+ All Categories
Home > Documents > Theme A Overview: Recovery, Processing and...

Theme A Overview: Recovery, Processing and...

Date post: 24-Mar-2018
Category:
Upload: dongoc
View: 217 times
Download: 2 times
Share this document with a friend
28
Theme A Overview: Recovery, Processing and Capture John Grace Clean Energy Research Centre University of British Columbia Vancouver CMC Annual Conference, Banff, May 2014
Transcript
Page 1: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

Theme A Overview: Recovery, Processing and Capture

John Grace Clean Energy Research Centre University of British Columbia

Vancouver

CMC Annual Conference,

Banff, May 2014

Page 2: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

Criteria in Choosing Projects •  Potential to be game-changing •  Potential to harness excellent Canadian

researchers, working together in teams •  Relevance to long-term Canadian needs. •  Linkages, or potential linkages, with Canadian

industry. •  Potential to train high-quality HQP.

Page 3: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

Theme A, Round 1 Projects •  Integrated gasification with looping CO2 capture

(Ellis, Kaliaguine, deLasa, Mahinpey, Macchi et al.) – A01

•  Fluidized bed gasification of low-grade coals and petcoke (Hills, Pugsley, Chaouki, Gupta et al.) – A02

•  Rapid routes to carbon-efficient recovery of bitumen and heavy oil (Gates, Larter) – A03

•  Development of direct air capture technology

(Keith, Grace, Lim, Anthony, Macchi) - A04

•  Hydrogen production from waste asphaltenes (Pereira Almao) – A05.

Page 4: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

A1: Integrated Fluidized Bed Gasification with Looping CO2 Capture

(UBC, UCalgary, Laval, Western, UOttawa, CANMET)

4

Gasifier   Calciner  

Fuel  

Sorbent  with  CO2  

Sorbent  

Concentrated  CO2  

H2O  

Syngas  

Overall  Goal:  • To  develop  and  characterize  poten2al  CO2  capture  sorbents  • To  test  most  promising  sorbents  in  pilot  plant  for  gasifica2on  and  CO2  capture  

Sorbents  synthesized,  prepared,  pelle2zed,  coated  and/or  tested:  •   Limestone  (crushed/pelle2zed)  •   Lithium  orthosilicate  •   Core-­‐shell  limestone  pellets  

Page 5: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

Limestone  vs  synthe2c  sorbents  CO2  capture  efficiency  

Limestone  and  its  pellets:  Ace2fica2on  and  Al(OH)3  binder  promo2ng  higher  CO2  capture  capacity  

Prepared  coa2ng  of  shells  of  mesostructured  SiO2,  TiO2,  ZrO2  and  SiO2-­‐ZrO2,  CaCO3  or  Cadomin  par2cles  

Chemical  looping  unit:  Operatability  tested  using  limestone  or  pellets  

ALri2on  tes2ng  of  sorbents  

Fuel/Chemical

Fuel cell

Transport fuel

Oil upgrading

Combustor

Coal

Petcoke

Biomass

Waste

BFBGasifier

Cal

cina

tor

Gas TurbineCompressor

Steam Turbine

HRSG

PSAH2S / NH3

removal

Generator

Generator

Electric Power

Electric Power

Electric Power

Condenser

Condenser

Condenser

SLC

Condenser

ASU

CO2 Sequestration

RecycledWater

RecycledWater

RecycledWater

RecycledWater

Air

N2 to Combustion

O2

PSAOff-Gas

Waste

Off-Gas to Calciner

Clean Syngas

H2

RecycledParticulates

SteamCaCO3

CaO

CO2,H2O

Syngas

H2

CO2

N2

H2O,N2

Air

Steam Water

O2,H2O,N2

WGS

Model  IGCC  with  in-­‐situ  CO2  capture  using  lime  (CaO)  using  ASPEN  Plus  

