+ All Categories
Home > Documents > Theoretical studies of liquid desiccant columns for hybrid air conditioner

Theoretical studies of liquid desiccant columns for hybrid air conditioner

Date post: 03-Apr-2018
Category:
Upload: anukrishna
View: 218 times
Download: 0 times
Share this document with a friend

of 31

Transcript
  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    1/31

    1

    Theoretical studies ofliquid desiccant columns

    for hybrid air conditioner

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    2/31

    Introduction

    Application of low humidityEssential forarchives, museums,etc.

    Desirable for human comfort

    Vapor compression systemDehumidification by vapor condensation

    High COP but deep dehumidification notpossible

    Desiccant cooling systemDehumidification by absorption of vapor

    Deep dehumidification but low COP

    Proposed hybrid systemDehumidification by both condensation and

    absorption

    High COP and more dehumidification 2

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    3/31

    Analysis of three circuits

    a) Solution circuit

    b) Vapor compression circuit

    c) Air circuits Simulation of the system

    Fabrication and testing of a 0.8 TR capacity LDVC hybrid

    system

    Objectives

    3

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    4/31

    LITERATURE SURVEY

    4

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    5/31

    Yadav, 1995Conducted experiments in conventional vapour compression

    system and liquid desiccant cycle. It has an energy saving of 80% at

    90% latent heat load.

    Khalid et al., 1997Simulated an open cycle vapour absorption and liquid desiccantsystem using LiBr for the process of absorption and

    dehumidification found suited for hot and humid climate

    Kessling et al., 1998Liquid desiccant cooling systems enable efficient energy storage for

    air dehumidification and air-cooling using low temperature heat.

    Meunier, 1998Shows that solid sorption is very effective low grade cooling not

    only for air conditioning but for deep-freezingalso.

    Fanger, 1999 The perceived indoor air quality (IAQ) increases with a decrease inrelative humidity, as long as it Is kept between 30 to 70%

    Techajunta et al.,

    1999

    Conducted experiments in a solar simulator on solid desiccant

    regeneration and air dehumidification for air conditioning in a

    tropical humid climate, and found that regeneration rate is strongly

    dependent on insolation, and slightly affected by air flow rate.

    5

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    6/31

    Armando et al., 2000 Used lithium bromide as the liquid desiccant, modeled an opensystem and observed the system to be more efficient in colder and

    drier climates and that system efficiency can be improved by

    employing indoor air re-circulation

    Jain, 2001 The temperature required for regenerating the liquid desiccant islow; therefore solar energy can be utilized effectively.

    Dieng and Wang2001

    Conducted review on solar adsorption technologies and emphasizedthe possibility of using non-polluting materials and energy saving

    (more than 50%) as the important characteristics .

    Goktun and Deha Er,

    2001

    Conducted theoretical evaluation of the maximum overall

    performance of a hybrid air conditioning system which consists of a

    conventional vapour compression system (VCS) cascaded withsolar assisted vapour absorption system.

    Ahmed, 2003Studied the desorption characteristics of liquid desiccant bed for

    solar dehumidification for air conditioning systems. Air stream at a

    low grade temperature is applied in the desorption process

    6

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    7/31

    R2

    Evaporator

    Expn.

    Valve

    Condenser

    R1

    R3R4

    Compressor

    VAPOUR COMPRESSION SYSTEM

    conditioned space ( Supply air )

    A4A5A4

    A1

    Ar

    A2

    Pump2

    D2

    A6

    Pump1

    A3

    Dehumidifier

    D2

    D3

    Regenerator

    D4

    D1

    WITH AIR CIRCUIT

    AND DESICCANT LOOP

    Block diagram of the proposed hybrid system

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    8/31

    dry bulb temperature

    humidityratio

    A2

    A4

    Ar

    A1

    A5

    R3R2

    Compressor

    R1

    R4

    Evaporator

    Expn.

