+ All Categories
Home > Documents > Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al.,...

Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al.,...

Date post: 02-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
26
Max Planck-UBC-UTokyo School@Hongo (2018/2/18) Thermal Hall effect of magnons Hosho Katsura (Dept. Phys., UTokyo) H.K., Nagaosa, Lee, Phys. Rev. Lett. 104, 066403 (2010). Onose et al., Science 329, 297 (2010). Ideue et al., Phys. Rev. B 85, 134411 (2012). Related papers:
Transcript
Page 1: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Max Planck-UBC-UTokyo SchoolHongo (2018218)

Thermal Hall effect of magnons

Hosho Katsura(Dept Phys UTokyo)

HK Nagaosa Lee Phys Rev Lett 104 066403 (2010)

Onose et al Science 329 297 (2010)

Ideue et al Phys Rev B 85 134411 (2012)

Related papers

Outline

1 Spin Hamiltonian

bull Exchange and DM interactions

bull Microscopic origins

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

5 Summary

125

Coupling between magnetic moments 225

Classical vs Quantum

bull Dipole-dipole interaction

bull Exchange interaction

Usually too small (lt 1K) to explain transition temperatureshellip

Anisotropies

Direct exchange J lt 0 ferromagnetic (FM)

Super-exchange J gt 0 antiferromagnetic (AFM)

( Si spin at site i )

Spin-orbit int breaks SU(2) symmetry

Dzyaloshinskii-Moriya (DM) int DNOTE) Inversion breaking is necessary

Spin tend to

be orthogonal

(Crude) derivation 325

2-site Hubbard model

Origin of exchange int = electron correlation

Can explain AFM int What about FM int

(Multi-orbital nature Kanamori-Goodenough hellip)

bull Hamiltonian

U

1 2

bull 2nd order perturbation at half-filling

Paulirsquos exclusionuarruarr

uarrdarr

darruarr

darrdarr

Origin of DM interaction (1) 425

Spin-dependent hopping

1 2

Inversion symmetry broken but

Time-reversal symmetry exists

bull Hopping matrix θ=0 reduces to the

spin-independent case

Unitary transformation

One can ``absorbrdquo the spin-dependent hopping

New fermions satisfy the same anti-commutation relations

Number ops remain unchanged

bull Hamiltonian in terms of f

Due to spin-orbit

Origin of DM interaction (2) 525

Effective Hamiltonian

bull How does it look like in original spins

Heisenberg int Dzyaloshinskii-

Moriya (DM) intKaplan-Shekhtman-Aharony

-Entin-Wohlman (KSAE) int

Ex) Prove the relation

Hint express in terms of σs

NOTE) One can eliminate the effect of

the DM interaction if there is no loop

Outline

1 Spin Hamiltonian

2 Elementary excitations

bull What are magnons

bull From spins to bosons

bull Diagonalization of BdG Hamiltonian

3 Hall effect and thermal Hall effect

4 Main results

5 Summary

625

What are magnons 725

FM Heisenberg model in a field

Groundstate

Excitation=NG mode

Elementary excitations -- Intuitive picture --

bull Ground state spins are aligned in the same direction

z coordination number

The picture is classical But in ferromagnets ground state and

1-magnon states are exact eigenstates of the Hamiltonian

Cf) non-relativistic Nambu-Goldstone bosons

Watanabe-Murayama PRL 108 (2012) Hidaka PRL 110 (2013)

1-Magnon eigenstates 825

``Motionrdquo of flipped spin

1 2 N

|igt is not an

eigenstate

Flipped spin hops to

the neighboring sites

Ex) 1DBloch state

is an exact eigenstate with energy E(k)

What about DM int D vector z-axis

Magnon picks up a phase factor

From spins to bosons 925

Holstein-Primakoff transformation bull Bose operators

Number op

bull Spins in terms of b

Obey the commutation relations of spins

Often neglect nonlinear terms

(Good at low temperatures)

bull Magnetic ground state = vacuum of bosons

Sublattice structure

AFM int Approximate 1-magnon state

bull Spins on the other sublattice

One needs to introduce more species for a more complex order

b raises Sz

a lowers Sz

are

ev of

Diagonalization of Hamiltonian 1025

Quadratic form of bosons

bull Ferromagnetic case

h Δ NtimesN matrices

Problem reduces to the diagonalization of h

Most easily done in k-space (Fourier tr)

bull AFM (or more general) case

Para-unitary

Transformation leaves the boson commutations unchanged

Involved procedure See eg Colpa Physica 93A 327 (1978)

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

bull Hall effect and Berry curvature

bull Anomalous and thermal Hall effects

bull General formulation

4 Main results

5 Summary

1125

x

y

Hall effect and Berry curvature 1225

Quantum Hall effect (2D el Gas)

TKNN formulaInteger n is a topological number

bull Bloch wave function

bull Berry connection

bull Berry curvature

Chern number Kubo formula relates

Chern and σxy

PRL 49 (1982)

Anomalous Hall effect 1325

QHE without net magnetic fieldbull Onsagerrsquos reciprocal relation

Time-reversal symmetry (TRS)

must be broken for nonzero σxy

bull Haldanersquos model (PRL 61 2015 (1988) Nobel prize 2016)

Local magnetic field can break TRS

nn real and nnn complex hopping

Integer QHE without Landau levels

Spontaneous symmetry breaking

magnetization

Itinerant electrons in ferromagnets

(i) Intrinsic and (ii) extrinsic origins

Anomalous velocity by Berry curvature in (i)

TRS can be broken by magnetic ordering

bull Anomalous Hall effect Review Nagaosa et al RMP 82 1539 (2010)

Thermal Hall effect 1425

Thermal current

Cs are matrix in general

bull Wiedemann-Franz lawUniversal for weakly

interacting electrons

Righi-Leduc effectTransverse temperature gradient is

produced in response to heat current

In itinerant electron systems

from Wiedemann-Franz

What about Mott insulators Hall effect without Lorentz force

Berry curvature plays the role of magnetic field

Onsager relation

Absence of J

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 2: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Outline

1 Spin Hamiltonian

bull Exchange and DM interactions

bull Microscopic origins

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

5 Summary

125

Coupling between magnetic moments 225

Classical vs Quantum

bull Dipole-dipole interaction

bull Exchange interaction

Usually too small (lt 1K) to explain transition temperatureshellip

Anisotropies

Direct exchange J lt 0 ferromagnetic (FM)

Super-exchange J gt 0 antiferromagnetic (AFM)

( Si spin at site i )

