+ All Categories
Home > Documents > THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

Date post: 18-Dec-2021
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
97
The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES VIA CALPHAD AND FIRST-PRINCIPLES METHODS A Thesis in Materials Science and Engineering by Lei Zhang 2013 Lei Zhang Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2013
Transcript
Page 1: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

The Pennsylvania State University

The Graduate School

College of Earth and Mineral Sciences

THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES VIA

CALPHAD AND FIRST-PRINCIPLES METHODS

A Thesis in

Materials Science and Engineering

by

Lei Zhang

2013 Lei Zhang

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

August 2013

Page 2: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

The thesis of Lei Zhang was reviewed and approved* by the following:

Zi-Kui Liu

Professor of Materials Science and Engineering

Thesis Advisor

Suzanne Mohney

Professor of Materials Science and Engineering

Roman Engel-Herbert

Professor of Materials Science and Engineering

Gary L. Messing

Distinguished Professor of Materials Science and Engineering

Head of the Department of Materials Science and Engineering

*Signatures are on file in the Graduate School

Page 3: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

iii

ABSTRACT

This thesis describes the thermodynamic modeling of the La2O3-TiO2 system, SrCoO3-δ

perovskite with extension to Sr-doped LaCoO3-δ. By using CALPHAD (CALculation of PHAse

Diagram) method, the thermochemical properties gained by first-principles calculations are put

together with phase equilibrium data for the optimization and phase stability prediction.

Thermodynamic modeling of oxides, especially transition metal oxides are not as

common as metallic systems. In the CALPHAD approach for oxides, the ionic compound energy

formalism is adopted for thermodynamic model construction. In first-principles calculations,

GGA+U method is used to account for the strong-correlation of d electrons in transition metal

ions. By fitting energy-volume curve for a certain oxide, the 0 K enthalpy is obtained. The fitting

parameters in energy-volume curve can then be utilized in the Debye-Grüneisen model to further

predict the Gibbs energy at finite temperature, which can be optimized in CALPHAD method to

predict the phase stability.

In the La2O3-TiO2 system, the thermodynamic properties of ternary oxides are calculated

by first-principles along with Debye- Grüneisen model. The phase diagram is then predicted with

an optimized liquid phase thermodynamic description. The thermodynamic database constructed

is crucial for ceramic processing involving lanthanum titanates.

The SrCoO3-δ, when doped into the LaCoO3-δ, can be applied as the ionic transport

membrane for gas separation and purification. The defect behavior in Sr-doped LaCoO3-δ along

with phase stability in the service condition then becomes significant. The defect calculations in

cubic SrCoO3-δ provide precious thermochemical data for the phase stability and defect

concentration predictions.

Key words: CALPHAD, transition metal oxides, phase stability, first-principles, defect

Page 4: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

iv

TABLE OF CONTENTS

LIST OF FIGURES ................................................................................................................. vi

LIST OF TABLES ................................................................................................................... viii

ACKNOWLEDGEMENTS ..................................................................................................... ix

Chapter 1 Introduction ............................................................................................................. 1

1.1 Transition metal oxides ............................................................................................ 1 1.2 Motivation and objectives ........................................................................................ 2 1.3 Outline ...................................................................................................................... 2

Chapter 2 Computational methodology ................................................................................... 4

2.1 Introduction .............................................................................................................. 4 2.2 Density Functional Theory ....................................................................................... 4 2.3 CALPHAD ............................................................................................................... 6 2.4 Conclusion ................................................................................................................ 9

Chapter 3 Thermodynamic modeling of the La2O3-TiO2 pseudo-binary system aided by

first-principles calculations .............................................................................................. 11

3.1 Introduction .............................................................................................................. 11 3.2 Review of experimental data in the literature .......................................................... 12 3.3 First-principles calculations ..................................................................................... 13 3.4 Thermodynamic modeling ....................................................................................... 16 3.5 Results and discussions ............................................................................................ 18 3.6 Conclusions .............................................................................................................. 21

Chapter 4 First-principles investigation and thermodynamic modeling of oxygen

vacancies in cubic SrCoO3-δ perovskite ........................................................................... 32

4.1 Introduction .............................................................................................................. 32 4.2 Review of published data ......................................................................................... 33 4.3 First-principles calculations ..................................................................................... 35 4.4 CALPHAD modeling ............................................................................................... 36 4.5 Results and discussion .............................................................................................. 38 4.6 Conclusion ................................................................................................................ 40

Chapter 5 Conclusions and future work ................................................................................... 53

5.1 Conclusions .............................................................................................................. 53 5.2 Future work .............................................................................................................. 53

Appendix A SrCoO3-δ perovskite sublattice model ................................................................. 55

Page 5: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

v

Appendix B La2O3-TiO2 Thermo-Calc database .................................................................... 60

Appendix C Cubic SrCoO3-δ Thermo-Calc database .............................................................. 71

Bibliography ............................................................................................................................ 83

Page 6: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

vi

LIST OF FIGURES

Figure 3. 1.0 K enthalpy of formation of ternary oxides with respect to the ground state

La2O3 and TiO2 by PBE (dark red, solid line) and LDA (grey, dotted line). ................... 25

Figure 3. 2.Finite temperature properties of hp5- La2O3 (entropy (a), enthalpy (b) and

heat capacity (c)) and tp6- TiO2 (entropy (d), enthalpy (e) and heat capacity (f)):

black, dotted lines from SSUB4 database and red, solid lines from current first-

principles calculations. ..................................................................................................... 26

Figure 3. 3.Calculated La2O3-TiO2 phase diagram in comparison with experimental data

by Ŝkapin et al. [45], Petrova et al. [69], Nanamats et al. [50] and MacChesney et al.

[39]. .................................................................................................................................. 27

Figure 3. 4. Enlarged La2O3-TiO2 phase diagram showing the phase relation around TiO2-

rich side with experimental data by Ŝkapin et al. [45] and MacChesney et al. [39]. ....... 28

Figure 3. 5. Finite temperature properties of LT (entropy (a), enthalpy (b) and heat

capacity (c)), L2T3 (entropy (d), enthalpy (e) and heat capacity (f)) and LT2_Cmcm

(entropy (g), enthalpy (h) and heat capacity (i)): with black, dotted lines from current

database and red, solid lines from current first-principles calculations. .......................... 29

Figure 3. 6.Enthalpy of formation from first-principles calculations (symbols) and model

parameters (curve) at 298.15 K with reference states of tP6 structure for TiO2 and

hP5 structure for La2O3. ................................................................................................... 30

Figure 3. 7.Entropy of formation from first-principles calculations (symbols) and model

parameters (curve) at 298.15 K with reference states of the tP6 structure for TiO2

and hP5 structure for La2O3. ............................................................................................ 31

Figure 4. 1 (Top) Electrochemical potential from brownmillerite to SrCoO3 from Le

Toquin et al. [87] (red solid lines), Nemudry et al. [103] (blue dashed lines), and

Bezdika et al. [102] (green circles) and (Bottom) converted to Gibbs energy by

Nernst equation. First-principles calculations from the present work are given as

purple triangles. ................................................................................................................ 46

Figure 4. 2 PO2 vs. temperature phase diagram of Sr:Co ratio 1:1 with experimental phase

boundary data from Vashook et al. [88] (circles and triangles), Takeda et al. [99]

(diamond), and Rodriguez et al. [97] (square). ................................................................ 47

Figure 4. 3 Gibbs energy of SCO as a function of δ from CALPHAD at 298 K with

experimental data (triangles) [87]. The units are in kJ/mol-form for SrCoO3- δ. The

Page 7: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

vii

reference state for the top figure is 3.25 moles of brownmillerite at corresponding

temperature and ambient pressure. ................................................................................... 48

Figure 4. 4 Temperature and PO2-dependence of δ, top and bottom, respectively,

calculated from model parameters in the current work and compared to experiments

[82, 99-101]. Numbers in the legends refer to fixed PO2 for the top figure and

temperature for the bottom figure. ................................................................................... 49

Figure 4. 5 Site occupancies of the SCO sublattice model as a function of temperature in

air (top) and PO2 at 1273 K (bottom). 1for Sr+2

, 2 for Va in A-site, 3 for Co+2

, 4 for

Co+3

, 5 for Co+4

, 6 for Va in B-site, 7 for O-2

, 8 for Va in oxygen site. ........................... 50

Figure 4. 6 Schematic projection of the composition space of the sublattice model and the plane defining possible

electrically neutral compositions. Red points correspond to the neutral compounds

chosen for the current work.............................................................................................. 51

Figure 4. 7 The formation enthalpy of defect SCO with respect to O2 and brownmillerite

at 0 K, obtained from the defect energy calculations. The y axis is the formation

enthalpy in eV/formula SCO, x axis is the δ. ................................................................... 52

Page 8: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

viii

LIST OF TABLES

Table 3. 1.Fitted equilibrium properties from EOS by LDA and PBE potentials at 0 K

compared with previous experimental studies, including equilibrium volume, ,

bulk modulus, , and first derivative of bulk modulus with respect to pressure, , for phases in the La2O3-TiO2 system. ............................................................................... 22

Table 3. 2.Thermodynamic parameters evaluated in the La2O3-TiO2 system (all in S. I.

units). ............................................................................................................................... 23

Table 3. 3.Calculated and experimental reaction temperatures and compositions for the

La2O3-TiO2 system. .......................................................................................................... 24

Table.4. 1 Current experimental measurements of δ in SrCoO3- δ. .......................................... 41

Table.4. 2 Lattice parameters, enthalpies of formation, and anti-ferromagnetic magnetic

moments of Sr2Co2O5 brownmillerite from first-principles calculations compared to

experiments. Results are shown for Sr2Co2O5 in the Pnma (62) and Ima2 (46)

structures, with and without the GGA+U correction. Experimental lattice parameters

[85] are taken at 10 K from the same neutron powder-diffraction data under the two

space group settings. ........................................................................................................ 42

Table.4. 3 Gibbs energy functions of Sr2Co2O5 and Sr6Co5O15 fitted to first-principles

calculations with and without GGA+U, in J/mol-form. ................................................... 43

Table.4. 4 Gibbs energy functions for the phases modeled in the current work, in J/mol-

form. Gibbs energy functions for the pure elements and the (Va) (Va) (Va)3 SrCoO3-

δ neutral compound can be found in the database file as supplementary material. .......... 44

Table.4. 5 Enthalpies of formation and entropies at 298 K of Sr2Co2O5 and Sr6Co5O15

with respect to the elements from first-principles calculations with GGA+U and

from the current CALPHAD modeling. Note that direct comparison between the two

phases is not possible as their compositions are different. ............................................... 45

Page 9: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

ix

ACKNOWLEDGEMENTS

I would like to thank Prof. Zi-Kui Liu for his everlasting support, advice and

encouragement during my three years academic research. Your tutelage makes me an expert in

thermodynamic modeling.

I would like to thank Prof. Suzanne Mohney and Prof. Roman Engel-Herbert for serving

as my master defense committee.

I would like to thank the PRL group members for all your help and discussions that

sweep the obstruction ahead of me and inspire my scientific thinking.

I would like to thank Mr. Michael Carolan from Air Products and Chemicals, Inc. for his

financial support and data providing on our research.

Special thanks are given to Prof. Zi-Kui Liu, Prof. Long-Qing Chen and Dr. Yi Wang for

your support on my graduate school applications.

Finally, I would like to show my gratefulness to my parents. Without your

encouragement and suggestions, I cannot make through ups and downs during my graduate years.

Page 10: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

Chapter 1 Introduction

1.1 Transition metal oxides

Transition metal oxides have gained great interest and intense research in recent years [1-

28]. Due to their intrinsic electronic structure, generally with strong correlation effect of d

electrons of transition metal ions and p electrons of oxygen ions, they have a large spectrum of

unique properties which normal oxides or metals do not have. To name a few, the unpaired d

electrons in transition metal ions induce spin magnetic moment for the oxides; besides, the

complex correlation effect mentioned above can induce structural distortion, oxygen cage

rotation, etc. The so-called ferroelectric property is among one of the most interesting properties

they have. When ferroelectricity is coupled with magnetism, magneto-electric or multiferroic

properties are the research focus in recent publications [1-19]. More generally speaking, the

oxides as the ceramics have dielectric response with respect to external electric field. Another

significant property of transition metal oxides, in their deficient structures, is their fast ionic and

electronic transport, due to the multi-valence of transition metal ions, which can be applied to the

cathode material of fuel cell or ion transport membrane.

In conclusion, the transition metal ions play an important role in determining the

functional properties of transition metal oxides. This kind of material has a promising future in

electric device, spintronics, electrode of cells, catalyst and so on.

Page 11: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

2

1.2 Motivation and objectives

Instead of focusing on the functional properties of transition metal oxides, this work

focuses on the thermodynamic properties and phase stability of them. The thermodynamic

properties have a huge impact on the synthesis window of those oxides and the appropriate choice

of service conditions of those oxides. Experimental investigation takes a lot trials and errors,

while computational prediction is more time-saving and less expensive. By introducing the first-

principles ab-initio method into the thermodynamic investigation, it gives the atomic-level

explanation on why a certain crystal structure on a certain magnetic arrangement is stable. The

valuable data gained by first-principles are usually unavailable in experiments. The first-

principles data can be made use of in another method called CALPHAD (CALculation of PHAse

Diagram). CALPHAD method is another effective way of constructing the phase diagram and

predicting the phase stability with all the other thermodynamic-related properties. Although it is a

semi-empirical method, which taking consideration of all the existing experiments and

calculations into its optimization, it shows an advantage in predicting thermodynamic properties

in a consistent way and can be easily extrapolated to multi-component systems.

Due to the convenience of first-principles calculations and CALPHAD method, the

thermodynamic databases of three transition metal oxide systems are built: La2O3-TiO2 and

SrCoO3-δ. The goal is to predict the phase stability and oxygen defect concentration, which

provides important information on the ceramic sintering process, service condition design and

thin film growth condition choice of them.

1.3 Outline

Page 12: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

This thesis is constructed as follows: Chapter 2 introduces the computational

methodology, including CALPHAD method and first-principles calculations. In Chapter 3,

Chapter 4, the first-principles calculations and thermodynamic investigation of La2O3-TiO2 and

SrCoO3-δ are demonstrated in order. Chapter 5 is the conclusion and future work. Appendix A is

the thermodynamic model for SrCoO3-δ, appendix B and C are database of those systems.

