+ All Categories
Home > Documents > THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF...

THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF...

Date post: 23-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
118
THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF GRAPHS by Mohammad Ghebleh B.Sc., Sharif University of Technology, 1997 M.Sc., Sharif University of Technology, 1999 a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics c Mohammad Ghebleh 2007 SIMON FRASER UNIVERSITY Fall 2007 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author.
Transcript
Page 1: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

THEOREMS AND COMPUTATIONS IN CIRCULAR

COLOURINGS OF GRAPHS

by

Mohammad Ghebleh

B. Sc., Sharif University of Technology, 1997

M. Sc., Sharif University of Technology, 1999

a thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the Department

of

Mathematics

c© Mohammad Ghebleh 2007

SIMON FRASER UNIVERSITY

Fall 2007

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Page 2: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

APPROVAL

Name: Mohammad Ghebleh

Degree: Doctor of Philosophy

Title of thesis: Theorems and Computations in Circular Colourings of Graphs

Examining Committee: Dr. Michael Monagan

Chair

Dr. Luis Goddyn, Senior Supervisor

Dr. Pavol Hell, Supervisor

Dr. Petr Lisonek, Supervisor

Dr. Bojan Mohar, Supervisor

Dr. Ladislav Stacho, Examiner

Dr. Xuding Zhu, External Examiner

Date Approved:

ii

Page 3: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Abstract

The circular chromatic number provides a more refined measure of colourability of graphs,

than does the ordinary chromatic number. Thus circular colouring is of substantial impor-

tance wherever graph colouring is studied or applied, for example, to scheduling problems of

periodic nature. Precisely, the circular chromatic number of a graph G, denoted by χc(G),

is the smallest ratio p/q of positive integers p and q for which there exists a mapping

c : V (G) → {1, 2, . . . , p} such that q 6 |c(u) − c(v)| 6 p− q for every edge uv of G.

We present some known and new results regarding the computation of the circular chro-

matic number. In particular, we prove a lemma which can be used to improve the ratio

of some circular colourings. These results are later used to bound the circular chromatic

number of the plane unit-distance graph, the projective plane orthogonality graph, gener-

alized Petersen graphs, and squares of graphs. Some of the computations in this thesis are

computer assisted.

Nesetril’s “pentagon problem”, asks whether the circular chromatic number of every cubic

graph having sufficiently high girth is at most 5/2. We prove that the statement of the

pentagon colouring problem is false with odd-girth in place of girth; and that if the pentagon

colouring problem is true then the girth requirement is at least 10. Additionally, we present

results of extensive computations of the circular chromatic numbers of small cubic graphs

with girth at most 10. We also prove that every subcubic graph with girth at least 9 which

can be embedded in either the plane, the projective plane, the torus, or the Klein bottle,

has circular chromatic number strictly less than 3.

Finally we investigate circular edge colourings of cubic graphs. In particular, we establish

the circular chromatic index for several infinite families of snarks, namely Isaacs’ flower

snarks, Goldberg snarks, and generalized Blanusa snarks.

iii

Page 4: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Acknowledgements

I would like to thank my supervisor, Dr. Luis Goddyn, for his continuous support during

my studies at SFU. I would like to thank Dr. Michael Monagan and the CECM for their

support and a relaxed work space. I would also like to thank Dr. Pavol Hell, Dr. Bojan

Mohar, Dr. Petr Lisonek, Dr. Ladislav Stacho and Dr. Xuding Zhu for reading my thesis

and their helpful comments.

I would also like to thank my friends at SFU for making my stay here a pleasant one. Finally,

I would like to thank my family and my girlfriend, Shahrzad, for helping me through my

studies.

iv

Page 5: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Contents

Approval ii

Abstract iii

Acknowledgements iv

Contents v

List of Tables viii

List of Figures ix

1 An Introduction to Circular Colouring 1

1.1 Circular Colouring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 (p, q)–Colouring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Graph Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Circular Colourability via Orientations . . . . . . . . . . . . . . . . . . . . . 4

2 Computational Aspects of Circular Colouring 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Tight Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Acyclic Colourings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Greedy Circular Colouring and Metaheuristics . . . . . . . . . . . . . . . . . 12

2.4.1 Tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Bounding Circular Chromatic Number 15

3.1 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Even-Faced projective planar graphs . . . . . . . . . . . . . . . . . . 16

3.2 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v

Page 6: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

3.2.1 The odd-girth bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Homomorphisms of Graphs to Cycles . . . . . . . . . . . . . . . . . . . . . . 23

4 Circular Chromatic Number of Some Special Graphs 26

4.1 Generalized Petersen Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 The graphs P (n, 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.2 The graphs P (n, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Squares of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Squares of hypercube graphs . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Squares of prisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.3 Squares of Mobius ladders . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.4 Squares of flower snarks . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 The Plane Unit-Distance Graph . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 The Projective Plane Orthogonality Graph . . . . . . . . . . . . . . . . . . 50

5 Circular Colourability vs. Girth 53

5.1 How About Odd-Girth? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 An Alternate View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Circular Critical Subcubic Graphs . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Further Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Subcubic Graphs with Circular Chromatic Number 3 64

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Subcubic 3–Circular Critical Graphs . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Embedded Graphs with Girth 9 . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 The Circular Chromatic Index 72

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Flower Snarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3 Goldberg Snarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.4 Generalized Blanusa Snarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.4.1 The upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4.2 The lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A Small Subcubic 3–Circular Critical Graphs 95

vi

Page 7: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

A.1 3–Circular Critical Graphs with Girth 4 . . . . . . . . . . . . . . . . . . . . 96

A.2 3–Circular Critical Graphs with Girth 5 . . . . . . . . . . . . . . . . . . . . 98

B Case Analysis for Lemma 6.8 101

B.1 Configuration (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B.2 Configuration (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 104

vii

Page 8: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

List of Tables

Table 5.1: Circular chromatic number of small cubic graphs of girth 7 . . . . . . 58

Table 5.2: Circular chromatic number of small cubic graphs of girth 9 . . . . . . 58

Table 5.3: Summary of small triangle-free subcubic 3–circular critical graphs . . 60

Table 5.4: Circular chromatic number of small cubic graphs of girth 5 . . . . . . 61

Table 5.5: Circular chromatic number of small cubic graphs of girth 6 . . . . . . 62

Table 5.6: Circular chromatic number of small cubic graphs of girth 8 . . . . . . 63

viii

Page 9: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

List of Figures

Figure 2.1: Improving a 4–colouring of the spindle graph . . . . . . . . . . . . 11

Figure 3.1: Even-faced embedding of P − x in the projective plane . . . . . . . 17

Figure 3.2: Planar drawing of a K23 graph . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.3: The Monoplex, Duplex and Triplex graphs . . . . . . . . . . . . . . 22

Figure 3.4: The wheel W7 as a projective plane quadrangulation . . . . . . . . 24

Figure 4.1: The Monoplex graph as a subgraph of P (n, 2) . . . . . . . . . . . . 27

Figure 4.2: 83 + 2ε–circular colourings of the Monoplex graph . . . . . . . . . . 29

Figure 4.3: A Hamiltonian cycle of P (14, 2) . . . . . . . . . . . . . . . . . . . . 31

Figure 4.4: A block of the (11, 4)–colouring of P (22, 2) . . . . . . . . . . . . . . 31

Figure 4.5: 3–Colourings of P (7, 2) . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 4.6: (14, 5)–colourings of P (13, 2) and P (15, 2) . . . . . . . . . . . . . . 34

Figure 4.7: Subgraphs of P (11, 3) and P (13, 3) embedded in the projective plane 36

Figure 4.8: A Hamiltonian cycle in G(2)7 . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.9: 5–Colourings of squares of flower snarks . . . . . . . . . . . . . . . 45

Figure 4.10: The unit distance graph Ha,b . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.11: Construction of Gn+1 from Gn . . . . . . . . . . . . . . . . . . . . . 48

Figure 4.12: The Moser (spindle) graph . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 4.13: The orthogonality graph G1 . . . . . . . . . . . . . . . . . . . . . . 51

Figure 5.1: The spiderweb graphs S1 and S2 . . . . . . . . . . . . . . . . . . . 54

Figure 5.2: The spiderweb graph S3 . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 5.3: A subcubic graph with girth 6 and χc = 3 . . . . . . . . . . . . . . 56

Figure 5.4: A cubic graph with girth 7 and χc = 14/5 . . . . . . . . . . . . . . 57

Figure 5.5: Subcubic projective plane graph with girth 10 . . . . . . . . . . . . 59

Figure 6.1: Forbidden configurations for a 3–circular critical subcubic graph . . 67

ix

Page 10: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Figure 6.2: Further forbidden configurations for G . . . . . . . . . . . . . . . . 69

Figure 7.1: The subcubic 2–connected graphs with χ′c = 4 . . . . . . . . . . . . 74

Figure 7.2: The building block of the flower snarks . . . . . . . . . . . . . . . . 77

Figure 7.3: (10, 3)–Edge colouring of J9 . . . . . . . . . . . . . . . . . . . . . . 79

Figure 7.4: (7, 2)–Edge colouring of J3 . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 7.5: (17, 5)–Edge colouring of J5 . . . . . . . . . . . . . . . . . . . . . . 80

Figure 7.6: The Loupekine construction . . . . . . . . . . . . . . . . . . . . . . 81

Figure 7.7: Construction of Goldberg snarks . . . . . . . . . . . . . . . . . . . 82

Figure 7.8: r–Edge colourings of a Goldberg block with r < 134 . . . . . . . . . 84

Figure 7.9: (13, 4)–Edge colouring of G7 and TG7 . . . . . . . . . . . . . . . . 85

Figure 7.10: (10, 3)–Edge colouring of G3 . . . . . . . . . . . . . . . . . . . . . . 86

Figure 7.11: (10, 3)–Edge colouring of TG3 . . . . . . . . . . . . . . . . . . . . . 86

Figure 7.12: Second Loupekine snark . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 7.13: The dot product construction . . . . . . . . . . . . . . . . . . . . . 88

Figure 7.14: Blanusa blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 7.15: Consecutive colourings of Blanusa blocks . . . . . . . . . . . . . . . 90

x

Page 11: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 1

An Introduction to Circular

Colouring

The concept of circular chromatic number of graphs was first introduced by Vince [50] under

the name star chromatic number. Circular colouring has received much attention since it

provides a refinement of the (ordinary) chromatic number of a graph. In this chapter we

present several equivalent formulations of circular colouring and some preliminary results.

We assume the reader is familiar with the general notions of graph colouring which can be

found in standard graph theory textbooks such as [14] and [54].

1.1 Circular Colouring

For a positive real number r, we let Cr denote the additive group R/rZ. We identify Cr

with the interval [0, r). Intuitively, Cr can be thought of as a circle of perimeter r. For any

x, y ∈ Cr, the r–circular distance between x and y is defined by

|x− y|r = min{|x− y|, r − |x− y|}.

In other words, |x− y|r is the shortest distance between the two points corresponding to x

and y on a circle of perimeter r. When it is clear from the context, we may refer to |x− y|ras the distance between x and y. For every x, y ∈ [0, r), the r–circular interval [x, y]r, is

1

Page 12: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 1. An Introduction to Circular Colouring 2

defined by

[x, y]r =

[x, y] if x 6 y,

[x, r) ∪ [0, y] if x > y.

Sometimes it is convenient to use alternative representations of Cr. For x, y ∈ R with

x 6 y, we define the r–circular interval [x, y]r to be the image of the real interval [x, y]

under the map which reduces, modulo r, each real number to its unique representative

in [0, r). Note that if 0 6 x 6 y < r, this definition agrees with the above definition of

[x, y]r, and if y−x > r then [x, y]r = [0, r). It is apparent from the definition that if x 6 y,

then [x, y]r = [x− kr, y − kr]r for any integer k.

Definition 1.1. Let G be a graph and r a positive real number. An r–circular colouring

of G is a map c : V (G) → Cr such that |c(v) − c(w)|r > 1 for all edges uv of G. If such

a map exists, G is said to be r–circular colourable. The circular chromatic number of G is

defined by

χc(G) = inf {r : G is r–circular colourable} .

The terms r–circular colouring and r–circular colourable are often shortened to r–colouring

and r–colourable respectively. If r is an integer, it is known [50] that the existence of an

r–circular colouring of a graph is equivalent to the existence of an ordinary r–colouring.

Thus, using the shortened notation as described above does not cause any confusion with

ordinary colourability of graphs.

Example 1.2. It is immediate from the above definition that χc(K1) = 1 and χc(K2) = 2.

Remark 1.3. The condition |c(v) − c(w)|r > 1 in the above definition is equivalent to the

condition 1 6 |c(v) − c(w)| 6 r − 1.

By the above definition, an r–colouring of a graph G is also an r′–colouring of G for

every r′ > r. On the other hand, every k–colouring of G with colours from the set

{0, 1, . . . , k− 1} is a k–circular colouring of G. Therefore χc(G) 6 χ(G) for every graph G.

Not only the chromatic number of a graph G is an upper bound for its circular chromatic

number, it indeed is an approximation of χc(G) as stated in the following theorem.

Theorem 1.4. [50] For every graph G we have χ(G) − 1 < χc(G) 6 χ(G).

By restriction, any r–colouring of a graph G gives an r–colouring of every subgraph of G.

This proves the following.

Page 13: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 1. An Introduction to Circular Colouring 3

Lemma 1.5. Let G be a graph and H ⊆ G. Then χc(H) 6 χc(G).

Corollary 1.6. χc(G) = 1 if and only if G is a trivial graph.

Corollary 1.7. χc(G) = 2 if and only if G is a nonempty bipartite graph.

In particular, every even cycle has circular chromatic number 2. For a nontrivial example,

let C2k+1 = v1v2 · · · v2k+1v1 be the cycle of length 2k + 1 and r = 2 + 1/k. Then the map

c : V (C2k+1) → Cr defined by c(vi) = i + rZ is an r–colouring of C2k+1. Later we prove

that this is indeed best possible and we have the following.

Proposition 1.8. χc(C2k+1) = 2 + 1k for all k > 1.

The infimum in the definition of the circular chromatic number is attained for every finite

graph. Vince [50] proved that the circular chromatic number of every finite graph is rational.

A combinatorial proof of this result was found by Bondy and Hell [4].

1.1.1 (p, q)–Colouring

The original definition of the star chromatic number of a graph given by Vince [50] is

essentially the following.

Definition 1.9. Given positive integers p and q and a graph G, a (p, q)–colouring of G is

any map c : V (G) → {0, 1, . . . , p− 1} such that q 6 |c(v)− c(w)| 6 p− q for every edge vw

in G.

By Remark 1.3, if c is a (p, q)–colouring of a graph G, then the map c′ : v → c(v)/q is

a p/q–colouring of G. Indeed the converse of this observation is also true. Namely, the

existence of a p/q–colouring for a graph G implies (p, q)–colourability of G. A proof of this

can be found in [59]. Thus we have the following.

Theorem 1.10. For all G,

χc(G) = min

{

p

q: G has a (p, q)–colouring

}

.

This equivalent definition of the circular chromatic number is particularly useful in pre-

senting circular colourings of graphs since it only involves integers. This definition is also

more suitable for computer programming since the number of colours is finite.

Page 14: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 1. An Introduction to Circular Colouring 4

1.2 Graph Homomorphisms

Definition 1.11. Given graphs G and H, a homomorphism from G to H is any map

f : V (G) → V (H) such that for every edge vw of G, f(v)f(w) is an edge of H. We say G

maps to H, or G→ H for short, if such a homomorphism exists.

For positive integers p and q, let Kp/q be the graph defined by

V (Kp/q) = {0, 1, . . . , p− 1}, and E(Kp/q) = {ij : q 6 |i− j| 6 p− q}.

Note that Kp/q is nontrivial only if p > 2q. It is immediate from the definitions that a

graph G is (p, q)–colourable if and only if it maps to Kp/q. Therefore we have

χc(G) = inf

{

p

q: G→ Kp/q

}

.

1.3 Circular Colourability via Orientations

A result of Minty [41] relates k–colourability to acyclic orientations. Intuitively, the more

“balanced” one can make the cycles of a graph in an orientation, the fewer colours are

needed to colour the graph. Let−→G be an acyclic orientation of a graph G. For every walk

W in G, let W+ be the set of edges of W whose orientation in−→G agrees with the direction

of W , and let W− be the rest of the edges of W . The imbalance of a walk W with respect

to−→G is defined by

imbal−→G

(W ) =|W |

min{|W−|, |W+|}

The imbalance of the orientation−→G is defined by

imbal(−→G) = max

{

imbal−→G

(C) : C is a cycle in G}

.

It is worth mentioning here that taking the maximum in the above definition over the set

of all closed walks in G results in the same value for imbal(−→G). This equivalence simplifies

some proofs involving imbalances of orientations of graphs.

We usually choose the direction of a cycle C so that |C+| > |C−|. For a cycle C, the

absolute value of the difference |C+| − |C−| is called the discrepancy of C with respect

to−→G . A cycle is said to be perfectly balanced with respect to

−→G , if it has discrepancy 0.

Page 15: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 1. An Introduction to Circular Colouring 5

Note that since−→G is acyclic, |C−| is positive for all C. Minty’s theorem [41] asserts that

for every graph G, χ(G) =⌈

min{imbal(−→G)}

, where the minimum is taken over all acyclic

orientations of G. By Theorem 1.4 we have χ(G) = ⌈χc(G)⌉ for every graph G. This

suggests that perhaps dropping the ceiling in Minty’s formula for χ(G) gives a formula

for χc(G). Goddyn, Tarsi, and Zhang [22] proved that this indeed is the case.

Theorem 1.12. [22] For every graph G,

χc(G) = min{imbal(−→G) :

−→G is an acyclic orientation of G}.

As an example, let G = Cn be a cycle. Then for any acyclic orientation−→G we have

imbal(−→G) = n/a where 1 6 a 6

n2

, thus

χc(Cn) =n

⌊n/2⌋ =

2 if n is even,

2 + 2n−1 if n is odd.

This proves Proposition 1.8.

One may observe from the above theorem that if χc(G) = p/q, where p and q are relatively

prime positive integers, then G has a cycle whose length is a multiple of p, and hence

p 6 circ(G) 6 |V (G)|. Here circ(G) is the circumference of G, the length of the longest

cycle in G.

Theorem 1.12 is particularly helpful in finding upper bounds for the circular chromatic

number. In Chapter 2 we use the fact that the imbalance of an acyclic orientation is easy

to compute in developing a “greedy algorithm” for circular colouring.

Page 16: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 2

Computational Aspects of Circular

Colouring

The computation of circular chromatic number of a given graph is an important factor in

results presented in this thesis. In this chapter we discuss the foundations of the various

approaches used for these computations.

2.1 Introduction

It is well-known that deciding whether a graph is p–colourable is an NP-complete problem

when p > 3. Since the circular chromatic number is a refinement of the chromatic number,

one expects the circular colourability to be an NP-complete problem as well. That indeed

is the case and is formulated in the following theorem.

Theorem 2.1. [29] Given n > 3, a graph G with χ(G) = n, and k > 2, it is NP-complete

to determine whether χc(G) 6 n− 1k .

The following result of Brewster and Graves [7] on the computational complexity of re-

stricted graph homomorphisms generalizes the above theorem. Given two fixed graphs

H and Y , the restricted homomorphism problem takes as input a graph G along with a

homomorphism g : G→ Y and asks whether G admits a homomorphism to H.

Theorem 2.2. [7] The restricted homomorphism problem is in P if H has a loop, H is

6

Page 17: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 2. Computational Aspects of Circular Colouring 7

bipartite, or Y maps to H. Otherwise this problem is NP-complete.

This theorem implies Theorem 2.1 as follows. Given positive integers n > 3 and k > 2, let

H = K(nk−1)/k and Y = Kn. Then by Theorem 2.2, deciding whether an input graph which

maps to Y also maps to H is an NP-complete problem. In other words, deciding whether

an n–colourable input graph has circular chromatic number at most n− 1k is NP-complete.

Exhaustive search for finding good circular colourings is hopeless for many graphs of mod-

erate size, even if their chromatic number is computed easily. In an exhaustive search, one

inspects all possible assignments of colours to vertices to see if a valid assignment exists.

Therefore roughly (using no heuristics) one needs to investigate pn assignments of colours

where p is the number of colours and n is the order of the graph. The major difference

between ordinary colouring and circular colouring is that the number p of colours needed

for a good circular colouring of a graph G can be much larger than the chromatic number

of G.

The author has used several approaches to obtain the computational results presented in

this thesis. The first approach is to use symmetries to limit the search space in an exhaustive

search. For example the colour of the first vertex can be assumed to be 0. Pruning

methods such as checking partial assignments of colours for conflicting edges prune the

search tree significantly. Although these methods accelerate the search for small instances,

the expected running time remains an exponential function of the size of the input and

hence the exhaustive search approach is not reliable.

In this chapter we explain some other approaches which rely on theoretical results. In most

cases, one needs to combine differing approaches for a single graph.

To show that χc(G) = r for a given graph G, one needs to prove the existence of a r–

colouring and also the non-existence of circular r′–colourings for all r′ < r. The first part

is usually easier than the second, since typical graphs have many r–colourings provided r is

at least as big as their circular chromatic number. This makes finding one such colouring

(via exhaustive search or randomized methods) easy. To prove uncolourability is harder in

general.

Page 18: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 2. Computational Aspects of Circular Colouring 8

2.2 Tight Cycles

Given a graph G and an r–colouring c of G, an edge uv of G is said to be a tight edge with

respect to c, if |c(u)− c(v)|r = 1. A special orientation of the subgraph of G induced by the

tight edges can be used to study properties of c. Let Dc(G) be the digraph on the vertex

set V (G), in which the arc −→uv is present, if and only if uv ∈ E(G) and c(v) = c(u)+1. If c is

a (p, q)–colouring of G, then we define Dc(G) = Dc′(G) where c′ = 1q c is the corresponding

pq–colouring of G. In particular, the arc −→uv is present in Dc(G), if and only if uv ∈ E(G)

and c(v) = c(u) + q modulo p. Any cycle in G which corresponds to a directed cycle in

Dc(G) is called a tight cycle of the colouring c (or of the graph G with respect to c).

Lemma 2.3. [26] If c is an r–colouring of G and Dc(G) is acyclic, then G has an r′–

colouring for some r′ < r.

Because of its frequent usage in our proofs, we present as a lemma the following immediate

corollary of the above lemma.

Lemma 2.4. χc(G) = r if and only if G has an r–colouring, and every r–colouring of G

has a tight cycle.

This lemma provides a method of verifying uncolourability for r′ < r, which can be checked

via an exhaustive search when the numerator of r is not large. This approach is particularly

useful in proving χc(G) = χ(G) when that is the case.

Let χc(G) = r and let c be an r–colouring of G. By Lemma 2.4, c has a tight cycle

C = v0v1 · · · vℓ−1v0. Then ℓ is an integer multiple of r which implies r is rational, say

r = pq . We may assume c(vi) = imodulo r. Note that the intervals [c(vi), c(vi+1)) = [i, i+1)

when reduced modulo r, wrap around the circle of circumference r exactly q times. Every

point on the circle is contained in q of these intervals. Then the q vertices of C whose

corresponding intervals contain any fixed point x ∈ [0, r) form an independent set in G.

Lemma 2.5. If χc(G) = pq , then G has a cycle C of length kp for some positive integer k.

Moreover, G has an independent set of size kq which is contained in C.

This lemma combined with the fact that χ(G) − 1 < χc(G) 6 χ(G) limits the possible

values of χc(G) to a finite set. Therefore to find the exact value of χc(G), one needs to

Page 19: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 2. Computational Aspects of Circular Colouring 9

check only a finite number of rational numbers. In particular, χc(G) is a rational number

p/q with 1 6 p 6 n and 1 6 q 6 α(G). The set of possible values for χc(G) can be further

restricted using other methods. Although this observation limits the search for χc(G) to a

finite set, checking each candidate may require an extensive computation.

Let r1 < r2 < · · · < rk be all the possible values for χc(G) as described above and let ri = pi

qi

.

If G is r1–colourable, then χc(G) = r1 and hence by Lemma 2.4, every r1–colouring of G

has a tight cycle. So in an exhaustive search, we might precolour a cycle as a tight cycle and

see if this partial colouring can be extended. This is especially helpful when p1 is big since

that means that we precolour many vertices. Obviously there is a performance reduction

when the graph has many cycles whose lengths are multiples of p. If no r1–colouring is

found, then χc(G) > r2 and we may repeat the same procedure with r2 in place of r1.

Continuing in this manner, we eventually conclude that χc(G) = ri for some i 6 k.

2.3 Acyclic Colourings

An r–colouring c of a graph G which has no tight cycle is called an acyclic colouring. By

Lemma 2.3, if G has an acyclic r–colouring then there exists an r′–colouring of G with

r′ < r. Although this lemma does not provide an estimate on r′, one may formulate its

proof more carefully to get such an estimate as well as a new colouring. This method is

useful in finding upper bounds on the circular chromatic number. More precisely, one may

start by looking for an acyclic (p, q)–colouring of a given graph G for which p is small.

