+ All Categories
Home > Documents > The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity...

The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity...

Date post: 10-Apr-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
108
E COLE N ATIONALE S UPÉRIEURE DE T ECHNIQUES A VANCÉES L ABORATOIRE DE M ATHÉMATIQUES A PPLIQUÉES The Universe as a dynamical system From Friedmann, to Bianchi passing by the Jungle Greco Seminar Monday, April 18 th , 2016 Jérôme Perez Ensta-ParisTech, Universite Paris Saclay
Transcript
Page 1: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

E C O L E N A T I O N A L E S U P É R I E U R E D E T E C H N I Q U E S A V A N C É E S

L A B O R A T O I R E D E M A T H É M A T I Q U E S A P P L I Q U É E S

The Universe as a dynamical systemFrom Friedmann, to Bianchi passing by the Jungle

Greco SeminarMonday, April 18 th, 2016

Jérôme PerezEnsta-ParisTech, Universite Paris Saclay

Page 2: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Overview

A Dynamical Universe ?

Friedmann Universe

Bianchi Universe

Page 3: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Einstein Legacy

Page 4: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Einstein Legacy1905 - Special Relativity Principle −→

The equations of physicsare the same in all

galilean (inertial) frames

←− Minkowski : M4 = C± ∪ L ∪ A

Sm = −∫

mcds−∫

(

AαJα +

1

4µ0FαβF

αβ

)

Page 5: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Einstein Legacy1905 - Special Relativity Principle −→

The equations of physicsare the same in all

galilean (inertial) frames

←− Minkowski : M4 = C± ∪ L ∪ A

Sm = −∫

mcds−∫

(

AαJα +

1

4µ0FαβF

αβ

)

1907 - Equivalence principle ⇒ General relativityր

We [...] propose the complete equivalence between a gravitationnal field and theacceleration of the corresponding frame

The material content of the universe makes impossible the existence of aninertial frame at the universe scale !

The equations of physics are the same in all frames

We pass from M4 [ξα] to a Riemann manifold [xµ] in dimension 4

ds2 = ηαβdξαdξβ = ηαβ

∂ξα

∂xµ

∂ξβ

∂xνdxµdxν = gµνdx

µdxν

Page 6: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The universe becomes dynamical

R>0

Two parallels

can cross

The sum of triangle’s

angles is greater

than p

Geodesics are

arc of circlel

Page 7: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The universe becomes dynamical1915 - General Relativity χ = 8πGc−4

S = Sm −1

gµνRµν

√−gdΩ with Rµν = Rµν(g) Ricci Tensor

variation of which gives : Gµν := Rµν −1

2gµνR = χTµν

R>0

Two parallels

can cross

The sum of triangle’s

angles is greater

than p

Geodesics are

arc of circlel

Page 8: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The universe becomes dynamical1915 - General Relativity χ = 8πGc−4

S = Sm −1

gµνRµν

√−gdΩ with Rµν = Rµν(g) Ricci Tensor

variation of which gives : Gµν := Rµν −1

2gµνR = χTµν

1917 - Homogeneous, static and isotropic Universe (Einstein )

ds2 = −dt2 + a

(

dr2

1−Rr2+ r2dθ2 + r2 sin2 θdϕ2

)

R>0

Two parallels

can cross

The sum of triangle’s

angles is greater

than p

Geodesics are

arc of circlel

Page 9: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The universe becomes dynamical1915 - General Relativity χ = 8πGc−4

S = Sm −1

gµνRµν

√−gdΩ with Rµν = Rµν(g) Ricci Tensor

variation of which gives : Gµν := Rµν −1

2gµνR = χTµν

1917 - Homogeneous, static and isotropic Universe (Einstein )

ds2 = −dt2 + a

(

dr2

1−Rr2+ r2dθ2 + r2 sin2 θdϕ2

)

R=0Two parallels

don’t cross

geodesics are straight

lines

The sum of any

triangle’s angles is p

The plane ...no static solutions

R>0

Two parallels

can cross

The sum of triangle’s

angles is greater

than p

Geodesics are

arc of circlel

Page 10: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The universe becomes dynamical1915 - General Relativity χ = 8πGc−4

S = Sm −1

gµνRµν

√−gdΩ with Rµν = Rµν(g) Ricci Tensor

variation of which gives : Gµν := Rµν −1

2gµνR = χTµν

1917 - Homogeneous, static and isotropic Universe (Einstein )

ds2 = −dt2 + a

(

dr2

1−Rr2+ r2dθ2 + r2 sin2 θdϕ2

)

R<0

The sum of triangle’s

angles is less

than p

Two parallels can

diverge

Geodesics

are

hyperbolae

The hyperboloïd ...no static solutions

R>0

Two parallels

can cross

The sum of triangle’s

angles is greater

than p

Geodesics are

arc of circlel

Page 11: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The universe becomes dynamical1915 - General Relativity χ = 8πGc−4

S = Sm −1

gµνRµν

√−gdΩ with Rµν = Rµν(g) Ricci Tensor

variation of which gives : Gµν := Rµν −1

2gµνR = χTµν

1917 - Homogeneous, static and isotropic Universe (Einstein )

ds2 = −dt2 + a

(

dr2

1−Rr2+ r2dθ2 + r2 sin2 θdϕ2

)

R>0

Two parallels

can cross

The sum of triangle’s

angles is greater

than p

Geodesics are

arc of circlel

The sphere ...allows a static solution

p = cste, ǫ = cste

a = cste, R = 6/a2

ifGµν + Λgµν = χTµν

Λ : Cosmological Const.

