

E-Cadherin

Frizzo

ed

IGF

-R EG

FR

Cyt

oki

ne-

R

Fas

Wnt

Cell Adhesion

Survival Receptor

Growth Receptor Cytokines

Death Factor

Disheveled

GSK-3

APC

-Catenin

-Catenin

-Catenin/LEF

PI3K

PDK1

AKT

IKK

IB

NFB

Src Grb2SOS

RAS

RalRaf

Cdc42

MEK

Erk

Elk

JAKs

Stat3,5

Bcl2/Bax FADD

CytC Casp 8

Apaf-1/CytC/Casp 9

Casp 3

Gene expression

Zhang & Burrows 2004 J. Mol. Med.

Signal transduction pathways related to tumor progression

Page 22: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

ClpB structure

N-terminal domain (NTD)

1st ATPase (D1)

2nd ATPase (D2)

middle domain (M)

Lee et al. Cell 2003

Page 23: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

ClpB Protomers form hexameric rings (in ATP)

top side

3D model

Zur Anzeige wird der QuickTime™ Dekompressor „Sorenson Video 3“

benötigt.

Zur Anzeige wird der QuickTime™ Dekompressor „Sorenson Video 3“

benötigt.

Page 24: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Mechanism of ClpB/KJE-mediated protein disaggregation

Weibezahn et al., Cell 2004

ClpB

Page 25: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Protein aggregates in neurodegenerative diseases

Plaques and tangles Lewy bodies

Amyloid plaques

Aggregates

Intranuclear inclusions

Alzheimer’s Parkinson’s

PolyQ diseases Prions

Amyotrophic lateral sclerosis

E. Nollen

Page 26: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Polyglutamine aggregation

glutamine residue

other residue

Disease > 35 residues

Wild type < 35 residues

Aggregate

Folded protein

E. Nollen

Page 27: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Caenorhabditis elegans

*lives in the ground *size 1mm*has 959 cells*has a transparent body, observable in light microscope*life span: 20 days

Perfect tool: - easy genetic manipulation

Page 28: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

C. elegans, a model system to study Dementia

GFPQn

Protein aggregates: Huntington

Promotor

Unc-54

Page 29: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Length dependent aggregation of polyQ-YFP in C. elegans

GFPQn

Unc-54

Morley et al., 2002

Page 30: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Q19-expressing animals Q82-expressing animals

0

20

40

60

80

100

Morley&Morimoto

PolyQ of a length of n≥35 cause:- protein aggregation- drastic impaired mobility

3-4 days old C. elegans

Page 31: The three classical mechanisms for protein folding (Fersht and Daggett, Cell 108, 573-582, 2002) (hierarchial)

Luciferin + ATP + O2 Oxoluciferin + CO2 Luciferase

Light emission

Firefly Luciferase


Recommended