Spin-orbit int breaks SU(2) symmetry

Dzyaloshinskii-Moriya (DM) int DNOTE) Inversion breaking is necessary

Spin tend to

be orthogonal

(Crude) derivation 325

2-site Hubbard model

Origin of exchange int = electron correlation

Can explain AFM int What about FM int

(Multi-orbital nature Kanamori-Goodenough hellip)

bull Hamiltonian

U

1 2

bull 2nd order perturbation at half-filling

Paulirsquos exclusionuarruarr

uarrdarr

darruarr

darrdarr

Origin of DM interaction (1) 425

Spin-dependent hopping

1 2

Inversion symmetry broken but

Time-reversal symmetry exists

bull Hopping matrix θ=0 reduces to the

spin-independent case

Unitary transformation

One can ``absorbrdquo the spin-dependent hopping

New fermions satisfy the same anti-commutation relations

Number ops remain unchanged

bull Hamiltonian in terms of f

Due to spin-orbit

Origin of DM interaction (2) 525

Effective Hamiltonian

bull How does it look like in original spins

Heisenberg int Dzyaloshinskii-

Moriya (DM) intKaplan-Shekhtman-Aharony

-Entin-Wohlman (KSAE) int

Ex) Prove the relation

Hint express in terms of σs

NOTE) One can eliminate the effect of

the DM interaction if there is no loop

Outline

1 Spin Hamiltonian

2 Elementary excitations

bull What are magnons

bull From spins to bosons

bull Diagonalization of BdG Hamiltonian

3 Hall effect and thermal Hall effect

4 Main results

5 Summary

625

What are magnons 725

FM Heisenberg model in a field

Groundstate

Excitation=NG mode

Elementary excitations -- Intuitive picture --

bull Ground state spins are aligned in the same direction

z coordination number

The picture is classical But in ferromagnets ground state and

1-magnon states are exact eigenstates of the Hamiltonian

Cf) non-relativistic Nambu-Goldstone bosons

Watanabe-Murayama PRL 108 (2012) Hidaka PRL 110 (2013)

1-Magnon eigenstates 825

``Motionrdquo of flipped spin

1 2 N

|igt is not an

eigenstate

Flipped spin hops to

the neighboring sites

Ex) 1DBloch state

is an exact eigenstate with energy E(k)

What about DM int D vector z-axis

Magnon picks up a phase factor

From spins to bosons 925

Holstein-Primakoff transformation bull Bose operators

Number op

bull Spins in terms of b

Obey the commutation relations of spins

Often neglect nonlinear terms

(Good at low temperatures)

bull Magnetic ground state = vacuum of bosons

Sublattice structure

AFM int Approximate 1-magnon state

bull Spins on the other sublattice

One needs to introduce more species for a more complex order

b raises Sz

a lowers Sz

are

ev of

Diagonalization of Hamiltonian 1025

Quadratic form of bosons

bull Ferromagnetic case

h Δ NtimesN matrices

Problem reduces to the diagonalization of h

Most easily done in k-space (Fourier tr)

bull AFM (or more general) case

Para-unitary

Transformation leaves the boson commutations unchanged

Involved procedure See eg Colpa Physica 93A 327 (1978)

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

bull Hall effect and Berry curvature

bull Anomalous and thermal Hall effects

bull General formulation

4 Main results

5 Summary

1125

x

y

Hall effect and Berry curvature 1225

Quantum Hall effect (2D el Gas)

TKNN formulaInteger n is a topological number

bull Bloch wave function

bull Berry connection

bull Berry curvature

Chern number Kubo formula relates

Chern and σxy

PRL 49 (1982)

Anomalous Hall effect 1325

QHE without net magnetic fieldbull Onsagerrsquos reciprocal relation

Time-reversal symmetry (TRS)

must be broken for nonzero σxy

bull Haldanersquos model (PRL 61 2015 (1988) Nobel prize 2016)

Local magnetic field can break TRS

nn real and nnn complex hopping

Integer QHE without Landau levels

Spontaneous symmetry breaking

magnetization

Itinerant electrons in ferromagnets

(i) Intrinsic and (ii) extrinsic origins

Anomalous velocity by Berry curvature in (i)

TRS can be broken by magnetic ordering

bull Anomalous Hall effect Review Nagaosa et al RMP 82 1539 (2010)

Thermal Hall effect 1425

Thermal current

Cs are matrix in general

bull Wiedemann-Franz lawUniversal for weakly

interacting electrons

Righi-Leduc effectTransverse temperature gradient is

produced in response to heat current

In itinerant electron systems

from Wiedemann-Franz

What about Mott insulators Hall effect without Lorentz force

Berry curvature plays the role of magnetic field

Onsager relation

Absence of J

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 3: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Coupling between magnetic moments 225

Classical vs Quantum

bull Dipole-dipole interaction

bull Exchange interaction

Usually too small (lt 1K) to explain transition temperatureshellip

Anisotropies

Direct exchange J lt 0 ferromagnetic (FM)

Super-exchange J gt 0 antiferromagnetic (AFM)

( Si spin at site i )

Spin-orbit int breaks SU(2) symmetry

Dzyaloshinskii-Moriya (DM) int DNOTE) Inversion breaking is necessary

Spin tend to

be orthogonal

(Crude) derivation 325

2-site Hubbard model

Origin of exchange int = electron correlation

Can explain AFM int What about FM int

(Multi-orbital nature Kanamori-Goodenough hellip)

bull Hamiltonian

U

1 2

bull 2nd order perturbation at half-filling

Paulirsquos exclusionuarruarr

uarrdarr

darruarr

darrdarr

Origin of DM interaction (1) 425

Spin-dependent hopping

1 2

Inversion symmetry broken but

Time-reversal symmetry exists

bull Hopping matrix θ=0 reduces to the

spin-independent case

Unitary transformation

One can ``absorbrdquo the spin-dependent hopping

New fermions satisfy the same anti-commutation relations

Number ops remain unchanged

bull Hamiltonian in terms of f

Due to spin-orbit

Origin of DM interaction (2) 525

Effective Hamiltonian

bull How does it look like in original spins

Heisenberg int Dzyaloshinskii-

Moriya (DM) intKaplan-Shekhtman-Aharony

-Entin-Wohlman (KSAE) int

Ex) Prove the relation

Hint express in terms of σs

NOTE) One can eliminate the effect of

the DM interaction if there is no loop

Outline

1 Spin Hamiltonian

2 Elementary excitations

bull What are magnons

bull From spins to bosons

bull Diagonalization of BdG Hamiltonian

3 Hall effect and thermal Hall effect

4 Main results

5 Summary

625

What are magnons 725

FM Heisenberg model in a field

Groundstate

Excitation=NG mode

Elementary excitations -- Intuitive picture --

bull Ground state spins are aligned in the same direction

z coordination number

The picture is classical But in ferromagnets ground state and

1-magnon states are exact eigenstates of the Hamiltonian

Cf) non-relativistic Nambu-Goldstone bosons

Watanabe-Murayama PRL 108 (2012) Hidaka PRL 110 (2013)