Page 12: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The universe becomes dynamical1915 - General Relativity χ = 8πGc−4

S = Sm −1

gµνRµν

√−gdΩ with Rµν = Rµν(g) Ricci Tensor

variation of which gives : Gµν := Rµν −1

2gµνR = χTµν

1917 - Homogeneous, static and isotropic Universe (Einstein )

ds2 = −dt2 + a

(

dr2

1−Rr2+ r2dθ2 + r2 sin2 θdϕ2

)

R>0

Two parallels

can cross

The sum of triangle’s

angles is greater

than p

Geodesics are

arc of circlel

The sphere ...allows a static solution

p = cste, ǫ = cste

a = cste, R = 6/a2

ifGµν + Λgµν = χTµν

Λ : Cosmological Const.

Einstein Universe isunstable !

a(t) = a(1 + δa(t))

p(t) = p(1 + δp(t))

ǫ(t) = a(1 + δǫ(t))

δp(t) = ωδǫ(t)

a(t) diverges if ω > −1/3

Page 13: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1922 - 1924 : Alexandre Friedmann

Page 14: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1922 - 1924 : Alexandre Friedmann

(

1

a

da

dt

)2

+k

a2=

8πGǫ

3(F1)

1

a

d2a

dt2= −4πG

3(ǫ+ 3P ) (F2)

a3dP

dt=

d[

(ǫ+ P ) a3]

dt(F3)

Energy impulsion conservation

Page 15: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1922 - 1924 : Alexandre Friedmann

(

1

a

da

dt

)2

+k

a2=

8πGǫ

3(F1)

1

a

d2a

dt2= −4πG

3(ǫ+ 3P ) (F2)

a3dP

dt=

d[

(ǫ+ P ) a3]

dt(F3)

Energy impulsion conservation

(F2) : If ǫ+ 3P > 0 then(

a > 0,d2a

dt2< 0

)

⇒ a concave⇒ Big-Bang

Page 16: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1922 - 1924 : Alexandre Friedmann

(

1

a

da

dt

)2

+k

a2=

8πGǫ

3(F1)

1

a

d2a

dt2= −4πG

3(ǫ+ 3P ) (F2)

a3dP

dt=

d[

(ǫ+ P ) a3]

dt(F3)

Energy impulsion conservation

(F2) : If ǫ+ 3P > 0 then(

a > 0,d2a

dt2< 0

)

⇒ a concave⇒ Big-Bang

(F1) : Hubble’s Constant : H = a/a

Critical Density : ǫo =3H2

8πG= 1.87847(23)× 10−29 h2 · g · cm−3

We can mesure k = 83πGa2 (ǫ− ǫo)

Page 17: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1922 - 1924 : Alexandre Friedmann

(

1

a

da

dt

)2

+k

a2=

8πGǫ

3(F1)

1

a

d2a

dt2= −4πG

3(ǫ+ 3P ) (F2)

a3dP

dt=

d[

(ǫ+ P ) a3]

dt(F3)

Energy impulsion conservation

(F2) : If ǫ+ 3P > 0 then(

a > 0,d2a

dt2< 0

)

⇒ a concave⇒ Big-Bang

(F1) : Hubble’s Constant : H = a/a

Critical Density : ǫo =3H2

8πG= 1.87847(23)× 10−29 h2 · g · cm−3

We can mesure k = 83πGa2 (ǫ− ǫo)

Big controversy with Einstein but Friedmann dies in September ’25

Page 18: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

Page 19: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1925 - Firsts observations Using cepheids stars, Hubble computes thedistance of "Islands Universes" closing the "Great Debate". Slipher measures asystematic red-shift in their spectra.

Page 20: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1925 - Firsts observations Using cepheids stars, Hubble computes thedistance of "Islands Universes" closing the "Great Debate". Slipher measures asystematic red-shift in their spectra.

1927 - Lemaıtre’s Idea Lemaître links observations and Friedmann’stheoretical results. He postulates "the birth of space".

Page 21: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann, Lemaitre and Hubble

1925 - Firsts observations Using cepheids stars, Hubble computes thedistance of "Islands Universes" closing the "Great Debate". Slipher measures asystematic red-shift in their spectra.

1927 - Lemaıtre’s Idea Lemaître links observations and Friedmann’stheoretical results. He postulates "the birth of space".

1929 - Hubble : The Universe is expanding !

Page 22: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The legend of Λ...

Page 23: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The legend of Λ...

1929 - Einstein’s Renunciation" The cosmological constant is my biggest mistake" =⇒ Λ = 0

Page 24: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The legend of Λ...

1929 - Einstein’s Renunciation" The cosmological constant is my biggest mistake" =⇒ Λ = 0

1990 - Cosmic candlesSystematic observation of White Dwarf SN’s shows a cosmic expansionacceleration (Nobel Prize 2011).