Page 13: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

Chapter 2 Computational methodology

2.1 Introduction

Basically, first-principles method in this work is based on Density Functional Theory

[29], which describes properties of a crystal structure as a functional of charge-density in this

crystal structure. This method is also taken as ab-initio due to its parameter-free character,

although in dealing with strong-correlation materials, the parameters are inevitably introduced.

The electronic structures are the basic output of this calculation, together with other properties

such as energy we need.

CALPHAD, abbreviated from CALculation of PHAse Diagram, uses all the existing

experimental and calculation data including phase equilibrium data and thermochemical data to

perform an overall optimization [30-32]. It parameterizes all the discrete data into a Gibbs

function which describes the Gibbs energy of a certain phase as a function of composition and

temperature. This consistent way of building database is easily extrapolated to other components.

2.2 Density Functional Theory

The basic ideas of Density Functional theory are contained in the two original papers of

Hohenberg, Kohn and Sham and also referred to as Honhenberg-Kohn-Sham theorem [29].

Instead of dealing with the many-body Schrödinger equation, which involves the many-body

wavefunctions , one deals with a formulation of the problem that involves the total density

of electrons , which is a function of the electron position . This huge simplification ignores

Page 14: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

5

the details of the many-body wavefunction. Instead, it describes the behavior of the system with

the appropriate single-particle equation as a functional of the charge density.

The energy of the system is considered as the sum of several components:

Equation 2.1

where is the kinetic energy of the electrons summed up, is the potential

energy of the electrons with respect to the external potential induced by ions or lattice,

is the electron-electron Coulombic interactions, while accounts for the

many-body effect of electrons and stands for the exchange-correlation energy of electrons.

When the three terms are all treated as an

effective external potential, the Kohn-Sham equation is then the Schrödinger equation of a

fictitious system of non-interacting electrons that generate the same density as any given system

of interacting particles. The equation is shown below:

Equation 2.2

where is the total energy of the system.

Since the exchange-correlation term depends on , which depends on ,

which in turn depends on , the solving procedure of the Kohn-Sham equation has to be

done in a self-consistent way.

In dealing with transition metal oxides, the strong-correlated d electrons cannot be well

captured without a correction. An efficient correction is adding the intra-atomic Coulomb

interaction energy, U. The formulation employed in the current work by Dudarev et al. [21]

requires an effective U as input, with Ueff =U-J where J is a separate exchange interaction energy.

Page 15: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

6

The effective U is a fitting value. It usually fits to the band gap, magnetic moment, lattice

parameter etc. However, it is not guaranteed that all of them can be simultaneously fitted well.

Thus, this fitting value gives limitations to the prediction of transition metal oxides. In the

literature [27, 33-34], people have to compare their first-principles predictions with experimental

values to validate their U value is reasonable.

2.3 CALPHAD

The CALPHAD method is based on Gibbs energy functions within a certain model,

which is structure sensitive.

The energy obtained by first-principles is a major input for CALPHAD evaluation of

Gibbs functions of each phase. The total energy from first-principles is converted to the enthalpy

through the following equation:

Equation 2.3

The total energy from first-principles is equal to the Helmholtz energy. Since the first-principles

calculation is essentially at zero Kelvin and equilibrium pressure, the enthalpy is the Helmholtz

energy plus a constant.

The Gibbs energy, , can be expressed in terms of enthalpy, , and entropy, :

Equation 2.4

where is the temperature. However, and can also be dependent on temperature, so a Gibbs

function with temperature as the variable is employed:

Page 16: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

7

Equation 2.5

where , , , and are model parameters. This temperature polynomial has been tested on

numerous phases (including pure metals, gas molecules, ionics and covalent compounds) of their

thermochemical behavior experimentally, including most of the elements. In order to determine

the model parameters of a given phase, usually the three chemical properties are calculated

through first-principles or measured experimentally: the temperature dependent heat capacity ,

the temperature dependent entropy , and the enthalpy of formation at room temperature .

They can also be written as a function of temperature through a simple thermodynamic

derivation:

Equation 2.6

Equation 2.7

Equation 2.8

To fit the model parameters, the heat capacity data is used to fit the , and terms.

Then the entropy can be fitted by adjusting the parameter and formation enthalpy is used to fix

parameter . The Gibbs function cannot be applied to predict the thermochemical properties

lower than the room temperature 298.15 K because the polynormial is fitted to the experiments

above the room temperature.

The Gibbs energy function of a certain phase can also be written as the energy

combination of its component with the formation enthalpy and entropy:

Page 17: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

8

Equation 2.9

where is the molar Gibbs energy of the phase , and

are the molar Gibbs

energies of components A and B, respectively, in their stable state at 298.15 K. and are the

mole fractions of A and B for the phase, and are model parameters corresponding

to the enthalpy and entropy of formation.

For solution phases, a specific model should be assigned to them. Depending on the

property of a specific phase, a certain model is chosen to best describe the property with fewest

fitting parameters.

For oxide systems, the liquid phase is usually described within the ionic liquid model

[35], written as

, where

is the cation in the first sublattice with

positive charge ,

is anion in the second sublattice with negative charge , Va is

hypothetical vacancy to describe the metallic behavior of the oxide liquid phase, is the neutral

species indicating a stable associate in the liquid instead of tending to be ionized. and are the

number of sites in cation and anion sublattice, defined as:

Equation 2.10

where denotes the site fraction of constitute . This equation simply means the and are

equal to the average charge on the opposite sublattice.

The Gibbs energy of a solution phase is composed of several parts, each with a specific

meaning:

Equation 2.11

Page 18: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

9

Equation 2.12

Equation 2.13

where is the gas constant, is the interaction parameter indicating interactions between two

species in one sublattice.

is the molar Gibbs energy indicating mechanical mixing between

available end members,

is the random configurational entropy on each sublattice, is

the excess Gibbs energy.

Interaction parameter is written as a Redlich-Kister polynormial:

Equation 2.14

where is an integer number, is the mole fraction. is the fitting parameter which usually a

linear function of temperature.

The solid ionic sublattice models have very similar formula as the ones shown above.

The one shown above is a general representation of liquid ionic sublattice model for oxide phases.

2.4 Conclusion

When first-principles method is introduced to assist the CALPHAD modeling, the non-

existing thermochemical data which is expensive or even impossible to get from experiments can

be calculated and used to predict the Gibbs energy of individual phases. By combining the Gibbs

Page 19: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

10

energy of individual phases, thermodynamic properties and phase stability can be easily predicted

based on a consistent mathematical model. In this way, the database of La2O3-TiO2 and SrCoO3-δ

are built.

Page 20: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

11

Chapter 3 Thermodynamic modeling of the La2O3-TiO2 pseudo-binary

system aided by first-principles calculations

3.1 Introduction

An accurate thermodynamic database of the La2O3-TiO2 pseudo-binary system is

desirable for understanding and designing the processing of ceramic materials with lanthanum

titanates. The phase diagram predicted by the thermodynamic database can provide useful

information on phase transformations during sintering or thin film growth. The thermodynamic

properties of each oxide in this system provide basis for further investigations of their physical

properties, such as the dielectric permittivity. In addition, the first-principles calculations based

on density functional theory provide bulk modulus information as a preliminary indication of

mechanical properties of those oxide crystallites.

In the La2O3-TiO2 pseudo-binary system, the following lanthanum titanates have been

reported in the literature: La2TiO5, La2Ti2O7, La2/3TiO3, La4Ti3O12, and La4Ti9O24 with La2Ti2O7

having three polymorphs. For convenience, L and T are used to represent La2O3 and TiO2 in the

present work, and the above five ternary oxides are denoted by LT, LT2, LT3, L2T3 and L2T9

accordingly. These lanthanum titanates exhibit interesting electrical related properties and have

been recently extensively investigated as microwave frequency dielectrics [36]. Specially,

La2Ti2O7 exhibits an unusually high Curie temperature and was reported to be a promising

candidate for high temperature piezoelectric and electro-optical devices [37]. In the present work,

the thermochemical properties of La2O3, TiO2, LT, LT2, and L2T3 are predicted by first-

principles calculations and Debye-Grüneisen model [38], due to the lack of thermochemical data.

Page 21: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

12

The Gibbs energy functions of all phases are modeled by means of the CALculation of PHAse

Diagram (CALPHAD) method using both phase equilibrium data in the literature and the results

from first-principles calculations in the present work [31].

3.2 Review of experimental data in the literature

MacChesney et al. [39] measured the stable phase regions, invariant temperatures and

congruent melting points in this La2O3-TiO2 system using quenching technique followed by X-

ray diffraction (XRD) and metallographic analysis. In their paper, three compounds LT, LT2, and

L2T9 were reported. The compound L2T9 was found to melt incongruently at 1728 K, and LT

and LT2 melt congruently at 1973 K and 2063 K, respectively. They also reported a possible

miscibility gap of liquid phase near TiO2. Later on, Ismailzade et al. [40] found the fourth

compound in the system, L2T3. Fedorov et al. [41] determined that L2T3 has a perovskite-like

hexagonal crystal structure and decomposes to LT and LT2 at 1723 K. The existence of L2T3

was confirmed by German et al. [42] and Saltikova et al. [43], but not by Jonker et al. [44].

Based on previous experimental work, Ŝkapin et al. [45] reinvestigated the phase

relations and transition temperatures by XRD and scanning electron microscope (SEM) equipped

with electron probe wavelength (WDS) and energy-dispersive X-ray (EDS) analyzers. They

prepared the LT3 monocrystalline and indicated its stability between 1933 K and 1728 K.

However, the authors also pointed out that LT3 is stabilized by Ti+3

and oxygen vacancy from the

electrical resistivity and dielectric permittivity data. Based on this defect mechanism, LT3 should

be slightly away from the pseudo-binary plane of the La2O3-TiO2 system.

The L2T9 phase has an orthorhombic crystal structure measured by synchrotron X-ray

[46]. The LT2 phase has three polymorphs above room temperature under ambient condition. The

room temperature structure is monoclinic (space group: P21, Pearson symbol: mP44) [47-48]. At

Page 22: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

13

~1053K and 1773K, it becomes orthorhombic (space group: Cmc21, Pearson symbol: oS44) [49]

and paraelectric (space group: Cmcm, Pearson symbol: oS44) [50], respectively. The enthalpy of

formation for LT2_P21 was measured in calorimetric method as around -206.0 kJ/mol-formula

[51]. For the binary oxide La2O3, three polymorphs are included in the current database, i.e.

hexagonal (space group: P-3m1, Pearson symbol: hP5) [52-53], hexagonal (space group:

P63/mmc, Pearson symbol: hP10) [53] and cubic (space group: Im-3m, Pearson symbol: cI26)

[54] with increasing temperature. On the other hand, the binary oxide TiO2 keeps a tetragonal

structure (space group: P42/mnm, Pearson symbol: tP6) [55] in the whole temperature range

under ambient pressure and in air until melting. All the ternary oxides in the La2O3-TiO2 system

are thermodynamically stable at room temperature [56].

3.3 First-principles calculations

First-principles calculations based on the density functional theory (DFT) can predict

thermodynamic properties of solid phases [31]. In the present work, the Vienna ab-initio

Simulation Package (VASP) [57] is used to calculate the total energies of oxides, with the

projector augmented wave (PAW) [58-59] method. In the pseudo-potentials used, the following

electrons are treated as valence electrons with core electrons frozen. Those valence electrons are

2s22p

4 for O, 5s

25p

65d

16s

2 for La and 2p

63d

34s

1 for Ti. Both the local density approximation

(LDA) [60] and the generalized gradient approximation (GGA) as implemented by Perdew,

Burke, and Erzhenfest [61] are used for the exchange-correlation energy functional. A plane-

wave cutoff energy of 520 eV is used, together with 12×12×7 -centered k-points for La2O3,

10×2×7 k-points for LT2_Cmc21, 5×7×3 k-points for LT2_P21, 12×8×4 k-points for LT2_Cmcm,

4×10×4 k-points for LT, 7×7×7 k-points for L2T3, 9×9×14 k-points for TiO2 for the Brilliouin-

zone integrations [62] in order to ensure the evenly arranged K-mesh and energy accuracy as 1e-4

Page 23: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

14

eV/cell. The cell shapes and ionic positions are fully relaxed followed by the static calculations

using the linear tetrahedron method with Blöchl’s correction [63] for an accurate total energy

calculation.

In order to obtain a thermodynamic description for a specific phase at finite temperature,

the Helmholtz energy F as a function of volume V and temperature T includes additional energy

terms besides the first-principles calculated 0 K energy [38], defined as

Equation 3.1

where is the static energy at 0 K without the zero-point vibrational energy, the

vibrational contribution, and the thermal electronic contribution. At zero pressure,

the Helmholtz energy equals to the Gibbs energy. In the present work, is calculated via

first-principles directly. is obtained from the empirical Debye-Grüneisen model [38,

64] for the sake of simplicity and efficiency, and the thermal electronic contribution

is ignored due to band gaps of oxides in the system [65].

In the Debye-Grüneisen model [38], the vibrational contribution to Helmholtz energy is

described as

Equation 3.2

where is the Debye temperature, Boltzmann’s constant. The Debye function, , is

defined as follows:

Equation 3.3

Page 24: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

15

In order to solve the equation above, the Debye temperature, , must be calculated. In

the present work, the Debye-Grüneisen approximation is used to describe as

Equation 3.4

where is a constant, viz., , the ground state volume, the atomic mass, the

Grüneisen parameter, the bulk modulus, and a parameter that scales the Debye temperature

to be discussed in detail in the section of results and discussion. The Grüneisen parameter can be

expressed as , where

is the first derivative of the bulk modulus with

respect to pressure. The temperature-dependent term, , is chosen as 2/3 for thermodynamic

properties above the Debye temperature of all the phases [64].

The equilibrium properties used in the Debye model are obtained from energy versus

volume equation of state (EOS) calculated from first-principles using at least five volumes for

each compound. A four-parameter Birch-Murnaghan EOS [66] is adopted herein to fit the energy

versus volume data points.

Equation 3.5

where the parameters a, b, c and d are fitted to the 0 K first-principles calculations of the structure

at a series of fixed volumes around the equilibrium volume.

The enthalpy of formation for compound LxTy is obtained as follows:

Equation 3.6

Page 25: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

16

where ,

and

are the enthalpies of the ternary oxides LxTy, La2O3 and TiO2

with their stable structures at room temperature, respectively.