Since p is small, this search can be conducted exhaustively. That colouring then can be

“improved” yielding (p′, q′)–colourings where p′ is not necessarily small. In many cases,

iterative improvements yield the actual circular chromatic number of the graph.

The following lemma which is a generalization of a lemma in [1], provides an algorithm for

improving acyclic colourings.

Lemma 2.6. Let c be a (p, q)–colouring of a graph G such that every directed walk in Dc(G)

contains fewer than n vertices v with p − q 6 c(v) 6 p − 1. Then G has an (np − 1, nq)–

colouring.

Proof. For each x ∈ V (G) let λ(x) be the maximum number of vertices y 6= x on a directed

path in Dc(G) ending at x with p − q 6 c(y) 6 p− 1. Let c′(x) = nc(x) + λ(x). We claim

Page 20: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 2. Computational Aspects of Circular Colouring 10

c′ is an (np− 1, nq)–colouring of G. For each vertex x we know 0 6 c(x) 6 p − 1 and

0 6 λ(x) 6 n − 1. Moreover if λ(x) = n − 1 then c(x) < p − q. Hence 0 6 c′(x) 6 pn − 2

for every x ∈ V (G).

Now let xy ∈ E(G). If xy is not a tight edge, then q < |c(x) − c(y)| < p − q and since

|λ(x) − λ(y)| 6 n − 1, we have nq 6 |c′(x) − c′(y)| 6 np − 1 − nq as required. If xy

is a tight edge, we may assume −→xy ∈ E(Dc(G)). Since every directed path ending at x

may be extended to a path ending at y, we have λ(y) > λ(x). We consider two cases: If

c(x) 6 p − q − 1, then c(y) = c(x) + q and since 0 6 λ(y) − λ(x) 6 n − 1 and pq > 2, we

have nq 6 c′(y) − c′(x) 6 nq + n − 1 6 np − 1 − nq. Alternatively if c(x) > p − q, then

c(y) = c(x) + q − p and λ(y) > λ(x) + 1. Therefore n(p − q) − (n − 1) 6 c′(x) − c′(y) =

n(p − q) + λ(x) − λ(y) 6 n(p − q) − 1. Now since pq > 2, we have p−1

q > 2. Thus

n(p− q) − (n− 1) > nq. So c′ is an (np− 1, nq)–colouring of G.

The proof of the above lemma provides an algorithm to obtain an improved colouring in

time O(|V (G)| + |E(G)|). Applying this algorithm to an acyclic (p, q)–colouring c of a

graph G, the improved colouring c′ is an (np− 1, nq)–colouring for some positive integer n.

If np−1, nq and all the colours c′(v) have a common factor, we can divide c′ by that factor

to obtain a colouring with smaller parameters. If c′ is acyclic, we can apply the algorithm

again to further improve the colouring. Repeatedly applying the algorithm results in a

sequence {ci} of (pi, qi)–colourings of G. Typically, after enough repeated applications of

the algorithm, pi becomes larger than |V (G)|, which usually implies a tight cycle cannot

exist. More precisely, if pi

gcd(pi,qi)> |V (G)|, then ci is acyclic. Lemma 2.4 now implies

that none of the numbers pi/qi equals χc(G). We let k/d be the largest valid candidate

(with respect to Lemma 2.5 and the upper bound pi/qi) for χc(G). The existence of a

(pi, qi)–colouring now proves that χc(G) 6 k/d. To obtain a proper (k, d)–colouring of G

we may proceed as follows. For each v ∈ V (G) we define ψi(v) by rounding kpici(v) to

the nearest integer. If ψi happens to be a proper (k, d)–colouring of G then we are done.

Otherwise, we apply the algorithm of Lemma 2.6 to ci in order to obtain ci+1 which is a

finer approximation to k/d, and repeat this process for ci+1. There is no guarantee that this

process will succeed, but for typical graphs one expects that to be the case. We illustrate

this discussion in the following example.

Example 2.7. Let G be the spindle graph shown in Figure 2.1(a). Since G is 4–chromatic

and it has order 7, by Lemma 2.5 we have χc(G) ∈ {7/2, 4}. We let c be the 4–colouring of

Page 21: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 2. Computational Aspects of Circular Colouring 11

3

1

0

2

0

3

1 λ = 0

λ = 1

λ = 1

λ = 1

λ = 2λ = 1

λ = 2

(a) (b)

9

4

1

7

2

10

5 27

13

4

22

8

31

17

(c) (d)

Figure 2.1: Application of the proof of Lemma 2.6 to the spindle graph

G given in Figure 2.1(a). The digraph Dc(G) and the corresponding values of λ are shown

in Figure 2.1(b). Note that since Dc(G) is acyclic, by Lemma 2.4 we have χc(G) = 7/2.

To obtain a (7, 2)–colouring of G we may apply the algorithm inherent in the proof of

Lemma 2.6 to c. Since the maximum value of λ is 2, we let n = 3. This gives an (11, 3)–

colouring c1 of G illustrated in Figure 2.1(c). It can easily be seen that ψ1 defined by

rounding the colouring 711c1 to the nearest integer, is not a proper (7, 2)–colouring of G.

We thus apply the algorithm of Lemma 2.6 to c1. This gives a (32, 9)–colouring c2 of G

illustrated in Figure 2.1(d). It is now observed that rounding 732c2 to nearest integers gives

a (7, 2)–colouring ψ2 of G.

Remark 2.8. In the above example, if c is a (4, 1)–colouring of G with exactly one vertex

coloured 3, then one application of Lemma 2.6 gives a (7, 2)–colouring since n can be

selected to equal 2. The less efficient colouring of Figure 2.1(a) illustrates the process of

repeated applications of the algorithm of Lemma 2.6 and “rounding”.

Page 22: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 2. Computational Aspects of Circular Colouring 12

2.4 Greedy Circular Colouring and Metaheuristics

Greedy colouring is the simplest graph colouring algorithm when dealing with ordinary

colourings of graphs. It starts with an ordering (permutation) of the vertices of a graph

G and iteratively assigns to the next vertex in the list of vertices the smallest available

positive integer as its colour. More precisely, if x1, x2, . . . , xn is an ordering of the vertices

of G, the greedy colouring algorithm assigns c(x1) = 1 in the first step, and for i > 2, in

the ith step it assigns

c(xi) = min (N \ {c(xj) : j < i and xjxi ∈ E(G)}) .

It is easy to make up examples in which this greedy algorithm requires many more than

χ(G) colours. For example if M = {aibi : 1 6 i 6 n} is a perfect matching in the

graph Kn,n and G = Kn,n \ M then the greedy algorithm applied to the permutation

a1, b1, a2, b2, . . . , an, bn uses n colours while G is bipartite.

On the other hand it is easily observed that there always exists a permutation of the

vertices of a given graph G, for which the greedy algorithm uses only χ(G) colours. Given

any χ(G)–colouring c of G with the colours 1, 2, . . . , χ(G), one such permutation is any

sequence v1, v2, . . . , vn such that

c(v1) 6 c(v2) 6 · · · 6 c(vn),

where n = |V (G)|. Therefore to find the minimum number of colours needed to properly

colour the vertices of a graph, is equivalent to find a permutation of the vertices of the

graph which minimizes the number of colours used by the greedy algorithm applied to

that permutation. This observation provides the opportunity of using randomized search

methods, including metaheuristics, for graph colouring. Culberson [10] has implemented

several variations of such algorithms including a tabu search. We use a similar approach

for circular colouring.

In the following we develop a greedy circular colouring algorithm and show how that can

be used in a tabu search algorithm for testing circular colourability. The main tool in our

algorithm is the fact that the imbalance of an orientation of a graph G can be computed

efficiently. This was first observed by Barbosa and Gafni [2]. They prove that imbal(−→G) can

be computed in O(|V (G)|6) for any acyclic orientation−→G of a graph G. Yeh and Zhu [56]

improved this result by introducing a new algorithm.

Page 23: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 2. Computational Aspects of Circular Colouring 13

Lemma 2.9. [56] Given an acyclic orientation−→G of a graph G, imbal(

−→G) can be computed

in O(|V (G)| · |E(G)|).

The algorithm of Yeh and Zhu is based on the following process: Let D0 =−→G and let

Di+1 be obtained from Di by reversing the orientation of all arcs of Di which are incident

to some sink. Since G has only finitely many orientations, there exist i and p such that

Di+p = Di. For every x ∈ V (G), let

t(x) = |{j : i 6 j < i+ p and x is a sink of Dj}|.

Then t(x) is independent of the choice of x. Moreover, if q = t(x) for some x ∈ V (G), then

imbal(−→G) = p

q .

Let π = (π1, π2, . . . , πn) be a permutation of the vertices of a graph G with |V (G)| = n.

Then G can be oriented according to π as follows: orient an edge πiπj of G from πi to πj,

if i < j, and for πj to πi otherwise. It is easy to observe that the orientation−→Gπ defined

above is acyclic. On the other hand, for any acyclic orientation−→G of G, there exists a (not

necessarily unique) permutation π such that−→G =

−→Gπ. One such permutation can be found

using a topological sort procedure on−→G . More precisely, we let πn be a sink of

−→G , and

then define (π1, . . . , πn−1) recursively to be a topological sort for−→G − πn.

We define the imbalance of a permutation of the vertices of G to be the imbalance of its

corresponding acyclic orientation. Then χc(G) is the smallest imbalance among permuta-

tions of the vertices of G. Taking advantage of the fact that the imbalance of a permutation

can be computed efficiently, one may investigate many permutations (possibly randomly

generated), to find one whose imbalance lies in a desired range.

2.4.1 Tabu search

Tabu search is a metaheuristic mathematical optimization method, which enhances the

performance of a local search method by using memory structures. Tabu search uses a

local or neighbourhood search procedure to iteratively move from a solution x to a solution

x′ in the neighbourhood of x, until some stopping criterion has been satisfied. Perhaps the

most important type of short-term memory to determine the solutions, also the one that

gives its name to tabu search, is the use of a tabu list. In its simplest form, a tabu list

contains the solutions that have been visited in the recent past.

Page 24: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 2. Computational Aspects of Circular Colouring 14

Given a graph G, we use tabu search for minimizing the imbalance function in the space

of all acyclic orientations of G. Since every acyclic orientation corresponds via topological

sort to a permutation of the vertices of G, we may equivalently search in the space of all

orderings of V (G). We need a neighbourhood structure in this space. The simplest choice

would be to say two permutations are adjacent if they differ by a transposition. So at each

step of the algorithm, we randomly generate a fixed number of permutations obtained from

the current permutation by applying a transposition, which are not in the tabu list (list of

k most recent permutations). Then we calculate the imbalance of each of these neighbours,

and select the one with the smallest imbalance. The algorithm stops as soon as it finds a

permutation with imbalance less than or equal to a given upper bound, or if some other

termination criterion, e.g. total number of iterations has reached a limit, is satisfied.

Page 25: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 3

Bounding Circular Chromatic

Number

In this chapter we present some upper and lower bounds for the circular chromatic number

of a graph.

3.1 Upper Bounds

Obtaining upper bounds on the circular chromatic number is often considered to be easier

than lower bounds. Nevertheless, there are several open problems concerning upper bounds.

The circular colourability of planar graphs with large girth (Conjecture 3.15) and the

circular colourability of cubic graphs of large girth (Problem 3.13) are two such problems.

In all the alternate definitions for the circular chromatic number of a graph given in Chap-

ter 1, χc is defined to be the minimum of a function, taken over some combinatorial objects.

Therefore given a graph G, each such object provides an upper bound for χc(G). For ex-

ample, finding a (p, q)–colouring of G proves that χc(G) 6pq .

Alternatively, any acyclic orientation−→G of G provides the upper bound χc(G) 6 imbal(

−→G).

For some graphs, for example graphs embedded in a surface with all faces having even

length, one could use the special structure of the graph to obtain “good” orientations

which have optimum or near-optimum imbalance. We use this approach when dealing with

15

Page 26: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 3. Bounding Circular Chromatic Number 16

even-faced projective planar graphs, and also in Theorem 3.7.

One other approach for finding upper bounds on the circular chromatic number is to use

the transitivity of graph homomorphism. More specifically, if G maps to H and H maps

to K then G maps to K. The special case K = Kp/q for some p and q implies that if

G → H and H is (p, q)–colourable, then G is (p, q)–colourable. In particular, if G → H,

then χc(G) 6 χc(H).

3.1.1 Even-Faced projective planar graphs

Embedded graphs have a more controlled behaviour with respect to colourings. For example

the 4–colour theorem states that every planar graph has chromatic number at most 4. It

is well-known that the chromatic number of graphs embedded in an orientable surface

are bounded by a function of the genus of the surface. Even-faced embeddings provide

even more structure for colouring. For example, every even-faced plane graph is bipartite.

Although there exist non-bipartite even-faced projective plane graphs, the following lemma

provides us with a powerful tool in dealing with their orientations.

Lemma 3.1. [21] Let G be a projective plane graph such that there exists an orientation−→G of G with respect to which all faces of G are perfectly balanced. Then G is bipartite.

Since odd cycles cannot be perfectly balanced in any orientation, in order for all faces to

be perfectly balanced in the above lemma, G needs to be an even-faced projective plane

graph. Goddyn and Verdian [21] proved that every even-faced projective plane graph G

has an orientation−→G such that the discrepancy of each cycle of G with respect to

−→G is

at most 2. This bounds the circular chromatic number of G away from 2. Indeed we can

determine χc(G) exactly for such graphs.

Given a graph G with a 2–cell embedding π in a surface X, a subgraph H of G is a

surface subgraph, if the embedding of H in X induced from π is a 2–cell embedding. For

an embedded graph G, we let maxfl(G) be the greatest length of a face of G. The following

result of Goddyn and Verdian-Rizi is one of our principal tools.

Theorem 3.2. [21] Let G be an even-faced projective plane graph and let 2ℓ = minH maxfl(H),

where H ranges over all surface subgraphs H of G. Then

χc(G) =2ℓ

ℓ− 1.

Page 27: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 3. Bounding Circular Chromatic Number 17

Figure 3.1: An even-faced embedding of P − x in the projective plane

Given a projective plane graph G, every contractible cycle C is the boundary of a face of

the surface subgraph obtained by deleting all the vertices inside C. On the other hand, if

C is a non-contractible cycle in G, C itself is a surface subgraph with exactly one face of

length 2|C|.

It is worth mentioning that Theorem 3.2 is a generalization of a result of Youngs [57] which

proves every non-bipartite quadrangulation of the projective plane is 4–chromatic.

Example 3.3. Let P be the Petersen graph and x ∈ V (P ). Then χc(P − x) = 3.

Proof. Consider the unique embedding of K3,3 in the projective plane and subdivide the

edges which go “through the cross-cap”. This gives an embedding of P −x in the projective

plane (Figure 3.1) with four faces of length 6. Since P − x has girth 5, we have 2ℓ = 6 and

Theorem 3.2 gives χc(P − x) = 3.

Note that the circular chromatic number of every cubic graph which contains P − x as

a subgraph equals 3. Thus we may combine P − x with cubic graphs of girth at least 5

to obtain girth 5 cubic graphs of arbitrary large order whose circular chromatic number

equals 3.

The proof of Example 3.3 can be applied to other subdivisions of K3,3, provided every

cycle has the same parity as its corresponding cycle in P − x. These graphs turn out as

subgraphs of some of the interesting graphs we discuss in this thesis.

Page 28: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 3. Bounding Circular Chromatic Number 18

3.2 Lower Bounds

The following lemma proves that a well-known lower bound for the ordinary chromatic

number also holds for the circular chromatic number.

Lemma 3.4. For every graph G, χc(G) >|V (G)|α(G) .

This lower bound is weak in the sense that it is not tight for many “interesting” graphs.

Moreover, the independence number of a graph is hard to compute. In the following we

prove a more general bound. For a graph G and a positive integer k, αk(G) denotes the

maximum size of a union of k independent sets in G. In other words, αk(G) is the maximum

order of an induced k–partite subgraph of G. The following lemma is also implied by

Proposition 1.22 of [30, Page 14].

Lemma 3.5. [58] Let G be a graph and let k 6 χc(G) be a positive integer. Then

χc(G) >k|V (G)|αk(G)

.

Proof. Suppose χc(G) = p/q and let c be a (p, q)–colouring of G. In the following all colours

are reduced modulo p. For all 0 6 t 6 p − 1, we let It = c−1({t, t + 1, . . . , t + q − 1}).Then It is an independent set in G. Since k 6 p/q, for all t, the sets It, It+1, . . . , It+q−1 are

pairwise disjoint. We let Jt = It ∪ It+1 ∪ . . . ∪ It+q−1. Then

|Jt| = |It| + · · · + |It+q−1| 6 αk(G). (3.1)

On the other hand a vertex v ∈ V (G) belongs to Jt if and only if c(v) − kq + 1 6 t 6 c(v).

Thereforep−1∑

t=0

|Jt| = kq|V (G)|. (3.2)

The result follows from (3.1) and (3.2).

Lemma 1.5 gives a lower bound for χc(G) in terms of its subgraphs. This method could be

useful when a graph is regularly structured, or when it is sparse. In particular, χc(G) >

ωc(G) where

ωc(G) = min

{

p

q: Kp/q ⊆ G

}

Page 29: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 3. Bounding Circular Chromatic Number 19

is the circular clique number of G.

Similarly, one may consider odd cycles in G to obtain a lower bound on χc(G). Note that

since K(2k+1)/k is isomorphic to C2k+1, this lower bound is weaker than the one obtained

via the circular clique number. On the other hand, finding short odd cycles in a graph is

much easier than finding general Kp/q subgraphs.

3.2.1 The odd-girth bound

The odd-girth of a graph G is the length of the shortest odd cycle in G. By Lemma 1.5,

if G has odd-girth 2k + 1, then χc(G) > 2 + 1k . Most of the time, e.g. when G is not

3–colourable, this bound is not tight. If this bound is tight, then G is said to be odd-girth

colourable. A result of Gerards [17] gives a forbidden subgraph characterization of graphs

which have an orientation in which each cycle has discrepancy at most 1.

Theorem 3.6. [17] If a non-bipartite graph G is not odd-girth colourable, then G contains

an odd K4 or an odd K23 as a subgraph.

In the above theorem, an odd K4 is any subdivision G of K4 in which every cycle has the

same parity as its corresponding cycle in K4. Equivalently, in a planar drawing of G, all

faces must be odd. An odd K23 is a graph consisting of three odd cycles C1, C2 and C3

and three vertex-disjoint paths P1, P2, P3, possibly of length 0, such that Pi joins a vertex

of Ci to a vertex of Ci+1. Here the indices are reduced modulo 3. See Figure 3.2 for an

illustration.

Theorem 3.6 motivates the study of the circular chromatic number of odd K4 and odd K23

graphs. In the following we establish the exact values of the circular chromatic number of

these graphs. A thread in a graph G is a maximal path which is internally disjoint from the

rest of G. Namely, a thread is a path ax1 · · · xkb such that in G, d(xi) = 2 for 1 6 i 6 k,

and d(a) 6= 2 and d(b) 6= 2.

Theorem 3.7. Let G be an odd K4 or an odd K23 with odd-girth g. Then G is odd-girth

colourable if and only if it has an even cycle of length at least 2g. Moreover, if the longest

even cycle in G has length 2ℓ < 2g, then

χc(G) =2ℓ

ℓ− 1.

Page 30: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 3. Bounding Circular Chromatic Number 20

Proof. Consider a drawing of K4 in the plane consisting of a convex 4–gon and its two

diagonals. By routing the two diagonals through a cross-cap, we obtain an embedding of

K4 in the projective plane, with three faces of length 4. Subdividing this embedded graph

according to an odd K4 graph G, we obtain an even-faced embedding of G in the projective

plane. The result now follows from Theorem 3.2.

Let G be an odd K23 consisting of odd cycles C1, C2, C3 and paths P1, P2, P3 such that Pi

joins yi ∈ V (Ci) to xi+1 ∈ V (Ci+1). Let L be the combined length of the paths P1, P2, P3,

and for i ∈ {1, 2, 3} let ai and bi be the lengths of the two xiyi–paths on Ci. Since ai and bi

have opposite parity, we may assume ai has the same parity as L. Given an orientation−→G

of G, we claim that at least one even cycle of G is unbalanced with respect to−→G . Consider

the planar drawing of G given in Figure 3.2, and fix the clockwise direction as the positive

direction. Let a+i (resp. a−i ) denote the number of edges of the xiyi–path of length ai on

Ci whose direction agrees (resp. disagrees) with the positive direction (from xi to yi). We

similarly define b+i , b−i , L+, and L−. Since the even cycles of G have lengths L+a1+a2+a3

and L+ ai + bj + bk where {i, j, k} = {1, 2, 3}, if all the even cycles of G are balanced with

respect to−→G we have

a+1 + a+

2 + a+3 + L+ = a−1 + a−2 + a−3 + L−, and

a+i + b+j + b+k + L+ = a−i + b−j + b−k + L−.

Adding up these four equations, we get

(b+1 − b−1 ) + (b+3 − b−3 ) + (b+3 − b−3 ) + (L+ − L−) = 0.

This is a contradiction since the left hand side of this equation has the same parity as

b1 + b2 + b3 + L which is odd. This proves that χc(G) >2ℓ

ℓ−1 .

It remains to prove χc(G) 6r

r−1 where r = min{g, ℓ}. If C is the longest even cycle

of G, it suffices to give an orientation of G with respect to which all even cycles expect

C are perfectly balanced, all odd cycles have discrepancy 1, and C has discrepancy 2.

Because of the simple structure of K23 graphs, such orientation is not difficult to find. We

assume L is even and |C| = L+ a1 + b2 + b3. Other cases can be dealt with similarly. We

orient each thread of G independently such that a+i = a−i for all i ∈ {1, 2, 3}, L+ = L−,

b+2 − b−2 = b+3 − b−3 = 1, and b+1 − b−1 = −1.

Page 31: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 3. Bounding Circular Chromatic Number 21

+

x1

y1

x2 y2

x3

y3

Figure 3.2: Planar drawing of a K23 graph. Each curve corresponds to a thread.

Remark 3.8. If in an odd K23 graph G all the paths Pi are trivial, then G has an even-faced

embedding in the projective plane. This gives an alternate proof of the above theorem using

Theorem 3.2. On the other hand, if L > 1, G does not admit an even-faced embedding in

the projective plane.

Example 3.9. The Monoplex graph is defined to be the graph obtained by subdividing the

edges of a triangle in K4 each to a path of length 3 (Figure 3.3(a)). This graph has girth

5 and all its even cycles have length 8. Thus by Theorem 3.7 it has circular chromatic

number 8/3.

The Monoplex graph can be described as the graph obtained from a 9–cycle C = x1x2 · · · x9x1

by joining a “central” vertex z1 to the vertices x1, x4, x7. One can see that there is room

for adding two more central vertices z2, z3 and still avoid 3– and 4–cycles. For i = 1, 2, 3

the vertex zi is joined to xi, xi+3, xi+6. The graph consisting of C and two central vertices

is called the Duplex graph and the graph consisting of C and three central vertices is called

the Triplex graph. The Monoplex, Duplex and Triplex graphs are illustrated in Figure 3.3.

Using Example 3.9 we can calculate the circular chromatic number of these two graphs.

Example 3.10. The Duplex graph has circular chromatic number 11/4.

Proof. Let G denote the Duplex graph. We first prove that χc(G) > 8/3. Suppose G

has an (8, 3)–colouring c. Then the restriction of c to G − z2 is an (8, 3)–colouring of the

Monoplex graph. Therefore G − z2 has a tight cycle with respect to c. By symmetry, we

may assume z1x1x2 · · · x7z1 is this tight cycle and that c(z1) = 0 and c(xi) = 3i (mod 8).

Therefore c(z2) ∈ {2, 3}. This is a contradiction since c(x1) = 3 and c(x6) = 2 and there

exist paths of length 3 in G from each of these vertices to z2.

Page 32: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 3. Bounding Circular Chromatic Number 22

(a) (b) (c)

Figure 3.3: The Monoplex, Duplex and Triplex graph

The second step in the proof is to show χc(G) 6 11/4. This can be achieved by colouring

the Hamiltonian cycle of G highlighted in Figure 3.3(b) as a tight cycle, i.e. by assigning

the ith vertex in this cycle the colour 4i (mod 1)1. It is easy to see that the four edges of

G which are not on this Hamiltonian cycle are all valid with respect to this colouring.

Lastly, by Lemma 2.5, there is no possible value between 8/3 and 11/4 for χc(G).

The Hamiltonian cycle of the Duplex graph is unique up to automorphisms of this graph.

Therefore this graph is uniquely (11, 4)–colourable in the sense that any (11, 4)–colouring

can be transformed to another via automorphisms of the Duplex graph, and translation

and/or negation of colours.

Example 3.11. The Triplex graph has circular chromatic number 3.