    Valve

    Condenser

    A1

    A4

    conditioned space

    ( Supply air )

    A4A5A2

    VAPOR COMPRESSION SYSTEM WITH AIR CIRCUIT

    D1

    D3Pump2

    D2

    A6

    D2Pump1

    D4

    D4

    A3

    Regenerator

    Dehumidifier

    AND DESICCANT LOOP

    A3

    A6

    h

    Process diagram

    8

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    9/31

    dZ

    air out

    maha+dha

    Wa+dWat

    a

    +dta

    mahaWata

    solution in

    air in solution out

    Z

    mshsxt

    s

    ms+dmhs+ dhsx+dxts+dts

    9

    Computational Model Counter flow

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    10/31

    Algorithm

    1. Calculate the enthalpy of inlet air: ha= f(ta, Wa)

    2. Calculate heat transfer coefficient:hc= f(v)

    3. Estimate Lewis number: Le = (/D)2/3

    4. Estimate mass transfer coefficient: hm= hc/CpLe

    5. Estimate interface vapor pressure, humidity ratio and enthalpy:

    pi= ps= f(xs, ts); Wi= 0.622 pi/(ptpi); hi= f(ts, Wi)

    6. Estimate the moisture absorbed and total heat transfer:

    dm= hmdA(Wi-Wa); dq = hcdA (hi-ha)/cpm

    7. Estimate air properties at exit of the element:

    Wa* = Wa+ dWa; ha* = ha+dha; ta* = f(ha* ,Wa* )

    8. Estimate solution flow rate, concentration, enthalpy and temperature at exit of the

    element:

    ms* = ms+ dm = ms+dWa; xs* = 1-[((1-xs) ms-(madWa))/ms* ] ; hs* = hs+ (dq/ms* );

    ta* = f(hs* ,xs* )10

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    11/31

    Parameter Range Mean value

    Inlet air temperature,

    taa1,oC

    6-22 14

    Inlet air specific

    humidity, Waa1, g/kg6-10 8

    Inlet air temperature,

    tar1,o

    C (reg)

    30-50 45

    Inlet air specific

    humidity, War1, g/kg15-30 20

    S/A flow ratio (%) 0.05 - 150 Varied

    Table 1: Performance parameters Table 2: Fixed/operating parameters

    11

    Parameter value

    Inlet solution concentration, xsa1,% 45

    Inlet solution concentration, xsr1,% (reg) 30

    Inlet solution temperature, tsa1,oC 20

    Inlet solution temperature, tsr1,oC (reg) 20

    Height of absorber and regenerator, cm 40

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    12/31

    Parameter Variation Influence Result

    Air temperature increasesolution T

    solution VP

    dehumidification suppressed

    solution concentration

    Solution temperature

    Air specific humidity increase air VP

    dehumidification enhanced

    solution concentration

    Solution temperature

    S/A ratio increase capacity

    dehumidification enhanced

    solution concentration

    Absorber

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    13/31

    Parameter Variation Influence Result

    Air temperature increasesolution T

    solution VP

    desorption increased

    solution concentration

    Solution temperature

    Air specific humidity increase air VP

    desorption suppressed

    solution concentration

    S/A ratio increase capacitydesorption enhanced

    solution concentration

    Regenerator

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    14/31

    COUNTER FLOW

    14

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    15/31

    6 7 8 9 100.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    S/A=0.05% S/A=0.2% S/A=0.8% S/A=1.6% S/A=3.2% S/A=6.4%

    Changeinsp.humidity,

    Waa,g

    /kg

    Inlet air sp.humidity,Waa1

    ,g/kg

    6 7 8 9 100

    1

    2

    3

    4

    5

    6

    7

    8 S/A=0.05% S/A=0.2% S/A=0.8% S/A=1.6% S/A=3.2% S/A=6.4%

    Changeinairte

    mperature,

    taa,o

    C

    Inlet air sp.humidity,Waa1

    ,g/kg

    4 6 8 10 12 14 16 18 20 22 24

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5 S/A=0.05%S/A=0.2%S/A=0.8%S/A=1.6%S/A=3.2%S/A=6.4%

