+ All Categories
Home > Documents > There Are Two Types of Voltaic Cell

There Are Two Types of Voltaic Cell

Date post: 07-Apr-2018
Category:
Upload: elva-kumalasari
View: 224 times
Download: 0 times
Share this document with a friend
13
CHEMISTRY ASSIGNMENT Elva Kumalasari XI-IC
Transcript
Page 1: There Are Two Types of Voltaic Cell

8/6/2019 There Are Two Types of Voltaic Cell

http://slidepdf.com/reader/full/there-are-two-types-of-voltaic-cell 1/13

CHEMISTRY ASSIGNMENT

Elva Kumalasari XI-IC

Page 2: There Are Two Types of Voltaic Cell

8/6/2019 There Are Two Types of Voltaic Cell

http://slidepdf.com/reader/full/there-are-two-types-of-voltaic-cell 2/13

There are two types of Voltaic Cell:

-  Primary Cell, which cannot be recharge

-  Secondary Cell, which can be recharge

Application of voltaic cell in battery (Dry Cell)

Dry Cell (one of secondary cell) 

Chemistry is the driving force behind the magics of batteries.

A battery is a package of one or more galvanic cells used for the production and storage of electric

energy by chemical means. A galvanic cell consists of at least two half cells, a reduction cell and an

oxidation cell. Chemical reactions in the two half cells provide the energy for the galvanic cell

operations.

Each half cell consists of an electrode and an electrolyte solution. Usually the solution contains ions

derived from the electrode by oxidation or reduction reaction.

We will make this introduction using a typical setup as depicted here. The picture shows a copper

zinc galvanic cell (battery).

A galvanic cell is also called a voltaic cell. The spontaneous reactions in it provide the electric energy

or current.

Two half cells can be put together to form an electrolytic cell, which is used for electrolysis. In this

case, electric energy is used to force nonsponaneous chemical reactions.

 

-  The positive terminal of a dry cell is a carbon rod, while the negative terminal is the zinc

casing around the cell. -  The electrolyte includes a mixture of  magnesium (IV) oxide and carbon powder, surrounded 

by ammonium chloride powder. 

-  The chemical reaction which takes place are: 

At the negative terminal, Zn: 

Zn (s) Zn2+(aq) + 2e- 

Zn2+ ions, which form when Zn donates electrons,dissolve in the electrolyte. 

-  At the positive terminal (carbon) NH4+ ions are discharged. They receive electrons to form 

two gases, ammonia and hydrogen. 

2NH+4(aq) 2NH3(g) + H2(g) 

The hydrogen, which results in this reaction, reacts with manganese (IV) oxide as follows: 

2MnO2(s) + H2(g) Mn2O3(g) + H2O(l) 

-  Overall reaction 

Zn (s) + 2MnO2(s) + 2NH+4(aq) Zn2+(aq) + Mn2O3(s) + 2NH3(g) + H2O(l) 

-  Carbon powder is used to increase the surface area of  the carbon electrode and manganese 

(IV) oxide reduces the formation of  gas bubbles. 

Page 3: There Are Two Types of Voltaic Cell

8/6/2019 There Are Two Types of Voltaic Cell

http://slidepdf.com/reader/full/there-are-two-types-of-voltaic-cell 3/13

Accu (one of primary cell) 

Lead Accumulator 

This can be recharged by passing a current through it in the reverse direction. The chemical processes that occur 

at the electrodes during discharge are reversed by this. Thus the cell recovers its original state, except for some

energy loss. Such cells are called secondary cells or accumulators.

The lead-sulphuric acid cells is a common example. It was inverted by a French physicist, Gaston plate, in 1859.

Electrodes: Alternate parallel plates of lead dioxide (+ve electrode) (oxidised from PbO)

Spongy lead (reduced from PbO) (-ve electrode)

These are kept separate by porous separators made of wood, plastic or glass fibre.

Electrolytes: Dilute sulphuric acid

Container: Glass or bakelite

Here stored chemical energy is converted to electrical energy or current is drawn from the cell.

