+ All Categories
Home > Documents > Thermal Modeling of Vanadium Redox Flow Battery€¦ · internal resistance ... − 𝑎 𝑎 ℎ=...

Thermal Modeling of Vanadium Redox Flow Battery€¦ · internal resistance ... − 𝑎 𝑎 ℎ=...

Date post: 19-Oct-2020
Category:
Author: others
View: 1 times
Download: 0 times
Share this document with a friend
Embed Size (px)
of 31 /31
Thermal Modeling of Vanadium Redox Flow Battery Student: Jia Junduo Supervisor: Asst Prof Zhao Jiyun Co-Supervisor: Mr. Ng Kian Wee Examiner: Assoc Prof Ali I. Maswood
Transcript
  • Thermal Modeling of Vanadium Redox Flow Battery

    Student: Jia Junduo

    Supervisor: Asst Prof Zhao Jiyun

    Co-Supervisor: Mr. Ng Kian Wee

    Examiner: Assoc Prof Ali I. Maswood

  • 1. Introduction

    Tank

    Catholyte

    Tank

    Anolyte

    PUMP PUMP

    Cation Exchange Membrane

    ELECTR

    OD

    E

    ELECTR

    OD

    E Cell

    STACK

  • 1. Introduction

    elec

    tro

    de

    elec

    tro

    de

    dis

    char

    ge

    dis

    char

    ge

    char

    ge

    char

    ge

    reduction

    reduction

    oxidation

    oxidation

    Load

    mem

    bra

    ne

  • 1. Introduction

    Positive: 𝑉𝑂 + 2𝐻 + 𝑒 ↔ 𝑉𝑂 +

    𝐻 𝑂

    Negative: 𝑉 ↔ 𝑉 + 𝑒

    The overall equation is:

    𝑉 + 𝑉𝑂 + 2𝐻 ↔ 𝑉𝑂 + 𝑉 +

    𝐻 𝑂

  • 1. Introduction

    Objective: Construct a thermal model

    Influencing factors: Flow rate, currents and surrounding temperature vs Stack/Tank temperature

  • 2. Literature Review

    W.Skyllas-Kazacos, C.Menictas, M.Kazacos, J Electrochem Soc, 143 (1996) LB6-L88

    In the negative half-cell, the V(2+) and V(3+) ions will start to precipitate at a temperature lower than about 10 degree Celsius. For V(4+) and V(5+) ions in the positive half-cell, they will start to precipitate at a temperature above about 50 degree Celsius.

  • 2. Literature Review A.Tang, S.M.Ting, J. Bao, M.Skyllas-Kazacos, J Power Sources, 203 (2012) 165-176