1-Magnon eigenstates 825

``Motionrdquo of flipped spin

1 2 N

|igt is not an

eigenstate

Flipped spin hops to

the neighboring sites

Ex) 1DBloch state

is an exact eigenstate with energy E(k)

What about DM int D vector z-axis

Magnon picks up a phase factor

From spins to bosons 925

Holstein-Primakoff transformation bull Bose operators

Number op

bull Spins in terms of b

Obey the commutation relations of spins

Often neglect nonlinear terms

(Good at low temperatures)

bull Magnetic ground state = vacuum of bosons

Sublattice structure

AFM int Approximate 1-magnon state

bull Spins on the other sublattice

One needs to introduce more species for a more complex order

b raises Sz

a lowers Sz

are

ev of

Diagonalization of Hamiltonian 1025

Quadratic form of bosons

bull Ferromagnetic case

h Δ NtimesN matrices

Problem reduces to the diagonalization of h

Most easily done in k-space (Fourier tr)

bull AFM (or more general) case

Para-unitary

Transformation leaves the boson commutations unchanged

Involved procedure See eg Colpa Physica 93A 327 (1978)

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

bull Hall effect and Berry curvature

bull Anomalous and thermal Hall effects

bull General formulation

4 Main results

5 Summary

1125

x

y

Hall effect and Berry curvature 1225

Quantum Hall effect (2D el Gas)

TKNN formulaInteger n is a topological number

bull Bloch wave function

bull Berry connection

bull Berry curvature

Chern number Kubo formula relates

Chern and σxy

PRL 49 (1982)

Anomalous Hall effect 1325

QHE without net magnetic fieldbull Onsagerrsquos reciprocal relation

Time-reversal symmetry (TRS)

must be broken for nonzero σxy

bull Haldanersquos model (PRL 61 2015 (1988) Nobel prize 2016)

Local magnetic field can break TRS

nn real and nnn complex hopping

Integer QHE without Landau levels

Spontaneous symmetry breaking

magnetization

Itinerant electrons in ferromagnets

(i) Intrinsic and (ii) extrinsic origins

Anomalous velocity by Berry curvature in (i)

TRS can be broken by magnetic ordering

bull Anomalous Hall effect Review Nagaosa et al RMP 82 1539 (2010)

Thermal Hall effect 1425

Thermal current

Cs are matrix in general

bull Wiedemann-Franz lawUniversal for weakly

interacting electrons

Righi-Leduc effectTransverse temperature gradient is

produced in response to heat current

In itinerant electron systems

from Wiedemann-Franz

What about Mott insulators Hall effect without Lorentz force

Berry curvature plays the role of magnetic field

Onsager relation

Absence of J

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 4: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

(Crude) derivation 325

2-site Hubbard model

Origin of exchange int = electron correlation

Can explain AFM int What about FM int

(Multi-orbital nature Kanamori-Goodenough hellip)

bull Hamiltonian

U

1 2

bull 2nd order perturbation at half-filling

Paulirsquos exclusionuarruarr

uarrdarr

darruarr

darrdarr

Origin of DM interaction (1) 425

Spin-dependent hopping

1 2

Inversion symmetry broken but

Time-reversal symmetry exists

bull Hopping matrix θ=0 reduces to the

spin-independent case

Unitary transformation

One can ``absorbrdquo the spin-dependent hopping

New fermions satisfy the same anti-commutation relations

Number ops remain unchanged

bull Hamiltonian in terms of f

Due to spin-orbit

Origin of DM interaction (2) 525

Effective Hamiltonian

bull How does it look like in original spins

Heisenberg int Dzyaloshinskii-

Moriya (DM) intKaplan-Shekhtman-Aharony

-Entin-Wohlman (KSAE) int

Ex) Prove the relation

Hint express in terms of σs

NOTE) One can eliminate the effect of

the DM interaction if there is no loop

Outline

1 Spin Hamiltonian

2 Elementary excitations

bull What are magnons

bull From spins to bosons

bull Diagonalization of BdG Hamiltonian

3 Hall effect and thermal Hall effect

4 Main results

5 Summary

625

What are magnons 725

FM Heisenberg model in a field

Groundstate

Excitation=NG mode

Elementary excitations -- Intuitive picture --

bull Ground state spins are aligned in the same direction

z coordination number

The picture is classical But in ferromagnets ground state and

1-magnon states are exact eigenstates of the Hamiltonian

Cf) non-relativistic Nambu-Goldstone bosons

Watanabe-Murayama PRL 108 (2012) Hidaka PRL 110 (2013)

1-Magnon eigenstates 825

``Motionrdquo of flipped spin

1 2 N

|igt is not an

eigenstate

Flipped spin hops to

the neighboring sites

Ex) 1DBloch state

is an exact eigenstate with energy E(k)

What about DM int D vector z-axis

Magnon picks up a phase factor

From spins to bosons 925

Holstein-Primakoff transformation bull Bose operators

Number op

bull Spins in terms of b

Obey the commutation relations of spins

Often neglect nonlinear terms

(Good at low temperatures)

bull Magnetic ground state = vacuum of bosons

Sublattice structure

AFM int Approximate 1-magnon state

bull Spins on the other sublattice

One needs to introduce more species for a more complex order

b raises Sz

a lowers Sz

are

ev of

Diagonalization of Hamiltonian 1025

Quadratic form of bosons

bull Ferromagnetic case

h Δ NtimesN matrices

Problem reduces to the diagonalization of h

Most easily done in k-space (Fourier tr)

bull AFM (or more general) case

Para-unitary

Transformation leaves the boson commutations unchanged

Involved procedure See eg Colpa Physica 93A 327 (1978)

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

bull Hall effect and Berry curvature

bull Anomalous and thermal Hall effects

bull General formulation

4 Main results

5 Summary

1125

x

y

Hall effect and Berry curvature 1225

Quantum Hall effect (2D el Gas)

TKNN formulaInteger n is a topological number

bull Bloch wave function

bull Berry connection

bull Berry curvature

Chern number Kubo formula relates

Chern and σxy

PRL 49 (1982)

Anomalous Hall effect 1325

QHE without net magnetic fieldbull Onsagerrsquos reciprocal relation

Time-reversal symmetry (TRS)

must be broken for nonzero σxy

bull Haldanersquos model (PRL 61 2015 (1988) Nobel prize 2016)