Proof. Let G be the triplex graph. By Brooks’ Theorem, and by Example 3.10, we have

11/4 6 χc(G) 6 3. Suppose G has an (11, 4)–colouring c. By the proof of Example 3.10, c

is tight on a Hamiltonian cycle of G − z3, thus we may assume c is the colouring given in

that proof. In particular, c(x3) = 6, c(x6) = 7, and c(x9) = 1. This is a contradiction since

any colour c(z3) conflicts with at least one of these colours. Lastly, by Lemma 2.5, there

exist no candidate for χc(G) in the interval (114 , 3).

In terms of Lemma 3.5, for the Monoplex graph we have α = 4 and α2 = 8, the Duplex

graph has α = 5 and α2 = 8, and the Triplex graph has α = 5 and α2 = 9. Therefore

Lemma 3.5 can be used to prove the lower bound 11/4 for the circular chromatic number

of the Duplex graph, while for the Monoplex graph and the triplex graph the lower bound

Page 33: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 3. Bounding Circular Chromatic Number 23

of Lemma 3.5 is not tight.

3.3 Homomorphisms of Graphs to Cycles

By Brooks’ Theorem, every cubic graph other than K4 maps to C3. In particular every

cubic graph with girth at least 4 maps to C3. On the other hand we observed in the previous

section that many cubic graphs do not map to their odd-girth. Indeed the following theorem

proves a stronger statement.

Theorem 3.12. [28] Let G be a random cubic graph. Then G does not map to C7 asymp-

totically almost surely.

Obviously if a cubic graph contains C3 or C5 as a subgraph, it does not map to C7. So

the above theorem is interesting when applied to cubic graphs of odd-girth at least 7. On

the other hand, given a positive integer g, the probability that a random cubic graph has

girth at least g is positive [55, §2.3]. Therefore the conclusion of the above theorem holds

for random cubic graphs of large enough girth.

The following problem of Nesetril, known as the pentagon colouring problem, asks about

C5–colourability of cubic graphs.

Problem 3.13. [44] Is it true that every cubic graph with sufficiently large girth admits a

homomorphism to C5?

As mentioned above, by Brooks’ Theorem, the statement of this problem holds with C3 in

place of C5. Kostochka, Nesetril, and Smolıkova [39] proved that this statement is false with

C11 in place of C5. This result was improved from C11 to C9 by Wanless and Wormald [52].

The best known result is Theorem 3.12 of Hatami [28]. Even the following weaker version

of the problem due to Goddyn is still open.

Problem 3.14. [20] Is it true that every cubic graph with sufficiently large girth has circular

chromatic number strictly less than 3?

Another open problem on homomorphisms to cycles is the following conjecture which is

the restriction to planar graphs of a conjecture of Jaeger [32] on integer flows.

Page 34: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 3. Bounding Circular Chromatic Number 24

Figure 3.4: The wheel W7 as a projective plane quadrangulation. The dashed circle repre-sents a cross-cap

Conjecture 3.15. [32] Given k > 1, every planar graph with girth at least 4k admits a

homomorphism to C2k+1.

For k = 1, this conjecture is equivalent to Grotzsch’s theorem [25]. This conjecture is still

open for k > 2. An alternate problem would be the following.

Problem 3.16. Given k > 1, what is the smallest g such that every planar graph with

girth at least g maps to C2k+1?

Borodin et al. [6] proved that every planar graph with girth at least 20k−23 maps to C2k+1.

This result is an improvement of a series of results in [15, 45, 60]. For k = 2, Borodin et

al. [5] improved the girth bound to 12. Deckelbaum and DeVos [11] further improved this

to the following.

Theorem 3.17. [11] Every planar graph with odd-girth at least 11 maps to C5.

It was proved by DeVos [12] that the girth bound of Conjecture 3.15 is tight.

Proposition 3.18. [12] Given k > 1, let M2k+1 be the graph obtained from the wheel W2k+1

by subdividing each spoke to a path of length k. Then χc(M2k+1) = 2 + 2k . In particular,

M4k+1 has girth 4k + 1 and does not map to C2k+1.

Proof. Consider the planar drawing of W2k+1 and re-route one non-spoke edge and every

second spoke through a cross-cap. This gives an embedding of W2k+1 as a quadrangulation

of the projective plane (See Figure 3.4 for an example). Each face of this embedding contains

Page 35: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 3. Bounding Circular Chromatic Number 25

exactly two spokes of the wheel. Therefore subdividing the spokes to paths of length k,

we get an embedding of M2k+1 in the projective plane with all faces having length 2k + 2.

Since M2k+1 has girth 2k + 1, Theorem 3.2 implies the result.

In Chapter 5 we present some theoretical and computational results related to the pen-

tagon colouring problem (Problem 3.13). In Chapter 6 we prove that the statement of

Problem 3.14 is true for planar, projective planar, toroidal, and Klein bottle cubic graphs.

Page 36: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4

Circular Chromatic Number of

Some Special Graphs

4.1 Generalized Petersen Graphs

Given n > 2d, the generalized Petersen graph P (n, d) is the graph with vertex set

V = {x1, x2, . . . , xn} ∪ {y1, y2, . . . , yn}

and edge set

E = {xixi+1 : 1 6 i 6 n} ∪ {yiyi+d : 1 6 i 6 n} ∪ {xiyi : 1 6 i 6 n},

where all the subscripts are reduced modulo n. The edges xiyi are called the spokes

of P (n, d).

The Petersen graph is P (5, 2) and the Dodecahedron graph is P (10, 2).

The cycles Ci = xixi+1 · · · xi+dyi+dyixi, where 1 6 i 6 n in P (n, d) all have length d + 3.

When d is even, this gives a lower bound on the circular chromatic number of P (n, d).

Indeed, the subgraph of P (n, d) induced by the edges of C1, C2 and Cd is an odd K4 giving

the following bound by Theorem 3.7.

Proposition 4.1. Given even d and n > 2d, we have χc(P (n, d)) > 2 + 2d+1 .

The cycles Ci are even when d is odd. In such a case, the graph P (n, d) is “locally

bipartite” and one expects the circular chromatic number of P (n, d) be close to 2. We

26

Page 37: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 27

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

Figure 4.1: The Monoplex graph as a subgraph of P (n, 2)

study the circular chromatic number of the graphs P (n, 3) in Section 4.1.2. Our results

show that while χc(P (n, 2)) is bounded away from 2 for all n, χc(P (n, 3)) is arbitrarily

close to 2 provided n is large enough. The following is easy to observe.

Proposition 4.2. The graph P (n, d) is bipartite if and only if d is odd and n is even.

4.1.1 The graphs P (n, 2)

By Proposition 4.1 we have χc(P (n, 2)) > 8/3 for all n > 4. Indeed this bound is tight if

and only if 4|n. The “only if” part becomes apparent by the end of this section.

Proposition 4.3. If n is a multiple of 4 then χc(P (n, 2)) = 8/3.

Proof. The graph P (4, 2) is an odd K4 and by Theorem 3.7 its circular chromatic number

equals 8/3. We show that for all n > 4, if 4|n then P (n, 2) → P (4, 2). To avoid confu-

sion with vertices of P (n, 2), we use uppercase letters, namely X1, . . . ,X4 and Y1, . . . , Y4

for vertices of P (4, 2). For each 1 6 i 6 n let j ∈ {1, 2, 3, 4} with i ≡ j (mod 4) and

define f(xi) = Xj and f(yi) = Yj. It is easy to see that f is a homomorphism, and thus

χc(P (n, 2)) 6 χc(P (4, 2)).

To improve the lower bound of Proposition 4.1 for the graphs P (n, 2) when n is not a

multiple of 4, we use the following lemma on circular colourings of the Monoplex graph.

Here v0 is the unique vertex of the Monoplex graph whose neighbours all have degree 3 and

v1, v2, v3 are the neighbours of v0. In the graph of Figure 4.1, we have v0 = x3.

Lemma 4.4. Let r = 83 + 2ε < 3 and let c be an r–circular colouring of the Monoplex

graph such that c(v0) = r/2 and c(v1) 6 c(v2) 6 c(v3). Then c(v1) ∈ −13 + [−ε, 5ε]r,

c(v2) ∈ [−3ε, 3ε]r and c(v3) ∈ 13 + [−5ε, ε]r.

Page 38: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 28

Proof. The main tool in this proof is the fact that if xy is an edge in a graph G and c is an r–

circular colouring ofG, then the valid colours for y are precisely the colours in the circular in-

terval [c(x) + 1, c(x) + r − 1]r. An immediate consequence of this observation is that if there

is a path of length 3 between two vertices x and y then c(y) ∈ [c(x) + 3, c(x) + 3(r − 1)]r.

Let c(v1) = α, c(v2) = β, and c(v3) = γ. By assumption we have α 6 β 6 γ. Since there

exist paths of length 3 between any two of v1, v2, v3, we have

β − α ∈ [3, 3(r − 1)]r = [3 − r, 2r − 3]r =

[

1

3− 2ε, r − (

1

3− 2ε)

]

r

.

In particular, we have β > α+ 13−2ε, and similarly γ > β+ 1

3−2ε. Note that by assumption

2ε < 1/3. On the other hand, since v1, v2, v3 are all adjacent to v0, we have

α, β, γ ∈[r

2+ 1,

r

2+ r − 1

]

r=

[

7

3+ ε, 3 + 3ε

]

r

=

[

−1

3− ε,

1

3+ ε

]

r

.

We now have

−1

3− ε 6 α 6 γ − 2(

1

3− 2ε) 6

1

3+ ε− 2(

1

3− 2ε) = −1

3+ 5ε,

or in other words, α ∈[

−13 − ε,−1

3 + 5ε]

r. The intervals for β and γ follow similarly.

The above lemma proves that when ε < 16 , every (8

3 +2ε)–circular colouring of the Monoplex

graph is approximately equal to an 8/3–circular colouring of this graph. Indeed, it follows

from the above lemma that such colouring must satisfy the restrictions shown in Figure 4.2.

Namely the colour of each vertex must be in the circular interval associated with that vertex.

To prove that χc(P (n, 2)) > 8/3 when n is not a multiple of 4, one may investigate the

behaviour of the copies of the Monoplex graph centred at the vertices xi in P (n, 2), in an

(8, 3)–colouring of P (n, 2). This results in a parity conflict proving the nonexistence of such

colouring. We omit the details of such proof and instead prove the following lemma which

uses Lemma 4.4 to mimic such proof and obtain a stronger result.

Lemma 4.5. If n is not a multiple of 4, then χc(P (n, 2)) > 11/4.

Proof. Suppose χc(P (n, 2)) = r < 11/4 and let c be an r–circular colouring of G = P (n, 2).

Let r = 83 + 2ε. Then ε < 1

24 . Note that this implies that the intervals[

−13 − ε,−1

3 + 5ε]

r,

[−3ε, 3ε]r, and[

13 − 5ε, 1

3 + ε]

rare pairwise disjoint. Therefore exactly one spoke of each

copy of the Monoplex graph M in G corresponds to each circular interval. We call the

Page 39: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 29

r/2

− 1

3+ [−ε, 5ε]

2

3+ [−ε, 5ε]

5

3+ [−ε, 5ε]

[−3ε, 3ε]

1 + [−3ε, 3ε]

2 + [−3ε, 3ε]

1

3+ [−5ε, ε]

Figure 4.2: Constraints for r–circular colourings of M , where r = 83 + 2ε < 3

spoke corresponding to [−3ε, 3ε]r the long spoke of M . We say an edge vw of M is almost

tight if 1 6 |c(v) − c(w)| 6 1 + 6ε.

For 1 6 i 6 n, let Mi be the copy of M in G centred at xi. We claim that all long

spokes of the Mi are on the cycle x1x2 · · · xnx1. Note that if n is odd, this contradicts

the fact that each Mi has exactly one long spoke. To prove this claim, suppose x1y1

is the long spoke of M1. Then by the constraints of Figure 4.2, the edges of the cycle

Cn−1 = xn−1xnx1x2x3y3y1yn−1xn−1, and in particular x1x2 and x2x3 are almost tight and

hence cannot be long spokes of M2. Therefore x2y2 is the long spoke of M2 which implies

that the edge x3x4 is also almost tight. On the other hand, the edge x3y3 is almost tight

since it belongs to Cn−1. Therefore M3 has no long spoke. This contradicts Lemma 4.4.

As we mentioned before, when n is odd, this proves χc(P (n, 2)) > 11/4.

In the remainder of this proof we assume n ≡ 2 (mod 4). Let vw be an almost tight edge

of G with c(w) ∈ [c(v) + 1, c(v) + 1 + 6ε]r. We orient this edge from v to w. We showed

above that all the long spokes of the Mi are on the cycle x1x2 · · · xnx1. The constraints

of Figure 4.2 then imply that all the edges yiyi+2 are almost tight. Moreover, if H is the

directed graph consisting of the oriented edges yiyi+2, then every yi is a terminal vertex,

i.e. a source or a sink, of H. This is impossible since H is the disjoint union of two odd

cycles.

We now show that the lower bound of the above lemma is tight for even n > 22 in the next

theorem. For that, we use the following lemma. We allow faces in a planar graph to have

Page 40: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 30

disconnected boundaries. The length of a face is the sum of the lengths of the connected

components of its boundary.

Lemma 4.6. Let G be a subcubic plane graph. Then α2(G) 6 |V (G)| − fo/2 where fo is

the number of odd faces of G.

Proof. We have α2(G) = |V (G)| − min{|X| : G − X is bipartite}. Using induction on

|V (G)|, we show that |X| > fo/2 for every X ⊆ V (G) such that G − X is bipartite. If

|V (G)| = 1 then fo = 0 and |X| > fo/2 holds trivially. Suppose |V (G)| > 1. If X = ∅, then

G is bipartite and hence fo = 0. Otherwise, we select an arbitrary v ∈ X and let f ′o be the

number of odd faces of G′ = G− v. Since dG(v) 6 3, v is adjacent with at most three faces

of G. If v is adjacent with exactly one face, then f ′o = fo. If v is adjacent with exactly

two faces, then f ′o = fo unless these faces are both odd in which case we have f ′o = fo − 2.

Similarly if v is adjacent with three faces of G, we have f ′o = fo unless at least two of these

faces are odd in which case we have f ′o = fo − 2. Therefore f ′o > fo − 2 always holds and

by induction hypothesis we have

|X| = 1 + |X ′| > 1 +f ′o2

>fo

2.

Theorem 4.7. Let n ≡ 2 (mod 4). Then χc(P (n, 2)) = max{

8n3n−2 ,

114

}

.

Proof. We first prove the upper bound. Suppose n = 4k + 2 for some 1 6 k 6 5 and

(p, q) = (8k + 4, 3k + 1). We denote G = P (n, 2) and let C be the Hamiltonian cycle

y1x1x2y2y4y6x6x5x4x3y3y5 (y4i−1x4i−1x4iy4iy4i+2x4i+2x4i+1y4i+1)ki=2

in G (See Figure 4.3 for an illustration). We label the vertices of G by v1, v2, . . . , v2n

according to C. For 1 6 i 6 2n, we define c(vi) to equal iq reduced modulo p. Obviously

c is a (p, q)–colouring of C. On the other hand, for each vivj ∈ E(G) \ E(C) we have

|j − i| ∈ {4, 7, 10} by the choice of C. Therefore c(vi) − c(vj) equals one of 4q = 4k,

7q = 5k − 1 and 10q = 6k − 2 modulo p. The first two distances are always valid while

the last one is valid only when k 6 5. Therefore every edge of G is valid with respect to c

which gives χc(G) 6 p/q = 8n3n−2 .

Let k > 5 and let c0 be the (44, 16)–colouring of P (22, 2) obtained above. Since for all

vertices v, c0(v) is a multiple of 16 reduced modulo 44, and since gcd(44, 16) = 4, we

Page 41: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 31

A

B

C

A

B

C

Figure 4.3: A Hamiltonian cycle of P (14, 2) used in the proof of Theorem 4.7. Semiedgeswrap around according to their labels.

5

9

2

6 10

3

7

0

Figure 4.4: A block of the (11, 4)–colouring of P (22, 2) used in the proof of Theorem 4.7.

see c0(v) is a multiple of 4 and hence all colours can be divided by 4 to obtain an (11, 4)–

colouring c1 of P (22, 2). In this colouring, the vertices xi and yi of P (22, 2) with 19 6 i 6 22

are coloured as shown in Figure 4.4. Since c1(x19) and c1(c22) have distance 6, the colouring

of this block can be repeated t times to obtain an (11, 4)–colouring of P (22 + 4t, 2).

For n > 22, the lower bound 11/4 is already proved in 4.5. For n = 6 the equality holds

since P (6, 2) has triangles. For n = 10, 14, 18 (also for n = 22) the lower bound is implied

by Lemma 3.5 as follows. We let

I = {x2, x4, y1, y5} ∪ {x2i+5 : 1 6 i 6 2k − 2} ∪ {y4i+2 : 1 6 i 6 k},

and

I ′ = {y2} ∪ {x2i+4 : 1 6 i 6 2k − 1} ∪ {y4i−1 : 1 6 i 6 k}.

Then I and I ′ are disjoint independent sets in G and |I ∪ I ′| = |I| + |I ′| = (3k + 2) + 3k.

Thus α2(G) > 6k + 2 and by Lemma 4.6 we have α2(G) = 6k + 2. Lemma 3.5 now gives

χc(G) >2(4k + 2)

6k + 2=

8n

3n− 2.

Corollary 4.8. The Dodecahedron graph P (10, 2) has circular chromatic number 20/7.

Page 42: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 32

It remains to determine χc(P (n, 2)) when n is odd. As we mentioned before, P (5, 2) is the

Petersen graph which has circular chromatic number 3. In the following we prove that the

same holds for P (7, 2).

Theorem 4.9. χc(P (7, 2)) = 3.

Proof. By an easy case analysis we show that every 3–colouring of P (7, 2) has a tight

6–cycle. Note that permuting the colours in a 3–colouring does not affect tight cycles.

This significantly reduces the number of cases to be considered. Let c be a 3–colouring of

P (7, 2). Since in every 3–colouring of the cycle C = x1x2 · · · x7x1, at least one colour class

has size 3, we may assume that c(x2) = c(x4) = c(x6) = 0, c(x1) = 1, and c(x7) = 2. This

forces c(y2) = c(y6) = α and c(y4) = β with {α, β} = {1, 2}.

Case 1. One other colour, say 1, is used three times on C. Then c(x1) = c(x3) = c(x5) = 1.

Hence c(y1) = c(y5) = α′ and c(y3) = β′ with {α′, β′} = {0, 2}. Since y1 is adjacent to y6

we have α 6= α′ and since the neighbours of y7 are coloured 2, α, and α′, one of α and α′

equals 2. The two subcases are shown in Figure 4.5 (a) and (b). In each case a tight cycle

is highlighted.

Case 2. c(x3) = 1 and c(x5) = 2. Then one of y1 and y3 is coloured 0 and similarly one

of y5 and y7 is coloured 0. By symmetry, we may assume that c(y3) = 0. This forces the

colours of the remaining vertices. This case is shown in Figure 4.5 (c).

Case 3. c(x3) = 2 and c(x5) = 1. Based on the value of α we have two subcases shown in

Figure 4.5 (d) and (e).

Computationally, by finding a (p, q)–colouring of the graph at hand and verifying that all

such colourings have a tight cycle, we proved

χc(P (n, 2)) =

17/6 for n ∈ {9, 11},

14/5 for n ∈ {13, 15, 17, 19}.

We conjecture the following.

Conjecture 4.10. For all odd n > 13, χc(P (n, 2)) = 14/5.

The upper bound is proved in the following proposition. We leave the lower bound open.

Page 43: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 33

(a)

A

B

C A

B

C

1 1 1 2

0 0 0

0 2 0 1

2 1 2

(b)

A

B

C A

B

C

1 1 1 2

0 0 0

2 0 2 0

1 2 1

(c)

A

B

C A

B

C

1 1 2 2

0 0 0

2 0 1 0

1 2 1

(d)

A

B

C A

B

C

1 2 1 2

0 0 0

2 0

1 2 1

(e)

A

B

C A

B

C

1 2 1 2

0 0 0

0 1

2 1 2

Figure 4.5: 3–Colourings of P (7, 2). Semiedges wrap around according to their labels.

Page 44: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 34

A

B

C A

B

C

10

1

7

2

8

13

4

10

5

12

3

9

4

5 12 3 9 0 8 13

6 11 6 1 7 0

A

B

C A

B

C

10

1

9

4

13

7

12

6

1

10

5

12

3

9

4

5 0 8 3 9 0 8 13

6 11 2 11 2 7 0

Figure 4.6: (14, 5)–colourings of P (13, 2) and P (15, 2). Semiedges wrap around accordingto their labels

Proposition 4.11. Given odd n > 13, we have χc(P (n, 2)) 6 14/5.

Proof. In Figure 4.6 we present (14, 5)–colourings of P (13, 2) and P (15, 2). In each colour-

ing, the block contained in the shaded box can be repeated t times to obtain (14, 5)–

colourings of the graphs P (13 + 4t, 2) and P (15 + 4t, 2).

4.1.2 The graphs P (n, 3)

By Proposition 4.2, when d is odd the study of the circular chromatic number of P (n, d) is

non-trivial only when n is also odd. For d = 3, by the definition we must have n > 6. It is

not difficult to see that P (7, 3) is isomorphic to P (7, 2) and hence it has circular chromatic

number 3. We begin by proving an upper bound.

Proposition 4.12. For all odd n > 9,

χc(P (n, 3)) 62n

n− 3.

Proof. If 3|n then n = 6k + 3 for some k > 1 and 2nn−3 = 2k+1

k . A (2k + 1, k)–colouring of

P (6k + 3, 3) is given by c(x1) = c(y2) = c(x3) = 0, c(y1) = c(x2) = c(y3) = k, c(xi+3) =

c(xi) + k, and c(yi+3) = c(yi) + k.

Page 45: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 35

If n is not a multiple of 3, let (p, q) =(

n, n−32

)

. For 1 6 i 6 n we define c(y3i) = iq where

3i and iq are both reduced modulo n = p. Then c(yi+1) = c(yi) ± q. Therefore if we let

c(xi) = c(yi+1), c is a (p, q)–colouring of P (n, 3).

Theorem 4.13. For odd n > 7 the following are true.

• If 3|n, then χc(P (n, 3)) = 2 + 6n−3 .

• If n ≡ −1 (mod 6), then 2 + 6n+1 6 χc(P (n, 3)) 6 2 + 6

n−3 .

• If n ≡ 1 (mod 6), then 2 + 6n+2 6 χc(P (n, 3)) 6 2 + 6

n−3 .

Proof. All upper bounds are from Proposition 4.12. When n = 6k + 3 is a multiple of 3,

the subgraph of P (n, 3) induced by the vertices yi consists of three cycles of length 2k+ 1.

Thus the upper bound is tight.

For n = 6k − 1, the graph P (n, 3) − {x3i, y3i : 1 6 i 6 2k − 1} has an embedding in the

projective plane with one face of length 6, 2k − 1 faces of length 8, and one face of length

4k + 2. Using Theorem 3.2 one gets the lower bound. The case k = 3 is illustrated in

Figure 4.7.

For n = 6k + 1, the graph P (n, 3) − {x3i, y3i : 1 6 i 6 2k} has an embedding in the

projective plane with 2k faces of length 8 and one face of length 4k + 4. Again applying

Theorem 3.2 gives the lower bound. The case k = 3 is illustrated in Figure 4.7.

The lower and upper bounds of Theorem 4.13 for χc(P (n, 3)) are asymptotically equal.

On the other hand, for small values of n these bounds are far apart. In particular since

P (7, 3) ∼= P (7, 2), the above theorem gives 3 = χc(P (7, 2)) ∈[

83 ,

72

]

.

We conjecture that the upper bound of Proposition 4.12 is tight when n is large enough.

Conjecture 4.14. For odd n > 9,

χc(P (n, 3)) =2n

n− 3.

By Theorem 4.13, this conjecture is true when n is a multiple of 3. We verified this

conjecture computationally for n 6 30.

Page 46: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 36

A

B

A

B

x1

x2

x4

x5

x7

x8

y1

y2

y4

y5

y7

y8

B

A

B

Ax1

x2

x4

x5

x7

x8

y1

y2

y4

y5

y7

y8

Figure 4.7: Even-faced projective plane embeddings of subgraphs of P (11, 3) and P (13, 3).Semiedges are routed through a cross-cap, according to their labels.

4.2 Squares of Graphs

Colourings of powers of graphs are of importance in coding theory. For example, the

chromatic number of second and third powers of hypercube graphs is of interest in the

study of scalability of optical networks [51].

Given a graph G and an integer k > 1, the kth power of G, denoted G(k) is the graph

with the same vertex set as G in which two vertices are adjacent if and only if they are at

distance at most k in G. The graph G(2) is called the square of G.

An obvious lower bound for χc

(

G(2))

is ∆(G)+1. This is because the closed neighbourhood

of each vertex of G induces a clique in G(2). In this section we study the circular chromatic

numbers of squares for some families of graphs. Before that, as an example we compute

the circular chromatic number of squares of cycles.