The hydrogen ions go to the +ve electrode and SO42-

to the -ve electrode. After giving their charges they react

with the electrodes and reduce the active material to lead sulphate.

Therefore, at the -ve electrode

 At the +ve electrode,

Both plates (but only half of the active materials) are converted into PbSO4 (whitish). Water is formed thus

lowering the specific gravity of H2SO4 (electrolyte).

The emf of the cell falls and sulphuric acid is consumed.

Page 4: There Are Two Types of Voltaic Cell

8/6/2019 There Are Two Types of Voltaic Cell

http://slidepdf.com/reader/full/there-are-two-types-of-voltaic-cell 4/13

Discharging Process

Here stored chemical energy is converted to electrical energy or current is drawn from the cell.

The hydrogen ions go to the +ve electrode and SO42-

to the -ve electrode. After giving their charges they react

with the electrodes and reduce the active material to lead sulphate.

Therefore, at the -ve electrode

 At the +ve electrode,

Both plates (but only half of the active materials) are converted into PbSO4 (whitish). Water is formed thus

lowering the specific gravity of H2SO4 (electrolyte).

The emf of the cell falls and sulphuric acid is consumed.

Recharging Process

Current is passed through the two terminals in the reverse direction to that in which the cell provided current.

That is, the anode is connected to the positive terminal of the d.c. source, and the cathode to the negative

terminal.

The hydrogen ions move to the -ve electrode and sulphate ions to the +ve electrode.

 At -ve electrode,

 At the +ve electrode,

Water is consumed and sulphuric acid is formed thus raising the specific gravity of the electrolyte. In the charging

process, the +ve electrode is coated with dark brown lead peroxide and the -ve electrode with grey spongy lead.

The emf of the cell rises, and the electrical energy supplied is converted into chemical energy which is stored in

the cell. 

Page 5: There Are Two Types of Voltaic Cell

8/6/2019 There Are Two Types of Voltaic Cell

http://slidepdf.com/reader/full/there-are-two-types-of-voltaic-cell 5/13

Application of electrolysis

Production of Chemical 

Example: production of sodium chloride, chlorine and hydrogen

Sodium hydroxide, NaOH, also known as lye and caustic soda, is one of  the most important 

of  all industrial chemicals. It is produced at the  rate of  25 billion pounds a year in the United 

States alone. The major method for producing it is the electrolysis of  brine or "salt water," a 

solution of  common salt, sodium chloride in water. Chlorine and hydrogen gases are 

produced as valuable byproducts. 

When an electric current is passed through salt water, the negative chloride ions, Cl-, 

migrate to the positive anode and lose their electrons to become chlorine gas.  

(The chlorine atoms then pair up to form Cl 2molecules.) Meanwhile, sodium ions, Na+, are 

drawn to the negative cathode. But they do not pick up electrons to become sodium metal 

atoms as they do in molten salt, because in a water solution the water molecules 

themselves pick up electrons more easily than sodium ions do. 

The hydroxide ions, together with the sodium ions that are already in the solution, 

constitute sodium hydroxide, which can be recovered by  evaporation. 

This so-called chloralkali  process is the basis of  an industry that has existed for well over a 

hundred years. By electricity, it converts cheap salt into valuable chlorine, hydrogen and 

sodium hydroxide. Among other uses, the chlorine is used in the purification of  water, the 

hydrogen is used in the hydrogenation of  oils, and the lye is used in making  soap and paper. 

Page 6: There Are Two Types of Voltaic Cell

8/6/2019 There Are Two Types of Voltaic Cell

http://slidepdf.com/reader/full/there-are-two-types-of-voltaic-cell 6/13

 Purification of metal/

  

efining metal  

Example of purification of metal (purifying copper) 

An example of  the process described above is the refinement of  copper. A common copper 

containing ore is chalcocite (Cu2S). This ore is first treated at high temperatures (by a process called, 

roasting) or by blowing oxygen through the melted ore. As the oxygen comes in contact with the 

ionic complex it causes the reduction of  the copper (I) ions in the ore to copper metal. At the same 

time sulfur is oxidized to sulfur dioxide as shown in the following equation. 