Local magnetic field can break TRS

nn real and nnn complex hopping

Integer QHE without Landau levels

Spontaneous symmetry breaking

magnetization

Itinerant electrons in ferromagnets

(i) Intrinsic and (ii) extrinsic origins

Anomalous velocity by Berry curvature in (i)

TRS can be broken by magnetic ordering

bull Anomalous Hall effect Review Nagaosa et al RMP 82 1539 (2010)

Thermal Hall effect 1425

Thermal current

Cs are matrix in general

bull Wiedemann-Franz lawUniversal for weakly

interacting electrons

Righi-Leduc effectTransverse temperature gradient is

produced in response to heat current

In itinerant electron systems

from Wiedemann-Franz

What about Mott insulators Hall effect without Lorentz force

Berry curvature plays the role of magnetic field

Onsager relation

Absence of J

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 5: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Origin of DM interaction (1) 425

Spin-dependent hopping

1 2

Inversion symmetry broken but

Time-reversal symmetry exists

bull Hopping matrix θ=0 reduces to the

spin-independent case

Unitary transformation

One can ``absorbrdquo the spin-dependent hopping

New fermions satisfy the same anti-commutation relations

Number ops remain unchanged

bull Hamiltonian in terms of f

Due to spin-orbit

Origin of DM interaction (2) 525

Effective Hamiltonian

bull How does it look like in original spins

Heisenberg int Dzyaloshinskii-

Moriya (DM) intKaplan-Shekhtman-Aharony

-Entin-Wohlman (KSAE) int

Ex) Prove the relation

Hint express in terms of σs

NOTE) One can eliminate the effect of

the DM interaction if there is no loop

Outline

1 Spin Hamiltonian

2 Elementary excitations

bull What are magnons

bull From spins to bosons

bull Diagonalization of BdG Hamiltonian

3 Hall effect and thermal Hall effect

4 Main results

5 Summary

625

What are magnons 725

FM Heisenberg model in a field

Groundstate

Excitation=NG mode

Elementary excitations -- Intuitive picture --

bull Ground state spins are aligned in the same direction

z coordination number

The picture is classical But in ferromagnets ground state and

1-magnon states are exact eigenstates of the Hamiltonian

Cf) non-relativistic Nambu-Goldstone bosons

Watanabe-Murayama PRL 108 (2012) Hidaka PRL 110 (2013)

1-Magnon eigenstates 825

``Motionrdquo of flipped spin

1 2 N

|igt is not an

eigenstate

Flipped spin hops to

the neighboring sites

Ex) 1DBloch state

is an exact eigenstate with energy E(k)

What about DM int D vector z-axis

Magnon picks up a phase factor

From spins to bosons 925

Holstein-Primakoff transformation bull Bose operators

Number op

bull Spins in terms of b

Obey the commutation relations of spins

Often neglect nonlinear terms

(Good at low temperatures)

bull Magnetic ground state = vacuum of bosons

Sublattice structure

AFM int Approximate 1-magnon state

bull Spins on the other sublattice

One needs to introduce more species for a more complex order

b raises Sz

a lowers Sz

are

ev of

Diagonalization of Hamiltonian 1025

Quadratic form of bosons

bull Ferromagnetic case

h Δ NtimesN matrices

Problem reduces to the diagonalization of h

Most easily done in k-space (Fourier tr)

bull AFM (or more general) case

Para-unitary

Transformation leaves the boson commutations unchanged

Involved procedure See eg Colpa Physica 93A 327 (1978)

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

bull Hall effect and Berry curvature

bull Anomalous and thermal Hall effects

bull General formulation

4 Main results

5 Summary

1125

x

y

Hall effect and Berry curvature 1225

Quantum Hall effect (2D el Gas)

TKNN formulaInteger n is a topological number

bull Bloch wave function

bull Berry connection

bull Berry curvature

Chern number Kubo formula relates

Chern and σxy

PRL 49 (1982)

Anomalous Hall effect 1325

QHE without net magnetic fieldbull Onsagerrsquos reciprocal relation

Time-reversal symmetry (TRS)

must be broken for nonzero σxy

bull Haldanersquos model (PRL 61 2015 (1988) Nobel prize 2016)

Local magnetic field can break TRS

nn real and nnn complex hopping

Integer QHE without Landau levels

Spontaneous symmetry breaking

magnetization

Itinerant electrons in ferromagnets

(i) Intrinsic and (ii) extrinsic origins

Anomalous velocity by Berry curvature in (i)

TRS can be broken by magnetic ordering

bull Anomalous Hall effect Review Nagaosa et al RMP 82 1539 (2010)

Thermal Hall effect 1425

Thermal current

Cs are matrix in general

bull Wiedemann-Franz lawUniversal for weakly

interacting electrons

Righi-Leduc effectTransverse temperature gradient is

produced in response to heat current

In itinerant electron systems

from Wiedemann-Franz

What about Mott insulators Hall effect without Lorentz force

Berry curvature plays the role of magnetic field

Onsager relation

Absence of J

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 6: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Origin of DM interaction (2) 525

Effective Hamiltonian

bull How does it look like in original spins

Heisenberg int Dzyaloshinskii-

Moriya (DM) intKaplan-Shekhtman-Aharony

-Entin-Wohlman (KSAE) int

Ex) Prove the relation

Hint express in terms of σs

NOTE) One can eliminate the effect of

the DM interaction if there is no loop

Outline

1 Spin Hamiltonian

2 Elementary excitations

bull What are magnons

bull From spins to bosons

bull Diagonalization of BdG Hamiltonian

3 Hall effect and thermal Hall effect

4 Main results

5 Summary

625

What are magnons 725

FM Heisenberg model in a field

Groundstate

Excitation=NG mode

Elementary excitations -- Intuitive picture --

bull Ground state spins are aligned in the same direction

z coordination number

The picture is classical But in ferromagnets ground state and

1-magnon states are exact eigenstates of the Hamiltonian

Cf) non-relativistic Nambu-Goldstone bosons

Watanabe-Murayama PRL 108 (2012) Hidaka PRL 110 (2013)

1-Magnon eigenstates 825

``Motionrdquo of flipped spin

1 2 N

|igt is not an

eigenstate

Flipped spin hops to

the neighboring sites

Ex) 1DBloch state

is an exact eigenstate with energy E(k)