Gasifier:  750˚C,  32  barg  CaO-­‐Carbon  (CaO:C)  molar  Ra2o:  1.5:1  Calciner:  900˚C,  0  barg  

A1

Page 6: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

Benefication &

Catalyst Addition

UofA

Gasifica=on  Kine=cs    UofT:  Drop  in  Gasifier  

UCalgary:  TGA  Poly:  Fluidized  TGA  

Fluidized  Bed  Studies  EP:  20  cm  dia,  Atm  P,    

<  1000°C  (Poly)  

Hot gas Clean-up UCalgary

Coal   Ash-­‐free  or  Low  ash  

Gas  Comp  

CO,  H2,  CH4,  CO2  

Chemical  Looping  CO2  (A1)  

Modeling  UofS:  CFD  of  fluidiza2on  

UCalgary,  Poly:  Process  Economics  

Overall  Goal:  • To  develop  a  fluidized  bed  cataly2c  gasifica2on  process  that  improves  gasifica2on  efficiency  and  produces  a  capture-­‐ready  stream  of  CO2.  

A2: Fluidized Bed Catalytic Gasification of Low-Grade Coals

(UCalgary, UofS, École Poly, UofA, UofT)

Page 7: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

Proximate analysis (wt%, db) Ultimate analysis (wt%, daf)

VM FC Ash VM/FC C H N S O*

GEN-raw 31.5 38.3 30.5 0.8 73.1 4.3 1.0 0.4 21.2

GEN-AF 69.5 30.5 682 ppm# 2.3 87.2 5.3 3.4 0.1 4.3

GEN-res 17.3 24.8 57.9 0.7 76.0 5.0 2.1 1.2 15.7

GEN-AF char 0.0 100.0 0.0 - 90.9 2.5 1.8 0.1 4.7

GEN-LAP 33.6 58.3 8.15 0.58 69.7 4.8 1.0 0.4 24.1

VM = volatile matter, FC = fixed carbon, db = dry basis, daf = dry and ash free, *Oxygen content by difference, #determined by ICP-MS

Properties of Genesee coal samples (raw, ash free, residue, char, and low-ash)

Ca(OH)2 decomposition: Comparison between Conventional and Fluidized Bed TGAs

grams!  

Coupling Aspen Plus flowsheet with external Fortran files

Drop-down Micro Reactor for Gasification studies with Steam Reaction scheme:

K2CO3 on ash-free coal heated in N2 or CO2 atmosphere.

Page 8: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

A03  -­‐  Rapid  Routes  to  Carbon-­‐Efficient  Recovery  of  Bitumen  and  Heavy  Oil    -­‐  Gates  and  Larter  (UCalgary)  

OBJECTIVES:  1.  Analyse  major  CO2  emission  sources  from  exis2ng  thermal  bitumen  recovery  

methods  OUTCOMES:    Full  analysis  of  CO2  emissions  from  SAGD  well  pairs  versus  resource  (including  effect  of  reservoir  geology)  

2.   Reduce  Emissions  to  Atmosphere:    Routes  to  reduce  carbon  in  exis2ng  processes:  a.  BeLer  well  design  or  placement  to  reduce  carbon  intensity  

OUTCOMES:    Up  to  25%  reduc=on  in  Steam-­‐Oil  and  CO2-­‐Oil  Ra=o  b.    Op2miza2on  of  opera2ng  strategies  to  reduce  carbon  intensity  

OUTCOMES:    Up  to  30%  reduc=on  in  Steam-­‐Oil  and  CO2-­‐Oil  Ra=os  c.  Mul2-­‐well  control  methods  for  robust  recovery  process  design  e.g.  

smart  pads  OUTCOMES:    Up  to  25%  reduc=on  in  Steam-­‐Oil  and  CO2-­‐Oil  Ra=os  

d.  Reservoir  s2mula2on  technologies  to  improve  oil  quality  to  reduce  carbon  intensity  of  a  recovery  process,  e.g.  reservoir  precondi2oning  by  injec2on  of  agents  in  mobile  water  OUTCOMES:    Up  to  20%  reduc=on  in  Steam-­‐Oil  and  CO2-­‐Oil  Ra=os  