    Changeinsp.h

    umidity,

    Waa,g

    /kg

    Inlet air temperature,taa1

    ,oC

    4 6 8 10 12 14 16 18 20 22 24

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Changeinairtemperature,

    taa,o

    C

    Inlet air temperature,taa1

    ,oC

    S/A=0.05%S/A=0.2%S/A=0.8%S/A=1.6%S/A=3.2%S/A=6.4%

    EFFECT OF INLET AIR SPECIFIC HUMIDITY (ABSORBER)

    EFFECT OF INLET AIR TEMPERATURE (ABSORBER) 15

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    16/31

    6 7 8 9 10

    15

    20

    25

    30

    35

    40

    45

    S/A=0.05% S/A=0.2% S/A=0.8% S/A=1.6% S/A=3.2% S/A=6.4%Outletsolution

    concentration,xsa2,%

    Inlet air sp.humidity,Waa1

    ,g/kg

    6 7 8 9 10

    14

    15

    16

    17

    18

    19

    20

    21

    22 S/A=0.05% S/A=0.2% S/A=0.8% S/A=1.6% S/A=3.2% S/A=6.4%

    Outletsolutiontemperature,tsa2,o

    C

    Inlet air sp.humidity,Waa1

    ,g/kg

    4 6 8 10 12 14 16 18 20 22 245

    10

    15

    20

    25

    30

    35

    40

    45

    S/A=0.05%S/A=0.2%S/A=0.8%S/A=1.6%S/A=3.2%S/A=6.4%

    Outletsolution

    concentration,xsa2,%

    Inlet air temperature,taa1

    ,oC

    4 6 8 10 12 14 16 18 20 22 248

    10

    12

    14

    16

    18

    20

    22

    24

    S/A=0.05%S/A=0.2%S/A=0.8%S/A=1.6%S/A=3.2%S/A=6.4%Outletsolutiont

    emperature,tsa2,o

    C

    Inlet air temperature,taa1

    ,oC

    EFFECT OF INLET AIR SPECIFIC HUMIDITY (ABSORBER)

    EFFECT OF INLET AIR TEMPERATURE (ABSORBER) 16

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    17/31

    14 16 18 20 22 24 26 28 30 32

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    5.0

    5.5

    Changeinsp.humidity,War,

    g/kg

    Inlet air sp. humidity, War1

    ,g/kg

    S/A=0.2%S/A=0.4%S/A=0.8%S/A=1.6%S/A=3.2%S/A=6.4%

    14 16 18 20 22 24 26 28 30 320

    2

    4

    6

    8

    10

    12S/A=0.2%S/A=0.4%S/A=0.8%S/A=1.6%S/A=3.2%S/A=6.4%

    Changeinairtemperature,tar,

    oC

    Inlet air sp. humidity, War1

    ,g/kg

    34 36 38 40 42 44 46 48 50 520.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    5.0

    5.5

    Changeinsp.h

    umidity,War,

    g/kg

    Inlet air temperature, tar1

    ,oC

    S/A=0.05%S/A=0.2%S/A=0.8%S/A=1.6%S/A=3.2%S/A=6.4%

    34 36 38 40 42 44 46 48 50 52-1

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13 S/A=0.05%S/A=0.2%S/A=0.8%S/A=1.6%S/A=3.2%S/A=6.4%

    Changeinairtemperature,tar,

    oC

    Inlet air temperature, tar1

    ,oC

    EFFECT OF INLET AIR SPECIFIC HUMIDITY (REGENERATOR)