=⇒ Λ 6= 0

Page 25: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The legend of Λ...

1929 - Einstein’s Renunciation" The cosmological constant is my biggest mistake" =⇒ Λ = 0

1990 - Cosmic candlesSystematic observation of White Dwarf SN’s shows a cosmic expansionacceleration (Nobel Prize 2011).

=⇒ Λ 6= 0

A dynamical Universe

Very fun !

(

1

a

da

dt

)2

+k

a2=

8πGǫ

3+

Λ

3(F1)

1

a

d2a

dt2= −4πG

3(ǫ+ 3P ) +

Λ

3(F2)

a3dP

dt=

d[

(ǫ+ P ) a3]

dt(F3)

Impulsion-Energy conservation

Page 26: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Friedmann’s Universes Dynamics

Predator-Prey, competition

Page 27: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Building...

(

a

a

)2

=8πGǫ

3− k

a2+

Λ

3

a

a= −4πG

3(ǫ+ 3P ) +

Λ

3

ǫ = −3H (P + ǫ)

Page 28: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Building...

(

a

a

)2

=8πGǫ

3− k

a2+

Λ

3

a

a= −4πG

3(ǫ+ 3P ) +

Λ

3

ǫ = −3H (P + ǫ)

, setting

H (t) =a

a=

d (ln a)

dt

q (t) = − a

a

1

H2= − a a

a2

Ωm (t) =8πGǫ

3H2, Ωk (t) = −

k

a2H2

and ΩΛ (t) =Λ

3H2

Page 29: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Building...

(

a

a

)2

=8πGǫ

3− k

a2+

Λ

3

a

a= −4πG

3(ǫ+ 3P ) +

Λ

3

ǫ = −3H (P + ǫ)

, setting

H (t) =a

a=

d (ln a)

dt

q (t) = − a

a

1

H2= − a a

a2

Ωm (t) =8πGǫ

3H2, Ωk (t) = −

k

a2H2

and ΩΛ (t) =Λ

3H2

we obtain

Ωm +Ωk +ΩΛ = 1 (F1.1)

4πG

3H2(ǫ+ 3P ) = q +ΩΛ (F2.1)

ǫ = −3H (P + ǫ) (F3.1)

Page 30: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

State equation

Page 31: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

State equation

Barotropic : P = ωǫ = (Γ− 1) ǫ =(γ − 1)

Page 32: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

State equation

Barotropic : P = ωǫ = (Γ− 1) ǫ =(γ − 1)

ω −1 0 1/3 2/3 1

Kind

of Matter

Quantum

Vacuum

Incoherent

Dust Gas

Photon

Ideal Gas

monoatomic

Ideal Gas

Stiff

matter

ω ∈ [−1, 1] , Γ ∈ [0, 2] , γ ∈ [−2, 4]

Page 33: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

State equation

Barotropic : P = ωǫ = (Γ− 1) ǫ =(γ − 1)

ω −1 0 1/3 2/3 1

Kind

of Matter

Quantum

Vacuum

Incoherent

Dust Gas

Photon

Ideal Gas

monoatomic

Ideal Gas

Stiff

matter

ω ∈ [−1, 1] , Γ ∈ [0, 2] , γ ∈ [−2, 4]

Barotropic Friedmann’s Equations :

Ωk = 1 − Ωm − ΩΛ

q =Ωm (1 + 3ω)

2− ΩΛ

(ln ǫ)′= −3 (1 + ω) ′ =

d

d ln a

Page 34: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The dynamical system

Page 35: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The dynamical system

Ωk = 1 − Ωm − ΩΛ

Ω′m = Ωm [(1 + 3ω) (Ωm − 1)− 2ΩΛ]

Ω′Λ = ΩΛ [Ωm (1 + 3ω) + 2 (1− ΩΛ)]

Page 36: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The dynamical system

Ωk = 1 − Ωm − ΩΛ

Ω′m = Ωm [(1 + 3ω) (Ωm − 1)− 2ΩΛ]

Ω′Λ = ΩΛ [Ωm (1 + 3ω) + 2 (1− ΩΛ)]

setting γ = 1 + 3ω in the interval [−2, 4]

X ′ = Fγ (X) with X = [Ωm,ΩΛ]⊤ and Fγ :

R2 → R2

(x, y) 7→ (f1 (x, y) , f2 (x, y))

where

f1 (x, y) = x (γx− 2y − γ)

f2 (x, y) = y (γx− 2y + 2)

Lotka-Volterra like equation

Page 37: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Equilibria

Page 38: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

EquilibriaEquilibrium : X∗ = [x, y]

⊤= [Ωm,ΩΛ]

⊤ such that Fγ (X∗) = 0

x (γx− 2y − γ) = 0

y (γx− 2y + 2) = 0

Page 39: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

EquilibriaEquilibrium : X∗ = [x, y]

⊤= [Ωm,ΩΛ]

⊤ such that Fγ (X∗) = 0

x (γx− 2y − γ) = 0

y (γx− 2y + 2) = 0There is 3 solutions :

Page 40: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

EquilibriaEquilibrium : X∗ = [x, y]

⊤= [Ωm,ΩΛ]

⊤ such that Fγ (X∗) = 0

x (γx− 2y − γ) = 0

y (γx− 2y + 2) = 0There is 3 solutions :

de Sitter Universe : X∗1 = [0, 1]

⊤ and Ωk = 0

If a > 0 then a(t) ∝ e√

Λ3 t

Uncreated Universe in perpetual exponential expansion.