Example 4.15. For all n > 3,

χc

(

C(2)n

)

=n

⌊n/3⌋ .

Proof. Let G = C(2)n . Since every two non-adjacent vertices of G have distance at least

3 in Cn, we have α(G) 6 ⌊n/3⌋. Thus χc(G) >n

⌊n/3⌋ by Lemma 3.4. On the other

hand, if v1, v2, . . . , vn are the vertices of Gn in the cyclic order, the colouring c defined by

Page 47: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 37

c(vi) = i ⌊n/3⌋ (modulo n) is a proper (n, ⌊n/3⌋)–colouring of G.

4.2.1 Squares of hypercube graphs

It is proved in [51] that for all positive d,

d+ 1 6 χ(

Q(2)d

)

6 2⌊log2d⌋+1. (4.1)

It is conjectured in [51] that the above upper bound is tight. Our computations provide

evidence that even the circular chromatic number of Q(2)d equals the upper bound of (4.1).

Note that the value of the upper bound in (4.1) is constant when d lies between consecutive

powers of 2. On the other hand Qd contains Qd−1 as a subgraph. Thus it suffices to prove

the above conjecture when d is a power of 2. The cases d = 1, 2 are trivial since Q(2)1 is

isomorphic to K2 and Q(2)2 is isomorphic to K4.

Proposition 4.16. χc

(

Q(2)4

)

= 8.

Proof. Let G = Q(2)4 . For each x ∈ V (G), the vertices at distance 1 or 2 from x in Q4 are

adjacent to x in G, and the vertices at distance 3 or 4 from x in Q4 form a clique in G.

Therefore α(G) 6 2, which gives χc(G) > 8. Indeed every set {x, x}, where x ∈ V (G) and

x is the unique vertex at distance 4 from x in Q4, is an independent set in G. Assigning

the same colour to any such pair gives an 8–colouring of G.

By the above proposition and by (4.1) we have χc

(

Q(2)d

)

= 8 for d = 4, 5, 6, 7.

Conjecture 4.17. For all positive d, χc

(

Q(2)d

)

= 2⌊log2d⌋+1.

The first open case of Conjecture 4.17 is when d = 8. An independent set in Q(2)8 is in

fact a binary code with codewords of length 8 and with minimum distance at least 3. It is

known (cf. [8]) that the maximum size of such code is 20. Therefore Q(2)8 has independence

number 20, and the bound of Lemma 3.4 gives χc

(

Q(2)8

)

> 12.8 while the conjectured

value is 16.

Page 48: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 38

4.2.2 Squares of prisms

We consider prisms of cycles, namely the graphs K2 � Cn, where � denotes the Cartesian

product. The study of the circular chromatic number of squares of prisms is partly moti-

vated by the fact that the hypercube graph Q3 is isomorphic to K2 �C4. Throughout this

section we denote Gn = K2 � Cn.

The graph G3 has diameter 2 thus G(2)3 is a 6–clique and χc

(

G(2)3

)

= 6. Since C(2)5

is a 5–clique, we see that χc

(

G(2)5

)

> 5. The results of this section prove that indeed

χc

(

G(2)5

)

= 5. The aim of this section is to prove the following.

Theorem 4.18. For all n > 3,

χc

(

G(2)n

)

=

4 if 4|n,4n

n−1 if n is odd,

4nn−2 if n ≡ 2 (mod 4).

It turns out that these values are all equal to the lower bound of Lemma 3.4. Thus we need

to prove the upper bounds and calculate the independence numbers of the graphs G(2)n for

the above result. The upper bounds are less trivial, and we deal with them first in the

following lemmas.

Lemma 4.19. If n is a multiple of 4, then χc

(

G(2)n

)

6 4.

Proof. Let V (Cn) = {1, 2, . . . , n} in the cyclic order and V (K2) = {1, 2}. Then V (G) =

{(i, j) : 1 6 i 6 2 and 1 6 j 6 n}. We define c(1, j) = j (mod 4) and c(2, j) = j + 2

(mod 4). It is easy to see that c is a 4–colouring of G(2)n .

Lemma 4.20. For odd n > 3 we have χc

(

G(2)n

)

64n

n−1 .

Proof. Similarly to the previous proof we have V (G) = {(i, j) : 1 6 i 6 2 and 1 6 j 6

2k + 1}. For convenience, we write xj = (1, j) and yj = (2, j).

If n = 4q + 1 for some integer q, then a (4q + 1, q)–colouring of G(2)n can be defined by

c(i, j) = (2i+ j)q (mod n). Here the end-vertices of each edge of G(2) receive colours with

distance q, 2q, or 3q which are all valid distances for a (4q + 1, q)–colouring.

Page 49: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 39

Figure 4.8: A Hamiltonian cycle in G(2)7 used in the proof of Lemma 4.20

If n ≡ −1 (mod 4), then let (p, q) = (2n, n−12 ). We define

(v1, v2, . . . , v2n) = (x1, y2, x3, y4, . . . , yn−1, xn, y1, x2, . . . , xn−1, yn).

Then C = v1v2 · · · v2nv1 is a Hamiltonian cycle in G(2)n (Figure 4.8). Let c(vi) = iq (mod p).

We claim that c is a proper (p, q)–colouring of G(2)n . Because of the symmetric choice of C

and the definition of c, it suffices to show that c is proper with respect to edges incident

with x1. The case n = 3 is easily verified since each vertex receives a distinct colour. If

n > 3, then x1 is adjacent to x2, x3, xn, xn−1, y1, y2, yn in G(2)n . Since xn−1ynx1y2x3 is a

path on C, the difference in the colours of the end-vertices of the edges x1xn−1, x1yn, x1y2

and x1x3 is either q or 2q which are both valid. On the other hand, since y1 = vn+1, we

have

c(y1) = (n+ 1)q = (n + 1)n− 1

2=n+ 1

4(2n− 2) ≡ n+ 1

4(−2) = −q − 1 ≡ 3q + 1.

Therefore the difference in the colours of the end-vertices of the edges x1xn, x1y1 and x1x2

are q + 1, 2q + 1, and 3q + 1 respectively which are all valid.

Lemma 4.21. For odd n > 3 we have χc

(

G(2)2n

)

64n

n−1 .

Proof. The graph G(2)2n admits a homomorphism to G

(2)n as follows. Let V (G2n) = {aij :

1 6 i 6 2 and 1 6 j 6 2n} and V (Gn) = {bij : 1 6 i 6 2 and 1 6 j 6 n}. Then the map

f : aij 7→ bij (where j is reduced modulo n) is a homomorphism.

Page 50: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 40

The last result of this section is the following lemma on the independence number of the

squares of prisms. This result completes the proof of Theorem 4.18.

Lemma 4.22. For all n > 3 we have

α(G(2)n ) =

n2 if 4|n,n−1

2 if n is odd,

n−22 if n ≡ 2 (mod 4).

Proof. Note that each colour class of the colourings given in Lemmas 4.19, 4.20, and 4.21

gives an independent set of the desired size in the graphs G(2)n . So we only need to prove

the upper bounds on the independence number. We label the vertices of Gn as in the

previous proof: each vertex xi ∈ V (G(2)n ) is adjacent to xi−1, xi+1, and vi+n (all subscripts

are reduced modulo n).

Let I be an independent set in G(2)n . If xi ∈ I, then none of the vertices xi+1, yi, and yi+1

is in I. A similar argument holds for each yi ∈ I. Therefore I can have at most one vertex

from any two consecutive spokes xiyi and xi+1yi+1 of Gn. This proves the upper bound

when n is odd and when 4|n. On the other hand, if n ≡ 2 (mod 4), the above analysis

shows that an independent set of size n/2, if one exists, has one vertex from every second

spoke. Namely, one vertex from the spokes x2iy2i. Moreover, since xi is adjacent to xi+2

and yi is adjacent to yi+2, such an independent set has to alternate between the vertices

x2i and y2i where 1 6 i 6 n/2. Therefore, up to automorphisms of G(2)n , such independent

set equals {x2, y4, x6, y8 . . . , xn}. But xn is adjacent to x2. This contradiction proves that

α(G(2)n ) 6 n/2 − 1.

4.2.3 Squares of Mobius ladders

Mobius ladders are very similar in structure to prisms. Indeed the Mobius ladder V2n is

obtained by a 2–switch (namely by replacing two independent edges xy and x′y′ with xx′

and yy′) from the prism K2 � Cn. Given n > 2, the Mobius ladder V2n is defined to be

the graph obtained from C2n by adding all the long diagonals. The graphs V4 and V6 are

isomorphic to K4 and K3,3 respectively. Therefore χc

(

V(2)4

)

= 4 and χc

(

V(2)6

)

= 6. On

Page 51: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 41

the other hand since V8 has diameter 2, V(2)8 is a complete graph so χc

(

V(2)8

)

= 8. In this

section we prove the following theorem.

Theorem 4.23. For all n > 2, we have

χc

(

V(2)2n

)

=

4 if n ≡ 2 (mod 4),

4nn−1 if n is odd,

4nn−2 if 4|n.

We first prove the upper bounds in the following propositions. The lower bounds follow by

Lemma 3.4 and Lemma 4.27 which we prove at the end of this section.

Proposition 4.24. If n ≡ 2 (mod 4), then χc

(

V(2)2n

)

6 4.

Proof. Let the vertices of V2n be v1, v2, . . . , v2n where for 1 6 i 6 2n. The vertex vi is

adjacent to vi−1, vi+1, and vi+n (all subscripts are reduced modulo n). Then the colouring

c defined by c(vi) = i (mod 4) is a proper 4–colouring of V(2)2n .

Proposition 4.25. If n > 3 is odd, then χc

(

V(2)2n

)

6 4nn−1 .

Proof. Let the vertices of V2n be v1, v2, . . . , v2n where for 1 6 i 6 2n, the vertex vi is

adjacent to vi−1, vi+1, and vi+n (all subscripts are reduced modulo n).

Suppose n = 4t−1 for some integer t. Let (p, q) = (2n, n−12 ) and define c(vi) = iq (mod p).

We claim that c is a proper (p, q)–colouring of V(2)2n . Let 1 6 i 6 2n. Then c(vi+1)−c(vi) = q

and c(vi+n)−c(vi) = nq = n = 2q+1 so the colouring is consistent with all the edges of V2n.

Here all calculations are carried out modulo p = 2n. On the other hand c(vi+2)−c(vi) = 2q

and c(vn+i+1) − c(vi) = q + c(vn+i) − c(vi) = 3q + 1. Since all these differences are valid

for a (p, q)–colouring, the claim is true.

Suppose n = 4t+ 1 for some integer t. Let (p, q) =(

n, n−14

)

. Let

(x1, x2, x3, . . . , xn) = (v1, vn+2, v3, . . . , vn),

(y1, y2, y3, . . . , yn) = (vn+1, vn, vn+3, . . . , vn+n),

and define c(xi) = c(yi+2) = iq (mod p). Similarly to the previous case, one sees that c is

a proper (p, q)–colouring of V(2)2n .

Page 52: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 42

Proposition 4.26. If n > 4 is a multiple of 4, then χc

(

V(2)2n

)

64n

n−2 .

Proof. Let (p, q) =(

2n, n−22

)

and define c(vi) = iq (mod p). Then

|c(v2) − c(v1)| = |c(v2n) − c(v1)| = q,

|c(v3) − v(v1)| = |c(v2n−1 − c(v1)| = 2q,

|c(vn+1) − c(v1)| = nq = 2q + 2 (mod p),

|c(vn) − v(v1)| = q + 2 (mod p), and

|c(vn+2 − c(v1)| = 3q + 2 (mod p).

Therefore c is a proper (p, q)–colouring of V(2)2n .

Lemma 4.27. For all n > 3 we have

α(V(2)2n ) =

n2 if n ≡ 2 (mod 4),

n−12 if n ≡ ±1 (mod 4),

n−22 if n ≡ 0 (mod 4).

Proof. Note that the colourings given in Propositions 4.24, 4.25, and 4.26 give independent

sets of the desired size in the graphs V(2)2n . So we only need to prove the upper bounds on

the independence number.

Let the vertices of V2n be v1, v2, . . . , v2n where for 1 6 i 6 2n, the vertex vi is adjacent to

vi−1, vi+1, and vi+n (all subscripts are reduced modulo n). Let I be an independent set in

V(2)2n . If vi ∈ I, then none of the vertices vi+1, vi+n, and vi+n+1 can be in I. Therefore I can

have at most one vertex from any two consecutive diagonals vivi+n and vi+1vi+n+1. This

proves the upper bound when n is odd and when n ≡ 2 (mod 4). On the other hand, if n is

a multiple of 4, the above analysis shows that an independent set of size n/2, if one exists,

has one vertex from every second diagonal. Namely, one vertex from the diagonals v2iv2i+n.

Moreover, since vi is adjacent to vi+2, such independent set has to alternate between the

vertices v2i and v2i+n where 1 6 i 6 n/2. Therefore, up to isomorphism, such independent

set equals {v2, v4+n, v6, v8+n . . . , vn+n}. But v2n is adjacent to v2. This contradiction proves

that α(V(2)2n ) 6 n/2 − 1.

Page 53: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 43

4.2.4 Squares of flower snarks

Flower snarks were first introduced by Isaacs [31] as the first infinite family of well-connected

cubic graphs which are not 3–edge colourable. We study circular edge colourings of these

graphs in Section 7.2. Unlike prisms and Mobius ladders, for squares of flower snarks the

lower bound of Lemma 3.4 is not tight. This makes the study of the circular chromatic

number of squares of these graphs more interesting.

Given an odd integer n > 3, the flower snark Jn consists of two cycles x1x2 · · · xnx1 and

y1y2 · · · y2ny1 and n claws {zixi, ziyi, ziyn+i}, where 1 6 i 6 n. Some flower snarks are illus-

trated in Figure 4.9. In this figure, the vertices zi are on the top row of each picture while

the top horizontal line represents the cycle x1x2 · · · xnx1 and the bottom two horizontal

lines represent the cycle y1y2 · · · y2ny1.

Proposition 4.28. For all odd n > 3, we have α(J(2)n ) = n.

Proof. Each claw {zixi, ziyi, ziyi+n} of Jn induces a 4–clique in J(2)n , thus α(J

(2)n ) 6 n. On

the other hand, the set {z1, z2, . . . , zn} is an independent set in J(2)n .

Since J(2)n has 4n vertices, Lemma 3.4 gives χc

(

J(2)n

)

> 4 which is the trivial lower bound

for any graph with a vertex of degree 3 or more. The actual value of χc

(

J(2)n

)

on the other

hand, turns out to be always greater than 4. In the following we first calculate the circular

chromatic number of J(2)3 and J

(2)5 . For the latter graph our proof is computer-assisted.

Then we establish all other cases in Theorem 4.31.

Proposition 4.29. χc

(

J(2)3

)

= 7.

Proof. The subgraph of J(2)3 induced by the set {y1, y2, . . . , y6, z1} is a 7–clique. Therefore

we have χc

(

J(2)3

)

> 7. On the other hand, a 7–colouring of this clique can be easily

extended to J(2)3 .

Proposition 4.30. χc

(

J(2)5

)

= 6.

Proof. The subgraph of J(2)5 induced by the xi is a 5–clique. Therefore we need at least 5

colours to colour this graph. Suppose J(2)5 has a 5–colouring c. We may assume c(xi) = i.

Then c(z1) equals one of c(x3) and c(x4). Without loss of generality we assume c(z1) = 3.

Page 54: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 44

Now c(z2) ∈ {4, 5} and c(y2), c(y7) ∈ {1, 4, 5}. Therefore one of c(y2) and c(y7) equals 1.

This implies that c(z3) = 4. Similarly, since c(y4), c(y9) ∈ {1, 2, 3} and c(z4) ∈ {1, 2}, one

of c(y4) and c(y9) must be 3, which implies c(z5) = 2. Finally we have c(y1), c(y6) ∈ {3}.This is a contradiction since y1 and y6 are adjacent. This proves χ

(

J(2)5

)

= 6.

To show χc

(

J(2)5

)

= 6, it suffices to show that every 6–colouring of J(2)5 has a tight cycle.

We verified this using a computer program.

Before the next result, we need the following definition. Let r > 4 and let (α, β, γ) be

a triple of colours in Cr. We say this triple has positive sign if β ∈ [α, γ]r and we say

this triple has negative sign otherwise. For example, the triples (1, 2, 3) and (3, 1, 2) have

positive sign while (1, 3, 2) has negative sign.

Theorem 4.31. For all odd n > 7, we have χc

(

J(2)n

)

= 5.

Proof. Since Jn is 3–regular, χc

(

J(2)n

)

> 4. Suppose χc

(

J(2)n

)

= r = 4 + ε < 5 and let c

be an r–circular colouring of J(2)n .

Without loss of generality we may assume that c(z1) = 0. Since the vertices {z1, x1, y1, yn+1}induce a 4–clique, each of the colours c(x1), c(y1), and c(yn+1) must be in one of the in-

tervals Ij = [j, j + ε] with j = 1, 2, 3, and no two of these can be selected from the same

interval. Similarly, since the vertices {z1, x2, y2, yn+2} induce a 4–clique, c(x2), c(y2), and

c(yn+2) must satisfy the same conditions. On the other hand, the colours of the end-

vertices of the edges x1x2, y1y2, and yn+1yn+2 must be selected from different intervals.

Note that since ε < 1, the intervals Ij are mutually disjoint and therefore the triples of

colours (c(x1), c(y1), c(yn+1)) and (c(x2), c(y2), c(yn+2)) have the same sign.

A similar argument proves that for all 1 6 i 6 n, the triples (c(xi), c(yi), c(yn+i)) and

(c(xi+1), c(yi+1), c(yn+i+1)) have the same sign. Here xn+1 = x1 and y2n+1 = y1. In par-

ticular, the triple (c(x1), c(y1), c(yn+1)) has the same sign as (c(xn+1), c(yn+1), c(y2n+1)) =

(c(x1), c(yn+1), c(y1)). This is a contradiction. Therefore χc

(

J(2)n

)

> 5.

It remains to give a 5–colouring of J(2)n for n > 7. In Figure 4.9 we present 5–colourings of

J(2)7 , J

(2)9 , and J

(2)11 . In each picture the shaded block can be repeated t > 0 times to obtain

5–colourings for J(2)7+3t, J

(2)9+3t, and J

(2)11+3t.

Page 55: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 45

1 2 3 1 4 2 3

2 3 1 2 3 1 2

3 1 2 4 1 3 4

1 2 3 1 2 3 1 2 3

2 3 1 2 3 4 2 1 4

3 1 2 3 1 2 4 3 1

1 2 3 1 2 3 1 4 3 2 4

2 3 1 2 3 1 2 3 1 4 2

3 1 2 3 1 2 3 1 2 3 1

Figure 4.9: 5–Colourings of squares of flower snarks. Vertices with no label are coloured 0.Semiedges wrap around.

Page 56: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 46

a b

x

y

Figure 4.10: The unit distance graph Ha,b

Remark 4.32. The flower snarks can be similarly defined for even n > 4. The resulting

graphs are all bipartite and thus trivial for vertex or edge colouring. The squares of these

graphs on the other hand, all have circular chromatic number 5. This is because the proof

of Theorem 4.31 does not depend on the parity of n.

4.3 The Plane Unit-Distance Graph

The results presented in this section are published in [13].

The plane unit distance graph R is defined to be the graph with vertex set R2 in which two

vertices (points in the plane) are adjacent if and only if they are at Euclidean distance 1.

Every subgraph of R is also said to be a unit distance graph. It is known that (cf. [27, 42])

4 6 χ(R) 6 7.

It is known (cf. [48, pp. 59–65]) via a lower bound on the fractional chromatic number of

R, that χc (R) > 32/9. We improve this lower bound to 4.

Let a and b be two points in the plane, and let d(a, b) denote the Euclidean distance

between a and b. If d(a, b) =√

3, then we may find points x and y in the plane such that

the subgraph of R induced on the set {a, b, x, y} is isomorphic to the graph H obtained by

deleting one edge from K4 (see Figure 4.10). We denote this unit distance graph by Ha,b.

On the other hand, it is easy to see that, in any embedding of H as a unit distance graph

in the plane, the Euclidean distance between the two vertices of degree 2 in H is√

3.

Lemma 4.33. Let 0 < ε < 1, r = 3 + ε, and let a, b ∈ R2 with d(a, b) =

√3. Let c be an

r–circular colouring of Ha,b. Then |c(a) − c(b)|r 6 ε.

Page 57: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 47

Proof. We label the vertices of H as in Figure 4.10. Without loss of generality, we may

assume c(a) = 0. Since a, x, y form a triangle in Ha,b, we have c(x) ∈ [1, 1 + ε]r and

c(y) ∈ [2, 2 + ε]r or vice versa. On the other hand, b is adjacent to both x and y. Thus

c(b) ∈ [c(x) + 1, c(x) − 1]r ∩ [c(y) + 1, c(y) − 1]r

⊆ [2, ε]r ∩ [−ε, 1 + ε]r

= [−ε, ε]r .

The last equality is true since 1 + ε < 2.

Theorem 4.34. χc(R) > 4.

Proof. Suppose that c is a (3 + ε)–circular colouring of R where 0 6 ε < 1. Let

µ = sup{|c(a) − c(b)|r : a, b ∈ R2 and d(a, b) =

√3}.

By Lemma 4.33, µ 6 ε. By the definition of µ, for every 0 < µ′ < µ, there exist points a

and b at distance√

3 in the plane such that |c(a)− c(b)|r > µ′. Consider the graph Ha,b as

in Figure 4.10. Without loss of generality we may assume

0 = c(a) 6 c(b) < c(x) < c(y) 6 2 + ε.

Since 3 + ε < 4, we have

|c(a) − c(x)|r = c(x) = |c(a) − c(b)|r + |c(b) − c(x)|r > µ′ + 1.

On the other hand, since a and x are at distance 1, there exists a point z which is at

distance√

3 from both a and x. Therefore

1 + µ′ < |c(a) − c(x)|r 6 |c(a) − c(z)|r + |c(z) − c(x)|r 6 2µ.

Since this is true for every µ′ < µ, we have µ > 1. This is a contradiction since µ 6 ε <

1.

We do not know of a finite subgraph of R with circular chromatic number 4. In the

remainder of this section. we construct finite subgraphs of R with circular chromatic

number arbitrarily close to 4.

Page 58: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 48

Gn

Gn

Gn

Gn

x

y

y′

z

Figure 4.11: Construction of Gn+1 from Gn.

Figure 4.12: The Moser (spindle) graph.

The graph G0 = K2 is obviously a unit distance graph. In our construction of graphs

Gn (n > 0) we distinguish two vertices in each of them. To emphasize the distinguished

vertices x and y of Gn, we write Gx,yn . We identify each subgraph of R with its geometric

representation given by its vertex set.

For n > 0, the graph Gn+1 is constructed recursively from four copies of Gn. Let S =

V (Gx,yn ) ⊆ R

2. Let us rotate the set S in the plane about the point x, so that the image

y′ of y under this rotation is at distance 1 from y. Let S′ be the image of S under this

rotation. Let T be the set of all points in S ∪ S′ and their reflections about the line yy′.

In particular let z ∈ T be the reflection of x about the line yy′. We define Gx,zn+1 to be the

subgraph of R induced on T . This construction is depicted in Figure 4.11.

Note that G1 is the graph Ha,b of Figure 4.10 and G2 contains the Moser graph shown in

Figure 4.12 as a subgraph. The Moser graph, also known as the spindle graph, was the

first 4–chromatic unit distance graph discovered [42].

Lemma 4.35. For every n > 1, we have χc(Gn) > 4 − 21−n. Moreover, for every r =

4 − 21−n + ε with 0 6 ε < 21−n, and for every r–circular colouring c of Gx,zn , we have

|c(x) − c(z)|r 6 2n−1ε.

Page 59: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 49

Proof. We use induction on n. The nontrivial part of the case n = 1 is proved in

Lemma 4.33. Let n > 1 and Gx,zn+1 be as shown in Figure 4.11. Let r = 4 − 21−n + ε

for some ε > 0, and let c be a r–circular colouring of Gx,zn+1. Without loss of generality

we may assume that c(x) = 0. By the induction hypothesis, |0 − c(y)|r and |0 − c(y′)|rare both at most 2n−1ε. Hence |c(y) − c(y′)|r 6 2nε. On the other hand, since y and

y′ are adjacent in Gx,zn+1, we have |c(y) − c(y′)|r > 1. Therefore ε > 2−n, and we have

χc(Gn+1) > 4 − 21−n + 2−n = 4 − 2−n.

Now let r = 4 − 2−n + ε for some 0 6 ε < 2−n, and let c be a r–circular colouring of

Gn+1 with c(x) = 0. Note that r = 4 − 21−n + ε′, with ε′ = 2−n + ε < 21−n. By the

induction hypothesis, |0 − c(y)|r, |0 − c(y′)|r, |c(z) − c(y)|r, and |c(z) − c(y′)|r are all at

most 2n−1ε′ < 1. Therefore we have

c(y), c(y′) ∈[

−2n−1ε′, 2n−1ε′]

r

and

c(z) ∈[

c(y) − 2n−1ε′, c(y) + 2n−1ε′]

r∩

[

c(y′) − 2n−1ε′, c(y′) + 2n−1ε′]

r.