    EFFECT OF INLET AIR TEMPERATURE (REGENERATOR) 17

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    18/31

    14 16 18 20 22 24 26 28 30 3230

    32

    34

    36

    38

    40

    42

    44

    46

    48

    50

    52

    54 S/A=0.2%S/A=0.4%S/A=0.8%S/A=1.6%S/A=3.2%S/A=6.4%

    Outletsolutionconcentration,

    xsr2,%

    Inlet air sp. humidity, War1

    ,g/kg

    14 16 18 20 22 24 26 28 30 3231

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    45

    S/A=0.2%S/A=0.4%S/A=0.8%S/A=1.6%S/A=3.2%S/A=6.4%

    Outletsolutiontemperature,

    tsr2,o

    C

    Inlet air sp. humidity, War1

    ,g/kg

    34 36 38 40 42 44 46 48 50 5230

    32

    34

    36

    38

    40

    42

    44

    46

    48

    50

    52

    54 S/A=0.05%S/A=0.2%S/A=0.8%S/A=1.6%S/A=3.2%S/A=6.4%

    Outletsolutionc

    oncentration,

    xsr2,%

    Inlet air temperature, tar1

    ,oC

    34 36 38 40 42 44 46 48 50 52

    32

    34

    36

    38

    40

    42

    44

    46

    48

    50

    52

    S/A=0.05%S/A=0.2%S/A=0.8%S/A=1.6%S/A=3.2%S/A=6.4%

    Outletsolutiontemperature,

    tsr2,o

    C

    Inlet air temperature, tar1

    ,oC

    EFFECT OF INLET AIR SPECIFIC HUMIDITY (REGENERATOR)

    EFFECT OF INLET AIR TEMPERATURE (REGENERATOR) 18

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    19/31

    ABSORBER

    REGENERATOR

    19

    0 1 2 3 4 5 6 7

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    Changeinsp.h

    umidity,

    W,g

    /kg

    S/A ratio,%

    ts1

    =12oC

    ts1=18oCt

    s1=24

    oC

    ts1

    =30oC

    ts1

    =40oC

    ts1

    =50oC

    0 1 2 3 4 5 6 7

    0

    1

    2

    3

    4

    5

    Changeinsp.

    humidity,Wr,

    g/kg

    S/A ratio,%

    tsr1

    =10oC

    tsr1

    =15oC

    tsr1

    =20oC

    tsr1

    =25oC

    tsr1

    =30oC

    tsr1

    =40oC

    tsr1

    =50oC

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    20/31

    COUPLED COLUMNS

    20

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    21/31

    Block diagram of coupled columns

    21

    C i l d l C l d l

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    22/31

    Computational Model- Coupled columns

    msahsaxstsa

    msa+dmhsa+ dhsa

    xs+dx

    tsa+dtsa

    dZ

    marhar

    Wartar

    marhar+dhar

    War+dWartar+dtar

    Z

    Regenerator

    air in

    Weak

    solution out

    msr+dmhsr+ dhsr

    xw+dx

    tsr+dtsr

    msrhsrxwtsr

    dZ

    Strong

    solution out

    Weak

    solution in

    Strong

    solution in

    maahaa+dhaa

    Waa+dWaataa+dtaa

    maahaa

    Waataa

    Process

    air in

    Absorber Regenerator

    Dehumdified

    air out Humidified

    air out

    22

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    23/31

    Table 3. Operating parameters

    Parameter Range Mean value

    Process air temperature, taa1,oC 10-18 14

    Process air specific humidity, Waa1, g/kg 6-10 8

    Regeneration air temperature, tar1

    , oC 35-50 45

    Regenerator air specific humidity, War1

    , g/kg 15-30 20

    S/A flow ratio (%)