3.4 Thermodynamic modeling

The CALPHAD technique parameterizes Gibbs energy of individual phases as a function

of temperature and composition using thermochemical data of individual phases and phase

equilibrium data between phases. In this work, the Gibbs energy descriptions of La2O3 and TiO2

are taken from the SGTE substance (SSUB4) database [67], and the Gibbs functions of ternary

oxides and the interaction parameters of the liquid phase are evaluated.

For ternary oxides, the Gibbs energy per mole of unit formula used in the present work is

of the form:

Equation 3.7

where , , , and are model parameters determined from enthalpy of formation with

respect to La2O3 and TiO2, heat capacity, and entropy of the ternary oxide.

Gibbs energies of LT2 polymorphs are written as follows by assuming no heat capacity

of transition between different structures due to their similar crystal structure and atomic

environment:

Equation 3.8

Page 26: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

17

where is the Gibbs energy, is the temperature, and are the transition enthalpy and

entropy between the adjacent phases of LT2. The neglected heat capacity of transition would

have little effect on the Gibbs energy since heat capacity is the second derivative of the Gibbs

energy. This approximation could make thermodynamic modeling much easier.

The two sublattice ionic liquid model [35] is used to describe the liquid phase with the

formula (La3+

, Ti4+

)P(O2-

)Q. To maintain neutrality, P and Q vary with the composition of liquid

according to the model,

Equation 3.9

The Gibbs energy of liquid per mole formula,

, is given as

Equation 3.10

where and are the site fractions of La3+

and Ti4+

in the first sublattice, respectively;

and

are the Gibbs energies of La2O3 and TiO2 in the liquid state, respectively;

and

is the excess Gibbs energy. The first two terms represent the contributions from the

components La2O3 and TiO2, and the third term represents the ideal mixing between La3+

and

Ti4+

. The excess Gibbs energy is modeled with a Redlich-Kister polynomial [68]:

Equation 3.11

where

represents the non-ideal interactions between La

3+ and Ti

4+ and is usually

defined as

Page 27: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

18

Equation 3.12

where and

are model parameters to be evaluated.

The model parameters are evaluated using the PARROT module of the Thermo-Calc

software [30] with thermochemical data from the present work and phase equilibrium data from

the literature [45, 50, 56, 69]. It should be pointed out that the model parameters evaluated from

thermochemical data alone do not have enough accuracy to reproduce the phase equilibrium data

and need to be refined using phase equilibrium data [31].

3.5 Results and discussions

To validate the first-principles methodology, the cell volumes V, bulk moduli B0 and first

derivative of bulk moduli to pressure B’0 of binary and ternary oxides calculated in the system are

listed in Table 3. 1. to compare with available experimental data.

The volumes are underestimated by LDA while overestimated by PBE in comparison

with experimental data. The largest deviation of calculated and experimental volumes is from

La2O3, which is due to the self-interaction errors of valence electrons. The bulk moduli of TiO2

and LT2_P21 are better predicted by LDA than by PBE. Specifically, the bulk modulus of each

oxide in this system predicted by LDA is always larger than that predicted by PBE, while the first

derivative of bulk modulus predicted by LDA is generally smaller than that predicted by PBE,

which indicates that LDA gives a stiffer description of oxides than PBE does. In Figure 3. 1, the

convex hulls of ternary oxides in the La2O3-TiO2 system predicted by LDA and PBE are plotted

together. It shows that LDA gives a correct thermodynamic stability prediction of the ternary

oxides while PBE does not. One ternary oxide, L2T3 is predicted rather unstable by PBE

Page 28: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

19

potential in this system, which contradicts to the experimental observation [56]. First-principles

results obtained by LDA are thus chosen in this work, for the CALPHAD modeling.

The parameters in the Debye-Grüneisen model come from the values in Table 3. 1. The

scaling parameter s can be derived from the Debye temperature which is obtained from phonon

density of states. For rutile TiO2 at room temperature, the scaling parameter is obtained as 0.759

based on previous experimental and calculated Debye temperatures [65, 70]. For room

temperature stable La2O3, the scaling parameter is a fit value to the entropy from experiments.

The obtained scaling parameter is 0.85 for ground state La2O3. The predicted finite temperature

properties of La2O3 and TiO2 are compared with the data from SSUB4 database [67, 71] in Figure

3. 2. It can be seen that all thermodynamic data at room temperature are well matched between

the predictions from the Debye-Grüneisen model and the SSUB4 database. For entropy, the

agreement is within the range of 10 J/mol-formula, and for enthalpy, the agreement is within the

range of 20 kJ/mol-formula. The larger discrepancy of heat capacities at high temperatures is

probably due to the anharmonic vibrations [72], which cannot be captured by the Debye-

Grüneisen model [73]. Nevertheless, the comparison shows the reasonable values of scaling

parameters chosen for La2O3 and TiO2, and the agreement of thermodynamic properties between

predictions and the literature data, particularly at room temperatures. It demonstrates that this

approach can be used to predict the thermodynamic properties of ternary oxides reasonably well,

at least at room temperature, with their high temperature properties to be further refined by phase

equilibrium data at high temperatures [31]. For the CALPHAD modeling, the thermodynamic

properties of three polymorphs of La2O3 and rutile TiO2 are taken from the SSUB4 database in

order to be compatible with other modeling in the literature involving these two oxides.

The thermodynamic model parameters of the La2O3-TiO2 system are listed in Table 3. 2.

The parameters are evaluated based on invariant reactions by Ŝkapin et al. and Nanamats et al.

[45, 50] and phase boundary data by MacChesney et al. [39] along with the finite temperature

Page 29: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

20

thermodynamic properties from the present first-principles calculations. The calculated phase

diagram is shown in Figure 3. 3 and enlarged in Figure 3. 4 around L2T9. It is noted in Table 3. 2

that three interaction parameters for liquid phase are required to well reproduce the asymmetric

liquid phase boundary. The invariant reactions are listed in Table 3. 3, showing that both

experimental temperatures and liquid compositions are well reproduced by the present

thermodynamic models. It is noted that the liquidus boundaries in the original paper by

MacChesney et al. [39] were drawn by hand, they are treated with lower weight in the modeling

process.

The enthalpy, entropy, and heat capacity of L2T3, LT and LT2_Cmcm from the Debye-

Grüneisen model are compared with those from current thermodynamic model in Figure 3. 5. The

comparison shows an excellent agreement in enthalpy (disagreement is much less than 10 kJ/mol-

component) and entropy (disagreement is much less than 10 J/mol-component), although

discrepancies occur at the high temperature part of heat capacity, further demonstrating the

success of the Debye-Grüneisen model with the chosen scaling parameters in predicting finite

temperature thermodynamic properties of oxides. Figure 3. 6 and Figure 3. 7 show the enthalpy

and entropy of formation at 298.15 K with respect to La2O3 and TiO2 calculated by first-

principles (symbols) and the current CALPHAD modeling (curves). As shown in Figure 3. 6, the

enthalpies of formation from first-principles calculations are well re-produced comparing with the

current database. The experimental value of formation enthalpy for LT2_P21 is -68.7 kJ/mol-

component [51], comparing with our first-principles calculated value -56.0 kJ/mol-component.

The relative stability of three LT2 polymorphs is also clearly illustrated. In Figure 3. 7, the

entropies of formation predicted by the Debye-Grüneisen model are much less negative than

those from the current thermodynamic modeling evaluated from experimental phase equilibrium

data at high temperatures. The intrinsic imperfection in pseudo-potential of La and the

Page 30: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

21

approximation of the Debye-Grüneisen model give the uncertainty of our first-principles

thermodynamic predictions. The entropy of La2O3 predicted by first-principles directly affects the

prediction of formation entropy of ternary oxides in the La2O3-TiO2 system.

3.6 Conclusions

The finite temperature thermodynamic properties for phases of interest in the La2O3-

TiO2 system are predicted by first-principles calculations together with the Debye-Grüneisen

model. The thermochemical data of binary oxides obtained in this work are reasonable and in

good agreement with the experimental data. The thermochemical data of ternary oxides in this

work ankers the thermodynamic properties of each phase. Combined with the experimental phase

equilibrium data in the literature, the thermodynamic description of the La2O3-TiO2 system is

obtained by means of the CALPHAD method with the experiments and first-principles data both

well re-produced. This work demonstrates the significance of first-principles thermochemical

data in assisting thermodynamic modeling.

The methodology demonstrated in this paper can be used in obtaining other pseudo-

binary systems. More accurate thermodynamic properties of oxides can be obtained through

phonon spectrum calculations, although it is computational consuming and can only be applied to

the ground state structures. Phonon spectrum provides a more accurate vibration property

comparing with the Debye-approximated vibrations.

Page 31: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

22

Table 3. 1.Fitted equilibrium properties from EOS by LDA and PBE potentials at 0 K compared

with previous experimental studies, including equilibrium volume, , bulk modulus, , and first

derivative of bulk modulus with respect to pressure, , for phases in the La2O3-TiO2 system.

Phase Space group ( /atom) (GPa)

LDA PBE Exp. LDA PBE Exp. LDA PBE

La2O3 P-3m 15.54 16.63 16.54 [52] 123.84 108.73 3.48 3.73

TiO2 P42/mnm 10.13 10.73 10.4 [74] 242.07 199.49 235 [75] 4.93 5.25

LT Pnma 14.79 15.76 15.13 [76] 131.98 114.48 2.94 2.89

LT2 P21 12.17 13.11 12.64 [77] 129.69 100.27 121.0 [78] 7.28 7.58

Cmc21 12.13 13.05 13.08 [49] 150.60 106.95 4.56 6.81

Cmcm 12.28 13.13 140.02 119.79 3.55 4.42

L2T3 R-3 11.77 12.59 12.27 [79] 177.65 143.13 4.72 5.01

Page 32: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

23

Table 3. 2.Thermodynamic parameters evaluated in the La2O3-TiO2 system (all in S. I. units).

Phases Sublattice model Evaluated descriptions

Liquid

L2T9 (La2O3)2(O2Ti1)9

LT2_Cmcm (La2O3)1(O2Ti1)2

LT2_P21 (La2O3)1(O2Ti1)2

LT2_Cmc21 (La2O3)1(O2Ti1)2

L2T3 (La2O3)2(O2Ti1)3

LT (La2O3)1(O2Ti1)1

Page 33: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

24

Table 3. 3.Calculated and experimental reaction temperatures and compositions for the La2O3-

TiO2 system.

Reactions Temperatures (K) by

Cal.

at. % TiO2 by

Cal.

Exp. [45, 50,

69]

Liquid→Rutile+L2T9 1718 0.845 1718

Liquid+LT2_Cmc21→L2T9 1728 0.830 1728

Liquid→LT2_Cmcm 2063 0.667 2063

LT2_Cmcm→LT2_Ccmc21 1773 0.667 1773

LT2_Cmc21→LT2_P21 1053 0.667 1053

Liquid→LT2_Cmcm+LT 1947 0.551 1948

LT2_Cmcm+LT→L2T3 1872 0.6 1873

Liquid→LT 1965 0.5 1963

Liquid→LT+La2O3_S 1902 0.412 1903

Page 34: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

25

Figure 3. 1.0 K enthalpy of formation of ternary oxides with respect to the ground state La2O3 and

TiO2 by PBE (dark red, solid line) and LDA (grey, dotted line).

Page 35: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

26

Figure 3. 2.Finite temperature properties of hp5- La2O3 (entropy (a), enthalpy (b) and heat

capacity (c)) and tp6- TiO2 (entropy (d), enthalpy (e) and heat capacity (f)): black, dotted lines

from SSUB4 database and red, solid lines from current first-principles calculations.

Page 36: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

27

Figure 3. 3.Calculated La2O3-TiO2 phase diagram in comparison with experimental data by

Ŝkapin et al. [45], Petrova et al. [69], Nanamats et al. [50] and MacChesney et al. [39].

Page 37: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

28

Figure 3. 4. Enlarged La2O3-TiO2 phase diagram showing the phase relation around TiO2-rich

side with experimental data by Ŝkapin et al. [45] and MacChesney et al. [39].

Page 38: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

29

Figure 3. 5. Finite temperature properties of LT (entropy (a), enthalpy (b) and heat capacity (c)),

L2T3 (entropy (d), enthalpy (e) and heat capacity (f)) and LT2_Cmcm (entropy (g), enthalpy (h)

and heat capacity (i)): with black, dotted lines from current database and red, solid lines from

current first-principles calculations.

Page 39: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

30

Figure 3. 6.Enthalpy of formation from first-principles calculations (symbols) and model

parameters (curve) at 298.15 K with reference states of tP6 structure for TiO2 and hP5 structure

for La2O3.

Page 40: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

31

Figure 3. 7.Entropy of formation from first-principles calculations (symbols) and model

parameters (curve) at 298.15 K with reference states of the tP6 structure for TiO2 and hP5

structure for La2O3.

Page 41: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

32

Chapter 4 First-principles investigation and thermodynamic modeling of

oxygen vacancies in cubic SrCoO3-δ perovskite

4.1 Introduction

The development of CALPHAD-based thermodynamic models for complex oxide

systems has quickened in recent years, which allows the in-depth understanding of their defect

mechanism [31, 80-82]. Perovskites, in particular, are ripe for such development, featuring the

possibility of wide solid solution ranges for a multitude of dopants and large defect

concentrations. Experimental tailoring of desired properties in such a complex system would be

greatly aided by a comprehensive thermodynamic database for perovskite solid solutions.

To that end, the thermodynamic modeling of SrCoO3-δ cubic perovskite (SCO) is

presented in the current work using the CALPHAD technique [31] with the assistance from first-

principles calculations. SCO and other strontium cobaltate oxides have garnered great interest for

their unique defect properties and complex phase equilibria [83-88]. SCO has notably large

oxygen mobility, attributable to large oxygen vacancy concentrations, and is a promising dopant

in La1-xSrxCoO3-δ perovskites for use as cathodes in solid oxide fuel cells and gas separation

membranes [89]. Recently, SCO has been found to be an endmember for a perovskite solid

solution developed as one of the most effective catalysts for water splitting [25]. Sr2Co2O5

brownmillerite, the room-temperature metastable form of SCO, also exhibits many of these

properties [85, 87]. SCO is not stable at room temperature in air, decomposing instead into

Sr6Co5O15 and Co3O4 [90]. Sr6Co5O15 has also received attention for thermoelectric applications

[84, 86]. Other compounds have been reported in the Sr-Co-O ternary system [91-96] but are not

Page 42: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

33

considered in the current work as they have not been observed to be in equilibrium with

perovskite phase and may not be stable equilibrium phase.