What about DM int D vector z-axis

Magnon picks up a phase factor

From spins to bosons 925

Holstein-Primakoff transformation bull Bose operators

Number op

bull Spins in terms of b

Obey the commutation relations of spins

Often neglect nonlinear terms

(Good at low temperatures)

bull Magnetic ground state = vacuum of bosons

Sublattice structure

AFM int Approximate 1-magnon state

bull Spins on the other sublattice

One needs to introduce more species for a more complex order

b raises Sz

a lowers Sz

are

ev of

Diagonalization of Hamiltonian 1025

Quadratic form of bosons

bull Ferromagnetic case

h Δ NtimesN matrices

Problem reduces to the diagonalization of h

Most easily done in k-space (Fourier tr)

bull AFM (or more general) case

Para-unitary

Transformation leaves the boson commutations unchanged

Involved procedure See eg Colpa Physica 93A 327 (1978)

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

bull Hall effect and Berry curvature

bull Anomalous and thermal Hall effects

bull General formulation

4 Main results

5 Summary

1125

x

y

Hall effect and Berry curvature 1225

Quantum Hall effect (2D el Gas)

TKNN formulaInteger n is a topological number

bull Bloch wave function

bull Berry connection

bull Berry curvature

Chern number Kubo formula relates

Chern and σxy

PRL 49 (1982)

Anomalous Hall effect 1325

QHE without net magnetic fieldbull Onsagerrsquos reciprocal relation

Time-reversal symmetry (TRS)

must be broken for nonzero σxy

bull Haldanersquos model (PRL 61 2015 (1988) Nobel prize 2016)

Local magnetic field can break TRS

nn real and nnn complex hopping

Integer QHE without Landau levels

Spontaneous symmetry breaking

magnetization

Itinerant electrons in ferromagnets

(i) Intrinsic and (ii) extrinsic origins

Anomalous velocity by Berry curvature in (i)

TRS can be broken by magnetic ordering

bull Anomalous Hall effect Review Nagaosa et al RMP 82 1539 (2010)

Thermal Hall effect 1425

Thermal current

Cs are matrix in general

bull Wiedemann-Franz lawUniversal for weakly

interacting electrons

Righi-Leduc effectTransverse temperature gradient is

produced in response to heat current

In itinerant electron systems

from Wiedemann-Franz

What about Mott insulators Hall effect without Lorentz force

Berry curvature plays the role of magnetic field

Onsager relation

Absence of J

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 7: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Outline

1 Spin Hamiltonian

2 Elementary excitations

bull What are magnons

bull From spins to bosons

bull Diagonalization of BdG Hamiltonian

3 Hall effect and thermal Hall effect

4 Main results

5 Summary

625

What are magnons 725

FM Heisenberg model in a field

Groundstate

Excitation=NG mode

Elementary excitations -- Intuitive picture --

bull Ground state spins are aligned in the same direction

z coordination number

The picture is classical But in ferromagnets ground state and

1-magnon states are exact eigenstates of the Hamiltonian

Cf) non-relativistic Nambu-Goldstone bosons

Watanabe-Murayama PRL 108 (2012) Hidaka PRL 110 (2013)

1-Magnon eigenstates 825

``Motionrdquo of flipped spin

1 2 N

|igt is not an

eigenstate

Flipped spin hops to

the neighboring sites

Ex) 1DBloch state

is an exact eigenstate with energy E(k)

What about DM int D vector z-axis

Magnon picks up a phase factor

From spins to bosons 925

Holstein-Primakoff transformation bull Bose operators

Number op

bull Spins in terms of b

Obey the commutation relations of spins

Often neglect nonlinear terms

(Good at low temperatures)

bull Magnetic ground state = vacuum of bosons

Sublattice structure

AFM int Approximate 1-magnon state

bull Spins on the other sublattice

One needs to introduce more species for a more complex order

b raises Sz

a lowers Sz

are

ev of

Diagonalization of Hamiltonian 1025

Quadratic form of bosons

bull Ferromagnetic case

h Δ NtimesN matrices

Problem reduces to the diagonalization of h

Most easily done in k-space (Fourier tr)

bull AFM (or more general) case

Para-unitary

Transformation leaves the boson commutations unchanged

Involved procedure See eg Colpa Physica 93A 327 (1978)

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

bull Hall effect and Berry curvature

bull Anomalous and thermal Hall effects

bull General formulation

4 Main results

5 Summary

1125

x

y

Hall effect and Berry curvature 1225

Quantum Hall effect (2D el Gas)

TKNN formulaInteger n is a topological number

bull Bloch wave function

bull Berry connection

bull Berry curvature

Chern number Kubo formula relates

Chern and σxy

PRL 49 (1982)

Anomalous Hall effect 1325

QHE without net magnetic fieldbull Onsagerrsquos reciprocal relation

Time-reversal symmetry (TRS)

must be broken for nonzero σxy

bull Haldanersquos model (PRL 61 2015 (1988) Nobel prize 2016)

Local magnetic field can break TRS

nn real and nnn complex hopping

Integer QHE without Landau levels

Spontaneous symmetry breaking

magnetization

Itinerant electrons in ferromagnets

(i) Intrinsic and (ii) extrinsic origins

Anomalous velocity by Berry curvature in (i)

TRS can be broken by magnetic ordering

bull Anomalous Hall effect Review Nagaosa et al RMP 82 1539 (2010)

Thermal Hall effect 1425

Thermal current

Cs are matrix in general

bull Wiedemann-Franz lawUniversal for weakly

interacting electrons

Righi-Leduc effectTransverse temperature gradient is

produced in response to heat current

In itinerant electron systems

from Wiedemann-Franz

What about Mott insulators Hall effect without Lorentz force

Berry curvature plays the role of magnetic field

Onsager relation

Absence of J

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 8: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

What are magnons 725

FM Heisenberg model in a field

Groundstate

Excitation=NG mode

Elementary excitations -- Intuitive picture --

bull Ground state spins are aligned in the same direction

z coordination number

The picture is classical But in ferromagnets ground state and

1-magnon states are exact eigenstates of the Hamiltonian

Cf) non-relativistic Nambu-Goldstone bosons

Watanabe-Murayama PRL 108 (2012) Hidaka PRL 110 (2013)

1-Magnon eigenstates 825

``Motionrdquo of flipped spin

1 2 N

|igt is not an

eigenstate

Flipped spin hops to

the neighboring sites

Ex) 1DBloch state

is an exact eigenstate with energy E(k)

What about DM int D vector z-axis

Magnon picks up a phase factor

From spins to bosons 925

Holstein-Primakoff transformation bull Bose operators

Number op

bull Spins in terms of b

Obey the commutation relations of spins

Often neglect nonlinear terms

(Good at low temperatures)

bull Magnetic ground state = vacuum of bosons

Sublattice structure

AFM int Approximate 1-magnon state

bull Spins on the other sublattice

One needs to introduce more species for a more complex order

b raises Sz

a lowers Sz

are

ev of

Diagonalization of Hamiltonian 1025

Quadratic form of bosons

bull Ferromagnetic case

h Δ NtimesN matrices

Problem reduces to the diagonalization of h

Most easily done in k-space (Fourier tr)

bull AFM (or more general) case

Para-unitary

Transformation leaves the boson commutations unchanged

Involved procedure See eg Colpa Physica 93A 327 (1978)