    Absorber

    Regenerator

    0.3-1.6

    0.3-1.6

    0.8

    0.8

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    24/31

    10 12 14 16 180.5

    1.0

    1.5

    2.0

    2.5

    3.0

    Decreaseofspecifichumidity

    inabsorber,

    Waa,g

    /kg

    Process air temperature , taa1

    ,oC

    (S/A)r=0.4%

    (S/A)r=0.6%

    (S/A)r=0.8%

    (S/A)r=1.0%

    (S/A)a=0.8%

    10 12 14 16 181

    2

    3

    4

    5

    6

    7 (S/A)a=0.8% (S/A)r=0.4% (S/A)

    r=0.6%

    (S/A)r=0.8%

    (S/A)r=1.0%

    Increaseofairtemperature

    inabsorber,taa,o

    C

    Process air temperature, taa1

    ,oC

    10 12 14 16 18

    0.5

    1.0

    1.5

    2.0

    2.5(S/A)

    a=0.8% (S/A)

    r=0.4%

    (S/A)r=0.6%

    (S/A)r=0.8%

    (S/A)r=1.0%

    Increaseofspecifichumidity

    inregenerator,War,g

    /kg

    Process air temperature, taa1

    ,oC

    10 12 14 16 180

    1

    2

    3

    4

    5

    6

    (S/A)a=0.8% (S/A)

    r=0.4%

    (S/A)r=0.6%

    (S/A)r=0.8%

    (S/A)r=1.0%

    Decreaseofa

    irtemperature

    inregenerator,tar,

    oC

    Process air temperature, taa1

    ,oC

    EFFECT OF PROCESS AIR TEMPERATURE (ABSORBER)

    EFFECT OF PROCESS AIR TEMPERATURE (REGENERATOR)24

    3 0 6

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    25/31

    6 7 8 9 100.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    Specific humidity of process air, Waa1

    , g/kg

    Decreaseo

    fspecifichumidity

    intheab

    sorber,

    Waa

    g/kg

    (S/A)a=0.2%

    (S/A)a=0.4%

    (S/A)a=0.8%

    (S/A)a=1.6%

    6 7 8 9 100

    1

    2

    3

    4

    5

    6

    Increaseofairtemperature

    intheabsorber,taa

    oC

    (S/A)a=0.2%

    (S/A)a=0.4%

    (S/A)a=0.8%

    (S/A)a=1.6%

    Specific humidity of process air, Waa1

    , g/kg

    6 7 8 9 100.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    (S/A)a=0.2%

    (S/A)a=0.4%

    (S/A)a=0.8%

    (S/A)a=1.6%

    Increaseofspecifichumidity

    intheregen

    erator,Waa

    g/kg

    Specific humidity of process air, Waa1

    , g/kg

    6 7 8 9 101

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    (S/A)a=0.2%

    (S/A)a=0.4%

    (S/A)a=0.8%

    (S/A)a=1.6%

    Decreaseofairtemperature

    inther

    egenerator,tar

    oC

    Specific humidity of process air, Waa1

    , g/kg

    EFFECT OF PROCESS AIR SPECIFIC HUMIDITY (ABSORBER)

    EFFECT OF PROCESS AIR SPECIFIC HUMIDITY (REGENERATOR)25

    3.0 6

    (S/A) 0 2%

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    26/31

    14 16 18 20 22 24 26 28 30 320.0

    0.5

    1.0

    1.5

    2.0

    2.5

    (S/A)a=0.2%

    (S/A)a=0.4%

    (S/A)a=0.8%

    (S/A)a=1.0%

    (S/A)a=1.6%

    Decreaseofspecifichumidity

    intheabsorber,

    Waa

    g/kg

    Specific humidity of regenerator air, War1

    , g/kg

    14 16 18 20 22 24 26 28 30 320

    1

    2

    3

    4

    5

    Increaseofairtemperature

    in

    theabsorber,taa

    oC

    (S/A)a=0.2%

    (S/A)a=0.4%

    (S/A)a=0.8%

    (S/A)a=1.0%

    (S/A)a=1.6%

    Specific humidity of regenerator air, War1

    , g/kg

    14 16 18 20 22 24 26 28 30 32

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Increaseofspecifichumidity

    intheregenerator,War

    g/kg

    Specific humidity of regenerator air, War1, g/kg

    (S/A)a=0.2%

    (S/A)a=0.4%

    (S/A)a=0.8%

    (S/A)a=1.0%

    (S/A)a=1.6%

    14 16 18 20 22 24 26 28 30 32

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Specific humidity of regenerator air, W