Page 9: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

A03  –  Gates  &  Larter  (con=nued)  

3.  Zero  Emission  to  Atmosphere  Processes:    Evaluate  routes  to  zero  or  neutral  carbon  emission:  

a.  Integrated  recovery  process  design  and  CO2  sequestra2on  e.g.  shallow  water  aquifers,  SAGD  chambers  OUTCOMES:    Possible,  but  according  to  industry,  CO2  sequestra=on  in  shallow  water  aquifers  e.g.  Grand  Rapids  Forma=on,  directly  under  SAGD  opera=ons,  presents  a  large  risk  with  respect  to  CO2  leakage  Results  suggest  that  if  dissolu=on  and  mineraliza=on  occur  in  shallow  water  zone,  to  store  1  MT/yr  for  30  years,  need  98  km2  of  75  m  thick  aquifer.  

b. Novel  steam  genera2on  e.g.  steam-­‐methane  reforming  with  conversion  of  CO2  to  carbon  phases  

         OUTCOMES:    Direct  contact  steam  genera=on  –  1  patent  filed  for  SAGD  opera=ons  (not  directly  funded  by  CMC)  Decarbonizer  for  Oil  Sands  Opera=on  –  decomposes  natural  gas  to  carbon  black  and  hydrogen,  and  then  burns  hydrogen  as  fuel.  

Page 10: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

Lowig/Direct  Alkali  Regenera2on  System  processes  can  be  adapted  for  regenera2on  of  NaOH  for  use  in  cyclic  CO2  air  capture  

Regenera2on  involves  CO2  release  from  solid-­‐state  reac2on  of  Na2CO3  and  Fe2O3,  followed  by  hydrolysis  of  NaFeO2  to  recover  NaOH  

A04 – Direct Air Capture Technology (UCalgary, UBC, UOttawa, Canmet)

Objective: Seek ways of viably removing CO2 from ambient air in a cyclic manner.

Page 11: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

Ball  milling  the  Fe2O3  Na2CO3  mixture  for  30  

min  reduces  the  temperature  of  the  

CO2  releasing  reac2on  by  200-­‐300°C  and  

increasing  conversion  for  similar  2me  period  

Contrac2ng  cylinder  surface  reac2on  

Diffusion  limited  kine2cs  with  sharp  increase  in  rate  at  Na2CO3  mel2ng  point  

Page 12: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

Leaching  of  the  NaFeO2  product  can  be  carried  out  at  lower  temperature  for  reduced  par2cle  size.  

Page 13: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

A04 - CO2 Capture from Ambient Air via Lime-Based Sorbents UOttawa, Canmet-Ottawa

Objective: Investigate performance of a pelletized lime-based sorbent for CO2 capture from ambient air over 5 carbonation/calcination cycles.

Method: Fixed bed calcination occurred at simulated oxy-fuel conditions in 100% CO2 at 920°C for 12 min. Lime sorbent contained 10 wt % calcium aluminate cement to improve its initial sorption properties via formation of mayenite.

Result 1) Humidifying the air (e.g., above 40% R.H.) and pre-hydrating the sorbent are crucial for rapid CO2 uptake and elevated conversion. Carbonation occurs in nano-sized water droplets at sorbent surface where the ions of dissolved of CO2 and Ca(OH)2 react. Result 2) The pelletized lime-based sorbent capacity decays with each regeneration cycle (~30% after 5 cycles). Note: Natural lime particles fared similarly.

Achievement/Path Forward: Hydrated lime can efficiently capture CO2 from moist air, but sorbent regeneration is an important problem. More cycles will identify if there is an acceptable asymptotic lower conversion limit while attempting to better protect the sorbent (e.g., reduce the calcination period).