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

bull Hall effect and Berry curvature

bull Anomalous and thermal Hall effects

bull General formulation

4 Main results

5 Summary

1125

x

y

Hall effect and Berry curvature 1225

Quantum Hall effect (2D el Gas)

TKNN formulaInteger n is a topological number

bull Bloch wave function

bull Berry connection

bull Berry curvature

Chern number Kubo formula relates

Chern and σxy

PRL 49 (1982)

Anomalous Hall effect 1325

QHE without net magnetic fieldbull Onsagerrsquos reciprocal relation

Time-reversal symmetry (TRS)

must be broken for nonzero σxy

bull Haldanersquos model (PRL 61 2015 (1988) Nobel prize 2016)

Local magnetic field can break TRS

nn real and nnn complex hopping

Integer QHE without Landau levels

Spontaneous symmetry breaking

magnetization

Itinerant electrons in ferromagnets

(i) Intrinsic and (ii) extrinsic origins

Anomalous velocity by Berry curvature in (i)

TRS can be broken by magnetic ordering

bull Anomalous Hall effect Review Nagaosa et al RMP 82 1539 (2010)

Thermal Hall effect 1425

Thermal current

Cs are matrix in general

bull Wiedemann-Franz lawUniversal for weakly

interacting electrons

Righi-Leduc effectTransverse temperature gradient is

produced in response to heat current

In itinerant electron systems

from Wiedemann-Franz

What about Mott insulators Hall effect without Lorentz force

Berry curvature plays the role of magnetic field

Onsager relation

Absence of J

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 9: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

1-Magnon eigenstates 825

``Motionrdquo of flipped spin

1 2 N

|igt is not an

eigenstate

Flipped spin hops to

the neighboring sites

Ex) 1DBloch state

is an exact eigenstate with energy E(k)

What about DM int D vector z-axis

Magnon picks up a phase factor

From spins to bosons 925

Holstein-Primakoff transformation bull Bose operators

Number op

bull Spins in terms of b

Obey the commutation relations of spins

Often neglect nonlinear terms

(Good at low temperatures)

bull Magnetic ground state = vacuum of bosons

Sublattice structure

AFM int Approximate 1-magnon state

bull Spins on the other sublattice

One needs to introduce more species for a more complex order

b raises Sz

a lowers Sz

are

ev of

Diagonalization of Hamiltonian 1025

Quadratic form of bosons

bull Ferromagnetic case

h Δ NtimesN matrices

Problem reduces to the diagonalization of h

Most easily done in k-space (Fourier tr)

bull AFM (or more general) case

Para-unitary

Transformation leaves the boson commutations unchanged

Involved procedure See eg Colpa Physica 93A 327 (1978)

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

bull Hall effect and Berry curvature

bull Anomalous and thermal Hall effects

bull General formulation

4 Main results

5 Summary

1125

x

y

Hall effect and Berry curvature 1225

Quantum Hall effect (2D el Gas)

TKNN formulaInteger n is a topological number

bull Bloch wave function

bull Berry connection

bull Berry curvature

Chern number Kubo formula relates

Chern and σxy

PRL 49 (1982)

Anomalous Hall effect 1325

QHE without net magnetic fieldbull Onsagerrsquos reciprocal relation

Time-reversal symmetry (TRS)

must be broken for nonzero σxy

bull Haldanersquos model (PRL 61 2015 (1988) Nobel prize 2016)

Local magnetic field can break TRS

nn real and nnn complex hopping

Integer QHE without Landau levels

Spontaneous symmetry breaking

magnetization

Itinerant electrons in ferromagnets

(i) Intrinsic and (ii) extrinsic origins

Anomalous velocity by Berry curvature in (i)

TRS can be broken by magnetic ordering

bull Anomalous Hall effect Review Nagaosa et al RMP 82 1539 (2010)

Thermal Hall effect 1425

Thermal current

Cs are matrix in general

bull Wiedemann-Franz lawUniversal for weakly

interacting electrons

Righi-Leduc effectTransverse temperature gradient is

produced in response to heat current

In itinerant electron systems

from Wiedemann-Franz

What about Mott insulators Hall effect without Lorentz force

Berry curvature plays the role of magnetic field

Onsager relation

Absence of J

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 10: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

From spins to bosons 925

Holstein-Primakoff transformation bull Bose operators

Number op

bull Spins in terms of b

Obey the commutation relations of spins

Often neglect nonlinear terms

(Good at low temperatures)

bull Magnetic ground state = vacuum of bosons

Sublattice structure

AFM int Approximate 1-magnon state

bull Spins on the other sublattice

One needs to introduce more species for a more complex order

b raises Sz

a lowers Sz

are

ev of

Diagonalization of Hamiltonian 1025

Quadratic form of bosons

bull Ferromagnetic case

h Δ NtimesN matrices

Problem reduces to the diagonalization of h

Most easily done in k-space (Fourier tr)

bull AFM (or more general) case

Para-unitary

Transformation leaves the boson commutations unchanged

Involved procedure See eg Colpa Physica 93A 327 (1978)

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

bull Hall effect and Berry curvature

bull Anomalous and thermal Hall effects

bull General formulation

4 Main results

5 Summary

1125

x

y

Hall effect and Berry curvature 1225

Quantum Hall effect (2D el Gas)

TKNN formulaInteger n is a topological number

bull Bloch wave function

bull Berry connection

bull Berry curvature

Chern number Kubo formula relates

Chern and σxy

PRL 49 (1982)

Anomalous Hall effect 1325

QHE without net magnetic fieldbull Onsagerrsquos reciprocal relation

Time-reversal symmetry (TRS)

must be broken for nonzero σxy

bull Haldanersquos model (PRL 61 2015 (1988) Nobel prize 2016)

Local magnetic field can break TRS

nn real and nnn complex hopping

Integer QHE without Landau levels

Spontaneous symmetry breaking

magnetization

Itinerant electrons in ferromagnets

(i) Intrinsic and (ii) extrinsic origins

Anomalous velocity by Berry curvature in (i)

TRS can be broken by magnetic ordering

bull Anomalous Hall effect Review Nagaosa et al RMP 82 1539 (2010)