The CALPHAD modeling of SCO is performed using experimental data from the

literature. Phase equilibrium data between the perovskite and two neighbouring phases is used,

and first-principles calculations were employed to predict the thermochemical properties of these

two phases and defect energetic of perovskite. An appendix is also provided, detailing the

development of the SCO model functions.

4.2 Review of published data

Several studies have probed the properties of SrCoO3-δ due to varying reports of stable

structures and its importance as an endmember of several perovskite solid solutions [88, 97-101].

SCO’s oxygen nonstoichiometry has been measured by several authors. Takeda et al. [99]

measured δ in air from 473 to 1473K. They synthesized SCO samples by solid state reaction,

determining the absolute value of δ from iodometric titration. Two studies by Vashook et al. [88,

100] also used solid state reaction synthesis, using both iodometric titration and full reduction of

the samples to determine the absolute value of δ. Thermogravimetric analysis [101] and

coulometric titration [100] were used to measure the relative change in δ. In their first study

[101], δ was measured from 321 to 1370K across a range of reducing atmospheres. Their later

study [100], a narrower window of temperatures and oxygen partial pressure were explored. New

measurements were also performed by the current authors, using solid state reactions to produce

the samples, thermograviemtric analysis to measure δ, and thermal reduction to determine the

absolute value of δ. Details of these measurements can be found in forthcoming paper [82]. The

measured values can be found in Table.4. 1 by [82], with δ typically larger than 0.5 in air. For this

reason, it was shown that the point defect model, based on the dilute concentration limit, is not

Page 43: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

34

appropriate to describe the defect mechanism of SCO, as there is now more than one type of

defect and defect-defect interactions can be significant. Through a statistical cluster analysis, the

review [82] suggests which published δ datasets are more reliable, and the results for SCO are

used in the current work.

SCO exhibits two perovskite-type structures: fully disordered cubic perovskite at high

temperatures and the brownmillerite structure with ordered oxygen vacancies below around

1275K in air [99]. A third reported structure was a rhombohedral/hexagonally distorted

perovskite, which appears below 1180 K in air, but this has been confirmed as a separate, two-

phase mixture of Sr6Co5O15 and Co3O4 [90]. Vashook et al. [88] mapped these phase

transformation temperatures at various oxygen partial pressures (PO2). They reported that the

cubic perovskite to brownmillerite transformation is second-order and brownmillerite to

Sr6Co5O15 and Co3O4 is first-order.

Stoichiometric SCO (with δ = 0) has been created by electrochemically intercalating

oxygen into Sr2Co2O5 at room temperature. Bezdika et al. [102] produced stoichiometric SCO

using a Hg/HgO reference electrode in 1M KOH under a potential of 0.598 V with respect to the

standard hydrogen electrode (SHE). Nemurdy et al. [103] also oxidized SCO with a Hg/HgO

reference in 1 M KOH, reporting the potentials for δ from 0.5 to 0 with the presence of vacancy

ordering at intermediate values of δ and a potential of 0.678 V SHE to achieve stoichiometric

SCO. Le Toquin et al. [87] performed a similar study using a Ag/AgCl reference in 1 M KOH,

also reporting intermediate vacancy ordering and stoichiometric SCO at 0.635 V SHE. The

potentials of Hg/HgO and Ag/AgCl with respect to SHE are taken to be 0.108 V [104] and 0.235

V [105], respectively. The potential of Ag/AgCl reference electrodes with respect to SHE is more

precise than that for Hg/HgO due to uncertainty in the activity coefficients at concentrated

electrolyte solutions [104]. For this reason, the potentials from Le Toquin et al. [87] are used in

the current work to describe the Gibbs energy of the perovskite with respect to brownmillerite.

Page 44: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

35

However, only those potentials near stoichiometric SCO are used (δ < 0.15) since this is the only

region of δ where distorted cubic perovskite was observed. Recently, Ichikawa, etc. [106] have

studied the lattice stability of SrCoO3-δ by intercalating oxygen ions and taking the XRD. They

found the SCO thin film at around 200 oC would become amorphous when δ is larger than 0.5.

High-pressure studies have also examined the properties of highly oxidized SCO [99,

107-108], reaching values of δ as small as 0.05 with PO2’s as high as nearly 2000 atm. All high-

pressure samples exhibited cubic perovskite symmetry. However, to achieve such large oxygen

contents, the experiments had to be performed at low temperatures (between 473-673 K).

Therefore, this data will not be employed in the current work, preferring the electrochemical data

to describe the properties of near-stoichiometric SCO.

4.3 First-principles calculations

Spin-polarized density functional theory are performed with the Vienna Ab-initio

Simulation Package (VASP) [109]. The pseudopotentials supplied with VASP are used with the

projected augmented wave methos and the generalized gradient approximation of Perdew, Burke,

and Ernzerhof [61]. Calculations for the enthalpies of formation and equation of state employ the

GGA+U correction with Dudarev’s approach [21], which requires as input the difference (Ueff) of

the on-site Coulomb interaction energy, U, and a separate exchange interaction energy, J. The

previously determined Ueff value 3.3 for Co is used [27]. Calculations for the 0 K ground states

are carried out by relaxing all degrees of freedom.

Equation 4. 1

Page 45: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

36

The defect structure of SrCoO3-δ is built by taking one oxygen atom out of a series of

supercells. The supercells are built based on the primitive cell of SrCoO3, which

doubles the lattice parameter of the primitive cell in [001], [010] and [100] directions. The

calculated energetic are shown in Figure 4. 7.

4.4 CALPHAD modeling

The evaluation of the model parameters was performed with the PARROT module of

ThermoCalc software [30]. In this section, the Gibbs energy functions employed for the phases in

this work are detailed. The development of their models, when applicable, will also be discussed.

The Gibbs energy functions for CoO, Co3O4, SrO and SrO2 are taken from the modelings of the

Co-O [110] and Sr-O systems [111]. No phase equilibria data or intermetallic compounds for the

Co-Sr system have been reported [112]. The description for elemental Co, Sr, and O are taken

from the SGTE SSUB4 database in ThermoCalc software [67].

The modeling of the Sr-Co-O system in the current work is limited to the perovskite

phase and those phases that are in equilibrium with the perovskite, Sr6Co5O15 and Sr2Co2O5. The

low-temperature Sr6Co5O15 phase uses the sublattice model to

describe the phase’s multivalence nature [84]. Oxygen nonstoichiometry in Sr6Co5O15 is ignored

in the sublattice model, and its Gibbs energy function is taken from previous first-principles

calculations using the GGA+U correction with Ueff=3.3 [73]. The second term of the function is

fitted to reproduce the experimental phase equilibria data between Sr2Co2O5 and Sr6Co5O15 +

Co3O4 [88].

The brownmillertite phase, Sr2Co2O5, is modeled as ,

following EELS and STEM measurements showing distinct and ions [113].

Variability in the oxygen content of brownmillerite is ignored. The last three terms of the Gibbs

Page 46: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

37

energy function for brownmillerite are fitted using the first-principles predicted heat capacity.

The first two terms are determined by reproducing the phase equilibria data between Sr2Co2O5

and Sr6Co5O15 + Co3O4 and between Sr2Co2O5 and SCO [88].

SCO perovskite is described as . The

development of the model functions are detailed in the appendix, with five neutral compounds

referenced in the functions of the sublattice model’s endmembers, also shown as a figure in

Figure 4. 6. The first neutral compound is and its function parameters are

evaluated with the electrochemical oxidation potentials from Le Toquin et al [87]. The parameters

of the next two neutral compounds,

and

, are evaluated with the phase equilibria between Sr2Co2O5 and

SCO [88], the corrected oxygen nonstoichiometry data [82] and the first-principles defect

energetic data. The function for the last neutral compound,

, is taken from the modeling of the La1-xSrxMnO3-δ system [80], so as to be

consistent for the eventual merging of the two system models.

The experimental electrochemical potentials [87] were converted to the Gibbs energy

difference between Sr2Co2O5 and SCO through the Nernst equation:

Equation 4. 2

where is the number of electrons transferred (related to by

), F is Faraday’s constant

(96,485 C/mol), is the measured potential with respect to the reference electrode, and is the

potential of the reference electrode with respect to SHE. for Hg/HgO and Ag/AgCl are taken

to be 0.108 V [104]and 0.235 V [105], respectively. The measured potentials with respect to SHE

and the converted is shown in Figure 4. 1.

Page 47: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

38

The parameters describing the non-ideal interactions between species within a sublattice

is defined with the Redlich-Kister polynomial [68]. Which parameters to employ was determined

by the defect mechanism responsible for charge balance when oxygen vacancies are introduced.

In the case of LaCoO3-δ, this mechanism was determined by analyzing the PO2-dependence of δ

with the point defect model [81]. Specifically, transforms into and charge

disproportionation occurs, where two transform into a and a . Although the point

defect model, in the case of Sr-doped LaCoO3-δ, was able to reveal trends in the thermochemical

properties of oxygen vacancy formation , the use of the model to deduce the defect mechanism in

SCO fails since the relationship between and is no longer linear [82]. This is

indicative of defect-defect interations due to a large defect concentration, a violation of the

assumption of the point defect model that defects are isolated from one another in a dilute

solution. Therefore, the fitted interaction parameters in SCO are assumed to be similar to

LaCoO3-δ [81], describing the nonideal mixing of oxygen ions and oxygen vacancies in the third

sublattice. Indeed, this interaction should be even stronger than that in LCO since more oxygen

vacancies are present.

4.5 Results and discussion

The first-principles calculations on the formation energy of SCO from brownmillerite and

O2 gas shows an overestimation (~80 kJ/mol-form) comparing with the experimental values

(60~65 kJ/mol-form), shown in Figure 4. 1. The reason is mainly the limitation of GGA+U

method in predicting accurate enough energy for transition metal oxide, especially when this

oxide is deficient. Another reason is the intrinsic limitation of pseudo-potentials in VASP in

calculating accurate energy for the O2 gas molecule. The evaluated model parameters can be

found in Table.4. 4. Following the relative stability issues with the Gibbs energy functions of

Page 48: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

39

Sr6Co5O15 and Sr2Co2O5 derived from first-principles calculations shown in Table.4. 3, the

function for Sr2Co2O5 is evaluated with the first-principles and phase equilibria data. The

temperature-PO2 phase diagram for a 1:1 ratio of Sr:Co is reproduced well with the evaluated

Gibbs energy functions, shown in Figure 4. 2. To achieve this, the enthalpy of formation and

entropy at 298 K for Sr2Co2O5 and the entropy at 298 K for Sr6Co5O15 were changed from their

first-principles predicted values, as shown in Table.4. 5.

The parameters of the SCO Gibbs energy were also evaluated using the experimental

phase equilibria, reproducing the SCO- Sr2Co2O5 phase boundary. Under further reducing

conditions, all ternary phases are predicted to decompose into SrO and CoO. The model also

accurately reproduces the Gibbs energy of SCO with respect to brownmillerite at 298 K from

electrochemical oxidation, shown in Figure 4. 3 as a function of δ. It is worth noting that although

the oxygen contents of SCO and Sr2Co2O5 are different at each value of δ, their energies can be

directly compared as the excess oxygen is in the gas phase, which is taken as the reference state

in this plot. The first-principles calculations on defect energetic also support the CALPHAD

modeling predictions, shown in Figure 4. 7, where the GGA+U predict the very similar energy

profile. The SCO non-stoichiometry data is shown in Figure 4. 4 as a function of temperature and

of PO2. The model reproduces the general trend amongst the scattered data.

From the consistent fitting of the experimental data described above, the predicted defect

mechanism of the CALPHAD model for SCO is a mixture of all three cobalt valences in the

region where experimental oxygen nonstoichiometry data is available. This is shown in Figure 4.

5 as plots of the concentration of each species in the three sublattices as a function of temperature

and oxygen partial pressure. In air at 1273 K, SCO is predicted to contain about 30% . The

presence of in SCO is consistent with interpretations of XANES and XAS studies of LSCO

[114-116] and can be considered physically equivalent to electron holes. The presence of is

a consequence of the consistent modeling of the Gibbs energy data near δ=0 from the

Page 49: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

40

electrochemical oxidation of SCO and the oxygen nonstoichiometry around δ=0.5. However, the

absolute amount of can change by an order of magnitude with the addition of more model

parameters. To fix the quantity requires more data related to the concentration of the various

cobalt valences, either from experiments or first-principles calculations. Regardless, to reproduce

the experimental oxygen nonstoichiometry behavior, the presence of was required.

4.6 Conclusion

First-principles defect calculations on SCO have been performed to give an indication on

the Gibbs curve of SCO with respect to δ. The first-principles calculated properties on Sr6Co5O15

and Sr2Co2O5 have been remodeled in the CALPHAD approach to give a correct phase stability.

A thermodynamic model has been developed for SrCoO3-δ cubic perovskite using the CALPHAD

method, as well as its neighboring phases. The defect mechanism for SCO required the presence

of to reproduce the experimental oxygen nonstoichiometry data, enabling the interpretation

of experimental observations.

Page 50: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

41

Table.4. 1 Current experimental measurements of δ in SrCoO3- δ.

PO2 [atm] Temperature [K] δ

0.005 1223 0.4929

0.005 1273 0.5040

0.209 1223 0.4816

0.209 1273 0.4947

1 1223 0.4480

1 1273 0.4610

Page 51: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

42

Table.4. 2 Lattice parameters, enthalpies of formation, and anti-ferromagnetic magnetic moments

of Sr2Co2O5 brownmillerite from first-principles calculations compared to experiments. Results

are shown for Sr2Co2O5 in the Pnma (62) and Ima2 (46) structures, with and without the GGA+U

correction. Experimental lattice parameters [85] are taken at 10 K from the same neutron powder-

diffraction data under the two space group settings.

a [Å] %

error

b [Å] %

error

c [Å] %

error

ΔfH [kJ/mol-

atom]

Moments

[µB]

Pnma

GGA+U

5.519 1.12 15.772 0.85 5.659 1.70 -9.098 2.90, 2.85

Pnam GGA 5.525 1.22 15.694 0.35 5.674 1.96 -5.569 2.53, 2.47

Pnma Exp. 5.458 15.639 5.564 3.21, 2.88

Ima2

GGA+U

15.888 1.60 5.658 1.68 5.474 0.29 -8.592 2.90, 2.88

Ima2 GGA 16.145 3.25 5.615 0.90 5.384 -1.35 -5.245 2.52, 2.35

Ima2 Exp. 15.6388 5.564 5.458 3.21, 2.88

Page 52: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

43

Table.4. 3 Gibbs energy functions of Sr2Co2O5 and Sr6Co5O15 fitted to first-principles calculations

with and without GGA+U, in J/mol-form.