Page 41: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

EquilibriaEquilibrium : X∗ = [x, y]

⊤= [Ωm,ΩΛ]

⊤ such that Fγ (X∗) = 0

x (γx− 2y − γ) = 0

y (γx− 2y + 2) = 0There is 3 solutions :

de Sitter Universe : X∗1 = [0, 1]

⊤ and Ωk = 0

If a > 0 then a(t) ∝ e√

Λ3 t

Uncreated Universe in perpetual exponential expansion.

Einstein-de Sitter Universe : X∗2 = [1, 0]

⊤ and Ωk = 0

If ω > −1 then a (t) ∝ t2

3(1+3ω)

Big-Bang followed by a decelerated expansion.

Page 42: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

EquilibriaEquilibrium : X∗ = [x, y]

⊤= [Ωm,ΩΛ]

⊤ such that Fγ (X∗) = 0

x (γx− 2y − γ) = 0

y (γx− 2y + 2) = 0There is 3 solutions :

de Sitter Universe : X∗1 = [0, 1]

⊤ and Ωk = 0

If a > 0 then a(t) ∝ e√

Λ3 t

Uncreated Universe in perpetual exponential expansion.

Einstein-de Sitter Universe : X∗2 = [1, 0]

⊤ and Ωk = 0

If ω > −1 then a (t) ∝ t2

3(1+3ω)

Big-Bang followed by a decelerated expansion.

Milne Universe : X∗3 = [0, 0]

⊤ and Ωk = 1

k = −a2H2 : Hyperbolic universe with a(t) = a0t+ a0Linearly expanding Universe since Big-Bang : exotic cosmological models ?

Page 43: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Dynamic is a competition !

Ω′m = Ωm (γΩm − 2ΩΛ − γ)

Ω′Λ = ΩΛ (γΩm − 2ΩΛ + 2)

Competition between Ωm and ΩΛ "referred" by Ωk ;

3 equilibrium states :

• Matter (EdS) - γ−Hyperbolic ;

• Curvature (M) - γ−Hyperbolic ;

• Cosmological Constant (dS) - Stable.

The most competitive is always the Cosmological Constant : γ ∈ [−2, 4].

No Limit Cycle (Bendixon criteria, div(F ) has constant sign on [0, 1]2 ?

Page 44: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The fate of Friedmann’s Universes

If ω of Ωm is in ]− 1,−1/3[ :

Page 45: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The fate of Friedmann’s Universes

If ω of Ωm is in ]− 1/3, 1[ :

Page 46: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Coupled species : Jungle Universe

Page 47: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Coupled species : Jungle UniverseWithout any coupling between species (Ωi) the dynamic is fully degenerated :

x = (Ωb,Ωd,Ωr,Ωe)⊤

, x′ = diag(x) (r+ Ax)

with

A =

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

and r =

−1− 3ωb

−1− 3ωd

−1− 3ωr

−1− 3ωe

As rank(A) = 1, equilibria must lie on axes xi = 0, this is Friedmann’s dynamics.

Page 48: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Coupled species : Jungle UniverseWithout any coupling between species (Ωi) the dynamic is fully degenerated :

x = (Ωb,Ωd,Ωr,Ωe)⊤

, x′ = diag(x) (r+ Ax)

with

A =

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

1 + 3ωb 1 + 3ωd 1 + 3ωr 1 + 3ωe

and r =

−1− 3ωb

−1− 3ωd

−1− 3ωr

−1− 3ωe

As rank(A) = 1, equilibria must lie on axes xi = 0, this is Friedmann’s dynamics.

Introducing coupling between any barotropic components of the Universe, thedynamical systems becomes

xi = Ωi

ri = −(1 + 3ωi) (1)

Aij = 1 + 3ωj + εij with εij = −εji and εii = 0

The matrix A can have any rank, it can be invertible, equilibria can be everywhere,this is Jungle dynamics. [e.g. Perez et. al., 2014]

Page 49: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Dark coupling...

+r b

t=0

e

e

Coupling between dark energy and dark mater with ε = 4.

The radiative components (Ωr) and the baryonic matter (Ωb) dilutes and disappearswhile the dark component converges toward a limit cycle.

Page 50: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Other possibilities...

-0.1 0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.15

0.25

0.35

0.45

I.C.

0

0.51 0

0.51

0.2

0.4

0.6

0.8

r

d I.C.

r

d

e=5/2

e=3/2

req

eeq

deq

eeq

req

Evolution of the three coupled density parameters, in the 3D phase space. Thebeginning of the orbit is overlined. Initial condition is indicated by a black dot. Relevant

equilibria are indicated by a star.

Page 51: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Other possibilities...

-0.1 0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.15

0.25

0.35

0.45

I.C.

0

0.51 0

0.51

0.2

0.4

0.6

0.8

r

d I.C.

r

d

e=5/2

e=3/2

req

eeq

deq

eeq

req

Evolution of the three coupled density parameters, in the 3D phase space. Thebeginning of the orbit is overlined. Initial condition is indicated by a black dot. Relevant

equilibria are indicated by a star.