Thermal Hall effect 1425

Thermal current

Cs are matrix in general

bull Wiedemann-Franz lawUniversal for weakly

interacting electrons

Righi-Leduc effectTransverse temperature gradient is

produced in response to heat current

In itinerant electron systems

from Wiedemann-Franz

What about Mott insulators Hall effect without Lorentz force

Berry curvature plays the role of magnetic field

Onsager relation

Absence of J

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 11: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

are

ev of

Diagonalization of Hamiltonian 1025

Quadratic form of bosons

bull Ferromagnetic case

h Δ NtimesN matrices

Problem reduces to the diagonalization of h

Most easily done in k-space (Fourier tr)

bull AFM (or more general) case

Para-unitary

Transformation leaves the boson commutations unchanged

Involved procedure See eg Colpa Physica 93A 327 (1978)

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

bull Hall effect and Berry curvature

bull Anomalous and thermal Hall effects

bull General formulation

4 Main results

5 Summary

1125

x

y

Hall effect and Berry curvature 1225

Quantum Hall effect (2D el Gas)

TKNN formulaInteger n is a topological number

bull Bloch wave function

bull Berry connection

bull Berry curvature

Chern number Kubo formula relates

Chern and σxy

PRL 49 (1982)

Anomalous Hall effect 1325

QHE without net magnetic fieldbull Onsagerrsquos reciprocal relation

Time-reversal symmetry (TRS)

must be broken for nonzero σxy

bull Haldanersquos model (PRL 61 2015 (1988) Nobel prize 2016)

Local magnetic field can break TRS

nn real and nnn complex hopping

Integer QHE without Landau levels

Spontaneous symmetry breaking

magnetization

Itinerant electrons in ferromagnets

(i) Intrinsic and (ii) extrinsic origins

Anomalous velocity by Berry curvature in (i)

TRS can be broken by magnetic ordering

bull Anomalous Hall effect Review Nagaosa et al RMP 82 1539 (2010)

Thermal Hall effect 1425

Thermal current

Cs are matrix in general

bull Wiedemann-Franz lawUniversal for weakly

interacting electrons

Righi-Leduc effectTransverse temperature gradient is

produced in response to heat current

In itinerant electron systems

from Wiedemann-Franz

What about Mott insulators Hall effect without Lorentz force

Berry curvature plays the role of magnetic field

Onsager relation

Absence of J

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 12: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

bull Hall effect and Berry curvature

bull Anomalous and thermal Hall effects

bull General formulation

4 Main results

5 Summary

1125

x

y

Hall effect and Berry curvature 1225

Quantum Hall effect (2D el Gas)

TKNN formulaInteger n is a topological number

bull Bloch wave function

bull Berry connection

bull Berry curvature

Chern number Kubo formula relates

Chern and σxy

PRL 49 (1982)

Anomalous Hall effect 1325

QHE without net magnetic fieldbull Onsagerrsquos reciprocal relation

Time-reversal symmetry (TRS)

must be broken for nonzero σxy

bull Haldanersquos model (PRL 61 2015 (1988) Nobel prize 2016)

Local magnetic field can break TRS

nn real and nnn complex hopping

Integer QHE without Landau levels

Spontaneous symmetry breaking

magnetization

Itinerant electrons in ferromagnets

(i) Intrinsic and (ii) extrinsic origins

Anomalous velocity by Berry curvature in (i)

TRS can be broken by magnetic ordering

bull Anomalous Hall effect Review Nagaosa et al RMP 82 1539 (2010)

Thermal Hall effect 1425

Thermal current

Cs are matrix in general

bull Wiedemann-Franz lawUniversal for weakly

interacting electrons

Righi-Leduc effectTransverse temperature gradient is

produced in response to heat current

In itinerant electron systems

from Wiedemann-Franz

What about Mott insulators Hall effect without Lorentz force

Berry curvature plays the role of magnetic field

Onsager relation

Absence of J

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 13: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

x

y

Hall effect and Berry curvature 1225

Quantum Hall effect (2D el Gas)

TKNN formulaInteger n is a topological number

bull Bloch wave function

bull Berry connection

bull Berry curvature

Chern number Kubo formula relates

Chern and σxy

PRL 49 (1982)

Anomalous Hall effect 1325

QHE without net magnetic fieldbull Onsagerrsquos reciprocal relation

Time-reversal symmetry (TRS)

must be broken for nonzero σxy

bull Haldanersquos model (PRL 61 2015 (1988) Nobel prize 2016)

Local magnetic field can break TRS

nn real and nnn complex hopping

Integer QHE without Landau levels

Spontaneous symmetry breaking

magnetization

Itinerant electrons in ferromagnets

(i) Intrinsic and (ii) extrinsic origins

Anomalous velocity by Berry curvature in (i)

TRS can be broken by magnetic ordering

bull Anomalous Hall effect Review Nagaosa et al RMP 82 1539 (2010)

Thermal Hall effect 1425

Thermal current

Cs are matrix in general

bull Wiedemann-Franz lawUniversal for weakly

interacting electrons

Righi-Leduc effectTransverse temperature gradient is

produced in response to heat current

In itinerant electron systems

from Wiedemann-Franz

What about Mott insulators Hall effect without Lorentz force

Berry curvature plays the role of magnetic field

Onsager relation

Absence of J

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 14: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Anomalous Hall effect 1325

QHE without net magnetic fieldbull Onsagerrsquos reciprocal relation

Time-reversal symmetry (TRS)

must be broken for nonzero σxy

bull Haldanersquos model (PRL 61 2015 (1988) Nobel prize 2016)

Local magnetic field can break TRS

nn real and nnn complex hopping

Integer QHE without Landau levels

Spontaneous symmetry breaking

magnetization

Itinerant electrons in ferromagnets

(i) Intrinsic and (ii) extrinsic origins

Anomalous velocity by Berry curvature in (i)

TRS can be broken by magnetic ordering

bull Anomalous Hall effect Review Nagaosa et al RMP 82 1539 (2010)

Thermal Hall effect 1425

Thermal current

Cs are matrix in general

bull Wiedemann-Franz lawUniversal for weakly

interacting electrons

Righi-Leduc effectTransverse temperature gradient is

produced in response to heat current

In itinerant electron systems

from Wiedemann-Franz

What about Mott insulators Hall effect without Lorentz force

Berry curvature plays the role of magnetic field

Onsager relation

Absence of J

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 15: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Thermal Hall effect 1425

Thermal current

Cs are matrix in general

bull Wiedemann-Franz lawUniversal for weakly

interacting electrons

Righi-Leduc effectTransverse temperature gradient is

produced in response to heat current

In itinerant electron systems

from Wiedemann-Franz

What about Mott insulators Hall effect without Lorentz force

Berry curvature plays the role of magnetic field

Onsager relation

Absence of J

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 16: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