Phases Function

Sr2Co2O5 GGA+U -1967816+1301*T-213.7345*TlnT-0.0237988*T2+1635410*T

-1

Sr2Co2O5 GGA -1936053+1301*T-213.7345*TlnT-0.0237988*T2+1635410*T

-1

Sr6Co5O15 GGA+U -5599516+3694*T-602.2313*TlnT-0.08952871*T2+4863524*T

-1

Sr6Co5O15 GGA -5887576+3694*T-602.2313*TlnT-0.08952871*T2+4863524*T

-1

Page 53: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

44

Table.4. 4 Gibbs energy functions for the phases modeled in the current work, in J/mol-form.

Gibbs energy functions for the pure elements and the (Va) (Va) (Va)3 SrCoO3- δ neutral

compound can be found in the database file as supplementary material.

Phases Parameter Function

SrCoO3- δ

-453305

206048

358786

Sr2Co2O5 -1744533+1112.8*T-213.7345*TlnT-

0.0237988*T2+1635410*T

-1

Sr6Co5O15 -5887997+3804*T-602.2313*TlnT-

0.08952871*T2+4863524*T

-1

Page 54: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

45

Table.4. 5 Enthalpies of formation and entropies at 298 K of Sr2Co2O5 and Sr6Co5O15 with respect

to the elements from first-principles calculations with GGA+U and from the current CALPHAD

modeling. Note that direct comparison between the two phases is not possible as their

compositions are different.

[kJ/mol-atom] [J/mol-atom/K]

Sr6Co5O15 FP -206.90 17.35

Sr6Co5O15 CALPHAD -217.99 13.12

Sr2Co2O5 FP -210.11 18.25

Sr2Co2O5 CALPHAD -185.30 39.17

Page 55: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

46

Figure 4. 1 (Top) Electrochemical potential from brownmillerite to SrCoO3 from Le Toquin et al.

[87] (red solid lines), Nemudry et al. [103] (blue dashed lines), and Bezdika et al. [102] (green

circles) and (Bottom) converted to Gibbs energy by Nernst equation. First-principles calculations

from the present work are given as purple triangles.

Page 56: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

47

Figure 4. 2 PO2 vs. temperature phase diagram of Sr:Co ratio 1:1 with experimental phase

boundary data from Vashook et al. [88] (circles and triangles), Takeda et al. [99] (diamond), and

Rodriguez et al. [97] (square).

Page 57: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

48

Figure 4. 3 Gibbs energy of SCO as a function of δ from CALPHAD at 298 K with experimental

data (triangles) [87]. The units are in kJ/mol-form for SrCoO3- δ. The reference state for the top

figure is 3.25 moles of brownmillerite at corresponding temperature and ambient pressure.

Page 58: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

49

Figure 4. 4 Temperature and PO2-dependence of δ, top and bottom, respectively, calculated from

model parameters in the current work and compared to experiments [82, 99-101]. Numbers in the

legends refer to fixed PO2 for the top figure and temperature for the bottom figure.

Page 59: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

50

Figure 4. 5 Site occupancies of the SCO sublattice model as a function of temperature in air (top)

and PO2 at 1273 K (bottom). 1for Sr+2

, 2 for Va in A-site, 3 for Co+2

, 4 for Co+3

, 5 for Co+4

, 6 for

Va in B-site, 7 for O-2

, 8 for Va in oxygen site.

Page 60: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

51

Figure 4. 6 Schematic projection of the composition space of the

sublattice model and the plane defining possible

electrically neutral compositions. Red points correspond to the neutral compounds chosen for the

current work.

Page 61: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

52

Figure 4. 7 The formation enthalpy of defect SCO with respect to O2 and brownmillerite at 0 K,

obtained from the defect energy calculations. The y axis is the formation enthalpy in eV/formula

SCO, x axis is the δ.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Form

atio

n e

nth

alp

y (e

V)

δ in SrCoO3-δ

Defect energetic by PBE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

Form

atio

n e

nth

alp

y (e

V)

δ in SrCoO3-δ

Defect energetic by PBE+U

Page 62: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

Chapter 5 Conclusions and future work

5.1 Conclusions

The CALPHAD approach has been approved effective and advantageous in predicting

the thermodynamic properties and phase stabilities of oxide systems in a consistent manner. The

prediction is based on a rational modeling of all the experimental and calculated data. The

modeled oxide system La2O3-TiO2 contains interesting dielectric phases. The phase

transformation and thermodynamic properties are recorded in our current database, as a useful

reference for future manufacturing or investigation. SrCoO3-δ is well known for its high ionic and

electronic conductivity, promising as a dope material to LaCoO3-δ for ion transport membrane,

cathode of solid oxide fuel cell, etc. The constructed database can well capture the oxygen

vacancy concentrations as a function of temperature and partial pressure of oxygen gas. The

database can be used to further predict the defect behavior and phase stability of Sr-doped

LaCoO3-δ under service conditions.

5.2 Future work

The future work can be carried out on the following directions:

The robustness of Debye model with scaling parameter as 1 in predicting the

thermodynamic properties of oxides can be validated by phonon calculations.

Test the phase stability and oxygen defect concentration of LaSrCoO3-δ database

under service conditions.

Page 63: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

54

Continue on another system, SrTiO Ruddlesden-Popper series.

Phonon calculations on SrTiO Ruddlesden-Popper series is needed to investigate

the lattice dynamics.

Deformation charge density can be utilized to study the bond property in SrTiO

inter-layers.

The dielectric permittivity of unstable lattice is going to be further investigated.

Page 64: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

Appendix A

SrCoO3-δ perovskite sublattice model

In this appendix, the construction of the sublattice model and related Gibbs energy

functions for SCO perovskite is detailed. The model is constructed in a manner similar to those

for the La1-xSrxMnO3-δ (LSMO) [80] and LaCoO3-δ (LCO) [81] systems for the possible merging

of all three databases. The SCO sublattice model is:

.

Despite the lack of cation vacancies in experimental observations, they are include in the

model for consistency with LSMO. With this sublattice model, the Gibbs energies of 16

endmembers must be defined, each with at least two model parameters, the enthalpies and

entropies of formation ( and , respectively), which are evaluated from experimental and

first-principles data. However, by enforcing charge neutrality conditions, the number of model

parameters is greatly reduced by defining only the Gibbs energies of neutral compounds and

describing the Gibbs energies of non-neutral endmembers with these neutral compounds via

reciprocal relations. This requires a system of 16 independent equations to describe the 16

endmembers. To minimize the number of model parameters, the number of neutral compounds

must be minimized. At most, ten independent reciprocal relations can be defined after imposing

charge and mass balance, as determined by the current sublattice model. An arbitrary reference

energy is chosen as well, providing another equation. Therefore, at least five neutral compounds

must be selected to provide the necessary 16 equations.

The composition space of the SCO sublattice model can be visualized as a cube, where

each edge corresponds to the occupation of a sublattice, as shown in Figure 4. 6. The three

character labels refer to the constituent each sublattice (i.e. S3V corresponds to

Page 65: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

56

). It should be noted that not all compositions within the sublattice model are

shown in this cube, specifically certain compositions with more than one species in the second

sublattice, such as

. To show all possible compositions would

require a separate axis for mixing between energy species in the second sublattice, resulting in an

8-dimensional figure. Therefore, a simplified schematic of the composition space is shown in for

visualization purposes only. All 16 endmembers are found along the edges of the cube, where

each sublattice is occupied by only one species. Not every point in this composition space

satisfies charge neutrality. The compositions that are neutral, and physically capable of existing

by themselves, lie on a plane through the composition space, also shown in, which again is a

projection of a multi-dimensional hyper surface. Many endmembers lie outside this plane and are

not neutral. Indeed, only two endmembers are neutral, stoichiometric SrCoO3(S4O) and VVV.

Other neutral stoichiometric compounds can be defined, by introducing mixing between

oxygen and vacancies in the third sublattice. In this way, six more independent neutral

compounds can be generated: two with Sr and Co present

and

; three with Sr vacancies

,

, and

; and the last with Co vancacy

. Of these six, three must be chosen to complement the two neutral

endmembers.

and

are natural

choices since these compositions are closest to what is described by the experimental data. The

choice of the last compound is arbitrary since those endmembers that depend on the last neutral

compound will have their functions defined by the LCO and LSMO modelings, discussed later in

the appendix. For the purposes of the following discussion, the

compound is chosen. The Gibbs energy functions of the five neutral compounds are defined as:

Page 66: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

57

Equation A. 1

Equation A. 2

Equation A. 3

Equation A. 4

where , and are the Gibbs energies of elemental strontium, cobalt, and oxygen,

respectively, taken from the SGTE SSUB4 database. and

are the enthalpy and entropy

of formation of compound , respectively, and T is the temperature. The final neutral compound

Gibbs energy function, is taken from the modeling of the LSMO system, described

in more detail later.

Although the 16 endmembers would have involved 32 model parameters ( and

for each endmember), the current choice of the five neutral compounds has only eight model

parameters (VVV has none as it is taken from a previous modeling without modification). The

Gibbs energies of the 16 endmembers (defined herein as GXXX where XXX is the endmember

designation, e.g. GV4O) are written in terms of the Gibbs energies of the five neutral compounds

by devising a system of 16 equations that relate the endmembers to the neutral compounds. First

there are two endmembers that are neutral compounds:

Equation A. 5

Equation A. 6

Next are three equations describing the remaining neutral compounds as ideal mixtures of

endmembers:

Equation A. 7

Equation A. 8

Equation A. 9

Page 67: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

58

where R is the gas constant. Another equation is the choice of an arbitrary reference. In this case,

it is the assumption that VVO is equivalent to VVV plus oxygen gas:

Equation A. 10

The last ten equations consist of reciprocal relations describing charge neutral reactions between

the remaining endmembers that haven’t been included in the previous six equations:

Equation A. 11

Equation A. 12

Equation A. 13

Equation A. 14

Equation A. 15

Equation A. 16

Equation A. 17

Equation A. 18

Equation A. 19

Equation A. 20

where is the Gibbs energy of reciprocal relation j. The value of all ten are assumed to

be zero as they involve endmembers that are far from the neutral plane. By solving this system of

equations, the Gibbs energies of the 16 endmembers can be written in terms of the Gibbs energies

of the five neutral compounds. The resulting endmember functions can be found in the database

file included online as supplementary material.

To combine the LCO and SCO models into LSCO and then eventually combine LSCO

with LSMO, certain considerations of the LCO and SCO models must be made. The construction

of the sublattice model, described above, is the first ,where cation vacancies have been included.

The second consideration is to ensure that the endmembers that are common across systems have

Page 68: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

59

the same Gibbs energy functions. For instance, the VVO and VVV endmembers are present in all

three systems. The functions for these two endmembers are taken from the LSMO modeling since

it has already been completed. Between LCO and LSMO , the LVO and LVV endmembers

overlap and their energies are taken from LSMO. Between LCO and SCO, the common

endmembers are V2O, V3O, V4O, V2V, V3V, and V4V and their Gibbs energy functions are

taken from LCO. With this consideration, the SCO system is dependent on functions from the

LCO system. Lastly, the SVO and SVV endmembers are found in both LSMO and SCO and their

Gibbs energy functions are taken from LSMO, making the choice of the last neutral compound

for SCO arbitrary (as discussed above) since all endmember functions that depend on it have been

taken from other sources.

This borrowing of endmember functions leads to counter-intuitive behavior, where now

the energy of SCO perovskite is dependent on the Gibbs energy of unrelated elements, in this

case Mn and La. Indeed, the inter-dependence of all the endmember Gibbs energy functions is an

issue with the current sublattice model approach, particularly with ionic systems, where

developing models for new systems requires explicitly considering the higher-order systems that

may be later developed. The inverse pyramid problem that currently exists within the extensive

CALPHAD databases that have been developed for metallic alloy systems is much more

pronounced for ionic solid solutions, where functions from other systems must be incorporated in

the development of the subsystem.

Page 69: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

60

Appendix B

La2O3-TiO2 Thermo-Calc database

$ Database file written 2012- 9-19

$ From database: User data 2012. 8.16

ELEMENT /- ELECTRON_GAS 0.0000E+00 0.0000E+00 0.0000E+00!

ELEMENT VA VACUUM 0.0000E+00 0.0000E+00 0.0000E+00!

ELEMENT LA DHCP 1.3891E+02 0.0000E+00 0.0000E+00!

ELEMENT O 1/2_MOLE_O2(GAS) 1.5999E+01 4.3410E+03 1.0252E+02!

ELEMENT TI HCP_A3 4.7880E+01 4.8100E+03 3.0648E+01!

SPECIES LA+3 LA1/+3!

SPECIES LA1O1 LA1O1!

SPECIES LA2O1 LA2O1!

SPECIES LA2O2 LA2O2!

SPECIES LA2O3 LA2O3!

SPECIES O-2 O1/-2!

SPECIES O1TI1 O1TI1!

SPECIES O2 O2!

SPECIES O2TI1 O2TI1!

SPECIES O3 O3!

SPECIES O3TI2 O3TI2!

SPECIES O5TI3 O5TI3!

SPECIES O7TI4 O7TI4!

SPECIES TI+4 TI1/+4!

SPECIES TI2 TI2!

SPECIES TIO2 O2TI1!

FUNCTION F12306T 2.98150E+02 +418123.955-30.3347885*T-22.06299*T*LN(T)

-.005444405*T**2+4.71447833E-07*T**3+102710.1*T**(-1); 6.00000E+02 Y

+422478.905-85.4786167*T-13.83676*T*LN(T)-.011938995*T**2

+1.33826017E-06*T**3-312130.2*T**(-1); 1.30000E+03 Y

+400310.17+114.016724*T-42.00406*T*LN(T)+.0037094435*T**2

-2.70261E-07*T**3+2891891*T**(-1); 3.20000E+03 Y

+493601.747-246.085237*T+2.791973*T*LN(T)-.006002155*T**2

+1.30043383E-07*T**3-34158815*T**(-1); 8.20000E+03 Y

-96493.044+773.338363*T-111.0188*T*LN(T)+.0037862445*T**2

-2.82257667E-08*T**3+5.418475E+08*T**(-1); 1.00000E+04 N !