Page 14: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

A05: Hydrogen Production and Waste Processing

Principal Investigator: Pedro Pereira-Almao HQP: Azfar Hassan, Nashaat N. Nassar, Francisco Lopez-

Linares Graduate Student: Lante Carbognani-Arambarri

Intern: German Luna

University of Calgary, AB, Canada

Page 15: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

Vacuum  Residue  

Adsorption of Asphaltenes in

a (Fixed Bed Reactor)

H2O(g)  

CSG of adsorbed

asphaltenes

Partially Deasphalte

d VR

TC/SCC  

Visbroken  Vac  Residue  

Catalytic steam gasification combined with dry reforming of methane would lead to 50% reduction in CO2

Project  Objec2ves  A.    Prepare  macroporous-­‐mesoporous  kaolin-­‐based  cataly2c  material  suitable  for  asphaltenes  adsorp2on.  B.    Fundamental    study  of  asphaltene  adsorp2on    over  transi2on  metal  oxide  nanopar2cles  and  other    materials.  C.    Visbroken  feed  prepara2on  close  to  instability,  so  they  can  readily  adsorb.  D.  Study  effect  of  thermal  cracking  of  feed    on  its  adsorp2on.  E.  Bench  scale  fixed  bed  reactor  set-­‐up  for  adsorp2on  and  gasifica2on.  F.    Post  adsorp2on  cataly2c  steam  gasifica2on  of    adsorbed  waste  material  in  fixed  bed  reactor.  

A05

Page 16: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

Overall Achievements New  Process  Scheme  

Adsorp2on  Experiments  

  Thirteen  journal  publica2ons  so  far.    Several  presenta2ons  in  na2onal  and  interna2onal  conferences.    Catalyst  prepared  needs  to  be  tested  for    cataly2c  steam  cracking  (CSC)  and      cataly2c  steam  gasifica2on  (CSG)  at  pilot  plant  scale.  

Nanopar2cles  adsorbed  asphaltenes  

Thermal  cracking    improved  uptake  by  the  catalyst  

Thermal  cracking  

Visbroken  Residue  

A05

A5

Page 17: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

Theme A, Rounds 2 & 3 Projects •  Easy-Release CO2 Capture Sorbents at the

Molecular Level (Shimizu, Woo) – A221

•  High Performance Amine-Impregnated Solid Sorbents for Post-Combustion CO2 Capture (Gupta et al.) – A239

•  Material Development and Optimization for Zero CO2 Emission Energy Production (Sayari, Birss, Thangadurai) – A211

•  CO2-microbubbles for increased sequestration & EOR potential in oil/gas reservoirs (Trivedi et al.) - A238

•  CaO/CuO Sorbent for Post-Combustion CO2 Capture (Macchi, Mehrani, Anthony, Legros, Patience) – A346

Page 18: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

A221-Designing Easy Release CO2 Sorbents Shimizu (UCalgary) and Woo (UOttawa)

General Goal: Develop better solid CO2 sorbents through combined computer modelling and synthesis of new crystalline porous solids.

Specific Goals: - Explore new types of porous solids, called metal organic frameworks (MOFs), and develop systems with not only good CO2 capacity, but also improved stability to water. - Develop a means of computationally screening new MOFs and simulating their CO2 uptake in high throughput method.

Page 19: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

A221-Designing Easy Release CO2 Sorbents Main Outcomes: - Two new approaches to water-stable MOFs were generated, and new approaches to raising heat of adsorption for CO2 were studied. - Patent filed for a new solid sorbent (CALF-20) that is steam stable, has excellent capacity at flue gas CO2 pressures and has a scalable preparation. - Collaboration struck to carry out nanostructuring of CALF-20 to improve heat flow and kinetics of gas permeability. - New algorithm developed to rapidly generate and screen new MOFs for CO2 capacity. - Predictions have been made for new solid sorbents that would be world record materials for capacity.