General formulation 1525

TKNN-like formula for bosons

bull Earlier work- Fujimoto PRL 103 047203 (2009)

- HK Nagaosa amp Lee PRL 104 066403 (2010)

- Onose et al Science 329 297 (2010)Δ energy separation

Bose

distribution

bull Bloch wf Berry curvature Still well defined for

1-magnon Hamiltonian

without paring term

Terms due to the orbital motion of magnon are missinghellip

bull Modified linear-response theory

- Matsumoto amp Murakami PRL 106 197202 PRB 84 184406 (2011)

Universally applicable to (free) bosonic systemsMagnons phonons triplons photons () hellip NOTE) No quantization

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 17: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Outline

1 Spin Hamiltonian

2 Elementary excitations

3 Hall effect and thermal Hall effect

4 Main results

bull Kagome-lattice FM

bull Pyrochlore FM

bull Comparison of theory and experimement

5 Summary

1625

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 18: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Magnon Hall effect 1725

Theory

Experiment

Magnons do not have charge They do not feel Lorentz force

Nevertheless they exhibit thermal Hall effect (THE)

Keys

1 TRS is broken spontaneously in FM

2 DM interaction leads to Berry curvature ne 0

Magnon THE was indeed observed in FM insulators Onose et al Science 329 297 (2010)

NOTE) Original theory concerned the effect of scalar chirality

Lu2V2O7

0 50 100 150

0

05

1

15

0

02

04

06

08

1

(a)kxy 03Tkxy 7TM 03TM 7T

kxy

(10

-3W

Km

)

Magnetization (m

BV

)

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 19: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Role of DM interaction 1825

Kagome modelDM vectors

MOF material Cu(1-3 bdc)

Bosonic ver of Ohgushi-Murakami-Nagaosa (PRB 62 (2000))

Scalar chirality order there ( ) DM

Nonzero Berry curvature is expected to be nonzero

FM exchange int bw Cu2+ moments

- Hirschberger et al PRL 115 106603 (2015)

- Chisnell et al PRL 115 147201 (2015)

Nonzero THE responseSign change consistent with theories

Mook Heng amp Mertig PRB 89 134409 (2014)

Lee Han amp Lee PRB 91 125413 (2015)

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 20: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Pyrochlore ferromagnet Lu2V2O71925

V4+ (t2g)1 S=12

bull Origin of FM orbital pattern

Polarized neutron diffraction

(Ichikawa et al JPSJ 74 (lsquo03))

bull Trigonal crystal field

0

02

04

06

08

1Lu2V2O7

H || [111]H=01T

M(m

BV

))

A

100

101

102

103

104

Resis

tivity(

cm

) B

50 100 150

05

1

15

0

kxx(W

Km

)

T(K)

C

02 04 06 08 1

02

04

06

08

1

0

H || [100] H || [111] H || [110]

m0H (T)

M (m

BV

)

T=5KD

10 20

02

04

06

08

0

T15

(K15

)

C (

Jm

olK

) 0T 5T 9T

H||[111]

E

Y Onose et al Science 329 297 (lsquo10)

Isotropic

Magnon amp phonon

Highly

resistive

Tc=70K

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 21: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Observed thermal Hall conductivity 2025

-5 0 5

20K

Magnetic Field (T)

-5 0 5

30K

-5 0 5

-2

-1

0

1

2 40K

50K

-5 0 5

10K

60K70K

-2

-1

0

1

2 80Kk

xy (

10

-3 W

Km

)Lu2V2O7 H||[100]

Anomalous Related to TRS breaking

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 22: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Model Hamiltonian 2125

bull Allowed DM vectors

Elhajal et al PRB 71 Kotov et al PRB 72 (2005)

bull Stability of FM gs against DM

FM Heisenberg + DM

Spin-wave HamiltonianOnly is important

Band structure ( )

bull Hamiltonian in k-space

Λ 4x4 matrix 4 bands

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 23: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Comparison of theory and experiment 2225

Formula (at H=0+)

Berry curvature around k=0

can be obtained analytically

Fitting

The fit yields |DJ| ~ 038

- Explains the observed isotropy

- DJ is the only fitting parameter

Chern Fennie amp Tchernyshov PRB 74 (2006)

Reasonable

Cf) DJ ~ 019 in pyrochlore AFM CdCr2O4

Observed in other pyrochlore FM insulators

Ho2V2O7 DJ ~ 007 In2Mn2O7 DJ ~ -002

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 24: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

What about other lattices 2325

Provskite-like latticesbull Absence of THE in La2NiMnO6 and YTiO3

YTiO3 S=12 Tc=30K

- Ideal cubic perovskite No DM

- In reality itrsquos distorted nonzero DM

Flux pattern staggered

Berry curvature is zero

because of pseudo TRS in

Whatrsquos the reason

bull Presence of THE in BiMnO3

Tc ~100K- The origin is unclearhellip

May be due to complex

orbital order

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 25: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Summary2425

Thermal Hall effect in FM insulators

bull Mechanism

Heat current is carried by magnons

Driven by Berry curvature due to DM int

bull TKNN-like formula

bull Observation in pyrochlore FMs

Lu2V2O7 Ho2V2O7 In2Mn2O7 Consistency

- Below FM transition

- Isotropy of

- Reasonable DJ

Agreement is excellent

Mysteries

- Nonzero in BiMnO3

- Effect of int between magnons

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)

Page 26: Thermal Hall effect of magnonswebpark1651.sakura.ne.jp/workshop2018/MPI-UBC-UT...Onose et al., Science 329, 297 (2010). NOTE) Original theory concerned the effect of scalar chirality.

Other directions Thermal Hall effects of bosonic particles

bull Phonon(Exp) Strohm Rikken Wyder PRL 95 155901 (2005)

(Theory) Sheng Sheng Ting PRL 96 155901 (2006)

Kagan Maksimov PRL 100 145902 (2008)

bull Triplon (Theory) Romhaacutenyi Penc Ganesh Nat Comm 6 6805 (2015)

bull Photon (Theory) Ben-Abdallah PRL 116 084301 (2016)

2525

Topological magnon physics

bull Dirac magnon

Honeycomb Fransson Black-Schaffer Balatsky PRB 94 075401 (2016)

bull Weyl magnonPyrochlore AFM F-Y Li et al Nat Comm 7 12691 (2016)

Pyrochlore FM Mook Henk Mertig PRL 117 157204 (2016)

bull Topological magnon insulators

Nakata Kim Klinovaja Loss PRB 96 224414 (2017)


Recommended