FUNCTION F12329T 2.98150E+02 -124719.967-24.5469489*T-31.53764*T*LN(T)

-.0051956*T**2+7.60442333E-07*T**3+103677.85*T**(-1); 9.00000E+02 Y

-126335.849+7.93847572*T-36.65559*T*LN(T)+2.4937065E-04*T**2

-2.05688333E-07*T**3+108868.35*T**(-1); 2.50000E+03 Y

-130958.323-23.9414483*T-31.58251*T*LN(T)-.003177688*T**2

+6.84986667E-08*T**3+5676870*T**(-1); 5.40000E+03 Y

-32341.6729-213.786313*T-10.21743*T*LN(T)-.005021225*T**2

+9.162985E-08*T**3-74562000*T**(-1); 1.00000E+04 N !

FUNCTION F12355T 2.98150E+02 -22020.3276+46.9195451*T-51.12563*T*LN(T)

Page 70: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

61

-.005701935*T**2+8.637425E-07*T**3+212452.95*T**(-1); 1.00000E+03 Y

-25871.5823+93.9280348*T-58.13034*T*LN(T)-1.332372E-05*T**2

+4.41584333E-10*T**3+616730*T**(-1); 6.00000E+03 N !

FUNCTION F12359T 2.98150E+02 -611505.065+54.8487779*T-51.72813*T*LN(T)

-.028452875*T**2+4.99643833E-06*T**3+271002.95*T**(-1); 7.00000E+02 Y

-626470.385+256.452172*T-82.32033*T*LN(T)-1.8245965E-04*T**2

+6.891315E-09*T**3+1664162*T**(-1); 5.10000E+03 Y

-641095.137+293.838139*T-86.72291*T*LN(T)+4.319301E-04*T**2

-9.75906E-09*T**3+11187120*T**(-1); 6.00000E+03 N !

FUNCTION F13634T 2.98150E+02 +243206.494-20.8612587*T-21.01555*T*LN(T)

+1.2687055E-04*T**2-1.23131283E-08*T**3-42897.09*T**(-1); 2.95000E+03

Y

+252301.423-52.0847285*T-17.21188*T*LN(T)-5.413565E-04*T**2

+7.64520667E-09*T**3-3973170.5*T**(-1); 6.00000E+03 N !

FUNCTION F13856T 2.98150E+02 +45279.4548-44.8816804*T-27.20855*T*LN(T)

-.01130768*T**2+2.093465E-06*T**3+15817.82*T**(-1); 8.00000E+02 Y

+38441.7464+44.9717327*T-40.8145*T*LN(T)+.001204741*T**2

-1.26287067E-07*T**3+690966.5*T**(-1); 2.60000E+03 Y

+78758.7743-116.513547*T-20.67482*T*LN(T)-.0031585015*T**2

+4.49507333E-08*T**3-14168070*T**(-1); 4.30000E+03 Y

+107274.033-220.711751*T-7.872196*T*LN(T)-.00560405*T**2

+1.29955033E-07*T**3-25273450*T**(-1); 6.00000E+03 N !

FUNCTION F14003T 2.98150E+02 -6960.69252-51.1831473*T-22.25862*T*LN(T)

-.01023867*T**2+1.339947E-06*T**3-76749.55*T**(-1); 9.00000E+02 Y

-13136.0172+24.743296*T-33.55726*T*LN(T)-.0012348985*T**2

+1.66943333E-08*T**3+539886*T**(-1); 3.70000E+03 Y

+14154.6461-51.4854586*T-24.47978*T*LN(T)-.002634759*T**2

+6.01544333E-08*T**3-15120935*T**(-1); 9.60000E+03 Y

-314316.628+515.068037*T-87.56143*T*LN(T)+.0025787245*T**2

-1.878765E-08*T**3+2.9052515E+08*T**(-1); 1.85000E+04 Y

-108797.175+288.483019*T-63.737*T*LN(T)+.0014375*T**2-9E-09*T**3

+.25153895*T**(-1); 2.00000E+04 N !

FUNCTION F14219T 2.98150E+02 -317236.334-34.3402551*T-31.38*T*LN(T)

-.02810811*T**2+5.84100333E-06*T**3+38666.435*T**(-1); 6.00000E+02 Y

-326946.95+118.875262*T-55.31666*T*LN(T)-.0013442355*T**2

+1.16887017E-07*T**3+791905.5*T**(-1); 1.80000E+03 Y

-335731.446+173.77285*T-62.65958*T*LN(T)+.001471994*T**2

-9.15459167E-08*T**3+2826501*T**(-1); 3.90000E+03 Y

-257501.28-63.8977089*T-34.08998*T*LN(T)-.0031802585*T**2

+5.10434E-08*T**3-37446800*T**(-1); 6.00000E+03 N !

FUNCTION F14300T 2.98150E+02 +130696.944-37.9096651*T-27.58118*T*LN(T)

-.02763076*T**2+4.60539333E-06*T**3+99530.45*T**(-1); 7.00000E+02 Y

+114760.623+176.626736*T-60.10286*T*LN(T)+.00206456*T**2

-5.17486667E-07*T**3+1572175*T**(-1); 1.30000E+03 Y

+49468.3958+710.094819*T-134.3696*T*LN(T)+.039707355*T**2

-4.10457667E-06*T**3+12362250*T**(-1); 2.10000E+03 Y

+866367.075-3566.80563*T+421.2001*T*LN(T)-.1284109*T**2

+5.44768833E-06*T**3-2.1304835E+08*T**(-1); 2.80000E+03 Y

+409416.384-1950.70834*T+223.4437*T*LN(T)-.0922361*T**2

Page 71: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

62

+4.306855E-06*T**3-21589870*T**(-1); 3.50000E+03 Y

-1866338.6+6101.13383*T-764.8435*T*LN(T)+.09852775*T**2

-2.59784667E-06*T**3+9.610855E+08*T**(-1); 4.90000E+03 Y

+97590.0432+890.79836*T-149.9608*T*LN(T)+.01283575*T**2

-3.555105E-07*T**3-2.1699975E+08*T**(-1); 6.00000E+03 N !

FUNCTION F15809T 2.98150E+02 +467609.96-25.7916835*T-23.45359*T*LN(T)

+.0026178525*T**2-4.83678833E-07*T**3-101456.95*T**(-1); 1.80000E+03 Y

+492971.637-184.379175*T-2.247876*T*LN(T)-.005476885*T**2

+1.10024367E-07*T**3-5945505*T**(-1); 4.50000E+03 Y

+364869.208+112.534909*T-36.55164*T*LN(T)-.0016270125*T**2

+3.69943667E-08*T**3+80422300*T**(-1); 1.00000E+04 N !

FUNCTION F15814T 2.98150E+02 +804579.989-13.3244359*T-33.852*T*LN(T)

-.01680915*T**2+4.05913E-06*T**3+159805*T**(-1); 6.00000E+02 Y

+797116.458+109.508534*T-53.131*T*LN(T)+.00501905*T**2-5.1425E-07*T**3

+693380*T**(-1); 1.50000E+03 Y

+796667.915+69.7367642*T-46.792*T*LN(T)-6.3645E-04*T**2

+1.78673333E-07*T**3+2125430*T**(-1); 3.20000E+03 Y

+779355.318+192.57083*T-63.044*T*LN(T)+.00452695*T**2

-9.56883333E-08*T**3+2443585*T**(-1); 6.00000E+03 N !

FUNCTION F14217T 2.98150E+02 -960529.837+452.615001*T-73.60493*T*LN(T)

-5.417235E-04*T**2+2.30475667E-10*T**3+820566*T**(-1); 2.50000E+03 N !

FUNCTION F12364T 2.98150E+02 -1835600.03+674.720454*T-118*T*LN(T)

-.008*T**2+620000*T**(-1); 2.31300E+03 Y

-1835600.03+674.720454*T-118*T*LN(T)-.008*T**2+620000*T**(-1);

2.38300E+03 Y

-1835600.03+674.720454*T-118*T*LN(T)-.008*T**2+620000*T**(-1);

2.58600E+03 Y

-1993673.35+1359.59688*T-200*T*LN(T); 3.50000E+03 N !

FUNCTION F12294T 2.98150E+02 -7968.40253+120.285004*T-26.34*T*LN(T)

-.0012951655*T**2; 5.50000E+02 Y

-6473.78487+90.540705*T-21.79186*T*LN(T)-.004045175*T**2

-5.25864667E-07*T**3; 1.13400E+03 Y

-19863.1881+221.907689*T-39.5388*T*LN(T); 1.19300E+03 Y

-13623.7981+179.627185*T-34.3088*T*LN(T); 4.00000E+03 N !

FUNCTION F13862T 2.98150E+02 -555240.766+255.476941*T-41.99481*T*LN(T)

-.008897925*T**2+1.09704483E-08*T**3+327015.15*T**(-1); 2.50000E+03 N

!

FUNCTION F13864T 2.98150E+02 -553995.486+252.337175*T-42.02033*T*LN(T)

-.00887556*T**2+8.50398E-09*T**3+327636.5*T**(-1); 2.50000E+03 N !

FUNCTION F14385T 2.98150E+02 -1538355.76+186.17228*T-30.39341*T*LN(T)

-.0999589*T**2-5.93279333E-06*T**3-117799.05*T**(-1); 4.70000E+02 Y

-1581243.08+940.165431*T-147.6739*T*LN(T)-.001737113*T**2

-1.5338335E-10*T**3+2395423.5*T**(-1); 2.11500E+03 Y

-1590717.7+1012.14848*T-156.9*T*LN(T); 3.50000E+03 N !

FUNCTION F14558T 2.98150E+02 -2480155.81-145.108389*T+36.566*T*LN(T)

-.45188165*T**2+1.48742467E-04*T**3-55595*T**(-1); 4.50000E+02 Y

-2509088.54+951.683781*T-158.99*T*LN(T)-.0251054*T**2+1.65E-10*T**3

-145*T**(-1); 2.05000E+03 Y

-2626597.38+1787.09774*T-267.776*T*LN(T); 4.00000E+03 N !

Page 72: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

63

FUNCTION F14623T 2.98150E+02 -3459640.85+637.993041*T-103.0247*T*LN(T)

-.26368195*T**2+6.825275E-05*T**3+682992*T**(-1); 5.00000E+02 Y

-3510274.22+1643.59334*T-267.0379*T*LN(T)-.02467493*T**2

+2.37708333E-06*T**3+3660393.5*T**(-1); 1.00000E+03 Y

-3523423.82+1791.6491*T-288.7985*T*LN(T)-.008510485*T**2

+1.118704E-07*T**3+5171905*T**(-1); 1.95000E+03 Y

-3642234.52+2439.21992*T-368.192*T*LN(T); 4.00000E+03 N !

FUNCTION F14225T 2.98150E+02 -966837.628+381.983612*T-63.19571*T*LN(T)

-.005910235*T**2+3.25307833E-11*T**3+517357*T**(-1); 2.18500E+03 Y

-1018565.33+675.854121*T-100*T*LN(T); 5.00000E+03 N !

FUNCTION F15795T 2.98150E+02 -8059.92077+133.615208*T-23.9933*T*LN(T)

-.004777975*T**2+1.06715833E-07*T**3+72636*T**(-1); 9.00000E+02 Y

-7811.81451+132.988068*T-23.9887*T*LN(T)-.0042033*T**2

-9.08763333E-08*T**3+42680*T**(-1); 1.15500E+03 Y

+2497.40918+108.976786*T-22.3771*T*LN(T)+.00121707*T**2

-8.4534E-07*T**3-2002750*T**(-1); 1.94100E+03 Y

-38203.0419+309.635108*T-46.29*T*LN(T); 4.00000E+03 N !

FUNCTION F14226T 2.98150E+02 -966837.628+381.983612*T-63.19571*T*LN(T)

-.005910235*T**2+3.25307833E-11*T**3+517357*T**(-1)-966837.628

+381.983612*T-63.19571*T*LN(T)-.005910235*T**2+3.25307833E-11*T**3

+517357*T**(-1); 2.18500E+03 Y

-1018565.33+675.854121*T-100*T*LN(T)-1018565.33+675.854121*T

-100*T*LN(T); 5.00000E+03 N !

FUNCTION UN_ASS 298.15 0; 300 N !

TYPE_DEFINITION % SEQ *!

DEFINE_SYSTEM_DEFAULT ELEMENT 2 !

DEFAULT_COMMAND DEF_SYS_ELEMENT VA /- !

PHASE GAS:G % 1 1.0 !

CONSTITUENT GAS:G :LA,LA1O1,LA2O1,LA2O2,O,O1TI1,O2,O2TI1,O3,TI,TI2 : !

PARAMETER G(GAS,LA;0) 2.98150E+02 +F12306T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF1 !

PARAMETER G(GAS,LA1O1;0) 2.98150E+02 +F12329T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF23 !

PARAMETER G(GAS,LA2O1;0) 2.98150E+02 +F12355T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF45 !

PARAMETER G(GAS,LA2O2;0) 2.98150E+02 +F12359T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF67 !

PARAMETER G(GAS,O;0) 2.98150E+02 +F13634T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF89 !

PARAMETER G(GAS,O1TI1;0) 2.98150E+02 +F13856T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF100 !

PARAMETER G(GAS,O2;0) 2.98150E+02 +F14003T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF115 !

PARAMETER G(GAS,O2TI1;0) 2.98150E+02 +F14219T#+R#*T*LN(1E-05*P);

Page 73: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

64

6.00000E+03 N REF123 !

PARAMETER G(GAS,O3;0) 2.98150E+02 +F14300T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF139 !

PARAMETER G(GAS,TI;0) 2.98150E+02 +F15809T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF146 !

PARAMETER G(GAS,TI2;0) 2.98150E+02 +F15814T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF153 !

PHASE LIQUID:Y % 2 2 4 !

CONSTITUENT LIQUID:Y :LA+3,TI+4 : O-2 : !

PARAMETER G(LIQUID,LA+3:O-2;0) 2.98150E+02 +F12364T#+182569.7

-74.6752579*T; 6.00000E+03 N REF0 !