Page 52: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Camouflage in the jungle [Simon-Petit, J.P. & Yap, 2016]

10-1

100

101

½1

2

3

½

½

Density(arbitrary units)

Time (arbitrary units)

!1;e® (!1 = 0)

!2;e® (!2 = 0)

!3;e® (!3 = 0)

10-1

100

101

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Effectivebarotropic

index

Time (arbitrary units)

Page 53: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Camouflage in the jungle [Simon-Petit, J.P. & Yap, 2016]

Could dark energy emerge from the jungle coupling ?

10-1

100

101

½1

2

3

½

½

Density(arbitrary units)

Time (arbitrary units)

!1;e® (!1 = 0)

!2;e® (!2 = 0)

!3;e® (!3 = 0)

10-1

100

101

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Effectivebarotropic

index

Time (arbitrary units)

Page 54: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Camouflage in the jungle [Simon-Petit, J.P. & Yap, 2016]

Could dark energy emerge from the jungle coupling ?

The interaction term in the continuity equation of a fluid i reads

ρi = −3Hρi(1 + ωi) +n∑

j=1

ǫijHΩjρi

It actually modifies its equation of state which then describes a barotropic uid with aneffective time-dependent barotropic index ωeff

i = ωi −∑n

j=113ǫijΩj

10-1

100

101

½1

2

3

½

½

Density(arbitrary units)

Time (arbitrary units)

!1;e® (!1 = 0)

!2;e® (!2 = 0)

!3;e® (!3 = 0)

10-1

100

101

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Effectivebarotropic

index

Time (arbitrary units)

Page 55: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Camouflage in the jungle [Simon-Petit, J.P. & Yap, 2016]

Could dark energy emerge from the jungle coupling ?

The interaction term in the continuity equation of a fluid i reads

ρi = −3Hρi(1 + ωi) +n∑

j=1

ǫijHΩjρi

It actually modifies its equation of state which then describes a barotropic uid with aneffective time-dependent barotropic index ωeff

i = ωi −∑n

j=113ǫijΩj

Exemple :

10-1

100

101

½1

2

3

½

½

Density(arbitrary units)

Time (arbitrary units)

!1;e® (!1 = 0)

!2;e® (!2 = 0)

!3;e® (!3 = 0)

10-1

100

101

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Effectivebarotropic

index

Time (arbitrary units)

Jungle Interaction (ǫ12 = −2; ǫ23 = −3; ǫ13 = 0) between three dark matter fluids

Page 56: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi Universes

The Cosmological Billiard

Page 57: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Save General Relativity !

B

K L

Page 58: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Save General Relativity !

1915 A. Einstein : Gravitationnal Field Theory

B

K L

Page 59: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Save General Relativity !

1915 A. Einstein : Gravitationnal Field Theory

1922-27 A. Friedmann & G. Lemaître : Homogeneous and Isotropic solution(Big Bang ≈ 1960)

B

K L

Page 60: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Save General Relativity !

1915 A. Einstein : Gravitationnal Field Theory

1922-27 A. Friedmann & G. Lemaître : Homogeneous and Isotropic solution(Big Bang ≈ 1960)

1965-66 R. Penrose & S. Hawking : All solutions are singular !

B

K L

Page 61: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Save General Relativity !

1915 A. Einstein : Gravitationnal Field Theory

1922-27 A. Friedmann & G. Lemaître : Homogeneous and Isotropic solution(Big Bang ≈ 1960)

1965-66 R. Penrose & S. Hawking : All solutions are singular !

1969 V. Belinski, L. Khalatnikov & E. Lifchitz : Singularity may be chaotic ifUniverse is anisotropic !

B

K L

Page 62: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Homogeneous Manifold in 3+1 dimension

Page 63: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Homogeneous Manifold in 3+1 dimension

Synchronous Frame : ds2 = gij dxi dxj − dt2, E = Σt, gij = gij(t)

Invariant Forms basis G : eij dxj

C cab =

(

∂iecj − ∂je

ci

)

eja eib (Structure Constants)

σa := eia∂i such that [σa, σb] = C cab σc

The set of C cab is a determination of G.

Page 64: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Homogeneous Manifold in 3+1 dimension

Synchronous Frame : ds2 = gij dxi dxj − dt2, E = Σt, gij = gij(t)

Invariant Forms basis G : eij dxj

C cab =

(

∂iecj − ∂je

ci

)

eja eib (Structure Constants)

σa := eia∂i such that [σa, σb] = C cab σc

The set of C cab is a determination of G.