    ar1, g/kg

    (S/A)a=0.2%

    (S/A)a=0.4%

    (S/A)a=0.8%

    (S/A)a=1.0%

    (S/A)a=1.6%

    Decreaseof

    temperature

    intheregen

    erator,taro

    C

    EFFECT OF REGENERATOR AIR SPECIFIC HUMIDITY (ABSORBER)

    EFFECT OF REGENERATOR AIR SPECIFIC HUMIDITY (REGENERATOR)26

    (S/A) =0 3%(S/A) 0 8% 6

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    27/31

    35 40 45 50

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Decrea

    seofspecifichumidity

    inth

    eabsorber,

    Waa

    g/kg

    Temperature of regenerator air, tar1

    oC

    (S/A)r=0.3%

    (S/A)r=0.4%

    (S/A)r=0.6%

    (S/A)r=0.8%

    (S/A)a=0.8%

    35 40 45 500

    1

    2

    3

    4

    5

    6(S/A)

    a=0.8% (S/A)

    r=0.3%

    (S/A)r=0.4%

    (S/A)r=0.6%

    (S/A)r=0.8%

    Increaseofairtemperature

    inthe

    absorber,taa

    oC

    Temperature of regenerator air, tar1

    oC

    35 40 45 50

    0.0

    0.5

    1.0

    1.5

    (S/A)r=0.3%

    (S/A)r=0.4%

    (S/A)r=0.6%

    (S/A)r=0.8%

    (S/A)a=0.8%

    Temperature of regenerator air, tar1

    oC

    Increaseof

    secifichumidity

    intheregen

    erator,War

    g/kg

    35 40 45 50

    0

    1

    2

    3

    4(S/A)

    a=0.8% (S/A)r=0.3%(S/A)

    r=0.4%

    (S/A)r=0.6%

    (S/A)r=0.8%

    decreaseofairtemperature

    intheregen

    erator,tar

    oC

    Temperature of regenerator air, tar1

    oC

    EFFECT OF REGENERATOR AIR TEMPERATURE (ABSORBER)

    EFFECT OF REGENERATOR AIR TEMPERATURE (REGENERATOR)27

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    28/31

    28

    EFFECT OF PROCESS AIR TEMPERATURE ON SOLUTION CONCENTRATION

    10 12 14 16 18

    27

    30

    33

    36

    39

    42

    45

    48

    51

    tar1=35o

    C

    tar1

    =40oC

    tar1

    =45oC

    tar1

    =50oC

    tar1

    =35oC

    tar1

    =40oC

    tar1

    =45oC

    Absorberexit

    Solutionconcentration%

    Process air temperature,taa1

    oC

    Regeneratorexit

    (S/A)a

    =(S/A)r

    = 0.3tar1=50oC

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    29/31

    Conclusions

    At high range of S/A ratio

    Solution has to be necessarily pre-cooled.Cooling of air will only complement the dehumidification.

    Change in humidity increases with increase in air specific

    humidity, solution concentration and decrease in air

    temperature at the inlet.

    At low range of S/A ratio

    Air has to be pre-cooled for the sustained

    dehumidification of air.

    Solution temperature has negligible influence ondehumidification.

    29

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    30/31

    Desiccant to assist only in dehumidification

    Entire cooling supported by compression system

    Regeneration achieved by warm condenser air

    Air properties decide the process whether it is absorption

    or regeneration

    Regeneration is possible at temperatures above 30oC

    Thus the proposed hybrid system is feasible

    30

    Conclusions

  • 7/28/2019 Theoretical studies of liquid desiccant columns for hybrid air conditioner

    31/31

    Thank You


Recommended