PARAMETER G(LIQUID,TI+4:O-2;0) 2.98150E+02 +F14226T#+136000-62.242563*T;

6.00000E+03 N REF0 !

PARAMETER G(LIQUID,LA+3,TI+4:O-2;0) 2.98150E+02 -7.34863500E+05

+2.87790675E+02*T;

6.00000E+03 N REF0 !

PARAMETER G(LIQUID,LA+3,TI+4:O-2;1) 2.98150E+02 -8.30032818E+04

+9.19776824E+00*T;

6.00000E+03 N REF0 !

PARAMETER G(LIQUID,LA+3,TI+4:O-2;2) 2.98150E+02 -2.91222006E+05

+1.07217594E+02*T;

6.00000E+03 N REF0 !

PHASE ANATASE % 1 1.0 !

CONSTITUENT ANATASE :O2TI1 : !

PARAMETER G(ANATASE,O2TI1;0) 2.98150E+02 +F14217T#; 6.00000E+03 N

REF164 !

PHASE L2T3 % 2 2 3 !

CONSTITUENT L2T3 :LA2O3 : O2TI1 : !

PARAMETER G(L2T3,LA2O3:O2TI1;0) 2.98150E+02 -6.8647224E+06+

2.7640084E+03*T-4.5257611E+02*T*LN(T)

-2.6907898E-02*T**2+4.2219633E+06*T**(-1); 1.90000E+03 N REF0 !

PHASE L2T9 % 2 2 9 !

CONSTITUENT L2T9 :LA2O3 : O2TI1 : !

PARAMETER G(L2T9,LA2O3:O2TI1;0) 2.98150E+02 +2*F12364T#+9*F14225T#

-3.7075262E+05

+1.0135978E+02*T; 6.00000E+03 N REF0 !

Page 74: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

65

PHASE LA2O3_L % 1 1.0 !

CONSTITUENT LA2O3_L :LA2O3 : !

PARAMETER G(LA2O3_L,LA2O3;0) 2.98150E+02 +F12364T#+182569.7

-74.6752579*T; 6.00000E+03 N REF177 !

PHASE LA2O3_S % 1 1.0 !

CONSTITUENT LA2O3_S :LA2O3 : !

PARAMETER G(LA2O3_S,LA2O3;0) 2.98150E+02 +F12364T#; 6.00000E+03 N

REF177 !

PHASE LA2O3_S2 % 1 1.0 !

CONSTITUENT LA2O3_S2 :LA2O3 : !

PARAMETER G(LA2O3_S2,LA2O3;0) 2.98150E+02 +F12364T#+46000-19.8875919*T;

6.00000E+03 N REF177 !

PHASE LA2O3_S3 % 1 1.0 !

CONSTITUENT LA2O3_S3 :LA2O3 : !

PARAMETER G(LA2O3_S3,LA2O3;0) 2.98150E+02 +F12364T#+106000-45.0659385*T;

6.00000E+03 N REF177 !

PHASE LA_L % 1 1.0 !

CONSTITUENT LA_L :LA : !

PARAMETER G(LA_L,LA;0) 2.98150E+02 +F12294T#+9681.8-8.60833593*T;

6.00000E+03 N REF192 !

PHASE LA_S % 1 1.0 !

CONSTITUENT LA_S :LA : !

PARAMETER G(LA_S,LA;0) 2.98150E+02 +F12294T#; 6.00000E+03 N REF192 !

PHASE LA_S2 % 1 1.0 !

CONSTITUENT LA_S2 :LA : !

PARAMETER G(LA_S2,LA;0) 2.98150E+02 +F12294T#+364-.661818182*T;

6.00000E+03 N REF192 !

Page 75: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

66

PHASE LA_S3 % 1 1.0 !

CONSTITUENT LA_S3 :LA : !

PARAMETER G(LA_S3,LA;0) 2.98150E+02 +F12294T#+3485.3-3.41428732*T;

6.00000E+03 N REF192 !

PHASE LT % 2 1 1 !

CONSTITUENT LT :LA2O3 : O2TI1 : !

PARAMETER G(LT,LA2O3:O2TI1;0) 2.98150E+02 -2.9123858E+06+1.2461710E+03*T

-2.0568196E+02*T*LN(T)

-1.7808189E-03*T**2+2.1759025E+06*T**(-1); 6.00000E+03 N REF0 !

PHASE LT2CMC21 % 2 1 2 !

CONSTITUENT LT2CMC21 :LA2O3 : O2TI1 : !

PARAMETER G(LT2CMC21,LA2O3:O2TI1;0) 2.98150E+02 -3.9241707E+06

+1.6465507E+03*T-2.7051041E+02*T*LN(T)-6.8867511E-03*T**2

+2.1807586E+06*T**(-1)-1.7292000E+04

+9.7529611E+00*T; 6.00000E+03 N REF0 !

PHASE LT2CMCM % 2 1 2 !

CONSTITUENT LT2CMCM :LA2O3 : O2TI1 : !

PARAMETER G(LT2CMCM,LA2O3:O2TI1;0) 2.98150E+02 -3.9241707E+06

+1.6465507E+03*T-2.7051041E+02*T*LN(T)

-6.8867511E-03*T**2+2.1807586E+06*T**(-1);

6.00000E+03 N REF0 !

PHASE LT2P21 % 2 1 2 !

CONSTITUENT LT2P21 :LA2O3 : O2TI1 : !

PARAMETER G(LT2P21,LA2O3:O2TI1;0) 2.98150E+02 -3.9241707E+06

+1.6465507E+03*T-2.7051041E+02*T*LN(T)

-6.8867511E-03*T**2+2.1807586E+06*T**(-1)

-2.3167279E+04+1.5332523E+01*T; 6.00000E+03 N REF0 !

PHASE O1TI1_ALPHA % 1 1.0 !

CONSTITUENT O1TI1_ALPHA :O1TI1 : !

PARAMETER G(O1TI1_ALPHA,O1TI1;0) 2.98150E+02 +F13862T#; 6.00000E+03

N REF0 !

Page 76: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

67

PHASE O1TI1_BETA % 1 1.0 !

CONSTITUENT O1TI1_BETA :O1TI1 : !

PARAMETER G(O1TI1_BETA,O1TI1;0) 2.98150E+02 +F13864T#; 6.00000E+03

N REF0 !

PHASE O3TI2_L % 1 1.0 !

CONSTITUENT O3TI2_L :O3TI2 : !

PARAMETER G(O3TI2_L,O3TI2;0) 2.98150E+02 +F14385T#+105738-51.8775414*T;

6.00000E+03 N REF0 !

PHASE O3TI2_S % 1 1.0 !

CONSTITUENT O3TI2_S :O3TI2 : !

PARAMETER G(O3TI2_S,O3TI2;0) 2.98150E+02 +F14385T#; 6.00000E+03 N

REF0 !

PHASE O3TI2_S2 % 1 1.0 !

CONSTITUENT O3TI2_S2 :O3TI2 : !

PARAMETER G(O3TI2_S2,O3TI2;0) 2.98150E+02 +F14385T#+1138-2.4212766*T;

6.00000E+03 N REF0 !

PHASE O5TI3_L % 1 1.0 !

CONSTITUENT O5TI3_L :O5TI3 : !

PARAMETER G(O5TI3_L,O5TI3;0) 2.98150E+02 +F14558T#+184807-113.153333*T;

6.00000E+03 N REF0 !

PHASE O5TI3_S % 1 1.0 !

CONSTITUENT O5TI3_S :O5TI3 : !

PARAMETER G(O5TI3_S,O5TI3;0) 2.98150E+02 +F14558T#; 6.00000E+03 N

REF0 !

PHASE O5TI3_S2 % 1 1.0 !

CONSTITUENT O5TI3_S2 :O5TI3 : !

PARAMETER G(O5TI3_S2,O5TI3;0) 2.98150E+02 +F14558T#+13263-29.4733333*T;

6.00000E+03 N REF0 !

Page 77: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

68

PHASE O7TI4_L % 1 1.0 !

CONSTITUENT O7TI4_L :O7TI4 : !

PARAMETER G(O7TI4_L,O7TI4;0) 2.98150E+02 +F14623T#+225936-115.864615*T;

6.00000E+03 N REF0 !

PHASE O7TI4_S % 1 1.0 !

CONSTITUENT O7TI4_S :O7TI4 : !

PARAMETER G(O7TI4_S,O7TI4;0) 2.98150E+02 +F14623T#; 6.00000E+03 N

REF0 !

PHASE RUTILE % 1 1.0 !

CONSTITUENT RUTILE :O2TI1 : !

PARAMETER G(RUTILE,O2TI1;0) 2.98150E+02 +F14225T#; 6.00000E+03 N

REF0 !

PHASE RUTILE_L % 1 1.0 !

CONSTITUENT RUTILE_L :O2TI1 : !

PARAMETER G(RUTILE_L,O2TI1;0) 2.98150E+02 +F14225T#+68000-31.1212815*T;

6.00000E+03 N REF0 !

PHASE TI_L % 1 1.0 !

CONSTITUENT TI_L :TI : !

PARAMETER G(TI_L,TI;0) 2.98150E+02 +F15795T#+18316-10.8983855*T;

6.00000E+03 N REF0 !

PHASE TI_S % 1 1.0 !

CONSTITUENT TI_S :TI : !

PARAMETER G(TI_S,TI;0) 2.98150E+02 +F15795T#; 6.00000E+03 N REF0 !

PHASE TI_S2 % 1 1.0 !

CONSTITUENT TI_S2 :TI : !

PARAMETER G(TI_S2,TI;0) 2.98150E+02 +F15795T#+4170-3.61038961*T;

6.00000E+03 N REF0 !

LIST_OF_REFERENCES

NUMBER SOURCE

Page 78: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

69

REF7114 LA1<G> T.C.R.A.S. Class: 1

H_form changed according to Heyrman et al Calphad 28 (2004)

49-63 (C. Younes, PhD Paris Sud 1986)

REF7125 LA1O1<G> T.C.R.A.S. Class: 2

H_form changed according to Heyrman et al Calphad 28 (2004)

49-63 (C. Younes, PhD Paris Sud 1986)

REF7147 LA2O1<G> T.C.R.A.S. Class: 6

H_form changed according to Heyrman et al Calphad 28 (2004)

49-63 (C. Younes, PhD Paris Sud 1986)

REF7150 LA2O2<G> T.C.R.A.S. Class: 7

H_form changed according to Heyrman et al Calphad 28 (2004)

49-63 (C. Younes, PhD Paris Sud 1986)

REF7934 O1<G> JANAF 1982; ASSESSMENT DATED 3/77 SGTE

OXYGEN <MONATOMIC GAS>

REF8011 O1TI1<G> JANAF THERMOCHEMICAL TABLES((1975 SUPPL.)) SGTE

TITANIUM MONOXIDE <GAS>

PUBLISHED BY JANAF AT 12/73

REF8065 O2<G> T.C.R.A.S. Class: 1

OXYGEN <DIATOMIC GAS>

REF8183 O2TI1<G> JANAF THERMOCHEMICAL TABLES((1975 SUPPL.)) SGTE

TITANIUM DIOXIDE <GAS>

PUBLISHED BY JANAF AT 12/73 .

REF8221 O3<G> T.C.R.A.S. Class: 4

OZONE <GAS>

REF9096 TI1<G> T.C.R.A.S. Class: 1

TITANIUM <GAS>

REF9098 TI2<G> T.C.R.A.S Class: 6

Data provided by T.C.R.A.S. October 1996

REF8180 O2TI1<ANATASE> JANAF SECOND EDIT. SGTE

TITANIUM DIOXIDE <ANATASE>

TF ET LF INCONNUS.

REF7153 LA2O3 GRUNDY ET AL

from Grundy et al J. Phase Equilibria 22 (2001) 105

REF7108 LA1 HULTGREN SELECTED VAL.1973 SGTE **

LANTHANUM

ATOMIC WEIGHT : 138.91

TRANSFORMATIONS : ALPHA-BETA : 550 K , BETA-GAMMA : 1134 K

REF8014 O1TI1<O1TI1_ALPHA> JANAF TABLES SUPPL.75. SGTE

ALPHA-O1TI1

U.D :24/06/86 .

REF8017 O1TI1<O1TI1_BETA> JANAF TABLES SUPPL.75 SGTE

BETA-O1TI1

U.D.:24/06/86 .

REF8271 O3TI2 JANAF THERMOCHEMICAL TABLES SGTE

DITITANIUM TRIOXIDE

PUBLISHED BY JANAF AT 6/73

REF8381 O5TI3 JANAF 4th Edition.

Cp fitted by IA.

REF8416 O7TI4 JANAF THERMOCHEMICAL TABLES((1974 SUPPL.)) SGTE

Page 79: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

70

PUBLISHED BY JANAF AT 12/73

Probably melts incongruently.

REF8186 O2TI1<RUTILE> T.C.R.A.S. Class: 6

TITANIUM DIOXIDE <RUTILE>

REF9090 TI1 S.G.T.E. **

TITANIUM

Data from SGTE Unary DB

!

Page 80: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

71

Appendix C

Cubic SrCoO3-δ Thermo-Calc database

$ Database file written 2013- 5-28

$ From database: User data 2010. 8.27

ELEMENT /- ELECTRON_GAS 0.0000E+00 0.0000E+00 0.0000E+00!

ELEMENT VA VACUUM 0.0000E+00 0.0000E+00 0.0000E+00!

ELEMENT CO HCP_A3 5.8933E+01 0.0000E+00 0.0000E+00!

ELEMENT O 1/2_MOLE_O2(G) 1.5999E+01 4.3410E+03 1.0252E+02!

ELEMENT SR SR_FCC_A1 8.7620E+01 6.5680E+03 5.5694E+01!

SPECIES CO+2 CO1/+2!

SPECIES CO+3 CO1/+3!

SPECIES CO+4 CO1/+4!

SPECIES CO1O1 CO1O1!

SPECIES CO2 CO2!

SPECIES CO3O4 CO3O4!

SPECIES O-2 O1/-2!

SPECIES O2 O2!

SPECIES O2-2 O2/-2!

SPECIES O2SR1 O2SR1!

SPECIES O3 O3!

SPECIES SR+2 SR1/+2!

SPECIES SR2 SR2!

SPECIES SR2O O1SR2!

SPECIES SRO O1SR1!

SPECIES SRO2 O2SR1!