Cu2S  +  O2  ----->  2 Cu (s)  +  SO2 (g) 

The copper metal that is formed by this reduction process still contains a small amount of  impurities such as zinc, iron, silver, and gold. The impure copper is further refined via electrolysis. In this 

process, as shown below, the impurities are removed in one of  two ways. The more electropositive 

zinc and iron are oxidized into their respective ions and enter into solution. The Noble metals, silver 

and gold, are not oxidized at the anode, but settle out as metal atoms in a "sludge" as the impure 

copper anode dissolves. The copper obtained by this refinement is about 99.5% pure, and the 

amount of  silver and gold recovered in the process is often sufficient to pay for the cost the 

electricity required for the electrolytic process. 

Page 7: There Are Two Types of Voltaic Cell

8/6/2019 There Are Two Types of Voltaic Cell

http://slidepdf.com/reader/full/there-are-two-types-of-voltaic-cell 7/13

El¡ ¢  

t £   oplatin¤  

 

The ¥ ¦ § ¨    e ¥ ¦  ̈  c ¥  

© 

hode ¦    © 

he

e ec

© 

 oplating cell are

  oth connected to an e  

ternal 

s  pply of  direct c

  rrent - a 

  attery or, 

  ore

commonly, a rectifier. The anode is connected to the positive terminal of  the s    pply, and the cathode

  article to     e plated) is connected to the negative

terminal.    

hen the e  

ternal power s    pply is

switched on, the metal at the anode isoxidized from 

the zero valence state to form cations with a 

positive charge. These cations associate with the

anions in the solution. The cations are reduced at 

the cathode to deposit in the metallic, zero valence

state. For example, in an acid solution, copper is

oxidized at the anode to   u

2+ 

  y losing two 

electrons. The  u

2+ associates with the anion S   4

2- in 

the solution to form copper sulfate. !  

t the cathode, the

  u

2+ is reduced to metallic copper 

  y gaining 

two electrons. The result is the eff ective transf er of  

copper from the anode source to a plate covering 

the cathode. 

The plating is most commonly a single metallic element, not an alloy. However, some alloys

can     e electrodeposited, notablybrass and solder. 

"   any plating baths include cyanides of  other metals

 e.g., potassium cyanide) in addition 

to cyanides of  the metal to be deposited. These free cyanides facilitate anode corrosion, help to 

maintain a constant metal ion level and contribute to conductivity. !  

dditionally, non-metal 

chemicals such as carbonates and phosphates may be added to increase conductivity. 

Page 8: There Are Two Types of Voltaic Cell

8/6/2019 There Are Two Types of Voltaic Cell

http://slidepdf.com/reader/full/there-are-two-types-of-voltaic-cell 8/13

Corrosion

Definition

Corrosion is the disintegration of  an engineered material into its constituent atoms due to chemical 

reactions with  its surroundings.   In the most common use of  the word, this means electrochemical 

oxidation of  metals in reaction with an oxidant such as oxygen. Formation of  an oxide of  iron due to oxidation of  the iron atoms in solid solution is a well-known example of  electrochemical corrosion, 

commonly known as rusting. This  type of  damage  typically produces oxide(s) and/or salt(s) of   the 

original metal. Corrosion can also refer to other materials than metals, such as ceramics or polymers, 

although in this context, the term degradation is more common 

Reaction

It has been demonstrated that potential differences within a metal, or between two metals, will 

cause chemical reactions at the anode and cathode. Anodic reactions are typified by the dissolution 

of  iron: 

Fe --> Fe+2 + 2e- 

Analogous reactions occur in other metals. The electrons migrate through the metal to the cathode 

area where they react in any one of  several ways. 