Since |c(y)−c(y′)|r > 1, one of the colours c(y) and c(y′), say c(y), is in the circular interval[

−2n−1ε′, 2n−1ε′ − 1]

r, and c(y′) ∈

[

−2n−1ε′ + 1, 2n−1ε′]

r. Therefore

[

c(y) − 2n−1ε′, c(y) + 2n−1ε′]

r⊆

[

−2nε′, 2nε′ − 1]

r=

[

−2nε′, 2nε]

r

and[

c(y′) − 2n−1ε′, c(y′) + 2n−1ε′]

r⊆

[

−2nε′ + 1, 2nε′]

r=

[

−2nε, 2nε′]

r.

Finally, since ε′ < 21−n, we have 2nε′ < r − 2nε′. Hence

c(z) ∈[

−2nε′, 2nε]

r∩

[

−2nε, 2nε′]

r= [−2nε, 2nε]r .

This completes the induction step.

Let us observe that, when constructing Gn+1 from four copies of Gn, it may happen that

vertices in distinct copies of Gn correspond to the same points in the plane. Additionally, it

may happen that some new edges between vertices in distinct copies of Gn are introduced

because their ends have distance 1. Let H1,H2, . . . be the sequence of abstract graphs

defined exactly as with G1, G2, . . . except we do not allow vertex identifications nor new

edges to be introduced in this way. Clearly χc(Gn) > χc(Hn), but we cannot argue equality

in general. The proof of Lemma 4.35 applied to the graphsHn gives slightly more, as follows.

Page 60: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 50

Theorem 4.36. For every n > 0, χc(Hn) = 4 − 21−n.

Proof. The cases n = 0, 1 are trivial. Let n > 1, and let Hn+1 be as in Figure 4.11. Let

r = 4−2−n = 4−21−n+2n. By the proof of Lemma 4.35, Hx,yn admits an r–circular colouring

c1, with c1(x) = 0 and c1(y) = 1/2. Similarly the graphs Hx,y′

n , Hy,zn , and Hy′,z

n admit r–

circular colourings c2, c3, and c4, respectively, with c2(x) = 0, c2(y′) = c4(y

′) = −1/2,

c3(y) = 1/2, and c3(z) = c4(z) = 0. Now an r–circular colouring c of Hn+1 can be obtained

by combining the partial colourings c1, c2, c3, c4.

4.4 The Projective Plane Orthogonality Graph

In this section we study the circular chromatic number of another geometrically defined

infinite graph. Let RP 2 be the set of all lines through the origin in R3. We define a graph O

with V (O) = RP 2 in which two vertices are adjacent if and only if they are perpendicular

as lines in R3. Certain properties of O (e.g. independent sets which meet every triangle)

are of interest in quantum physics [46]. If O is 3–colourable, then every colour class of a 3–

colouring of O is an independent set which meets every triangle. Kochen and Specker [37]

proved that O has no such independent set. Indeed O has a finite subgraph in which

independent set meets every triangle. This proves χ(O) > 4. A 4–colouring of O was

discovered by Godsil and Zaks [23], thus proving the following.

Theorem 4.37. χ(O) = 4.

It remains open whether O has circular chromatic number 4. By investigating finite sub-

graphs of O, we give lower bounds on χc (O).

Given n > 1, let Xn be the set of all non-zero vectors (a, b, c) such that a, b, c are relatively

prime integers with absolute value at most n. Moreover, we assume that the leading non-

zero component of each (a, b, c) ∈ Xn is positive. Therefore elements of Xn correspond to

unique vertices of O. Let Gn be the subgraph of O induced by Xn.

Example 4.38. For n = 1 we have

X1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1,±1, 0), (1, 0,±1), (0, 1,±1), (1,±1,±1)}.

The graph G1 induced by X1 is shown in Figure 4.13(a). One may notice that deleting

Page 61: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 51

111

011

111

101

101

111

110

110

111

011

100

010 001

1

3

0

4

6

4

2

4

2

0

5

2 0

(a) (b)

Figure 4.13: (a) The graph G1, where 1 means −1, and (b) a (7, 2)–colouring of G1

from X the vertices 100, 010, and 001 results in the Petersen graph. Here abc is short for

(a, b, c).

Proposition 4.39. χc (O) > 7/2.

Proof. We claim χc (G1) = 7/2. A (7, 2)–colouring of G1 is given in Figure 4.13(b). On

the other hand, by Lemma 2.5, if χc (G1) < 7/2 then χc (G1) 6 10/3. Let c be a (10, 3)–

colouring of G1. We may assume that c(100) = 0, c(010) = 3, and c(001) = 6. Let

u = 100, v = 010, w = 001. Let u1 and u2 be the neighbours of u other than v and w, and

similarly define v1, v2, w1, w2. Since c(u) = 0 and uu1u2u is a triangle, one of c(ui), c(vi) is

in {3, 4} while the other is in {6, 7}. By exchanging the indices, if needed, we may assume

c(u1) ∈ {3, 4}; c(u2), c(v1) ∈ {6, 7}; c(v2), c(w1) ∈ {9, 0}; and c(w2) ∈ {2, 3}. Note that

the remaining vertices of G1 all have degree 3, and each of them has a neighbourhood of

them form {ui, vj , wk}. Moreover, no two of the vertices of degree 3 have more than one

common neighbour. For i ∈ {1, 2}, let ti be the common neighbour of u1 and vi. Then

c(t1) ∈ {9, 0, 1}. Therefore t1 is not adjacent to w2 and we have N(ti) = {u1, vi, wi}. Now

let t′i be the common neighbour of w2 and vi. Then since t′1 = t1 is adjacent to u1, we have

that t′2 is adjacent to u2. This is a contradiction since any choice of c(t′2) contradicts with

one of c(u2), c(v2), and c(w2).

The graphs Gn for n > 2 are much more complicated in structure than G1. For example

Page 62: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 4. Circular Chromatic Number of Some Special Graphs 52

G2 has order 49 and size 138. With a computer, we were able to prove that the graph

H2 = G2 − {111, 211, 211, 211, 211} with order 44 and size 117, has circular chromatic

number 11/3. We first found an (11, 3)–colouring of H2 to prove the upper bound, then

investigated all (11, 3)–colourings of H2 and verified that every such colouring of H2 has a

tight cycle. Thus by Lemma 2.4 we have χc (H2) = 11/3. This proves the following.

Theorem 4.40. χc (O) > 11/3.

The graph G3 has order 145 and size 546. We were able to find a 4–colouring of this

graph which has no tight cycles. Applying Lemma 2.6, this gives a (27, 7)–colouring of G3.

Therefore we have 4 − 13 = χc (H2) 6 χc (G3) 6 4 − 1

7 . This colouring cannot be improved

further since it has a tight cycle. Our study of colourings of the graphs Gn suggests the

following conjecture.

Conjecture 4.41. χc (O) = 4.

Page 63: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 5

Circular Colourability vs. Girth

The pentagon colouring problem (Problem 3.13) asks whether every cubic graph with large

enough girth maps to C5 (i.e. has circular chromatic number at most 5/2). In this chapter

we present some work related to this problem.

5.1 How About Odd-Girth?

For planar graphs, the folding lemma of [36] asserts that short even facial cycles are not

obstructions to colourability. Specifically, every planar graph G with odd-girth g admits

a homomorphism to a plane graph G′ with all faces having length g. The fact that one

can get rid of some of the short even cycles in a planar graph without affecting circular

colourability inspires the following two problems.

Problem 5.1. Does every cubic graph with sufficiently large odd-girth map to C5?

Problem 5.2. Does every cubic graph with sufficiently large odd-girth have circular chro-

matic number strictly less than 3?

In this section we prove both these problems have negative answers. By Theorem 3.2 it

suffices to find projective plane graphs with all faces having length 4 or 6 which have no

short odd cycles. The construction of such graphs follows.

By Euler’s formula, a cubic projective plane graph every face of which has length 4 or 6,

must have exactly three faces of length 4. We construct a sequence of projective plane

53

Page 64: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 5. Circular Colourability vs. Girth 54

Figure 5.1: The spiderweb graphs S1 and S2. Semiedges are routed through a cross-cap.

graphs with this property, called spiderweb graphs. The spiderweb graph Sn consists of

n + 1 “layers”. The graph S0 is the complete graph K4 and the graphs S1 and S2 are

illustrated in Figure 5.1. To further clarify the construction of the spiderweb graphs we

show a projective plane embedding of S3 in Figure 5.2. Since in an even-faced projective

plane graph odd cycles are precisely the non-contractible cycles, adding more layers is

expected to increase the odd-girth of the spiderweb graphs.

Obviously the graphs Sn are all cubic, and embedded in the projective plane with three

faces of length 4 and all other faces having length 6. Therefore by Theorem 3.2 except for

S0, which does not have any hexagonal faces, they all have circular chromatic number 3.

The proof of the following proposition is straight-forward, but technical and we omit it

here.

Proposition 5.3. Given n > 0, the graph Sn has odd-girth 2 ⌈3n/2⌉ + 3.

The results of this section are summed up in the following.

Theorem 5.4. There exist cubic graphs with sufficiently large odd-girth, whose circular

chromatic number equals 3.

Page 65: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 5. Circular Colourability vs. Girth 55

Figure 5.2: The spiderweb graph S3. Semiedges are routed through a cross-cap.

5.2 An Alternate View

The pentagon colouring problem asks whether for cubic graphs, large girth implies that

the circular chromatic number is at most 5/2. Alternately, one might ask if the circular

chromatic number of cubic graphs with a certain girth is bounded below 3. More specifically,

for all g > 3, let

f(g) = sup {χc(G) : G is a cubic graph with girth > g} .

The pentagon colouring problem asks whether f(g) 6 5/2 for large enough g. By definition,

f is a non-increasing function of g, so equivalently, the pentagon colouring problem asks

whether

limg→∞

f(g) 6 5/2.

In this section we show that f(9) > 5/2 and thus the minimum girth required in the

pentagon colouring problem is at least 10. Since every subcubic graph G is a subgraph of

a cubic graph having the same girth as G, the pentagon colouring problem is equivalent

to the assertion that every subcubic graph with large enough girth has circular chromatic

number at most 5/2. By extending the domain of the pentagon colouring problem we gain

Page 66: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 5. Circular Colourability vs. Girth 56

BC

A

B C

A

Figure 5.3: A subcubic graph with girth 6 and circular chromatic number 3

more generality which is useful for inductive proofs. The best advantage of this extension

for us is that we may construct subcubic graphs of large girth as subdivisions of cubic

graphs. In particular this process can be carried out on a surface such as the projective

plane. While cubic graphs embedded in the plane or the projective plane have bounded

girth, subcubic embedded graphs can have arbitrary large girth.

Since χc (K4) = 4 and χc (P ) = 3 where P is the Petersen graph, we have f(3) = 4

and f(4) = f(5) = 3. The graph shown in Figure 5.3 is a subcubic projective plane

hexangulation with girth 6. Therefore by Theorem 3.2 it has circular chromatic number 3.

This proves f(6) = 3.

We do not know any (sub)cubic graph with girth at least 7 and circular chromatic number 3.

We determined the circular chromatic number of small (order at most 34) cubic graphs with

girth 7, looking for such graph. The results of these computations are presented in Table 5.1.

From this table one can see that there exists a cubic graph of order 26 and girth 7 with

circular chromatic number 14/5. An illustration of this graph is presented in Figure 5.4.

Indeed this is the best we know for girth 7. It provides us with the bound f(7) > 14/5.

In Proposition 5.6 we prove that f(g) >2g

g−2 for all even g. In particular f(8) > 8/3 and

f(10) > 5/2. These are the best known bounds for g = 8, 10.

We also computed the circular chromatic number of small cubic graphs with girth 9. Since

the smallest of these graphs have order 58, this computation and even generating such

Page 67: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 5. Circular Colourability vs. Girth 57

A

A

A

B

B

B

Figure 5.4: A cubic graph with girth 7 and circular chromatic number 14/5. The semiedgeslabelled A are incident with a new vertex A and the semiedges labelled B are incident witha new vertex B.

graphs could not be completed for orders greater than 60. The (partial) results of these

computations are presented in Table 5.2. One can see in this table that f(9) >2911 , thus

proving the following.

Proposition 5.5. The girth requirement in the pentagon colouring problem is at least 10.

The results of further computations of circular chromatic number of small graphs are pre-

sented in Section 5.4.

The following is yet another application of Theorem 3.2.

Proposition 5.6. For all even g > 4, we have f(g) >2g

g−2 .

Proof. By Theorem 3.2, it suffices to find a non-bipartite subcubic projective plane graph

with girth g whose faces all have length g. For g = 4 the complete graph K4, and for

g = 6 the graph of Figure 5.3 have the desired properties. In the following construction we

assume g = 2n > 6.

We start with the Mobius ladder Vg embedded in the projective plane with one face of

length g and every other face having length 4 (the diagonals of the main cycle go through a

cross-cap). We label the vertices of Vg so that it consists of the cycle v1v2 · · · vgvg+1, where

vg+1 = v1, and the diagonals vivn+i for 1 6 i 6 n. For each 1 6 i 6 g, we subdivide the

Page 68: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter

5.

Cir

cular

Colourabil

ity

vs.

Gir

th

58

nnumber of graphs with circular chromatic number ...

73

2611

125

2912

177

229

2711

3213

52

2811

239

187

135

218

2911

83

197

114

145

24 1

26 1 1 1

28 1 5 1 14

30 1 3 51 5 68 6 408 3

32 12 15 28 6 2 2975 9 5 304 3675 213 23123 1

34 8 2 220 5 491 774 207 20 152470 39 995 ∼20408 ∼193861 ∼14636 ∼10 ∼952131 4 5

Table 5.1: Circular chromatic number of small cubic graphs of girth 7.Here a tilde in a cell means that the corresponding upper bound is verified for the graphs counted in that cell, but theequality is not verified. We have verified that every graph counted in a column to the right of the 5/2 column is not(5, 2)–colourable. The same rules apply to all tildes in all the tables of this thesis.

nnumber of graphs with circular chromatic number ...

125

177

3213

5221

52

3313

2811

239

187

3112

135

218

2911

58 5 1∼ 1∼ 9∼ 1∼ 1∼

60 2∼ 1∼ 1∼ 1∼ 210 1∼ 6∼ 12∼ 136∼ 11∼ 93∼

Table 5.2: Circular chromatic number of small cubic graphs of girth 9

Page 69: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 5. Circular Colourability vs. Girth 59

Figure 5.5: A subcubic projective plane graph with girth 10 and all faces of length 10

edge vivi+1 to a path Pi of length n − 1 and denote the vertex of Pi adjacent to vi by xi.

Let Gg be the disjoint union of this graph with a cycle y1y2 · · · ygy1 in which xi is joined to

yi by an edge if i is odd, and by a path of length n− 1 if i is even. It is easy to see that Gg

is embedded in the projective plane with all faces having length g, and that Gg has girth g.

The graph G6 is shown in Figure 5.3, and the graph G10 is shown in Figure 5.5.

As it can be seen from the construction of the graph Gg in the above proposition, these

graphs are very sparse. This makes it possible to obtain new graphs with the same girth,

starting from several copies of the graph Gg and joining pairs of vertices of degree 2 with

new edges. Intuitively, one expects to be able to get graphs with larger circular chromatic

number. We tried this approach for g = 10 but we failed to find any subcubic graphs with

girth 10 and circular chromatic number strictly greater than 5/2. We investigated hundreds

of thousands of cubic and subcubic randomly generated graphs containing one or several

copies of G10. Since this was a failed attempt, we omit the details here.

5.3 Circular Critical Subcubic Graphs

We observed in Section 5.2 that f(4) = f(5) = f(6) = 3. Namely there exist cubic graphs

with girth 4, 5, and 6 whose circular chromatic numbers are 3. This suggests investigating

Page 70: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 5. Circular Colourability vs. Girth 60

Order Number of graphs Girth 4 critical Girth 5 critical

4 1

5 2

6 5

7 8

8 23

9 48 1

10 148

11 399 1

12 1339 2 1

13 4395 1

14 16183 2 2

15 60717 2

16 242087 1 3

17 991019 1 1

18 4210628 3 2

19 18345575 3 2

20 82111548 5 6

Table 5.3: Summary of small triangle-free subcubic 3–circular critical graphs

cubic graphs of girth 7 with the same property. As mentioned in Section 5.2, we do not

know of any such graph. In this section we study minimal graphs with χc = 3. More

precisely, a graph G is said to be r–circular critical, if χc(G) = r and χc(H) < r for all

proper subgraphsH of G. It is an easy observation that every graph with circular chromatic

number r has an r–circular critical subgraph. Thus the existence of a cubic graph with girth

7 and circular chromatic number 3 is equivalent to the existence of a subcubic 3–circular

critical graph with girth 7.

One can easily see that a 3–circular critical graph is triangle-free, unless it is the triangle K3.

Also, every such graph is 2–connected. We investigated all 2–connected triangle-free sub-

cubic graphs of order up to 20 looking for 3–circular critical graphs. Table 5.3 summarizes

the results.

It can be observed in Table 5.3 that all 3–circular critical graphs of order at most 20

Page 71: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 5. Circular Colourability vs. Girth 61

have girth at most 5. The existence of cubic graphs with girth 6 and circular chromatic

number 3 proves the existence of 3–circular critical subcubic graphs with girth 6. The

graph of Figure 5.3 is an example of such a graph with order 21.

The graph obtained by deleting one vertex from the Petersen graph, the generalized Pe-

tersen graph P (7, 2), and the Triplex graph are examples of 3–circular critical graphs. A

complete catalogue of subcubic 3–circular critical graphs with order at most 20 is given in

Appendix A.

5.4 Further Computational Results

In Tables 5.1 and 5.2 we presented the results of our computation of cubic graphs with

girth at least 7 and cubic graphs with girth at least 9. In this section we present the results

of similar computations for girths 5, 6, and 8. These results are shown in Tables 5.4, 5.5

and 5.6.

nnumber of graphs with circular chromatic number ...

52

239

187

135

218

83

197

114

145

176

207 3

10 1

12 1 1

14 1 1 2 1 3

16 10 23 10 3 2

18 88 1 11 250 87 9 1 3

20 1129 16 282 3577 1 657 71 5 1 12

22 18402 354 7954 3 56348 517 6801 82 2 90

24 355001 3 10208 194474 1326 991816 11384 47479 124 2 1088

Table 5.4: Circular chromatic number of small cubic graphs of girth 5

Cubic graphs of girth 10 have order at least 70. All such graphs with order up to 78 are

bipartite. We randomly generated thousands of (sub)cubic graphs with girth at least 10

which contain the graph of Figure 5.5, or graphs constructed similarly to it, as a subgraph.

All these graphs were verified to be (5, 2)–colourable.

We verified that the unique 11–cage (of order 112) is (12, 5)–colourable. We also randomly

Page 72: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 5. Circular Colourability vs. Girth 62

nnumber of graphs with circular chromatic number ...

2167

73

198

125

177

229

52

187

135

83

197

114 3

14 2

16

18 3 1 1

20 10 11 5 6

22 28 11 131 7 1 91 2 111 1 2

24 162 1 218 2 1754 164 21 2695 18 48 2487 1 1 1

Table 5.5: Circular chromatic number of small cubic graphs of girth 6

generated thousands of (sub)cubic graphs with girth at least 11 which were all (5, 2)–

colourable. We were not able to find a (5, 2)–colouring of the smallest (order 272) known

cubic graph with girth 13. We were also unable to prove the non-existence of such colouring.

The graphs whose circular chromatic numbers are computed and presented here, were

obtained from one or more of the following resources:

• Gordon Royle’s cubic graphs page [47].

• Gunnar Brinkmann’s minibaum program for generation of cubic graphs with specified

girth.

• Cubic graphs of girth 9 and order 60, and cubic graphs of girth 10 and order at most

78 were provided by Brendan McKay.

• Geoff Exoo’s program for generating random (sub)cubic graphs with specified girth.

Page 73: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter

5.

Cir

cular

Colourabil

ity

vs.

Gir

th

63

nnumber of graphs with circular chromatic number ...

2167

2310

3013

3716

4419

73

4017

3314

2611

198

3113

125

2912

177

229

2711

3213

30 1

32

34 1

36 3

38 10 2 1

40 101 3 14 19

42 2510 291∼ 15∼ 14∼ 1∼ 427∼ 3∼ 50∼ 611∼ 8∼ 1∼

44 79605 18979∼ 866∼ 1273∼ 58∼ 2∼ 41957∼ 1 1 127∼ 2455∼ 1∼ 48567∼ 3∼ 2777∼ 177∼ 10∼ 2∼

nnumber of graphs with χc = · · ·

52

2811

239

187

135

218

83

30

32

34

36

38

40 11 1 6∼

42 316∼ 1∼ 185∼

44 51802∼ 2 17∼ 383∼ 969∼ 3∼ 16325∼

Table 5.6: Circular chromatic number of small cubic graphs of girth 8

Page 74: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 6

Subcubic Graphs with Circular

Chromatic Number 3

In this chapter, we study graphs with circular chromatic number equal to 3. Our results

prove the assertion of Problem 3.14 for some classes of graphs. In particular, we prove that

all planar, projective planar, toroidal, and Klein bottle subcubic graphs with girth at least

9 have circular chromatic number strictly less than 3.

6.1 Introduction

In Section 3.3 we introduced several open problems regarding homomorphisms from (sub)cubic

graphs and planar graphs to cycles. We consider here homomorphisms from graphs in the

intersection of these two families. What can be said about the circular chromatic number

of subcubic planar graphs with large girth? By Theorem 3.17, every such graph with girth

at least 11 maps to C5. For subcubic planar graphs of smaller girth, we only have Brooks’

Theorem. That is, we know of no upper bound between 5/2 and 3 for general or subcubic

planar graphs. For general planar graphs, Proposition 3.18 proves tightness of Jaeger’s

conjecture. In particular, there exists a planar graph with girth 5 and circular chromatic

number 3. These graphs have a vertex of high degree (equal to the girth of the graph).

We ask, does there exist a subcubic planar graph with girth 5 (or even triangle-free) and

circular chromatic number 3?

64

Page 75: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 6. Subcubic Graphs with Circular Chromatic Number 3 65

Suppose G is a triangle-free subcubic planar graph with χc(G) = 3. Then G has a (sub-

cubic) 3–circular critical subgraph. We observe (Appendix A) that all the triangle-free

subcubic 3–circular critical graphs with order at most 20 are non-planar. This suggests the

non-existence of a triangle-free subcubic planar graph with circular chromatic number 3.

We prove in Theorem 6.11, that every subcubic planar graph with girth at least 9 has cir-

cular chromatic number strictly less than 3. This answers Problem 3.14 in the affirmative

for subcubic planar graphs. We conjecture the following stronger statement.

Conjecture 6.1. The circular chromatic number of every triangle-free subcubic planar

graph is at most 20/7.

Since the Dodecahedron graph has circular chromatic number 20/7, the above conjecture

brings up the question whether every triangle-free planar graph admits a homomorphism

to the Dodecahedron graph. This is easy to prove false: the Duplex graph (Figure 3.3)

does not map to the Dodecahedron graph.

Conjecture 6.1 is in contrast to the following corollary of Lemma 4.6.

Proposition 6.2. Let G be a cubic graph embedded in the plane such that all its faces have

odd length. Then χc(G) > 8/3.

Proof. Let fo = f be the number of faces of G. Let n = |V (G)|. Then |E(G)| = 3n/2 and

by Euler’s formula fo = 2 + n/2. Lemmas 3.5 and 4.6 now imply

χc(G) >2n

3n/4 − 1>

8

3.

6.2 Subcubic 3–Circular Critical Graphs

Recall that a graph G is said to be r–circular critical if χc(G) = r and χc(H) < r for

every proper subgraph H of G. The goal of this section is to show that 3–circular critical

subcubic graphs have many vertices of degree 3.

Throughout this section by a 3–colouring of a graph we mean a (3, 1)–colouring. A thread

in a graph is a maximal path which is internally disjoint from the rest of the graph. A

terminal vertex in a directed graph is any vertex which is either a source or a sink. The

following proposition simplifies the proofs presented in this section.

Page 76: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 6. Subcubic Graphs with Circular Chromatic Number 3 66

Proposition 6.3. Let c be a 3–colouring of a graph G and let c′ be obtained from c via a

permutation of the colours. Then c is acyclic if and only if c′ is acyclic.

Proof. Let c be a 3–colouring of a graph G and let c′ be obtained from c by switching

two colours. Then every edge of Dc′(G) is the reverse of its corresponding edge in Dc(G).

Therefore, if c is an acyclic 3–colouring of G then so is c′. The result follows since every

permutation is a product of transpositions.

Lemma 6.4. Let G be a subcubic 3–circular critical graph. Then G is 2–connected and

every thread in G has length at most 2.