Page 20: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

A 239 High-Performance Amine-Impregnated Solid Sorbents for Post Combustion CO2 Capture &

Techno-Economic Assessment R. Gupta, S. Kuznicki, W. Chen, Z. Hashisho (UAlberta)

+ P. Sarkar (Alberta Innovates - Technology Futures)

Goals: - Synthesize and characterize amine-functionalized supported sorbents (meso-porous silica, zeolites, activated petcoke and CNT).

- Determine adsorption/desorption kinetics.

- Find effects of flue gas moisture, O2, Sox & NOx on multiple-cycle tests with N2 or steam regeneration in TGA and bench-scale packed bed.

- Test selected sorbents on slip stream from coal-fired power plant.

- Techno-economic assessment of CO2 capture with novel sorbents.

Page 21: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

A239 - Achievements •  Successfulluy synthesized amine-functionalized solid

sorbents (meso-porous, silica, zeolites, activated petcoke and CNT) by impregnation and grafting with 30-60% amine loadings.

•  Maximum single cycle adsorption capacity of 4 mmol/g sorbent (16.5% by wt) for most sorbents.

•  Desorption step was very slow, but steam desorption was very fast.

•  Moisture facilitated adsorption, but 4% O2 decreased adsorption capacity. SOx & NOx studies not completed.

•  ASPEN techno-economic assessment and slip stream studies continuing.

Page 22: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

500 oC

COMBINED SOFC-SOEC WITH INTEGRATED CO2 CAPTURE/STORAGE

•  Develop  combined  SOFC-­‐SOEC  with  capture  and  separa2on  of  pure  CO2.  •  Storage,  sequestra2on  and/or  recycling  of  CO2  as  feed  for  SOEC  

SELECTIVE  ADSORPTION  OF  SO2  Materials  used  for  SO2  Sensor:  TiO2+SnO2    mixed  composites  

CO2  Sensor:  Ba2Ca0.66Nb0.68Fe0.66O6-­‐δ  

SO2 in N2 CO2 in Air PPM  LEVEL  DETECTION  OF  SO2  AND  CO2  BEFORE  AND  AFTER  CO2  CAPTURE  

Page 23: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

CO2 adsorbents • Grafted triamine and impregnated polyethylenimine on pore-expanded MCM-41 exhibits high CO2 adsorption capacity, high selectivity and fast adsorption-desorption kinetics. • Moisture enhances CO2 adsorption and prevents deactivation of amine adsorbents via formation of urea linkages. • Materials are stable in simulated SOFC exhaust gas (humid 42% H2; 7% CO, balance CO2) Selective SO2 adsorbents protective filter for CO2 adsorbents) • Grafted N,N-dimethylpropylamine and impregnated tertiary amine-containing PEI and polypropylamine dendrimers impregnated PE-MCM-41 exhibited excellent reversible adsorption of SO2 with very high selectivity in the presence of CO2. • No deactivation in high concentration of dry or humid CO2. • Moisture enhanced SO2 uptake on all new adsorbents. Novel materials for reversible SOFC-SOEC • Developed LSFCr/GDC/YSZ/GDC/LSFCr symmetrical SOFC/SOEC. • GDC buffer layer used to prevent interphase reactions. • In SOFC mode, fuel is converted to CO2 and steam; in SOEC mode, H2 + CO syngas formed. Novel SO2 sensors • Semiconducting TiO2:SnO2 composite (3:1 molar ratio) was synthesized by sintering pellets at 700oC in air and tested for the detection of ppm levels of SO2. • Excellent reproducible sensitivity for SO2 in N2 at 400oC, with 90% of sensing time (t90) of ~5 min. • Linear relation between ppm level of SO2 and sensitivity. • Material stable up to 3000 ppm SO2 in air at 700oC. • Perovskite-type Fe-doped barium calcium niobate (BCN) is also a potential resistive-type sensor to estimate efficiency of CO2 capture capacity of adsorbents.