Decomposition C cab := εabd N

dc + δcb Ma − δca Mb ⇒ Nab symetric

Equivalence Classesof Homogeneous Universes

≡ Equivalence Classesof Nab and Mb such that NabMb = 0

Nab =

n1 0 0

0 n2 0

0 0 n3

Mb = [m, 0, 0]

Page 65: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi’s Classification

Class A : m = 0, Class B : m 6= 0

n1 n2 n3 m Model

0 is a triple eigenvalue of N 0 0 0 0 BI

0 0 0 ∀ BV

0 is a double eigenvalue of N 1 0 0 0 BII

0 1 0 ∀ BIV

0 is a simple eigenvalue of N 1 1 0 0 BVIIo

0 1 1 ∀ BVIIm

1 −1 0 0 BVIo

0 1 −1 6= 1 BVIm

0 1 −1 1 BIII

0 is not an eigenvalue of N 1 1 1 0 BIX

1 1 −1 0 BVIII

Page 66: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

BKL Formalism(e.g. [Belinski, Khalatnikov et Lifchitz, 69])

ds2 = gijdxidxj − dt2 =

3∑

i=1

eAi(τ)dx2i − V 2(τ)dτ2

The lapse function is the volume of the universe : V 2 = eA1+A2+A3 , dt = V dτ

The matter is isotropic & barotropic : P = (Γ− 1)ǫ =⇒ ǫ = ǫ0V−Γ

0 = Ec + Ep + Em = H

χǫ0 (2− Γ)V 2−Γ = A′′1 +

(

n1eA1

)2 −(

n2eA2 − n3e

A3)2

χǫ0 (2− Γ)V 2−Γ = A′′2 +

(

n2eA2

)2 −(

n3eA3 − n1e

A1)2

χǫ0 (2− Γ)V 2−Γ = A′′3 +

(

n3eA3

)2 −(

n1eA1 − n2e

A2)2

Ec =12

3∑

i 6=j=1

A′iA

′j Ep =

3∑

i 6=j=1

ninjeAi+Aj −

3∑

i=1

n2i e

2Ai

Em = −4χǫ V 2 ′ = d

dτ, χ = 8πG

c4

Page 67: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Vacuum B I Solution : The fondamental state

In conformal time variable, Spatial Einstein Equations write A′′i = 0 which gives in

physical time eAi = λit2ki/Ω where V (t) = 1

2Ωt+Ω0. Time Einstein Equation makesappear a global parameter u ∈ [1,+∞[

p1 = k1/Ω = −u(

1 + u+ u2)−1 ∈

[

− 13 , 0

]

p2 = k2/Ω = (1 + u)(

1 + u+ u2)−1 ∈

[

0, 23

]

p3 = k3/Ω = u (1 + u)(

1 + u+ u2)−1 ∈

[

23 , 1

]

Vacuum BI Universe’s metric writes

ds2 = λ1t2p1dx2

1 + λ2t2p2dx2

2 + λ3t2p3dx2

3 − dt2

If t→ 0 (→ singularity)

• : Exponential Expansion• • : Exponential ContractionV : Linear Contraction

Vacuum BI defines a Kasner State characterized by u and Ω

Page 68: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Vacuum B II solution : The idea by BKL...

Vacuum BII dynamics in τ :

A′′1 = −e2A1

A′′2 = +e2A1

A′′3 = +e2A1

e2A1 = A′1A

′2 +A′

1A′3 +A′

2A′3

But in t it appears as a transition between 2 Kasner States :

Page 69: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Vacuum B II solution : The idea by BKL...

Vacuum BII dynamics in τ :

A′′1 = −e2A1

A′′2 = +e2A1

A′′3 = +e2A1

e2A1 = A′1A

′2 +A′

1A′3 +A′

2A′3

But in t it appears as a transition between 2 Kasner States :

When t −→ +∞

[u,Ω]

(p1 < p2 < p3)

(•••)Kasner 1

−→

When t −→ 0

[u− 1,Ω(1− 2p1)] (•••) si u > 2

[

(u− 1)−1

,Ω(1− 2p1)]

(•••) si u ≤ 2

Kasner 2

Amazing Bianchi Universes !

Page 70: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Hamiltonian Formalism e.g. [Misner ’70]

Page 71: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Hamiltonian Formalism e.g. [Misner ’70]

0 = Ec + Ep + Em = H

χ (2− Γ)V 2−Γ = A′′1 +

(

n1eA1

)2 −(

n2eA2 − n3e

A3)2

χ (2− Γ)V 2−Γ = A′′2 +

(

n2eA2

)2 −(

n3eA3 − n1e

A1)2

χ (2− Γ)V 2−Γ = A′′3 +

(

n3eA3

)2 −(

n1eA1 − n2e

A2)2

Ep =3∑

i 6=j=1

ninjeAi+Aj −

3∑

i=1

n2i e

2Ai

Em = −4χǫ V 2

Ec =12

3∑

i 6=j=1

A′iA

′j

Diagonalize Ec ...

Page 72: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Hamiltonian Formalism e.g. [Misner ’70]

M :=

1√2

−1√2

01√6

1√6

−2√6

1√6

1√6

1√6

q := [q1 q2 q3]⊤= M [A1 A2 A3]

p := [p1 p2 p3]⊤= M [A′

1 A′2 A′

3]⊤

Page 73: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Hamiltonian Formalism e.g. [Misner ’70]

M :=

1√2

−1√2

01√6

1√6

−2√6

1√6

1√6

1√6

q := [q1 q2 q3]⊤= M [A1 A2 A3]

p := [p1 p2 p3]⊤= M [A′

1 A′2 A′

3]⊤

Einstein Equations become Todda-Like

q′1,2 = −∇p1,2H p′1,2 = −∇q1,2H

q′3 = ∇q3H p′3 = −∇p3H

with H = 12 〈p,p〉+

7∑

i=1

kie(ai,q)

(x, y) := +x1y1 + x2y2 + x3y3

〈x, y〉 := −x1y1 − x2y2 + x3y3

k1 := 2n1n2 k2 := 2n1n3 k3 := 2n2n3

k4 := −n21 k5 := −n2

2 k6 := −n23

k7 = −4εoχ

Page 74: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Integrability

Integrable Differential System =⇒ Regular Solutions (Reciprocally ?)