Proof. If G is not 2–connected, then every block B of G is a proper subgraph of G, hence

χc(B) < 3. On the other hand, the circular chromatic number of any graph equals the

maximum of the circular chromatic numbers of its blocks. This contradicts χc(G) = 3.

Suppose G has an edge vw with d(v) = d(w) = 2. Let v′ be the neighbour of v other than

w, and w′ be the neighbour of w other than v. Let H = G − {v,w}. Then χc(H) < 3

and by Lemma 2.4, H has a 3–colouring c with no tight cycles. If c(v′) 6= c(w′), we

can extend c to an acyclic 3–colouring of G by defining c(v) = c(w′) and c(w) = c(v′).

Therefore we may assume c(v′) = c(w′) = 0. We extend c to V (G) in two ways: either

define c(v) = 1, c(w) = 2 or define c(v) = 2, c(w) = 1. Since χc(G) = 3, G has a tight cycle

with respect to both colourings. Thus Dc(H) has a directed path w′v′–path and a directed

v′w′–path. Therefore Dc(H) has a closed directed walk through the vertices v′ and w′.

Note that since G is 2–connected, v′ 6= w′ hence this walk is nontrivial. This contradicts

that Dc(H) is acyclic.

By the above lemma, every 3–circular critical graph G has minimum degree 2. We denote

by Vi(G) the set of all vertices in G having degree i. The above lemma then implies that

V2(G) is an independent set for every 3–circular critical subcubic graph G.

Lemma 6.5. Let G be a 3–circular critical subcubic graph. Then the subgraph of G induced

by V3(G) has no isolated vertices.

Proof. Suppose that there exists x ∈ V3(G) whose neighbours all belong to V2(G). Then

G contains the configuration in Figure 6.1(a). Let H = G − {x, x1, x2, x3}. Then by

Page 77: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 6. Subcubic Graphs with Circular Chromatic Number 3 67

xx1

x2

x3

x′1

x′2

x′3

x y

x1

x2

x′1

x′2

y2

y1

y′2

y′1

x yz

x1

x2

x′1

x′2

y2

y1

y′2

y′1

z1

z′1

(a) (b) (c)

Figure 6.1: Forbidden configurations for a 3–circular critical subcubic graph G. Whitevertices have degree 2 in G.

Lemma 2.4, H has an acyclic 3–colouring c. If two of the x′i receive the same colour in c,

then there exists a colour not used by any of the x′i. Thus we may extend c to G such that

c(x0) = c(x1) = c(x2). Since Dc(H) is acyclic, and x is a terminal vertex in Dc(G), we see

that Dc(G) is acyclic. This contradicts the choice of G.

Therefore, we may assume c(x′i) = i. We extend c to G via c(x0) = 1, c(x1) = c(x2) = 0,

and c(x) = 2. Then c has a tight cycle and this cycle must use the path x′0x0xx1x′1. This

gives a directed path in Dc(H) from x′1 to x′0. Similarly, there exist directed paths in Dc(H)

from x′2 to x′1, and from x′0 to x′2. Thus Dc(H) has a nontrivial closed directed walk, which

contradicts the fact that Dc(H) is acyclic.

Lemma 6.6. A 3–circular critical subcubic graph G does not contain the configuration in

Figure 6.1(b).

Proof. Suppose that G contains the configuration (b) of Figure 6.1. We label the vertices

of this subgraph as shown. Let H = G − {x, y, x1, x2, y1, y2}. Then χc(H) < 3. Let c be

an acyclic 3–colouring of H.

Suppose there exist α 6∈ {c(x′1), c(x′2)} and β 6∈ {c(y′1), c(y′2)} with α 6= β. We may extend

c to G by defining c(v) = c(y1) = c(y2) = β and c(w) = c(x1) = c(x2) = α. Then each of v

and w is a terminal vertex in Dc(G). Therefore Dc(G) is acyclic which is a contradiction.

Therefore, up to permuting colours and symmetries of the configuration, we may assume

c(x′1) = c(y′1) = 0 and c(x′2) = c(y′2) = 1. We extend c to G in two ways, with c(x1) =

c(x2) = c(y1) = c(y2) = 2, and {c(x), c(y)} = {0, 1}. As before, each extension results in a

directed cycle in the corresponding Dc(G). These cycles give a directed x′1y′2–path and a

Page 78: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 6. Subcubic Graphs with Circular Chromatic Number 3 68

directed y′1x′2–path in Dc(H). Alternately, we extend c to G with c(x) = c(y1) = c(y2) = 2,

c(x1) = 1, and c(y) = c(x2) = 0 to obtain a directed x′2x′1–path in Dc(H). A similar

extension of c gives a directed y′2y′1–path in Dc(H). Combining these four directed paths,

we get a nontrivial closed directed walk in Dc(H), a contradiction.

Lemma 6.7. A 3–circular critical subcubic graph G does not contain the configuration in

Figure 6.1(c).

Proof. Suppose that G contains the configuration (c) of Figure 6.1 and label the vertices

of this subgraph as shown. Let H = G− {x, y, z, x1, x2, y1, y2, z1}. Then χc(H) < 3. Let c

be an acyclic 3–colouring of H.

Suppose there exists a colour α 6∈ {c(x′1), c(x′2), c(y′1), c(y′2)} and let β 6∈ {α, c(z′)}. Define

c(z) = c(x1) = c(x2) = c(y1) = c(y2) = α and c(x) = c(y) = c(z1) = β. Then x, y, z are all

terminal vertices in Dc(G). Therefore Dc(G) is acyclic, a contradiction.

Otherwise, up to permuting colours and symmetries of the configuration, either c(x′1) =

c(x′2) = 0 and c(y′1) = 1 and c(y′2) = 2, or c(x′1) = c(y′1) = 0 and c(x′2) = 1 and c(y′2) = 2.

In the first case, let α 6∈ {0, c(z′1)} and β 6∈ {0, α}, and define c(z) = c(y1) = c(y2) = 0,

c(x) = c(y) = c(z1) = α, and c(x1) = c(x2) = β. It is easily observed that Dc(G) is acyclic

for this extension of c to G, a contradiction.

Let c(x′1) = c(y′1) = 0 and c(x′2) = 1 and c(y′2) = 2. If c(z′1) 6= 0, defining c(x) =

c(y) = c(z1) = 0, c(z) = c(x1) = c(y1) = c(y2) = 1, and c(x2) = 2 gives an acyclic

3–colouring of G which is a contradiction. Thus c(z′1) = 0. We define five extensions of

c to G, which result in five directed paths in Dc(H) as before. Two of these extensions

have c(x) = c(y) = 0, c(x1) = c(x2) = 2, c(y1) = c(y2) = 1, and c(z), c(z1) ∈ {1, 2}. As

above, Dc(H) has a directed y′2z′1–path and a directed z′1x

′2–path. The third extension

has c(x2) = 0, c(z) = c(x1) = c(y1) = c(y2) = 1, and c(x) = c(y) = c(z) = 2. This

gives a directed x′2x′1–path in Dc(H). The fourth extension has c(z) = c(x2) = c(y2) = 0,

c(x) = c(y1) = c(z1) = 1, and c(y) = c(x1) = 2. Thus there exists a directed x′1y′1–path

in Dc(H). The fifth extension is an obvious modification of the third, giving a directed

y′1y′2–path in Dc(H). These five directed paths combine to a nontrivial directed closed walk

in Dc(H), a contradiction.

Page 79: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 6. Subcubic Graphs with Circular Chromatic Number 3 69

v2v1

v4 v3

x′2x′1

x′4 x′3

x2x1

x4 x3

(a) (b) (c)

Figure 6.2: Further forbidden configurations for a 3–circular critical subcubic graph G.White vertices have degree 2 in G.

Lemma 6.8. A 3–circular critical graph G does not contain any of the configurations in

Figure 6.2.

Proof. Suppose G contains the configuration (c) of Figure 6.2, labelled as shown. Let

H = G− {v1, v2, v3, v4, x1, x2, x3, x4}, and let c be an acyclic 3–colouring of H. Let α be a

colour not in {c(x′1), c(x′3)}. We define c(x1) = c(x3) = c(v2) = c(v4) = α and arbitrarily

extend to a (proper) 3–colouring of G. Then v1 and v3 are terminal vertices in Dc(G),

proving Dc(G) is acyclic, a contradiction.

For configurations (a) and (b) the proof is similar, but it involves considering many cases.

If G contains either of these two configurations, we let H be the graph obtained by deleting

the internal vertices of that configuration. Then H has an acyclic 3–colouring. We analyze

different combinations of colours appearing on the connecting vertices of the deleted con-

figuration. For each case we show that either c can be extended to an acyclic 3–colouring of

G, or that Dc(H) contains a nontrivial directed closed walk. Both of these outcomes con-

tradict our assumptions, thus proving the respective configuration cannot occur in G. We

present the details of this case analysis for configurations (a) and (b) in Appendix B.

We are now ready to present the main result of this section.

Theorem 6.9. Let G be a 3–circular critical subcubic graph and for i = 1, 2 let Vi(G) be

the set of all x ∈ V (G) such that dG(x) = i. Then |V2(G)| 6710 |V3(G)|.

Proof. Let G′ be the cubic graph obtained by suppressing all degree 2 vertices in G. Let

Page 80: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 6. Subcubic Graphs with Circular Chromatic Number 3 70

H = G− V2(G). Then

|V2(G)| = |E(G′)| − |E(H)| =3

2|V3(G)| − |E(H)|. (6.1)

On the other hand, by Lemmas 6.5 – 6.8 every connected component of H has at least 5

vertices. Thus c 615 |V3(G)|, where c is the number of connected components of H, and we

have

|E(H)| > |V (H)| − c >4

5|V3(G)|. (6.2)

Finally by (6.1) and (6.2) we have

|V2(G)| 63

2|V3(G)| − 4

5|V3(G)| =

7

10|V3(G)|.

We prove in Section 6.3 that the above inequality does not hold for embedded subcubic

graphs with girth at least 9 and nonnegative Euler characteristic, thus proving such graphs

all have circular chromatic number strictly less than 3.

6.3 Embedded Graphs with Girth 9

In this section we apply the results of the previous section to embedded graphs. Given

a surface X, an X–graph is any graph which admits an embedding in X (faces need not

be 2–cells). We limit our attention to subcubic graphs with girth at least 9. For a fixed

surface X, suppose there exists a subcubic X–graph G with χc(G) = 3. Then G contains a

3–circular critical subgraph. Obviously any subgraph of G is subcubic, it has girth at least

9, and it embeds in X. Therefore to prove non-existence of subcubic X–graphs with girth

at least 9 and with circular chromatic number 3, it suffices to prove non-existence of such

3–circular critical graphs. As in previous section, for a graph G and i > 0, we let Vi(G) be

the set of all vertices of degree i in G.

Lemma 6.10. Let X be a surface with Euler characteristic c, and G be a subcubic 3–

circular critical X–graph with girth at least 9. Then |V3(G)| 6 −90c.

Proof. For i = 2, 3, let ni = |Vi(G)|. Then |V (G)| = n2 + n3 and 2|E(G)| = 2n2 + 3n3.

Applying Euler’s formula to an embedding of G in X, we get

(n2 + n3) −2n2 + 3n3

2+ f > c,

Page 81: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 6. Subcubic Graphs with Circular Chromatic Number 3 71

where f is number of faces of G (we have equality if and only if each face is a 2–cell). On

the other hand, since G is connected, the boundary of each face is a closed walk in G, thus

it has length at least 9. Thus

9f 6 2|E(G)| = 2n2 + 3n3.

Therefore,

9(c+1

2n3) = 9f 6 2n2 + 3n3,

which gives

n2 >9

2c+

3

4n3.

On the other hand, by Theorem 6.9 we have n2 6 710n3. Therefore,

9

2c+

3

4n3 6

7

10n3,

which after simplification gives the desired result.

Since the plane, the projective plane, the torus and the Klein bottle all have nonnegative

Euler characteristic, the following is an immediate corollary of the above lemma.

Theorem 6.11. Every subcubic graph with girth at least 9 which is embeddable in either

the plane, the projective plane, the torus, or the Klein bottle, has circular chromatic number

strictly less than 3.

Remark 6.12. For surfaces with negative Euler characteristic, Lemma 6.10 bounds the

order of a 3–circular critical subcubic embedded graph with girth at least 9. Thus one can

extend Theorem 6.11 to include more surfaces, or exclude a surface, by examining only a

finite number of subcubic embedded graphs with girth at least 9. Despite this, we were

unable to perform this computation for the surface N3 of Euler characteristic −1, due to

the enormous number of subcubic N3–graphs with girth at least 9 and order at most 153.

Page 82: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7

The Circular Chromatic Index

7.1 Introduction

Edge colouring is of fundamental importance in graph theory. One of the main motivations

in the study of edge colourings of graphs, is P.G. Tait’s [49] observation that the four colour

problem is equivalent to the statement: every 2–connected cubic planar graph is 3–edge

colourable. Eventually the four colour theorem was proved via this approach. Tait’s result

motivated the study of non-Tait-colourable graphs, namely 2–connected cubic graphs which

are not 3–edge colourable.

Until 1975, only four “non-trivial” non-Tait-colourable graphs were known. The difficulty

in finding such graphs led Gardner [16] to propose calling such graphs snarks. The am-

biguous term “non-trivial” in Gardner’s definition has attracted considerable attention in

the literature. It is known that a non-Tait-colourable graph can be reduced to a smaller

one, if it has multiple edges, a triangle or a C4, or if it has a 2–edge cut or a 3–edge cut

consisting of non-adjacent edges. It is generally accepted by graph theorists that a snark

is a cyclically 4–edge connected cubic graph which is not 3–edge colourable. A graph G is

said to be cyclically k–edge connected, if the removal of any set of fewer than k edges from

G results in at most one non-tree connected component. The cyclic edge-connectivity of G

is the largest k such that G is cyclically k–edge connected.

Cameron, Chetwynd, and Watkins [9] prove that every snark with cyclic edge connectivity 4

either “contains” a smaller snark, or is the dot product of two smaller snarks. We delay the

72

Page 83: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 73

definition of the dot product to Section 7.4. It is also proved in [9] that every snark, other

than the Petersen graph, with cyclic edge connectivity 5 can be reduced to smaller snarks.

One might interpret these reducibility results as “triviality” and thus define a snark to be

either the Petersen graph, or a cyclically 6–edge connected cubic graph which is not 3–edge

colourable.

For circular edge colourings, we know of no reductions other than the trivial reduction of

bridges. One of the easy reductions for 3–edge colourability of cubic graphs is contracting

a triangle to a single vertex. We see in Section 7.2 that this reduction does not work

for circular edge colouring, since the Petersen graph which is obtained by contracting a

triangle in J3 is not (7, 2)–edge colourable, while J3 is (7, 2)–edge colourable. We define a

(3–circular) snark to be a 2–connected cubic graph which is not 3–edge colourable.

In this chapter we study circular edge colourings of graphs. Vizing’s theorem partitions

the set of simple graphs into two classes according to their circular chromatic indices; those

with χ′ = ∆ and those with χ′ = ∆ + 1. So in the context of ordinary edge colouring, all

snarks are the same since they all have chromatic index 4. Circular edge colouring provides

a finer scale for measuring how close is a (sub)cubic graph to being 3–edge colourable. For

example, Theorem 7.1 proves that the Petersen graph is the “most difficult” cubic graph

with respect to circular edge colouring.

The circular chromatic index of a graph G, is defined by χ′c (G) = χc (L(G)), where L(G)

is the line graph of G. By Vizing’s theorem, and by Theorem 1.4, for every graph G we

have

∆(G) 6 χ′c (G) 6 ∆(G) + 1.

Moreover, χ′c (G) = ∆(G) if and only if G is class 1. In particular, if G is a class 2 subcubic

graph, then 3 < χ′c (G) 6 4. In Figure 7.1 we present two subcubic graphs whose circular

chromatic indices equal 4. Theorem 7.1 states that these two graphs are the only bridgeless

subcubic graphs with this property.

Theorem 7.1. [1] Every bridgeless subcubic graph, other than the graphs of Figure 7.1,

has circular chromatic index at most 11/3.

It is known [59] that the Petersen graph P has circular chromatic index 11/3. Thus the

above theorem proves that P has the largest circular chromatic index among all bridgeless

Page 84: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 74

Figure 7.1: The two subcubic 2–connected graphs with circular chromatic index 4

cubic graphs. This behaviour is expected because of Jaeger’s Petersen colouring conjec-

ture [33] which asserts that for all bridgeless cubic graphs G, L(G) admits a homomorphism

to L(P ).

One other consequence of Theorem 7.1 is that no number in the interval(

113 , 4

)

is the

circular chromatic index of a cubic graph. Therefore(

113 , 4

)

is a gap in the set

S = {χ′c (G) : G is a cubic graph}.

Note any cubic graph which contains one of the graphs illustrated in Figure 7.1 as a

subgraph, has circular chromatic index 4. It is worth mentioning here that indeed S =

{χ′c (G) : G is a subcubic graph}. This is because there exist subcubic graphs with exactly

one vertex of degree 2 whose circular chromatic index is arbitrarily close to 3. Given k > 1,

the necklace graph Nk is obtained by doubling the edges v2iv2i+1 (1 6 i 6 k) in a cycle

C2k+1 = v1v2 · · · v2k+1v1. Then every vertex in Nk other than v1 is of degree 3. It is proved

in [43] that χ′c (Nk) = 3+1/k. Given a subcubic graph G, we let k be large enough so that

3 + 1/k 6 χ′c (G). For each v ∈ V (G), we attach 3 − dG(v) copies of the necklace Nk to v

via 3−dG(v) bridges. The resulting graph is cubic and has circular chromatic index χ′c (G).

By Theorem 7.1, 4 is not a member of the set

Sb = {χ′c (G) : G is a 2–connected cubic graph}.

Thus Sb 6= S. Is is not known whether Sb = S \ {4}. It is also open whether replacing

“cubic” with “subcubic” in the definition of Sb results in the same set.

One might ask about the distribution of the sets S and Sb in the interval [3, 4]. Kaiser, Kra ’l,

and Skrekovski [35] prove that class 2 cubic graphs with large enough girth have circular

chromatic index arbitrarily close to 3. On the other hand, Kochol [38] proved that there

exist snarks with arbitrary large girth. Therefore Sb is infinite and 3 is an accumulation

point of Sb. Until recently, only a finite number of values in S were known. Mazak [40]

Page 85: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 75

proves that all numbers of the form 3 + 2/3k belong to Sb. We show in Section 7.4 that all

numbers 3 + 1/k belong to Sb. All the known values of circular chromatic index of cubic

graphs, are of the form 3 + 2/k. This motivates the following problem.

Problem 7.2. Let k > 2 be an integer. Does there exist a cubic graph whose circular

chromatic index equals 3 + 2/k? Does there exist a snark whose circular chromatic index

is not of the form 3 + 2/k for some k > 2?

The following is folklore.

Conjecture 7.3. Every bridgeless cubic graph, other than the Petersen graph, has circular

chromatic index at most 7/2.

It is proved in [35] that every bridgeless cubic graph with girth at least 14 has circular

chromatic index at most 7/2. If the above conjecture is true, then(

72 ,

113

)

is a gap in Sb.

This author believes that S = Sb ∪{4}, and that 3 is the only accumulation point of either

of these sets.

In this chapter we determine the circular chromatic index of some snarks. For convenience,

when dealing with edge colourings we allow graphs to have semiedges, i.e. edges with only

one end-vertex. This notion helps to study edge colourings of building blocks of our graphs,

and then paste the edge colourings together to obtain an edge colouring of the graph being

considered.

7.2 Flower Snarks

The results of this section are published in [19].

Before flower snarks were introduced by Isaacs [31], only four snarks were known. As well

as introducing this first infinite family of snarks, Isaacs gave a construction in [31], known

as the dot product, which constructs from two snarks a new snark. We discuss the dot

product in Section 7.4 where we study the circular chromatic index of an infinite family of

graphs obtained via dot product from several copies of the Petersen graph.

We recall from Section 4.2.4, that given an odd integer n > 3, the flower snark Jn consists of

two cycles x1x2 · · · xnx1 and y1y2 · · · y2ny1 and a claw {zixi, ziyi, ziyn+i} for each 1 6 i 6 n.

Page 86: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 76

The following is the main result of this section.

Theorem 7.4. For all odd n > 3,

χ′c (Jn) =

7/2 if n = 3,

17/5 if n = 5,

10/3 if n > 7.

We first present a proof of the fact that flower snarks are class 2. This proof is the key

idea in the proof of Theorem 7.4, which just mimics this proof for (3 + ε)–circular edge

colourings of flower snarks. The following lemma, known as the parity lemma is a powerful

tool in edge colourings of cubic graphs.

Lemma 7.5. [31] Let H be a cubic graph with n vertices. Given any 3–edge colouring of

H and 0 6 i 6 2, let ni denote the number of semiedges of H coloured i. Then ni ≡ n

modulo 2.

Proposition 7.6. For all odd n > 3, the flower snark Jn is class 2.

Proof. Let H be the graph shown in Figure 7.2. Let c be an 3–edge colouring of H. The

labels αi and βi in the picture, indicate the colours assigned to the semiedges of H by c.

Since H has four vertices, by the parity lemma, each of the colours 0, 1, 2 appears an even

number of times. Since αi 6= βi for i = 0, 1, 2, each colour appears at most three times, thus

exactly twice, as the colour of a semiedge of H. Therefore, if the αi are all distinct, then

βi are also all distinct. Moreover, since the edges incident with z receive different colours,

the permutations α0α1α2 and β0β1β2 have the same sign. In this case we say the triple

(α0, α1, α2) has type A. Otherwise, the sets {α0, α1, α2} and {β0, β1, β2} both have size 2,

and the colour in the intersection of these two sets appears exactly once on each side. In

this case we say the triple (α0, α1, α2) has type B.

Note that Jn consists of n copies of H. Suppose Jn is 3–edge colourable and let c be one

such edge colouring. For each 1 6 i 6 n, let σi = (c(xixi+1), c(yiyi+1), c(yn+iyn+i+1)),

where xn+1 = x1 and y2n+1 = y1. By the above observation, σi are either all of type A or

all of type B. In the former case, all σi must have the same sign as permutations of {0, 1, 2}.This is a contradiction since σ1 has the same sign as (c(xnx1), c(y2ny1), c(ynyn+1)) which

differs from σn by a single transposition.

Page 87: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 77

z

x

y

y′

α0

α1

α2

β0

β1

β2

Figure 7.2: The building block of the flower snarks

Thus all σi are of type B. Let αi be the colour with majority in σi. Then by the above

observation, αi alternate between two colours. This contradicts the fact that n is odd.

As we mentioned before, our proof of Theorem 7.4 mimics the above proof of Proposi-

tion 7.6. For that, we need to first modify the definitions of type A and type B triples of

colours and their signs.

Let 3 6 r < 10/3. We aim to prove that Jn is not r–circular edge colourable. Suppose

0 6 α 6 β < r are colours in Cr. If β − α < r + α − β, then we say β follows α, and

otherwise, we say α follows β. Two colours α, β ∈ Cr are said to be close, if |α−β|r < 2/3,

and otherwise, they are said to be far apart. A sequence (α0, α1, α2) of colours is of

type A, if α0, α1 and α2 are pairwise far apart, and it is of type B if two of the colours

are close and the remaining one is far apart from both of the other two. A sequence

σ = (α0, α1, α2) of type A has positive sign if 0 6 αi 6 αi+1 6 αi+2 < r for some 0 6 i 6 2,

where the indices are reduced modulo 3. The sequence σ is said to have negative sign

otherwise. Let σ = (α0, α1, α2) be a sequence of colours of type B, and let i, j, k be such

that {i, j, k} = {0, 1, 2}, and αi and αj are close. The sequence σ has positive sign, if αk

follows both αi and αj, and it has negative sign, if αi and αj both follow αk. For example, if

r = 13/4, the sequences (0, 1, 2) and (0, 2, 1) are both of type A, and the sequences (0, 1, 0)

and (2, 1.8, 1) are both of type B. In each case, the first sequence has positive sign, and the

second has negative sign. Note that the sign of a sequence of type B is not always defined,

and that when the sign is defined, it does not depend on the order of the elements in the

sequence. For example for r = 13/4, the sequence (0, 1.5, 2) is of type B. The sign of this

sequence is undefined since 1.5 follows 0 and 0 follows 2. Another example of a type B

sequence whose sign is undefined is (0, 0, r/2).

Page 88: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 78

Lemma 7.7. Let H be the graph of Figure 7.2, let 3 6 r < 10/3, and let the labels αi

and βi in the picture denote the colours assigned to the semiedges in an r–circular edge

colouring of H. Then either (α0, α1, α2) and (β0, β1, β2) are both of type A and have the

same sign, or they are both of type B and have opposite signs.

Proof. Let r = 3 + ε for some 0 < ε < 1/3, and let c be an r–circular edge colouring of H.