Page 24: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

A238 - CO2 Microbubbles for Improved Sequestration and EOR

J. Trivedi, E. Kuru, P. Choi (UAlberta) and M. Dong (UCalgary) Objectives: Replace traditional CO2 injection into oil and gas reservoirs by alternative safe and secure method. Improve oil/gas recovery.

Underlying Idea: Inject CO2 / Flue gas as microbubbles for storage in oil/gas reservoirs. Research to understand stability and applications of microbubbles for underground storage.

Page 25: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

Achievements •  Studied  mixing  method,  type  of  surfactant  and  polymer,  and  their  

op2mal  concentra2ons  for  genera2ng  stable  CO2  microbubbles  using  rheological  characteriza2on,  microscopic  study  and  PVT  analysis.    

•  Studied  effect  of  oil  type  (light  and  heavy)  on  destabiliza2on  of  CO2  microbubbles.    Correlated  bulk  foam  test    results  with  porous  media  experiments.  

•  Conducted  CO2  microbubble  flooding  into  oil  saturated  core  and  linear  visual  sandpack  to  understand  CO2  microbubble  flow  through  porous  media  and  oil  recovery.  

Result Highlights  •  CO2  microbubbles  generated  in-­‐situ  (inside  porous  media)  have  beLer  

stability,  and  performance  for  CO2  storage,  as  well  as  oil  recovery,  compared  to  conven2onal  CO2  gas  injec2on,  foam  injec2on,  and  ex-­‐situ  generated  microbubble  injec2on.    

•  Oil  recovery  could  be  increased  by  15-­‐17%  with  less  CO2  produc2on/recycling.  

Page 26: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

A346: Pre- and Post-Combustion CO2 Capture using Composite CaO/CuO Sorbents: UOttawa, Ecole Polytechnique, UCalgary and Canmet

26

Pre-­‐combus=on  CO2  capture    

Objec=ve:    Inves2gate  various  sorbent  formula2ons  and  their  sustained  CO2  capture  capacity  (conversion  and  aLri2on  resistance)  over  mul2ples  cycles  in  realis2c  gaseous  environments  and  gas-­‐solid  contac2ng  paLerns.    Combined  with  reactor  modeling  and  process  simula2on,  this  could  provide  process  technico-­‐economic  proof-­‐of-­‐concept.  

Post-­‐combus=on  CO2  capture    Solids  Recycle  Loop  

Page 27: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

A346 Post-Combustion Process – Initial results:   Although recirculating solids from air reactor to calciner

reduces fuel (CH4) requirement, it increases solids circulation rate.

  CaO/CuO pellets have similar attrition behaviour as FCC and VPO catalysts in circulating fluidized bed processes.

  Material and energy balances suggest marginal T-gradient during calcination.

Pre-Combustion (Gasification) Process – Initial results:   Cu/CaO pellets must enter gasifier. (Otherwise CuO would be

reduced.)   Cu will be difficult to oxidize due to CaCO3 layer.   Thus some calcination in air reactor or separate CaO and Cu

pellets are likely to be only ways forward.

Page 28: Theme A Overview: Recovery, Processing and Capturecmcghg.com/wp-content/uploads/2014/08/John-Grace-2014.pdf · Theme A Overview: Recovery, Processing and Capture John Grace Clean

Some Overall Observations: Theme A •  Very limited industry involvement and funding. •  Some good academic work accomplished leading to

journal papers, presentations + some patents. •  Work is continuing in most projects beyond the end

of the CMC funding. •  Nature makes it difficult to achieve breakthroughs. •  Some “real” collaboration within projects. Some

linkages where there were none previously. •  Virtually no cross-over within Theme A or with the

other three themes. •  Some excellent HQP training: core of trained and

committed young people are the hope for the future.


Recommended