    𝐶𝑝𝜌𝑉𝑠𝑑𝑇𝑠

    𝑑𝑡= 𝑄 𝐶𝑝𝜌 𝑇𝑡+ − 𝑇𝑠 + 𝑄 𝐶𝑝𝜌 𝑇𝑡− − 𝑇𝑠 +

    𝑈𝑠𝐴𝑠 𝑇𝑎𝑖𝑟 − 𝑇𝑠 + 𝐼 𝑅

    𝐶𝑝𝜌𝑉𝑡 𝑑𝑇𝑡+

    𝑑𝑡= 𝑄 𝐶𝑝𝜌 𝑇𝑠 − 𝑇𝑡 + 𝑈 𝐴𝑡 𝑇𝑎𝑖𝑟 − 𝑇𝑡

    𝐶𝑝𝜌𝑉𝑡 𝑑𝑇𝑡−

    𝑑𝑡= 𝑄 𝐶𝑝𝜌 𝑇𝑠 − 𝑇𝑡 + 𝑈 𝐴𝑡 𝑇𝑎𝑖𝑟 − 𝑇𝑡

  • 3. Methodology

    𝐶𝑝𝜌𝑉𝑠𝑑𝑇𝑠

    𝑑𝑡= 𝑄 𝐶𝑝𝜌 𝑇𝑡+ − 𝑇𝑠 +

    𝑄 𝐶𝑝𝜌 𝑇𝑡− − 𝑇𝑠 + 𝑈𝑠𝐴𝑠 𝑇𝑎𝑖𝑟 − 𝑇𝑠 +

    𝑃𝑅 + 𝑃𝑐ℎ

    𝐶𝑝𝜌𝑉𝑡 𝑑𝑇𝑡+

    𝑑𝑡= 𝑄 𝐶𝑝𝜌 𝑇𝑠 − 𝑇𝑡 +

    𝑈 𝐴𝑡 𝑇𝑎𝑖𝑟 − 𝑇𝑡 + 𝑃𝑝𝑢𝑚𝑝

    𝐶𝑝𝜌𝑉𝑡 𝑑𝑇𝑡−

    𝑑𝑡= 𝑄 𝐶𝑝𝜌 𝑇𝑠 − 𝑇𝑡 +

    𝑈 𝐴𝑡 𝑇𝑎𝑖𝑟 − 𝑇𝑡 + 𝑃𝑝𝑢𝑚𝑝

  • 3.1 power losses due to the internal resistance

    𝑃𝑅 = 𝐼 𝑅

    Charging or Discharging: Different currents and internal resistance

  • 3.2 Chemical Power Loss

    q = T∆S = T 𝑆𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 − 𝑆𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠

    𝑃𝑐ℎ = 𝑞𝑛 = 𝑇∆𝑆𝑛

    C.Blanc, Modeling of a vanadium redox flow battery electricity storage system, Phd thesis, Ecole polytech Fed Lausanne, 2009.

  • 3.3 Pump Power Loss

    Friction loss

    Form loss

    𝑃𝑝𝑢𝑚𝑝 = ∆𝑝 × 𝑄

    ∆p = ∆𝑝𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + ∆𝑝𝑓𝑜𝑟𝑚

    ∆𝑝𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑓𝐿

    𝐷ℎ

    𝜌𝑉𝑚2

    ∆𝑝𝑓𝑜𝑟𝑚 = 𝐾𝜌𝑉𝑚

    2

  • 3.3 Pump Power Loss

    2 parts: Stack and Hydraulic Structure

    To calculate friction loss in stack:

  • 3.4 State Space Model

    𝑥 = 𝐴𝑥 + 𝐵𝑢

    y = Cx + Du

    𝑑𝑇𝑠

    𝑑𝑡= −

    𝑄+ 𝑄−

    𝑉𝑠−

    𝑈𝑠𝐴𝑠

    𝐶𝑝𝜌𝑉𝑠𝑇𝑠 +

    𝑄+

    𝑉𝑠𝑇𝑡 +

    𝑄−

    𝑉𝑠𝑇𝑡 +

    𝑈𝑠𝐴𝑠

    𝐶𝑝𝜌𝑉𝑠𝑇𝑎𝑖𝑟 +

    1

    𝐶𝑝𝜌𝑉𝑠𝑃𝑅 +

    1

    𝐶𝑝𝜌𝑉𝑠𝑃𝑐ℎ

    𝑑𝑇𝑡+

    𝑑𝑡=

    𝑄+

    𝑉𝑡+𝑇𝑠 + −

    𝑄+

    𝑉𝑡+−

    𝑈+𝐴𝑡

    𝐶𝑝𝜌𝑉𝑡+𝑇𝑡 +

    𝑈+𝐴𝑡

    𝐶𝑝𝜌𝑉𝑡+𝑇𝑎𝑖𝑟 +

    1

    𝐶𝑝𝜌𝑉𝑡+𝑃𝑝𝑢𝑚𝑝

    𝑑𝑇𝑡−

    𝑑𝑡=

    𝑄−

    𝑉𝑡−𝑇𝑠 + −

    𝑄−

    𝑉𝑡−−

    𝑈−𝐴𝑡

    𝐶𝑝𝜌𝑉𝑡−𝑇𝑡 +

    𝑈−𝐴𝑡

    𝐶𝑝𝜌𝑉𝑡−𝑇𝑎𝑖𝑟 +

    1

    𝐶𝑝𝜌𝑉𝑡−𝑃𝑝𝑢𝑚𝑝

  • 3.4 State Space Model

    The state vector x =

    𝑇𝑠𝑇𝑡 𝑇𝑡

    , input u =

    𝑃𝑅𝑇𝑎𝑖𝑟𝑃𝑝𝑢𝑚𝑝𝑃𝑐ℎ

    A =

    −𝑄+ 𝑄−

    𝑉𝑠−

    𝑈𝑠𝐴𝑠

    𝐶𝑝𝜌𝑉𝑠

    𝑄+

    𝑉𝑠

    𝑄−

    𝑉𝑠

    𝑄+

    𝑉𝑡+−

    𝑄+

    𝑉𝑡+−

    𝑈+𝐴𝑡

    𝐶𝑝𝜌𝑉𝑡+0

    𝑄−

    𝑉𝑡−0 −

    𝑄−

    𝑉𝑡−−

    𝑈−𝐴𝑡

    𝐶𝑝𝜌𝑉𝑡−

    B =

    1

    𝐶𝑝𝜌𝑉𝑠

    𝑈𝑠𝐴𝑠

    𝐶𝑝𝜌𝑉𝑠0

    1

    𝐶𝑝𝜌𝑉𝑠

    0𝑈+𝐴𝑡

    𝐶𝑝𝜌𝑉𝑡+

    1

    𝐶𝑝𝜌𝑉𝑡+0

    0𝑈−𝐴𝑡

    𝐶𝑝𝜌𝑉𝑡−

    1

    𝐶𝑝𝜌𝑉𝑡−0

    C =1 0 00 1 00 0 1

    D = 0

  • 4. Simulations and Results

    MATLAB is used to perform the simulation

  • 4.1 Chemical power loss and power loss due to internal resistance

  • 4.2 Pump power loss

  • 4.3 Simulations of stack temperature with various flow rate

    (𝐼𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = 𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = 30𝐴, surrounding temperature

    25 constant)

    𝑄 = 30𝑐𝑚 𝑠 1

    𝑄 = 60𝑐𝑚 𝑠 1

  • 𝑄 = 120𝑐𝑚 𝑠 1

    𝑄 = 180𝑐𝑚 𝑠 1

    𝑄 = 240𝑐𝑚 𝑠 1

  • 4.4 Simulation of stack temperature with various flow rate

    (𝐼𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = 30𝐴, 𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = 100𝐴, surrounding

    air temperature 25 constant)

    𝑄 = 30𝑐𝑚 𝑠 1

    𝑄 = 60𝑐𝑚 𝑠 1

  • 𝑄 = 120𝑐𝑚 𝑠 1

    𝑄 = 180𝑐𝑚 𝑠 1

    𝑄 = 240𝑐𝑚 𝑠 1

  • 4.5 Simulations of stack temperature with various charging and discharging currents

    (𝑄𝑠𝑡𝑎𝑐𝑘 = 4 × 𝑄𝑚𝑖𝑛, surrounding air temperature 25 constant)

    I=40A

    I=60A

  • I=80A

    I=100A

    I=120A

  • 4.6 Simulations of stack temperature with changing flow rate

    (I=30A, surrounding air are varying between 15℃ to 35℃)

    𝑄 = 30𝑐𝑚 𝑠 1

    𝑄 = 60𝑐𝑚 𝑠 1

  • 𝑄 = 120𝑐𝑚 𝑠 1

    𝑄 = 180𝑐𝑚 𝑠 1

    𝑄 = 240𝑐𝑚 𝑠 1

  • 4.7 Simulations of stack temperature with various charging/discharging current (𝑄 = 120𝑐𝑚 𝑠 1, surrounding air are varying between 15℃ to 35℃)

  • I=80A

    I=100A

    I=120A

  • 4.8 Simulation of stack temperature and tank temperature I=30A, 𝑄 = 120𝑐𝑚 𝑠 1 and constant surrounding air temperature.

  • 5. Future improvement

    Self-discharging and the side reactions will also contribute to heat generation so that the temperature of stack will increase more. Especially, when the battery is standing by, the self-discharging characteristic has to be investigated.

  • 6. Conclusion

    a dynamic thermal model based on conservation of energy is developed

    friction power loss and form power loss are not negligible

    chemical power and internal resistance loss

    Factors: flow rate of electrolyte, currents and surrounding air temperature

  • Acknowledgement

    Q&A


Recommended