For each x ∈ Cr, we define I(x) = [x+ 1, x+ 1 + ε]r and J(x) = [x+ 2, x+ 2 + ε]r. Let

γ0 = c(zx), γ1 = c(zy), and γ2 = c(zy′). Then (γ0, γ1, γ2) is of type A, and by symmetry we

may assume that it has positive sign. Namely, for all 0 6 i 6 2, then γi ∈ I(γi−1)∩J(γi+1),

where the indices are reduced modulo 3. Note that since each circular interval I(x) or J(x)

has length ε < 1/3, when two such intervals intersect, every two colours in their union are

close. This holds for I(γi−1) ∪ J(γi+1), for all 0 6 i 6 2. Moreover, every y ∈ I(γi) ∪ J(γi)

is far apart from every x ∈ I(γi−1) ∪ J(γi+1).

For each 0 6 i 6 2, one of αi and βi is in I(γi) and the other is in J(γi). By symmetry we

may assume that α0 ∈ I(γ0) and β0 ∈ J(γ0). Therefore, we have the following four cases

for the values of α1, α2, β1, β2.

Case 1. α1 ∈ I(γ1) and α2 ∈ I(γ2). By the above discussion, the colours αi are pairwise

far apart, and αi+1 follows αi for all 0 6 i 6 2. The same conclusion holds for the colours

βi similarly. Thus (α0, α1, α2) and (β0, β1, β2) are both of type A and they have the same

sign as (γ0, γ1, γ2).

Case 2. α1 ∈ I(γ1) and α2 ∈ J(γ2). In this case, α0, α2 ∈ I(γ0)∪J(γ2) are close, while they

are both far apart from α1 ∈ I(γ1). Therefore, (α0, α1, α2) has type B. Since α1 follows

both α0 and α2, this triple has positive sign. Similarly, β1, β2 ∈ J(γ1)∪ I(γ2) are close and

both far apart from β0 ∈ I(γ0). Thus (β0, β1, β2) is of type B, and since β1 and β2 both

follow β0, this triple has negative sign.

Case 3. α1 ∈ J(γ1) and α2 ∈ I(γ2). This case is similar to Case 2.

Case 4. α1 ∈ J(γ1) and α2 ∈ J(γ2). This case is similar to Case 2.

Similarly to the proof of Proposition 7.6, the above lemma gives the following.

Corollary 7.8. For all odd n > 3, we have χ′c (Jn) > 10/3.

To complete the proof of Theorem 7.4 for n > 7, it remains to prove the upper bound.

Page 89: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 79

A

B

C

A

C

B

3 9 2 5 1 4 0 3 0 3

3 6 2 8 1 7 0 6 0 6

6 0 7 4 7 3 6 3 6 3

0 9 5 4 4 3 3 3 3

6 6 8 8 7 7 6 6 6

3 3 1 1 0 0 0 0 0

Figure 7.3: A (10, 3)–edge colouring of J9. Semiedges wrap-around according to theirlabels.

In Figure 7.3, we give an (10, 3)–edge colouring of J9. The colours of the two blocks in

the shaded area can be repeated t times to obtain an (10, 3)–edge colouring of J9+2t. An

(10, 3)–edge colouring of J7 can be obtained by deleting the shaded blocks in Figure 7.3.

In the remainder of this section we prove Theorem 7.4 for n = 3, 5. Suppose that χ′c (G) =

p/q for some graph G and relatively prime integers p and q. By Lemma 2.4, L(G) has a

tight cycle with respect to any edge (p, q)–colouring of G. In particular, all the colours

0, 1, . . . , p−1 are used in any (p, q)–edge colouring of G. On the other hand by Lemma 2.5,

we have q 6 α′(G).

Proposition 7.9. χ′c (J3) = 7/2.

Proof. A (7, 2)–edge colouring of J3 is given in Figure 7.4. Therefore 10/3 6 χ′c (J3) 6 7/2.

On the other hand, if χ′c (J3) = p/q, where p and q are relatively prime positive integers,

then q 6 α′(J3) = 6. Hence χ′c (J3) ∈

{

103 ,

175 ,

72

}

.

Suppose χ′c (J3) = 10/3 and let c be an (10, 3)–edge colouring of J3. Since J3 has 18

edges, at least one colour, say 9, is used exactly once by c. For i ∈ {0, 3, 6}, let Mi =

c−1({i, i+ 1, i+ 2}). Then each Mi is a matching in J3 and |M0 ∪M3 ∪M6| = 17. Thus at

least two of the Mi are perfect matchings of J3. But J3 does not have two disjoint perfect

matchings since it is class 2.

Suppose χ′c (J3) = 17/5 and let c be an (17, 5)–edge colouring of J3. Then all but one of

the colours are used exactly once by c. Assume that the exceptional colour is 1. Then

c−1({0, 1, 2, 3, 4}) and c−1({1, 2, 3, 4, 5}) are two perfect matchings of J3 which differ in

exactly one edge. This contradicts the fact that J3 is a simple graph.

Page 90: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 80

A

B

C

A

C

B

0 2 4 0

1 5 0 2

2 5 3 1

3 3 4

5 6 2

0 1 6

Figure 7.4: A (7, 2)–edge colouring of J3

A

B

C

A

C

B

0 5 10 0 11

2 14 4 11 6

13 8 15 3 8

7 9 16 1 1

12 15 5 6 6

1 3 10 13 13

Figure 7.5: A (17, 5)–edge colouring of J5

For the graph J5, a (17, 5)–edge colouring is given in Figure 7.5 which along with the

lower bound of Corollary 7.8, proves χ′c (J5) ∈

{

103 ,

278 ,

175

}

. We were not able to prove

χ′c (J5) > 17/5 without the assistance of a computer. A brute force algorithm for checking

(27, 8)–edge colourability of J5 would be too slow. We designed a faster algorithm for

verifying the existence of (p, q)–edge colouring of J5 based on the following idea: first, we

construct an auxiliary graph G with the vertex set {0, 1, . . . , p − 1}3. Two such vertices

(α0, α1, α2) and (β0, β1, β2) are joined by an edge if there exists an (p, q)–edge colouring

of the graph in Figure 7.2 which agrees with these two triples on the values of the αi and

the βi. It is easy to see that J5 is (p, q)–edge colourable, if and only if G contains a walk

from a triple (α0, α1, α2) to the triple (α0, α2, α1). For (p, q) = (10, 3) and (p, q) = (27, 8),

the construction of the auxiliary graph and searching for the desired walk can be completed

quickly. In this way, we verified that J5 is neither (10, 3)–edge colourable nor (27, 8)–edge

colourable, thus proving the following.

Proposition 7.10. χ′c (J5) = 17/5.

This completes the proof of Theorem 7.4.

Page 91: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 81

a

b

a′

b′

c

Figure 7.6: The Loupekine construction

7.3 Goldberg Snarks

The results of this section are published in [18].

In this section we study the circular chromatic index of the Goldberg snarks and of a closely

related family of snarks, the twisted Goldberg snarks. Goldberg snarks were introduced by

Goldberg [24] as counterexamples to the critical graph conjecture [3, 34] which asserts that

every critical graph (a graph all of whose proper subgraphs have smaller chromatic index)

has odd order. Goldberg’s counterexamples to the critical graph conjecture are not cubic.

Goldberg snarks are obtained from those graphs by adding edges to make them cubic.

The building block of Goldberg snarks is obtained via Loupekine’s construction, i.e. via

deleting the vertices of a path of length 2, from the Petersen graph. This operation is

depicted in Figure 7.6. Suppose G is a snark, and let H be obtained from G by deleting the

vertices of a path of length 2. If we label the resulting semiedges similarly to Figure 7.6,

then the parity lemma (Lemma 7.5) easily implies that in every 3–edge colouring of H,

either a = b and a′ 6= b′, or a 6= b and a′ = b′. In other words, in every 3–edge colouring,

the semiedges on one side of H match, while the semiedges on the other side of H mismatch.

Given odd n > 3, the Goldberg snark Gn is constructed from n copies of this block, arranged

cyclically, by attaching the semiedges a and b in each block to the semiedges a′ and b′ in the

next block, and then attaching the semiedges c of all blocks to vertices of an n–cycle, in the

same cyclic order. More precisely, V (Gn) = {vtj | 1 6 t 6 n, 1 6 j 6 8}, and adjacencies

are defined as shown in Figure 7.7.

Since in every 3–edge colouring of the graph on the right in Figure 7.6, one of the pairs

(a, b) and (a′, b′) is a match and the other is a mismatch, we see that the Goldberg snarks

Gn are not 3–edge colourable. We mimic this argument in computation of the circular

chromatic indices of these snarks.

Page 92: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 82

vt−12 vt

1 vt

2 vt+11

vt

8vt

6 vt

7

vt−14

vt

3 vt

4

vt+13

vt−15

vt

5 vt+15

Figure 7.7: Construction of Goldberg snarks. Superscripts are reduced modulo n.

We can modify the construction of Gn as follows. We connect the semiedges a and b of a

block to the semiedges b′ and a′ of the next block respectively (instead of a′ and b′). We

refer to this alteration as a twist in Gn. Since any even number of twists cancel out, we

get only one different graph for each n, obtained by applying only one twist to Gn. We

refer to this graph by twisted Goldberg snark, and denote it by TGn. More precisely, the

twisted Goldberg snark TGk is obtained from Gn by replacing the edges v12v

21 and v1

4v23

with the edges v12v

23 and v1

4v21 . The same argument as for Gn shows that TGn is a snark

for all odd n > 3.

Let e, e′, e′′ be the edges incident with a vertex x in a cubic graph G and let c be an r–

circular edge colouring of G where r = 3+ε. Then one of |c(e)−c(e′)|r and |c(e)−c(e′′)|r is

in the interval [1, 1 + ε]r and the other is in the interval [2, 2 + ε]r. By repeatedly applying

this observation we have the following.

Lemma 7.11. Let r = 3 + ε for some 0 < ε < 1, and let c be an r–edge colouring of

a cubic graph G. If e, e′ ∈ E(G) are at distance d in the line graph L(G), then c(e′) ∈[c(e) + t, c(e) + t+ dε]r for some integer d 6 t 6 2d.

For every 1 6 k 6 n, we denote the edges vk1v

k−12 and vk

3vk−14 of the Goldberg snark Gn,

by ek and fk respectively.

Lemma 7.12. Given odd n > 3, and r and ε satisfying 3 < r = 3+ε < 13/4, and an r–edge

colouring c of Gn, for every 1 6 k 6 n we have |c(ek) − c(fk)|r ∈ [0, 2ε]r ∪ [1 − 2ε, r/2]r.

Proof. The edge fk is at distance 4 from ek in Gn. Thus by Lemma 7.11, c(fk) ∈ c(ek) +

Page 93: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 83

[t, t+ 4ε]r for some t ∈ {4, 5, . . . , 8}. On the other hand,

[4, 4 + 4ε]r = [1 − ε, 1 + 3ε]r ⊆ [1 − 2ε, r − (1 − 2ε)]r ,

[5, 5 + 4ε]r = [2 − ε, 2 + 3ε]r ⊆ [1 − 2ε, r − (1 − 2ε)]r ,

[6, 6 + 4ε]r = [−2ε, 2ε]r ,

[7, 7 + 4ε]r = [1 − 2ε, 1 + 2ε]r ⊆ [1 − 2ε, r − (1 − 2ε)]r ,

[8, 8 + 4ε]r = [2 − 2ε, 2 + 2ε]r ⊆ [1 − 2ε, r − (1 − 2ε)]r .

Hence, |c(ek)− c(fk)|r ∈ [0, 2ε]r if t = 6, and |c(ek)− c(fk)|r ∈ [1 − 2ε, r/2]r otherwise.

Note that since ε < 1/4, only one of the alternatives in the above lemma can hold. Figure 7.8

shows all possible colourings of a block of Gn. The circular intervals on the edges indicate

possible values for the colour of that edge. In light of the above lemma, given an r–edge

colouring c of Gn where 3 < r < 13/4, we say the pair (ek, fk) of edges of Gn is of type A

(with respect to c), if |c(ek) − c(fk)|r ∈ [0, 2ε]r, and it is of type B if |c(ek) − c(fk)|r ∈[1 − 2ε, r/2]r.

Lemma 7.13. Let n > 3 be an odd integer and 3 < r < 13/4. Let c be an r–edge colouring

of Gn. Then for every 1 6 k 6 n, one of (ek, fk) and (ek+1, fk+1) is of type A and the

other is of type B.

Proof. This proof is based on the cases presented in Figure 7.8. We may assume that in

each picture, the two semiedges on the left are ek and fk and the two semiedges on the

right are ek+1 and fk+1. Moreover, we may assume that c(ek) = 0.

If (ek, fk) is of type A, then one of the cases (i), (iii) or (v) in Figure 7.8 holds. In cases (i)

and (iii), (ek+1, fk+1) is of type B. In case (v), if c(ek+1) ∈ [2, 2 + ε]r the conclusion holds.

On the other hand, if c(ek+1) ∈ [2 + ε, 2 + 2ε]r, then it is easily deduced that c(fk+1) must

be in [−ε, ε]r, thus the conclusion still holds.

A similar argument shows that if (ek, fk) is of type B (cases (ii), (iv), and (vi) in Figure 7.8),

then (ek+1, fk+1) is of type A. Note that in these cases, the intervals given for c(ek+1) and

c(fk+1) contain points with distance more than 2ε. Thus one needs to check those choices

for the colours of ek+1 and fk+1 cannot occur simultaneously.

Page 94: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 84

0 [1, 1 + ε]

[2, 2 + ε]

[−ε, ε]

[−ε, ε] [1 − ε, 1 + ε]

[−2ε, 2ε] [2 − ε, 2 + 2ε] [1 − ε, 1 + 2ε]

[2,2 + 2ε]

[1−ε,

1+

2ε]

[−ε,ε]

0 [1, 1 + ε]

[2, 2 + ε]

[−ε, ε]

[1 − ε, 1 + 2ε] [−ε, ε]

[1 − ε, 1 + 2ε] [2 − ε, 2 + 2ε] [−2ε, ε]

[2,2 + 2ε]

[−ε,

2ε]

[1−ε,1

+ε]

(i) (ii)

0 [1, 1 + ε]

[2, 2 + ε]

[2, 2 + 2ε]

[2 − ε, 2 + 2ε] [1 − ε, 1 + ε]

[−2ε, 2ε] [2 − ε, 2 + 2ε] [1 − ε, 1 + 2ε]

[−ε,ε]

[1−ε,

1+

2ε]

[−ε,ε]

0 [1, 1 + ε]

[2, 2 + ε]

[2, 2 + 2ε]

[1 − ε, 1 + 2ε] [−ε, ε]

[1 − 2ε, 1 + 2ε] [−2ε, ε] [2 − ε, 2 + 2ε]

[−ε,ε]

[2−ε,

2+

2ε] [1−

ε,1+ε]

(iii) (iv)

0 [1, 1 + ε]

[2, 2 + ε]

[2, 2 + 2ε]

[2 − ε, 2 + 2ε] [−ε, ε]

[−2ε, 2ε] [2 − ε, 2 + 2ε] [−2ε, ε]

[−ε,ε]

[1−ε,

1+

2ε] [1−

ε,1+ε]

0 [1, 1 + ε]

[2, 2 + ε]

[2, 2 + 2ε]

[2 − ε, 2 + 2ε] [−ε, ε]

[2 − ε, 2 + 2ε] [−2ε, ε] [2 − ε, 2 + 2ε]

[−ε,ε]

[1−ε,

1+

2ε] [1−

ε,1+ε]

(v) (vi)

Figure 7.8: All possible r–edge colourings of a block of Gn where r < 13/4. By symmetry,the top-left edge is assumed to have colour 0.

Page 95: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 85

1 5 9 0 4 8 12 7 2 10 1 10 2 10 1

9 0 0 9 7 3 3 12 10 1 1 10 10 1

1 9 1 10 6 2 11 3 11 6 1 6 11 6 1

9 0 8 4 0 9 0 9

5 4 12 8 5 5 5

9

0

5

9

12

3

3

11

6

6

6

6

6

6

5 5 5 1 11 7 7 7 2 10 10 2 2 10

Figure 7.9: A (13, 4)–edge colouring of G7 (and TG7). Semiedges wrap around accordingto the definition of the corresponding graph.

Corollary 7.14. For odd n > 3, we have χ′c (Gn) > 13/4 and χ′

c (TGn) > 13/4.

Proof. Let c be an r–edge colouring of Gn for some r < 13/4. Applying Lemma 7.13 to

c with k = 1, . . . , n, we conclude that (e1, f1) must be both of type A and type B. This

contradicts Lemma 7.12, thus χ′c (Gn) > 3 + 1/4. This argument is valid for the twisted

Goldberg snarks TGn as well. Thus χ′c (TGk) > 13/4 for all odd n > 3.

Theorem 7.15. For odd n > 5, we have χ′c (Gn) = χ′

c (TGn) = 13/4.

Proof. By Corollary 7.14, we only need to show that for all odd n > 5 we have χ′c (Gn) 6

13/4. A (13, 4)–edge colouring of G7 is given in Figure 7.9. The two blocks in the shaded

area can be deleted to obtain a (13, 4)–edge colouring of G5, or repeated t times for t > 1,

to obtain a (13, 4)–edge colouring of G7+2t. On the other hand, for all odd n > 5, since

the colouring of Gn given above assigns the same colour to the edges e1 and f1, “twisting”

these two edges results in a proper (13, 4)–edge colouring of TGn.

It remains to find the circular chromatic index of the graphs G3 and TG3. We exhibit

10/3–edge colourings of these two graphs in Figures 7.10 and 7.11. Hence χ′c (G3) 6 10/3

and χ′c (TG3) 6 10/3. On the other hand, an exhaustive computer search shows that both

these graphs have a tight cycle with respect to any (10, 3)–edge colouring. Therefore, by

Lemma 2.4, we have χ′c (G3) = χ′

c (TG3) = 10/3.

We summarize the results of this section in the following theorem.

Page 96: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 86

5 8 1 8 5 9 5

2 9 4 7 9 6

6 3 0 4 8 2 6

0 3 6 0

6 0 3

2

5

4

1

2

2

9 6 7 1 5 9

Figure 7.10: A (10, 3)–edge colouring of G3. Semiedges wrap around according to thedefinition of G3.

6 3 0 7 1 8 5

4 7 0 7 9 2

5 8 1 4 8 2 6

3 6 0 3

0 3 6

0

7

4

4

5

2

1 4 7 1 5 9

Figure 7.11: A(10, 3)–edge colouring of TG3. Semiedges wrap around according to thedefinition of TG3.

Page 97: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 87

Figure 7.12: The second Loupekine snark

Theorem 7.16. For all odd n > 3, we have

χ′c (Gn) = χ′

c (TGn) =

10/3 if n = 3,

13/4 if n > 5.

Let G∗3 and TG∗

3 be obtained by contracting the unique triangle in G3 and TG3 respectively.

Then G∗3 and TG∗

3 are snarks of order 22. These two snarks are known as the Loupekine

snarks. An alternate drawing of TG∗3 is presented in Figure 7.12. Note that both of the

(10, 3)–edge colourings of Figures 7.10 and 7.11 remain valid for G∗3 and TG∗

3. This proves

χ′c(G

∗3) = χ′

c(TG∗3) = 10/3.

7.4 Generalized Blanusa Snarks

Having order 18, Blanusa snarks are the smallest snarks after the Petersen graph P . They

are both obtained by a dot product from two copies of P . Given two cubic class 2 graphs

G1 and G2, the dot product G1 · G2 is constructed by adding four edges to the disjoint

union of G1 − {vw, v′w′} and G2 − {x, y}, as shown in Figure 7.13, where vw and v′w′ are

non-adjacent edges in G1 and x and y are adjacent vertices in G2. This operation was first

introduced by Isaacs [31].

Note that the dot product G1 · G2 depends on the choice of the edges vw, v′w′ in G1 and

the edge xy in G2. When G1 = G2 = P , since the Petersen graph is edge-transitive, the

Page 98: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 88

G1 G2 G1 ·G2

v

w

v′

w′

v

w

v′

w′

x

y

x′

x′′

y′

y′′

x′

x′′

y′

y′′

Figure 7.13: The dot product construction

choice of xy does not matter. On the other hand, two non-adjacent edges in P can be at

distance 2 or 3 in the line graph L(P ). The two non-isomorphic snarks obtained by a dot

product P · P are called the Blanusa snarks. More precisely, if vw, v′w′ ∈ E(P ) have a

common neighbour in L(P ), the resulting graph P ·P is called the first Blanusa snark, and

otherwise, the graph P · P is called the second Blanusa snark.

This construction was generalized by Watkins [53]. Following the notation introduced

in [53], we refer to the graph obtained by cutting two edges of P which are at distance i+1,

and keeping the four resulting semiedges, as the Blanusa block Ai (i = 1, 2). The graph

obtained by deleting two adjacent vertices of P and keeping the four semiedges is called

the Blanusa block B. These blocks are shown in Figure 7.14. The labels of the semiedges

indicate connections in constructions involving these blocks. The semiedges with label a

(resp. b) are always connected to a semiedge with label a′ (resp. b′) and vice versa. By this

assumption, the first (resp. second) Blanusa snark is obtained by attaching a copy of A1

(resp. A2) to a copy of B. It can be seen in Figure 7.14 that A1 can indeed be decomposed

into a copy of B and a single edge. Thus in constructions involving A1, we may replace A1

by a B and a K2 to obtain a further decomposition. We should point out here an error in

Figure 20 of [53], where the drawings of A1 and A2 are switched.

Watkins [53], defines two families of generalized Blanusa snarks using the blocks B, A1,

and A2. The family B1 consists of the graphs B1n constructed as follows: take n−1 copies of

the block B and one copy of A1, arrange these blocks cyclically, and connect the semiedges

a and b of each block to the semiedges a′ and b′ of the next block respectively. Note that B11

is the Petersen graph, and B12 is the first Blanusa snark. The family B2 is defined similarly,

using the block A2 in place of A1. Following [53], we refer to members of B1 (resp. B2) as

Page 99: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 89

b′a

b a′

b′a

b a′

b′a

b a′

B A1 A2

Figure 7.14: The Blanusa blocks

type 1 (resp. type 2) generalized Blanusa snarks.

Unlike the flower snarks and the Goldberg snarks which take only a finite set of values for

their circular chromatic index, the graphs in B1 ∪ B2 all have distinct circular chromatic

indices. The circular chromatic index of type 1 generalized Blanusa snarks was established

by Mazak [40].

Theorem 7.17. [40] For all n > 1, χ′c

(

B1n

)

= 3 + 23n .

In this section we prove the following result for type 2 generalized Blanusa snarks.

Theorem 7.18. For all n > 1,

χ′c

(

B2n+1

)

= 3 +1

⌊1 + 3n/2⌋ =

3 + 23n+1 if n is odd,

3 + 23n+2 if n is even.

7.4.1 The upper bounds

We first prove the upper bounds of Theorem 7.18. The structure of the optimum edge

colourings of the graphs B2n helps in understanding the proof of the lower bounds, presented

in the next section.

Let G be a cubic graph which may contain semiedges. A consecutive colouring of G is any

mapping c : E(G) → Z such that for each v ∈ V (G), if e, e′, e′′ are the edges incident with

v, then the colours c(e), c(e′), c(e′′) are three consecutive integers. Obviously, reducing the

colours c(e) modulo 3, one gets a proper edge 3–colouring of G. One could also reduce

the colours c(e) modulo 3 + ε for any given 0 < ε < 1, to obtain an (3 + ε)–circular edge

Page 100: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 90

2

1

2 4

5

4

21

3

3

0

0 6

3

2

1

2 3

2

3

21

0 1

1

0

0

0 4

4

22

1

2 0

2

3

21

0 1

1

0

0

0 1

4

2

(a) (b) (c)

Figure 7.15: Consecutive colourings of Blanusa blocks B,A2, A2 used in Lemma 7.19

colouring of G. The notion of consecutive colouring helps us present circular edge colourings

of graphs by integers rather than real numbers.

Lemma 7.19. Given n > 1, let ε = 1⌊1+3n/2⌋ and r = 3 + ε. Then χ′

c

(

B2n+1

)

6 r.

Proof. If n is even, then ε = 23n+2 . Consider the consecutive colouring of the graph B

given in Figure 7.15(a). Since 3 = −ε modulo r and 6 = −2ε modulo r, we may apply the

transformation c(e) 7→ 3ε− c(e) to the second of two consecutive copies of the block B in

B2n+1, to get a colouring c for which c(a) = c(b) = 0 in the first block, and c(a′) = c(b′) = 3ε

in the second block. Since B2n+1 contains n copies of the block B, combining suitable

transformations of these colourings, we get an edge r–circular colouring c of these blocks,

for which c(a) = c(b) = 0 for the first block, and c(a′) = c(b′) = (n/2)3ε = 1 − ε for the

last block. On the other hand, since 4 = 1 − ε modulo r, the consecutive colouring of A2

given in Figure 7.15(b) can be used to extend c to an r–circular edge colouring of B2n+1.