Two used methods :

Show that the solution is analytic (formal series)

Kovalewski-Poincaré Theory (Painlevé)

Show that the system admits enough first integrals

Lax Theory (Liouville)

Page 75: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Kovalewski-Poincaré Theory

Ifdx

dt= f (x) with x ∈ Rn admits Self-Similar Solution (3S)

x =[

c1 (t− to)−g1 , ..., cn (t− to)

−gn]⊤

g ∈ Zn c ∈ Rn

Page 76: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Kovalewski-Poincaré Theory

Ifdx

dt= f (x) with x ∈ Rn admits Self-Similar Solution (3S)

x =[

c1 (t− to)−g1 , ..., cn (t− to)

−gn]⊤

g ∈ Zn c ∈ Rn

then the linearized system around x too !

z =[

k1 (t− to)ρ1−g1 , ..., kn (t− to)

ρn−gn]⊤

ρ ∈ Cn

Kovalewski Exponents : ρ = Sp [Df (x) (c) + diag (g)]

Page 77: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Kovalewski-Poincaré Theory

Ifdx

dt= f (x) with x ∈ Rn admits Self-Similar Solution (3S)

x =[

c1 (t− to)−g1 , ..., cn (t− to)

−gn]⊤

g ∈ Zn c ∈ Rn

then the linearized system around x too !

z =[

k1 (t− to)ρ1−g1 , ..., kn (t− to)

ρn−gn]⊤

ρ ∈ Cn

Kovalewski Exponents : ρ = Sp [Df (x) (c) + diag (g)]

Poincaré and Yoshida then show that

xi (t) ∝ (t− to)−gi S [(t− to)

ρ1 , ..., (t− to)ρn ]

ρ ∈ Qn is sufficient for analiticity of x(t)

Page 78: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Kovalewski & Bianchi

e.g. Melnikov’s Team in Moscow, [Gavrilov et al.,94] ,[Pavlov,96] and [Szydlowksi & Besiada,02]

Page 79: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Kovalewski & Bianchi

e.g. Melnikov’s Team in Moscow, [Gavrilov et al.,94] ,[Pavlov,96] and [Szydlowksi & Besiada,02]

A new change of variables

q,p 7→ u,v avec

[

u ∈ R7, ui=1,...,7 := 〈ai,p〉v ∈ R7, vi=1,...,7 := exp (ai,q)

Page 80: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Kovalewski & Bianchi

e.g. Melnikov’s Team in Moscow, [Gavrilov et al.,94] ,[Pavlov,96] and [Szydlowksi & Besiada,02]

A new change of variables

q,p 7→ u,v avec

[

u ∈ R7, ui=1,...,7 := 〈ai,p〉v ∈ R7, vi=1,...,7 := exp (ai,q)

The Bianchi dynamics becomes

∀i = 1, ..., 7

v′i = uivi

u′i =

7∑

j=1

Wijvjwith Wij := −kj 〈ai, aj〉

which admits a plenty of 3S : x =[

λt−1, µt−2]⊤

for each [λ, µ] ∈ R7 × R7 solution of

7∑

j=1

Wij µj = −λi

λi µi = −2µi

Page 81: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi’s Integrability

[JP & Larena,07]

Page 82: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi’s Integrability

[JP & Larena,07]

4 class of equivalence of Bianchi Universes in Kovalewski senseClass I : BI Class II : BII & BIV

Class III :BIII, BVIo,a

& BVIIo,a

Class IV : BVIII & BIX

Page 83: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi’s Integrability

[JP & Larena,07]

4 class of equivalence of Bianchi Universes in Kovalewski senseClass I : BI Class II : BII & BIV

Class III :BIII, BVIo,a

& BVIIo,a

Class IV : BVIII & BIX

Vacuum & ∀Γ ∈ Q : KI ⊂ Q : Int.Vacuum & Stiff matter : KII ∪KIII ⊂ Q : Int.Matter with Γ ∈ Q ∩ [0,Γo] : KII ∪KIII ⊂ Q : Int.Matter with Γ ∈ [Γo, 2[ : KII ∪KIII ⊂ C : Not Int.

Vacuum & ∀Γ ∈ [0, 2[ : KIV ⊂ C : Not Int.

Γo :=11 +

√73

3≈ 0, 82

Γ = 0 : Scalar Field Γ = 1 : DustΓ = 4/3 : Quantum Id. Gas.(µ = 0) Γ = 5/3 : Classical Id. Gas

Γ = 2 : Stiff Matter

Singularity could be chaotic...