Page 9: There Are Two Types of Voltaic Cell

8/6/2019 There Are Two Types of Voltaic Cell

http://slidepdf.com/reader/full/there-are-two-types-of-voltaic-cell 9/13

 

Some typical cathodic reactions are as follows: 

a. Hydrogen ion reduction  2 #   + + 2e- ---- > H2 Important in acidic solutions. 

b. Reduction of  water  2H20 + 2e- ---- > H2+2OH- Occurs normally in natural waters. 

c. Oxygen reduction  02 + 4H+ +4e- ---- > 2H20 Occurs in aerated acidic solutions. 

d. Oxygen reduction of  water O2 + 2H2O + 4e- --- > 40H- Important in natural, aerated waters. 

e. Ferric ion reduction  Fe+3 + e- --- > Fe+2  Occurs under acidic, turbulent conditions (e.g. 

acid cleaning). 

f. Sulfate ion reduction  4H2 + S04-2 ---- > S-2 + 4H2O Occurs in the presence of  sulfate 

reducing bacteria. 

g. Metal ion reduction (plating) $    +N + Ne- ----> MO  Involves more noble metals in solution. The 

most frequent cathodic reactions are a, b, c and d. 

Negatively charged ions, such as hydroxyl ions produced at the cathode, migrate to the anode of  the 

corrosion cell. Positively charged ions will move toward the cathode. 

This movement of  ions can cause additional reactions at the anode. 

Hydroxyl ions will combine with the ferrous cations produced by dissolution of  the metal: 

Fe+2 + 2OH- ----> Fe(OH)2 

The ferrous hydroxide produced has a very low solubility and is quickly precipitated as a white floe at 

the metal-water interface. The floe is then rapidly oxidized to ferric hydroxide: 

4Fe(OH)2 + O2 + 2H2O ----> 4Fe(OH)3 

Dehydrolysis of  this product leads to the formation of  the corrosion products normally seen on 

ferrous surfaces, red dust and hydrated ferric oxide: 

2Fe(OH)3 ----> Fe203 + 3H2O Fe(OH)3 ----> FeOOH + H2O 

Page 10: There Are Two Types of Voltaic Cell

8/6/2019 There Are Two Types of Voltaic Cell

http://slidepdf.com/reader/full/there-are-two-types-of-voltaic-cell 10/13

As solid corrosion products are precipitated at the anode, they may cause the precipitation of  other 

ions from the water. Thus, a corrosion film may show traces of  hardness salts, or suspended matter 

like mud, sand, silt, clay or microbiological slime. 

The structure of  the entire surface film, including corrosion products and inclusions, is a major factor 

in determining the total amount of  corrosion which will take place. If  a porous film forms over the 

metal, corrosion can continue, because metal ions can penetrate it and reach the solution interface. If, however, a tight, adherent film is formed, ionic diffusion is prevented and the metal will no longer 

dissolve. 

Most corrosion occurs at the beginning of  a metal's service life. Initially, metal dissolution is not 

impeded by a film of  corrosion products. In time, the film will retard, or halt the corrosion. The 

degree to which such a film can impede corrosion is a complex function of  the corrosion reactions, 

the structure of  the deposit and the water velocity 

Page 11: There Are Two Types of Voltaic Cell

8/6/2019 There Are Two Types of Voltaic Cell

http://slidepdf.com/reader/full/there-are-two-types-of-voltaic-cell 11/13

Factors inf luencing corrosion

Accordingly on this basis we list below some of  the more important factors, discussing their general 

significance with respect to the mechanism of  corrosion, and postponing until later chapters the 

detailed discussion of  others. 

Factors Associated Mainly with the Metal 

y  Effective electrode potential of  a metal in a solution 

y  Overvoltage of  hydrogen on the metal 

y  Chemical and physical homogeneity of  the metal surface 

y  Inherent ability to form an insoluble protective film 

Factors Which Vary Mainly with the Environment 

y  Hydrogen-ion concentration (pH) in the solution 

y  Influence of  oxygen in solution adjacent to the metal 

y  Specific nature and concentration of  other ions in solution 

y  Rate of  flow of  the solution in contact with the metal 

y

  Ability of  environment to form a protective deposit on the metal y  Temperature 

y  Cyclic stress (corrosion fatigue) 

y  Contact between dissimilar metals or other materials as affecting localized corrosion. 