If n is odd, then ε = 23n+1 . Similarly to the previous case, we find a partial r–circular edge

colouring c of B2n+1 which colours all the edges in all copies of B, such that for the block

A2 we have c(a) = c(b) = 0, c(a′) = 1, and c(b′) = 1 − ε. This colouring can be extended

to B2n+1 using the consecutive colouring of A2 given in Figure 7.15(c).

7.4.2 The lower bounds

To prove the lower bounds, we need to study (3 + ε)–circular edge colourings of the blocks

B and A2. The following is proved by Mazak [40].

Page 101: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 91

Lemma 7.20. [40] Let 0 < ε < 14 , r = 3 + ε, and c be an r–circular edge colouring of B.

Then |c(a) − c(a′)|r 6 2ε and |c(a) − c(a′)|r + |c(b) − c(b′)|r 6 3ε.

If c is a 3–edge colouring of A2 such that c(a) = c(a′), then by the parity lemma, c(b) = c(b′)

which is a contradiction since this gives a 3–edge colouring of the Petersen graph. Thus

by the parity lemma, in every 3–edge colouring of A2, either c(a) = c(b) 6= c(a′) = c(b′) or

c(a) = c(b′) 6= c(a′) = c(b). In our next lemma, we prove an analogue of this observation

for (3 + ε)–circular edge colourings of A2.

Lemma 7.21. Let 0 < ε < 13 , r = 3+ε, and c be an r–circular edge colouring of A2. Then

|c(a) − c(a′)|r + |c(b) − c(b′)|r > 2 − 2ε.

Proof. Let e0 be the unique edge of A2 which is at distance 3 from a, a′, b, b′. We may

assume that c(e0) = 0. For every e ∈ E(A2) let de denote the distance from e0 to e.

Then 0 6 de 6 3, and by Lemma 7.11 there exists te ∈ {de, de + 1, . . . , 2de} such that

c(e) ∈ [te, te + deε]r. Since ε < 13 , each of these intervals contains exactly one of the integers

0, 1, 2 and intervals corresponding to different integers are disjoint. Let σ(e) ∈ {0, 1, 2}be the integer corresponding to (the interval containing) c(e). Then σ is a proper 3–

edge colouring of A2 and by the parity lemma, either σ(a) = σ(b) 6= σ(a′) = σ(b′) or

σ(a) = σ(b′) 6= σ(a′) = σ(b). By symmetries of A2, we may assume that the former holds.

Now up to symmetry we either have

σ(a) = σ(b) = 0 and σ(a′) = σ(b′) = 1, or

σ(a) = σ(b) = 1 and σ(a′) = σ(b′) = 2.

(7.1)

If we reduce the colours in [−2ε, 0]r modulo r to lie in the real interval [−2ε, 0], then by (7.1)

we have

|c(a) − c(a′)|r = c(a′) − c(a) and |c(b) − c(b′)|r = c(b′) − c(b).

On the other hand, since a′ and b′ are at distance 3 from b and a respectively, by Lemma 7.11

there exist integers 3 6 t′, t′′ 6 6 such that c(a′) − c(b) ∈ [t′, t′ + 3ε]r and c(b′) − c(a) ∈[t′′, t′′ + 3ε]r. Since σ(a′)−σ(b) = σ(b′)−σ(a) = 1, we have s = r = 4. Therefore c(a′)−c(b)and c(b′) − c(a) are both in the real interval [1 − ε, 1 + 2ε] and we have

|c(a) − c(a′)|r + |c(b) − c(b′)|r = c(a′) − c(a) + c(b′) − c(b)

= c(a′) − c(b) + (cb′) − c(a) > 2(1 − ε).

Page 102: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 92

The above two lemmas give a lower bound on the circular chromatic index of type 2

generalized Blanusa snarks.

Corollary 7.22. For all n > 2, χ′c

(

B2n+1

)

> 3 + 23n+2 .

Proof. The graph B2n+1 has n copies of B joined sequentially. Given a (3+ε)–edge colouring

of this graph, the difference between the colours of the semiedges a′ and b′ of the first copy

of B, and the semiedges a and b of the last copy of B is at most n(3ε) by Lemma 7.20. On

the other hand these semiedges are joined to the semiedges of the copy of A2 in B2n+1, so

they get the same colours. Therefore by Lemma 7.21 we have

3nε > |c(a) − c(a′)|r + |c(b) − c(b′)|r > 2 − 2ε.

Therefore ε >2

3n+2 .

For even n > 2, Theorem 7.18 follows by Lemma 7.19 and Corollary 7.22. For odd n, we

proceed as follows.

Lemma 7.23. Let n > 3 be odd. Then χ′c

(

B2n+1

)

> 3 + 23n+2 .

Proof. Let G = B2n+1. Suppose χ′

c (G) 6 3 + 23n+2 . By Corollary 7.22 we have χ′

c (G) =

3 + 23n+2 . Let ψ be an edge (9n + 8, 3n + 2)–colouring of G. Let ε = 2

3n+2 , r = 3 + ε, and

c be the r–circular edge colouring of G defined by c(e) = ψ(e)/(3n + 2). Note that for all

e ∈ E(G), c(e) is an integer multiple of ε/2. Also note that since n > 3, we have ε 6211 .

To clarify the notation, we let µ = ε/2 throughout this proof. Let ai and bi be the edges

of G corresponding to the semiedges a and b of the ith copy of B in G. Then ai+1 and

bi+1 correspond to the semiedges a′ and b′ of the ith copy of B in G, and an+1, bn+1, a1, b1

correspond respectively to the semiedges a, b, a′, b′ of the copy of A2 in G.

Since χ′c (G) equals the lower bound of Corollary 7.22, all the inequalities in the proof

of that lower bound are tight. Namely, |c(ai+1) − c(ai)|r + |c(bi+1) − c(bi)|r = 3ε for all

1 6 i 6 n, and |c(an+1) − c(a1)|r + |c(bn+1) − c(b1)|r = 2 − 2ε = n(3ε). Therefore by

Lemma 7.20, we may assume that for all 1 6 i 6 n,

ai+1 ∈ [ai + ε, ai + 2ε]r and bi+1 ∈ [bi + ε, bi + 2ε]r . (7.2)

Since ai and bi are at distance 3 in G, by Lemma 7.11 we have |c(ai)− c(bi)|r ∈ [ti, ti + 3ε]r

for some ti ∈ {3, 4, 5, 6}. Each of these intervals contains exactly one of the integers 0, 1, 2

Page 103: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 93

and intervals corresponding to different numbers are disjoint. Let σi be the unique member

of [ti, ti + 3ε]r ∩ {0, 1, 2}. Since |x|r 6 r/2 for all x, we have σi 6= 2. Now (7.2) gives

ai+1 − bi+1 ∈ [ai − bi − ε, ai − bi + ε]r. Thus σi+1 = σi. Let σ be the common value of

all σi (1 6 i 6 n). It is easy to see that σ = 1 is not compatible with either of the

constraints (7.1). Therefore σ = 0.

Consider the ith B–block of G. Since |c(ai+1)−c(ai)|r+|c(bi+1)−c(bi)|r = 3ε = 6µ, we may

assume that |c(ai+1)−c(ai)|r > 3µ. We also assume that c(a) = 0. Thus c(ai+1) ∈ {3µ, 4µ}since it is an integer multiple of µ.

Case 1. Let c(ai+1) = 3µ. Since bi and bi+1 are both at distance 3 from ai and ai+1, and

since σ = 0, we have

c(bi), c(bi+1) ∈ [c(ai) − 2ε, c(ai) + 2ε]r ∩ [c(ai+1) − 2ε, c(ai+1) + 2ε]r

= [−4µ, 4µ]r ∩ [−µ, 9µ]r

= [−µ, 4µ]r .

On the other hand, since one of the edges adjacent with ai has a colour in [2, 2 + ε]r, at

least one of the colours c(bi), c(bi+1), is in [6, 6 + 3ε]r = [−4µ, 2µ]r. Thus the only possible

way to get |c(bi+1) − c(bi)|r = 3µ is that c(bi) = −µ and c(bi+1) = 2µ.

Case 2. If c(ai+1) = 4µ, a similar argument shows that either c(bi) = 0 and c(bi+1) = 2µ,

or c(bi) = 2µ and c(bi+1) = 4µ.

Note that in Case 1 we have |c(ai)− c(bi)|r = |c(ai+1) − c(bi+1)|r = µ while in Case 2, one

of |c(ai) − c(bi)|r and |c(ai+1) − c(bi+1)|r is 0 while the other is ε. Therefore, these two

colourings are not compatible with each other for consecutive copies of B, and the same case

holds for all copies of B. Up to symmetries, in the first case we have c(a1) = 0, c(b1) = µ,

c(an+1) = 1−2µ, and c(bn+1) = 1−µ, while in the second case we have c(a1) = 0, c(b1) = 0,

c(an+1) = 1 − 3µ, and c(bn+1) = 1 − µ. In either case we have c(an+1) = c(b1) + 1 − 3µ.

On the other hand since an+1 is at distance 3 from b1, by Lemma 7.11 we must have

1 − 3ε

2= c(an+1) − c(b1) ∈ [t, t+ 3ε]r ,

for some 3 6 t 6 6. This contradicts the choice of ε.

The following lemma is the last ingredient we need in our proof of Theorem 7.18.

Page 104: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Chapter 7. The Circular Chromatic Index 94

Lemma 7.24. Given an integer n > 5, there exist no positive integers p 6 12n + 15 and

q 6 4n+ 5 such that

3 +2

3n + 2<p

q< 3 +

2

3n + 1. (7.3)

Proof. Suppose there exist p and q with the desired properties. Then

p− 3q <2q

3n+ 16

8n + 10

3n+ 16

25

8,

where the last inequality requires n > 5. Therefore, p− 3q ∈ {1, 2, 3}. On the other hand,

by (7.3) we have

(p − 3q)3n+ 1

2< q < (p− 3q)

3n + 2

2.

This gives (3n + 1)/2 < q < (3n + 2)/2 if p − 3q = 1, and 3n + 1 < q < 3n + 2 if

p − 3q = 2. These both contradict the fact that q is an integer. If p − 3q = 3, we

similarly get q > (9n + 4)/2 which implies 27n + 18 6 24n + 30 since p 6 12n + 15. This

contradicts n > 5.

Note that B2n+1 has order 8n+10 and size 12n+15. Thus by Lemma 2.5, if χ′

c

(

B2n+1

)

= p/q

where p and q are relatively prime positive integers, then p 6 12n + 15 and q 6 4n + 5.

Therefore for odd n > 5, Theorem 7.18 follows by Lemmas 7.19, 7.23, and 7.24.

For the second Blanusa snark (B22), we investigated all its (7, 2)–edge colourings using a

computer program and verified that they all have tight cycles. Thus χ′c

(

B22

)

= 7/2.

For B24 , Lemma 2.5 and the bounds proved in this section, give

χ′c

(

B24

)

∈{

51

16,16

5

}

.

Using a computer program we verified that no Hamilton cycle of the line graph L(B24) can

serve as a tight cycle in a (51, 16)–edge colouring of B24 , thus proving χ′

c

(

B24

)

= 16/5.

Page 105: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Appendix A

Catalogue of Small Subcubic

3–Circular Critical Graphs

Here we present a catalogue of subcubic 3–circular critical graphs of order at most 20. The

smallest such graph is K3. Every other 3–circular critical graph is obviously triangle-free

and by Lemma 6.4 it is 2–connected. To find these graphs for a given order n, we generated,

using nauty, all triangle-free 2–connected graphs of order n and maximum degree at most 3.

We then checked all these graphs for the existence of an acyclic 3–colouring. If this fails we

know that the graph at hand has circular chromatic number 3. We then repeat this test

for all subgraphs of this graph obtained by deleting one edge, and if each of these admits

an acyclic 3–colouring, we conclude the graph at hand is 3–circular critical.

Subcubic 3–circular critical graphs of order at most 20 happen to have girth at most 5.

The graph illustrated in Figure 5.3 is a 3–circular critical subcubic graph with girth 6 and

order 21. We know of no subcubic graphs with girth at least 7 and circular chromatic

number 3.

95

Page 106: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Appendix A. Small Subcubic 3–Circular Critical Graphs 96

A.1 3–Circular Critical Graphs with Girth 4

Orders 11 and 12

Order 14

Orders 16 – 17

Page 107: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Appendix A. Small Subcubic 3–Circular Critical Graphs 97

Order 18

Order 19

Order 20

Page 108: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Appendix A. Small Subcubic 3–Circular Critical Graphs 98

Order 20 (cont.)

A.2 3–Circular Critical Graphs with Girth 5

Orders 9 – 13

Order 14

Page 109: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Appendix A. Small Subcubic 3–Circular Critical Graphs 99

Order 15

Order 16

Orders 17 and 18

Page 110: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Appendix A. Small Subcubic 3–Circular Critical Graphs 100

Order 19

Order 20

Page 111: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Appendix B

Case Analysis for Lemma 6.8

B.1 Configuration (a)

In the following cases, c can be extended to an acyclic 3–colouring of G. In each case, the

vertices with no label are coloured arbitrarily but properly.

0

0 0

0

α β

α

α

α

γ

γ

γ

0

0 0

1

α β

1

1

1

2

2

2

0

0 0

1

2 1

2

2

2

1

2

2

0

1 2

γ 6∈ {α, 0} (α, β) 6= (2, 1)

0

0 1

1

α β

γ

γ

γ

δ

δ

δ

0

0 1

2

α β

γ

γ

γ

0

0

0

1

0 0

1

0 1

0

2

2

1

2

2

1 0

1 0

γ 6∈ {0, β}, δ 6∈ {γ, 0} γ 6∈ {0, β}

101

Page 112: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Appendix B. Case Analysis for Lemma 6.8 102

1

0 0

1

0 2

0

2

2

2

2

2

1

1

0 0

1

2 2

2

2

2

0

2

2

1

1

1

0 0

2

α β

2

2

2

1

1

1

(α, β) 6= (1, 2)

In the following two cases, by extending c to a 3–colouring of G in the following ways,

we obtain directed paths in Dc(H) which combine to a nontrivial directed closed walk

in Dc(H). The implied directed path in each extension of c is shown by an arrow. Dashed

arrows in each picture indicate directed paths in Dc(H) found similarly.

Case 1:

1

0 0

1

0 0

1

0 0

1

0 0

2

2

2

1

1

0

1 2

1 2

1

0 0

1

0 0

2

2

2

0

2

0

0 1

1 1

1

0 0

1

0 0

2

2

2

1

1

2

0 0

1 2

Case 2:

1

0 0

2

1 2

Page 113: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Appendix B. Case Analysis for Lemma 6.8 103

1

0 0

2

1 2

0

0

1

2

1

1

2 0

2 0

1

0 0

2

12

0

0

2

1

1

1

1 0

2 0

1

0 0

2

1 2

2

2

2

1

1

1

0 0

0 0

1

0 0

2

12

2

2

2

0

1

0

0 2

0 1

1

0 0

2

1 2

1

2

2

0

2

0

0 1

0 1

1

0 0

2

1 2

1

2

2

2

1

1

0 0

2 1

B.2 Configuration (b)

In the following cases, c can be extended to an acyclic 3–colouring of G. In each case, the

vertices with no label are coloured arbitrarily.

αβ

α′

β′ α′′

β′′

γ γ

γ

αβ

α′

α′ α′′

α′′

α α

α

αβ

α′

β′ α′′

α′′

γ γ

γ

γ ∈ {α, β} ∩ {α′, β′} ∩ {α′′, β′′} α 6= β, α′ 6= β′,

γ ∈ {α, β} ∩ {α′, β′}

The following is the only remaining case:

Page 114: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Appendix B. Case Analysis for Lemma 6.8 104

01

1

2 2

0

By extending c to a 3–colouring of G in the following ways, we obtain directed paths in

Dc(H) which combine to a nontrivial directed closed walk in Dc(H). The implied directed

path in each extension of c is shown by an arrow. Dashed arrows in each picture indicate

directed paths in Dc(H) found similarly.

01

1

2 2

0

2 2

210

01

1

2 2

0

1 2

1

0

2

1

Page 115: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Bibliography

[1] P. Afshani, M. Ghandehari, M. Ghandehari, H. Hatami, R. Tusserkani, and X. Zhu.Circular chromatic index of graphs of maximum degree 3. J. Graph Theory, 49(4):325–335, 2005.

[2] V. C. Barbosa and E. Gafni. Concurrency in heavily loaded neighborhood-constrainedsystems. ACM Trans. Program. Lang. Syst., 11:562–574, 1989.

[3] L. W. Beineke and R. J. Wilson. On the edge-chromatic number of a graph. DiscreteMath., 5:15–20, 1973.

[4] J. A. Bondy and P. Hell. A note on the star chromatic number. J. Graph Theory,14(4):479–482, 1990.

[5] O. V. Borodin, S. G. Hartke, A. O. Ivanova, A. V. Kostochka, and D. B. West. (5, 2)–colouring of sparse graphs. preprint.

[6] O. V. Borodin, S.-J. Kim, A. V. Kostochka, and D. B. West. Homomorphisms fromsparse graphs with large girth. J. Combin. Theory Ser. B, 90(1):147–159, 2004.

[7] R. Brewster and T. Graves. On the restricted homomorphism problem. DiscreteApplied Mathematics, page To appear.

[8] A. E. Brouwer. Small binary codes. www.win.tue.nl/~aeb/codes/binary-1.html.

[9] P. J. Cameron, A. G. Chetwynd, and J. J. Watkins. Decomposition of snarks. J.Graph Theory, 11(1):13–19, 1987.

[10] J. Culberson. Graph coloring page. web.cs.ualberta.ca/~joe/Coloring/

[11] A. Deckelbaum and M. DeVos. Pentagon coloring. unpublished.

[12] M. DeVos. Personal communication.

[13] M. DeVos, J. Ebrahimi, M. Ghebleh, L. Goddyn, B. Mohar, and R. Naserasr. Circularcoloring the plane. SIAM J. Discrete Math., 21(2):461–465, 2007.

[14] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, third edition, 2005.

105

Page 116: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Bibliography 106

[15] A. Galluccio, L. A. Goddyn, and P. Hell. High-girth graphs avoiding a minor arenearly bipartite. J. Combin. Theory Ser. B, 83(1):1–14, 2001.

[16] M. Gardner. Mathematical games: Snarks, boojums and other conjectures related tothe four-color-map theorem. Sci. Am., 234:126–130, 1976.

[17] A. M. H. Gerards. Homomorphisms of graphs into odd cycles. J. Graph Theory,12(1):73–83, 1988.

[18] M. Ghebleh. The circular chromatic index of Goldberg snarks. Discrete Math.,307:3220–3225, 2007.

[19] M. Ghebleh, D. Kral, S. Norine, and R. Thomas. The circular chromatic index offlower snarks. Electron. J. Combin., 13(1):Note 20, 7 pp. (electronic), 2006.

[20] L. Goddyn. Personal communication.

[21] L. Goddyn and M. Verdian-Rizi. Circular chromatic number of even-faced projectiveplane graphs. manuscript.

[22] L. A. Goddyn, M. Tarsi, and C. Q. Zhang. On (k, d)-colorings and fractional nowhere-zero flows. J. Graph Theory, 28(3):155–161, 1998.

[23] C. D. Godsil and J. Zaks. Coloring the sphere. Technical report, University of Water-loo, 1988.

[24] M. K. Goldberg. Construction of class2 graphs with maximum vertex degree 3. J.Combin. Theory Ser. B, 31(3):282–291, 1981.

[25] H. Grotzsch. Ein Dreifarbensatz fur dreikreisfreie Netze auf der Kugel. Wiss. Z.Martin-Luther-U., Halle-Wittenberg, Math.-Nat. Reihe, 8:109–120, 1959.

[26] D. R. Guichard. Acyclic graph coloring and the complexity of the star chromaticnumber. J. Graph Theory, 17(2):129–134, 1993.

[27] H. Hadwiger and H. Debrunner. Combinatorial geometry in the plane. Translatedby Victor Klee. With a new chapter and other additional material supplied by thetranslator. Holt, Rinehart and Winston, New York, 1964.

[28] H. Hatami. Random cubic graphs are not homomorphic to the cycle of size 7. J.Combin. Theory Ser. B, 93(2):319–325, 2005.

[29] H. Hatami and R. Tusserkani. On the complexity of the circular chromatic number.J. Graph Theory, 47(3):226–230, 2004.

[30] P. Hell and J. Nesetril. Graphs and homomorphisms, volume 28 of Oxford LectureSeries in Mathematics and its Applications. Oxford University Press, 2004.

Page 117: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Bibliography 107

[31] R. Isaacs. Infinite families of nontrivial trivalent graphs which are not Tait colorable.Amer. Math. Monthly, 82:221–239, 1975.

[32] F. Jaeger. On circular flows in graphs. In Finite and infinite sets, Vol. I, II (Eger,1981), volume 37 of Colloq. Math. Soc. Janos Bolyai, pages 391–402. North-Holland,Amsterdam, 1984.

[33] F. Jaeger. Nowhere-zero flow problems. In Selected topics in graph theory, 3, pages71–95. Academic Press, San Diego, CA, 1988.

[34] I. T. Jakobsen. On critical graphs with chromatic index4. Discrete Math., 9:265–276,1974.

[35] T. Kaiser, D. Kra ’l, and R. Skrekovski. A revival of the girth conjecture. J. Combin.Theory Ser. B, 92(1):41–53, 2004.

[36] W. Klostermeyer and C. Q. Zhang. (2 + ǫ)-coloring of planar graphs with large odd-girth. J. Graph Theory, 33(2):109–119, 2000.

[37] S. Kochen and E. P. Specker. The problem of hidden variables in quantum mechanics.J. Math. Mech., 17:59–87, 1967.

[38] M. Kochol. Snarks without small cycles. J. Combin. Theory Ser. B, 67(1):34–47, 1996.

[39] A. Kostochka, J. Nesetril, and P. Smolıkova. Colorings and homomorphisms of degen-erate and bounded degree graphs. Discrete Math., 233(1-3):257–276, 2001.

[40] J. Mazak. Circular chromatic index of snarks. Master’s thesis, Comenius Universityin Bratislava, 2007.

[41] G. J. Minty. A theorem on n-coloring the points of a linear graph. Amer. Math.Monthly, 69(7):623–624, 1962.

[42] L. Moser and W. Moser. Solution to problem 10. Canad. Math. Bull., 4:187–189, 1961.

[43] A. Nadolski. The circular chromatic index of some class 2 graphs. Discrete Math.,307(11-12):1447–1454, 2007.

[44] J. Nesetril. Aspects of structural combinatorics (graph homomorphisms and their use).Taiwanese J. Math., 3(4):381–423, 1999.

[45] J. Nesetril and X. Zhu. On bounded treewidth duality of graphs. J. Graph Theory,23(2):151–162, 1996.

[46] A. Peres. Quantum theory: concepts and methods, volume 57 of Fundamental Theoriesof Physics. Kluwer Academic Publishers Group, 1993.

[47] G. Royle. Cubic graphs. people.csse.uwa.edu.au/gordon/remote/cubics/.

Page 118: THEOREMS AND COMPUTATIONS IN CIRCULAR COLOURINGS OF …people.math.sfu.ca/~goddyn/Theses/gheblehPhDThesis.pdf · 2008-01-17 · provides a refinement of the (ordinary) chromatic

Bibliography 108

[48] E. R. Scheinerman and D. H. Ullman. Fractional graph theory. John Wiley & SonsInc., New York, 1997.

[49] P. G. Tait. Remarks on the colouring of maps. Proc. Roy. Soc. Edingburg, 10:501–503,1880.

[50] A. Vince. Star chromatic number. J. Graph Theory, 12(4):551–559, 1988.

[51] P.-J. Wan. Near-optimal conflict-free channel set assignments for an optical cluster-based hypercube network. J. Comb. Optim., 1(2):179–186, 1997.

[52] I. M. Wanless and N. C. Wormald. Regular graphs with no homomorphisms ontocycles. J. Combin. Theory Ser. B, 82(1):155–160, 2001.

[53] J. J. Watkins. Snarks. In Graph theory and its applications: East and West (Jinan,1986), volume 576 of Ann. New York Acad. Sci., pages 606–622. New York Acad. Sci.,New York, 1989.

[54] D. B. West. Introduction to graph theory. Prentice Hall Inc., NJ, second edition, 2000.

[55] N. C. Wormald. Models of random regular graphs. In Surveys in combinatorics, 1999(Canterbury), volume 267 of London Math. Soc. Lecture Note Ser., pages 239–298.Cambridge Univ. Press, Cambridge, 1999.

[56] H. Yeh and X. Zhu. Resource-sharing system scheduling and circular chromatic num-ber. Theoret. Comput. Sci., 332(1-3):447–460, 2005.

[57] D. A. Youngs. 4-chromatic projective graphs. J. Graph Theory, 21(2):219–227, 1996.

[58] X. Zhu. Personal communication.

[59] X. Zhu. Circular chromatic number: a survey. Discrete Math., 229(1-3):371–410, 2001.

[60] X. Zhu. Circular chromatic number of planar graphs of large odd girth. Electron. J.Combin., 8(1):Research Paper 25, 11 pp. (electronic), 2001.


Recommended