Page 84: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi’s Billiards

e.g. [Jantzen,82] , [Uggla,97]

Page 85: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi’s Billiards

e.g. [Jantzen,82] , [Uggla,97]

Setting dt = V 1/3dt et m = V 4/3 the dynamics becomes

dq1,2

dt=

p1,2m

=∂E

∂q1,2

dp1,2

dt= − ∂ξ

∂q1,2=

∂E

∂p1,2

withE =

p21 + p222m

− ξ (q1, q2) =(dV/dt)2

V 2/3

Pour t→ 0

E → +∞m→ 0

ξ (q1, q2) =7∑

i=1

kie(π(ai),q) ,q ∈ R2 , π : Projector on (e 1, e2)

Page 86: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Bianchi’s Billiards

e.g. [Jantzen,82] , [Uggla,97]

Setting dt = V 1/3dt et m = V 4/3 the dynamics becomes

dq1,2

dt=

p1,2m

=∂E

∂q1,2

dp1,2

dt= − ∂ξ

∂q1,2=

∂E

∂p1,2

withE =

p21 + p222m

− ξ (q1, q2) =(dV/dt)2

V 2/3

Pour t→ 0

E → +∞m→ 0

ξ (q1, q2) =7∑

i=1

kie(π(ai),q) ,q ∈ R2 , π : Projector on (e 1, e2)

BianchiDynamics

⇔Dynamics of 2D decreasing mass particle

with an increasing energyin the potential well ξ

Page 87: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The Cosmological Billiard

q y

k

k3

k1

q y1

Page 88: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The Cosmological Billiard

"Isolated" Dynamics :d2y

dx2= −k2ey with y (0) = 0 =

dy

dx

x=0

.

y (x) = ln

[

1− th2(

kx√2

)]

= −2 ln[

ch

(

kx√2

)]

≈ ±√2kx+ 2 ln 2

when x→ ±∞

q y

k

k3

k1

q y1

Page 89: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The Cosmological Billiard

"Isolated" Dynamics :d2y

dx2= −k2ey with y (0) = 0 =

dy

dx

x=0

.

y (x) = ln

[

1− th2(

kx√2

)]

= −2 ln[

ch

(

kx√2

)]

≈ ±√2kx+ 2 ln 2

when x→ ±∞

Rebound on 1 cushion

q y

k

k3

k1

q y1

Page 90: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The Cosmological Billiard

"Isolated" Dynamics :d2y

dx2= −k2ey with y (0) = 0 =

dy

dx

x=0

.

y (x) = ln

[

1− th2(

kx√2

)]

= −2 ln[

ch

(

kx√2

)]

≈ ±√2kx+ 2 ln 2

when x→ ±∞

Rebound on 1 cushionSeveral cushions ...

q y

k

k3

k1

q y1

Page 91: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Cushions’s form of B II billiard

n1 = 1, n2 = n3 = 0 : ξ(q1, q2) = −e√

63 q2+

√2q1

Isocontours ξ = E

Page 92: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Cushions’ form of B III billiard

n1 = 1, n2 = −1, n3 = 0 : ξ(q1, q2) = −e√

63 q2+

√2q1 − e

63 q2−

√2q1 − 2e

63 q2

Isocontours ξ = E

Page 93: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Cushions’ form of B VII billiard

n1 = 1, n2 = 1, n3 = 0 : ξ(q1, q2) = −e√

63 q2+

√2q1 − e

63 q2−

√2q1 + 2e

63 q2

Isovaleurs ξ = E

Page 94: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Cushions’ form of B VIII billiard

n1 = 1, n2 = 1, n3 = −1 : ξ(q1, q2) = · · ·!

Isocontours ξ = E

Page 95: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Cushions’ form of B IX billiard

n1 = 1, n2 = 1, n3 = 1 : ξ(q1, q2) = · · ·!

Isocontours ξ = E

Page 96: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

A few numerics ...

Dynamics in BIX not easy !

... but understandable !

Page 97: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Poincaré’s Sections

Page 98: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Poincaré’s Sections

−→ toward singularity −→

Page 99: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Poincaré’s Sections

−→ toward singularity −→

Page 100: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Vacuum B IX BKL Dynamics

Random IC’s

Page 101: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

ω = 1/3 B IX BKL Dynamics

Random IC’s

Page 102: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

ω = 1 B IX BKL Dynamics

Random IC’s

Page 103: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Attractors

e.g. [Cornish&Lewin,97]

Page 104: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Attractors

e.g. [Cornish&Lewin,97]

IC’s : (θo, ωo)

Stop when u > ue = 8

• : p1 x1

• : p1 x2

• : p1 x3

Page 105: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Attractors

e.g. [Cornish&Lewin,97]

IC’s : (θo, ωo)

Stop when u > ue = 8

• : p1 x1

• : p1 x2

• : p1 x3

BVIII

Page 106: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Attractors

e.g. [Cornish&Lewin,97]

IC’s : (θo, ωo)

Stop when u > ue = 8

• : p1 x1

• : p1 x2

• : p1 x3

BVIII

BIX

Page 107: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

The B IX Fractal

Page 108: The Universe as a dynamical system - page d'accueil...Einstein Legacy 1905 - Special Relativity Principle−→ The equations of physics are the same in all galilean (inertial) frames

Conclusion


Recommended