Cause of   corrosion, many  factors affecting  corrosion,  the  type,  speed,  cause, and  seriousness of  

metal  corrosion.  Some  of   these  factors  can  be  controlled  and  some  can  not.  C limate.  The 

environmental  conditions  under  which  an  aircraft is  maintained  and  operated  greatly  affect 

corrosion characteristics.  In a predominately marine environment ( with exposure to sea water and 

salt air  ), moisture-laden air  is considerably more detrimental  to an aircraft than  it would be  if  all 

operations were conducted in a dry climate.  Temperature considerations are important because the 

speed of  electrochemical attack is in creased in a hot, moist climate.  Size and Type of Metal. It is 

well  known  fact  that  some  metals  will  corrode  faster  that  others.  It  is  a  less  known  fact  that 

variations  in  size and shape of  metal can  indirectly affect  is corrosion  resistance. Thick  structural 

sections are more susceptible  to corrosive attack  that  thin  sections because  variations  in physical 

characteristics   are  greater.  When  large  pieces  are  machined  or  chemically  milled  after  heat 

treatment, the thinner areas will have different physical characteristics than the thicker areas. 

Page 12: There Are Two Types of Voltaic Cell

8/6/2019 There Are Two Types of Voltaic Cell

http://slidepdf.com/reader/full/there-are-two-types-of-voltaic-cell 12/13

Preventing corrosion

Sacrificial Protection

'Rusting' can be prevented by connecting iron to a more reactive metal (e.g., zinc or magnesium). This is referred

to as sacrificial protection or sacrificial corrosion, because the more reactive protecting metal is preferentially

oxidized away, leaving the protected metal intact.

Alloying 

Iron or steel along with other metals can also be protected by 'alloying' or mixing with other metals (e.g.,

chromium) to make non-rusting alloys. Stainless steel is an example of a non-rusting alloy of iron and carbon.

Brass, an alloy containing copper is another metal alloy which is less expensive and non reactive.

Galvanizing 

Coating iron or steel with a thin zinc layer is called 'galvanizing'. This layer is produced by electrolytic deposition.

Dipping the iron/steel object in molten zinc and using it as the negative cathode zinc is coated on it. Zinc

preferentially corrodes or oxidizes to form a zinc oxide layer that does not flake off like iron oxide rust. Also, if thesurface is scratched, the exposed zinc again corrodes before the iron and continues to protect it.

Electroplating  

Coating the surface with metals like tin, chromium, nickel etc. by electroplating is also utilized to prevent

corrosion. Steel cans are protected by relatively un-reacted tin and works well as long as the thin tin layer is

complete.

Prevention for iron rusting :

Barrier protectionThe metal surface is not allowed to come in contact with moisture, O 2 and CO2.

i) Coating the metal surface with paint.

ii) Applying oil or grease.

iii) Electroplating with non-corroding metals like Ni, Cr, Al, Sn, Zn.

iv) Coating with alkaline phosphate (anti rust) solution.

Sacrificial protection

Covering the surface with a more electro positive metal than Fe. The more electro positive metal loses electrons

and as long as this coating is present Fe is protected.

Example:

Galvanization - Covering with zinc.

The zinc also forms a protective coating of ZnCO3.Zn(OH)2.

Page 13: There Are Two Types of Voltaic Cell

8/6/2019 There Are Two Types of Voltaic Cell

http://slidepdf.com/reader/full/there-are-two-types-of-voltaic-cell 13/13

Electrical protection (Cathodic protection)

The iron object is connected to a more active metal either directly or through a wire. Fe acts as the cathode. The

more reactive metal is the anode. It loses electrons and gradually disappears.

Example: Fe can be connected to Mg, Zn or Al which are called the sacrificial anodes. Used for protecting under 

ground pipes from rusting.

Elva Kumalasari XI KI


Recommended