FUNCTION GSRBCC 2.98150E+02 -6779.234+116.583654*T-25.6708365*T*LN(T)

-.003126762*T**2+2.2965E-07*T**3+27649*T**(-1); 8.20000E+02 Y

-6970.594+122.067301*T-26.57*T*LN(T)-.0019493*T**2-1.7895E-08*T**3

+16495*T**(-1); 1.05000E+03 Y

+8168.357+.423037*T-9.7788593*T*LN(T)-.009539908*T**2+5.20221E-07*T**3

-2414794*T**(-1); 3.00000E+03 N !

FUNCTION GHSERSR 2.98150E+02 -7532.367+107.183879*T-23.905*T*LN(T)

-.00461225*T**2-1.67477E-07*T**3-2055*T**(-1); 8.20000E+02 Y

-13380.102+153.196104*T-30.0905432*T*LN(T)-.003251266*T**2

+1.84189E-07*T**3+850134*T**(-1); 3.00000E+03 N !

FUNCTION GSROSOL 2.98150E+02 -607870+268.9*T-47.56*T*LN(T)-.00307*T**2

+190000*T**(-1); 6.00000E+03 N !

FUNCTION GSRO2SOL 2.98150E+02 +GSROSOL#+GHSEROO#-43740+70*T;

6.00000E+03 N !

FUNCTION GSRLIQ 2.98150E+02 +2194.997-10.118994*T-5.0668978*T*LN(T)

-.031840595*T**2+4.981237E-06*T**3-265559*T**(-1); 1.05000E+03 Y

-10855.29+213.406219*T-39.463*T*LN(T); 3.00000E+03 N !

FUNCTION GSROLIQ 2.98150E+02 -566346+449*T-73.1*T*LN(T); 6.00000E+03

Page 81: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

72

N !

FUNCTION F7397T 2.98150E+02 +243206.529-42897.0876*T**(-1)

-20.7513421*T-21.0155542*T*LN(T)+1.26870532E-04*T**2

-1.23131285E-08*T**3; 2.95000E+03 Y

+252301.473-3973170.33*T**(-1)-51.974853*T-17.2118798*T*LN(T)

-5.41356254E-04*T**2+7.64520703E-09*T**3; 6.00000E+03 N !

FUNCTION GHSEROO 2.98150E+02 -3480.87-25.503038*T-11.136*T*LN(T)

-.005098888*T**2+6.61846E-07*T**3-38365*T**(-1); 1.00000E+03 Y

-6568.763+12.65988*T-16.8138*T*LN(T)-5.95798E-04*T**2+6.781E-09*T**3

+262905*T**(-1); 3.30000E+03 Y

-13986.728+31.259625*T-18.9536*T*LN(T)-4.25243E-04*T**2

+1.0721E-08*T**3+4383200*T**(-1); 6.00000E+03 N !

FUNCTION F7683T 2.98150E+02 +133772.042-11328.9959*T**(-1)

-84.8602165*T-19.8314069*T*LN(T)-.0392015696*T**2+7.90727187E-06*T**3;

6.00000E+02 Y

+120765.524+997137.156*T**(-1)+120.113376*T-51.8410152*T*LN(T)

-.00353983136*T**2+3.20640143E-07*T**3; 1.50000E+03 Y

+115412.196+1878139.02*T**(-1)+164.679664*T-58.069736*T*LN(T)

-2.84399032E-04*T**2+5.95650279E-10*T**3; 6.00000E+03 N !

FUNCTION F14450T 2.98150E+02 +154227.522-24.1431703*T-20.98549*T*LN(T)

+1.951298E-04*T**2-3.09095833E-08*T**3+4675.2365*T**(-1); 1.80000E+03

Y

+111247.483+242.365806*T-56.52776*T*LN(T)+.0133862*T**2

-9.57800833E-07*T**3+9843260*T**(-1); 3.30000E+03 Y

+770872.513-2114.76782*T+233.253*T*LN(T)-.04337796*T**2

+1.134592E-06*T**3-2.7250735E+08*T**(-1); 4.90000E+03 Y

-196742.694+263.327068*T-44.45892*T*LN(T)-.008078665*T**2

+2.96671167E-07*T**3+3.57637E+08*T**(-1); 6.20000E+03 Y

-949056.902+1952.13337*T-239.3059*T*LN(T)+.01421437*T**2

-1.79062E-07*T**3+8.9842E+08*T**(-1); 9.60000E+03 Y

+34305.7758+474.957384*T-77.25547*T*LN(T)+.00232914*T**2

-1.54504333E-08*T**3-2.2245325E+08*T**(-1); 1.00000E+04 N !

FUNCTION F14465T 2.98150E+02 +295010.66+61.845039*T-54.13634*T*LN(T)

+.040485225*T**2-9.264165E-06*T**3-70453.75*T**(-1); 5.00000E+02 Y

+307156.188-147.411671*T-20.95926*T*LN(T)+1.012636E-04*T**2

-8.03856667E-09*T**3-905190.5*T**(-1); 3.00000E+03 N !

FUNCTION F12810T 2.98150E+02 -25476.9742+3.04351985*T-34.37623*T*LN(T)

-.0026980695*T**2+3.78874167E-07*T**3+120146.05*T**(-1); 9.00000E+02 Y

-44602.142+205.651627*T-63.83687*T*LN(T)+.017645965*T**2

-2.284235E-06*T**3+2463047*T**(-1); 1.80000E+03 Y

+243278.077-1500.21201*T+161.9497*T*LN(T)-.0612273*T**2

+2.896125E-06*T**3-66468000*T**(-1); 2.90000E+03 Y

-571113.316+1685.71589*T-234.6556*T*LN(T)+.024571595*T**2

-5.82819833E-07*T**3+2.468897E+08*T**(-1); 4.50000E+03 Y

-14433.8514+256.066959*T-66.76292*T*LN(T)+.002226246*T**2

-2.98498E-08*T**3-97083400*T**(-1); 8.80000E+03 Y

+52967.3441+134.904343*T-53.17021*T*LN(T)+.001008387*T**2

-9.46948833E-09*T**3-1.6008755E+08*T**(-1); 1.00000E+04 N !

Page 82: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

73

FUNCTION GCOOLIQ 2.98150E+02 +GCOOS#+42060-20*T; 6.00000E+03 N !

FUNCTION GCOOS 2.98150E+02 -252530+270.075*T-47.825*T*LN(T)

-.005112*T**2+225008*T**(-1); 6.00000E+03 N !

FUNCTION GCOLIQ 2.98140E+02 +15085.037-8.931932*T+GHSERCO#

-2.19801E-21*T**7; 1.76800E+03 Y

-846.61+243.599944*T-40.5*T*LN(T); 6.00000E+03 N !

FUNCTION NCO3O4 2.98150E+02 -969727+915.076*T-150.26*T*LN(T)

-.004773*T**2+1358967*T**(-1); 6.00000E+03 N !

FUNCTION ICO3O4 2.98150E+02 +NCO3O4#+95345-85.852*T; 6.00000E+03 N

!

FUNCTION GFCCCO 2.98150E+02 +427.591-.615248*T+GHSERCO#; 6.00000E+03

N !

FUNCTION GHSERCO 2.98140E+02 +310.241+133.36601*T-25.0861*T*LN(T)

-.002654739*T**2-1.7348E-07*T**3+72527*T**(-1); 1.76800E+03 Y

-17197.666+253.28374*T-40.5*T*LN(T)+9.3488E+30*T**(-9); 6.00000E+03

N !

FUNCTION F7439T 2.98150E+02 +416729.448-35.265807*T-20.78*T*LN(T)

-.0080941*T**2+1.95473333E-06*T**3+68440*T**(-1); 6.00000E+02 Y

+415600.439-4.47823809*T-25.919*T*LN(T)-3.217E-04*T**2+1.228E-08*T**3

+69800*T**(-1); 1.60000E+03 Y

+404059.608+60.9456563*T-34.475*T*LN(T)+.00226985*T**2

-1.11743333E-07*T**3+2845480*T**(-1); 5.30000E+03 Y

+619409.166-455.183402*T+25.674*T*LN(T)-.00531515*T**2

+7.04183333E-08*T**3-1.4391985E+08*T**(-1); 1.00000E+04 N !

FUNCTION F7532T 2.98150E+02 +275841.927+24.0962563*T-38.62*T*LN(T)

+.0010486*T**2-5.3089E-07*T**3+44960*T**(-1); 1.00000E+03 Y

+271341.103+44.7689137*T-41.009*T*LN(T)-1.055E-05*T**2

-9.90866667E-08*T**3+1003100*T**(-1); 2.90000E+03 Y

+390604.342-373.916021*T+10.233*T*LN(T)-.0095202*T**2

+2.18581667E-07*T**3-49953335*T**(-1); 5.60000E+03 Y

+339256.902-297.790942*T+2.109*T*LN(T)-.00931405*T**2

+2.32998333E-07*T**3-1285140*T**(-1); 6.00000E+03 N !

FUNCTION F7591T 2.98150E+02 +739344.57+228.270513*T-75.86201*T*LN(T)

+.02653785*T**2-3.82613167E-06*T**3+589055*T**(-1); 9.00000E+02 Y

+766271.806-69.2721015*T-32.277*T*LN(T)-.0051345*T**2+5.3545E-07*T**3

-2559210*T**(-1); 2.50000E+03 Y

+742734.911+122.487527*T-58.296*T*LN(T)+.0049326*T**2

-1.22191667E-07*T**3-1487375*T**(-1); 5.80000E+03 Y

+1148759.49-821.285064*T+51.18*T*LN(T)-.0082646*T**2

+1.77621667E-07*T**3-2.8575475E+08*T**(-1); 6.00000E+03 N !

FUNCTION F13634T 2.98150E+02 +243206.494-20.8612587*T-21.01555*T*LN(T)

+1.2687055E-04*T**2-1.23131283E-08*T**3-42897.09*T**(-1); 2.95000E+03

Y

+252301.423-52.0847285*T-17.21188*T*LN(T)-5.413565E-04*T**2

+7.64520667E-09*T**3-3973170.5*T**(-1); 6.00000E+03 N !

FUNCTION F14003T 2.98150E+02 -6960.69252-51.1831473*T-22.25862*T*LN(T)

-.01023867*T**2+1.339947E-06*T**3-76749.55*T**(-1); 9.00000E+02 Y

-13136.0172+24.743296*T-33.55726*T*LN(T)-.0012348985*T**2

+1.66943333E-08*T**3+539886*T**(-1); 3.70000E+03 Y

Page 83: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

74

+14154.6461-51.4854586*T-24.47978*T*LN(T)-.002634759*T**2

+6.01544333E-08*T**3-15120935*T**(-1); 9.60000E+03 Y

-314316.628+515.068037*T-87.56143*T*LN(T)+.0025787245*T**2

-1.878765E-08*T**3+2.9052515E+08*T**(-1); 1.85000E+04 Y

-108797.175+288.483019*T-63.737*T*LN(T)+.0014375*T**2-9E-09*T**3

+.25153895*T**(-1); 2.00000E+04 N !

FUNCTION F14300T 2.98150E+02 +130696.944-37.9096651*T-27.58118*T*LN(T)

-.02763076*T**2+4.60539333E-06*T**3+99530.45*T**(-1); 7.00000E+02 Y

+114760.623+176.626736*T-60.10286*T*LN(T)+.00206456*T**2

-5.17486667E-07*T**3+1572175*T**(-1); 1.30000E+03 Y

+49468.3958+710.094819*T-134.3696*T*LN(T)+.039707355*T**2

-4.10457667E-06*T**3+12362250*T**(-1); 2.10000E+03 Y

+866367.075-3566.80563*T+421.2001*T*LN(T)-.1284109*T**2

+5.44768833E-06*T**3-2.1304835E+08*T**(-1); 2.80000E+03 Y

+409416.384-1950.70834*T+223.4437*T*LN(T)-.0922361*T**2

+4.306855E-06*T**3-21589870*T**(-1); 3.50000E+03 Y

-1866338.6+6101.13383*T-764.8435*T*LN(T)+.09852775*T**2

-2.59784667E-06*T**3+9.610855E+08*T**(-1); 4.90000E+03 Y

+97590.0432+890.79836*T-149.9608*T*LN(T)+.01283575*T**2

-3.555105E-07*T**3-2.1699975E+08*T**(-1); 6.00000E+03 N !

FUNCTION F15641T 2.98150E+02 +153602.922-22.5981707*T-20.98549*T*LN(T)

+1.951298E-04*T**2-3.09095833E-08*T**3+4675.2365*T**(-1); 1.80000E+03

Y

+110622.883+243.910805*T-56.52776*T*LN(T)+.0133862*T**2

-9.57800833E-07*T**3+9843260*T**(-1); 3.30000E+03 Y

+770247.913-2113.22282*T+233.253*T*LN(T)-.04337796*T**2

+1.134592E-06*T**3-2.7250735E+08*T**(-1); 4.90000E+03 Y

-197367.294+264.872067*T-44.45892*T*LN(T)-.008078665*T**2

+2.96671167E-07*T**3+3.57637E+08*T**(-1); 6.20000E+03 Y

-949681.502+1953.67837*T-239.3059*T*LN(T)+.01421437*T**2

-1.79062E-07*T**3+8.9842E+08*T**(-1); 9.60000E+03 Y

+33681.1759+476.502383*T-77.25547*T*LN(T)+.00232914*T**2

-1.54504333E-08*T**3-2.2245325E+08*T**(-1); 1.00000E+04 N !

FUNCTION F15650T 2.98150E+02 +296202.76+61.7700383*T-54.13634*T*LN(T)

+.040485225*T**2-9.264165E-06*T**3-70453.75*T**(-1); 5.00000E+02 Y

+308348.288-147.486672*T-20.95926*T*LN(T)+1.012636E-04*T**2

-8.03856667E-09*T**3-905190.5*T**(-1); 3.00000E+03 N !

FUNCTION GCO2O3 2.98150E+02 -678388.128+739.277235*T

-117.191055*T*LN(T)-.00807331588*T**2+1258302.79*T**(-1); 6.00000E+03

N !

FUNCTION GMN1O1 2.98150E+02 -402477.557+259.355626*T

-46.8352649*T*LN(T)-.00385001409*T**2+212922.234*T**(-1); 6.00000E+03

N !

FUNCTION GMN1O2 2.98150E+02 -545091.278+395.379396*T

-65.2766201*T*LN(T)-.00780284521*T**2+664955.386*T**(-1); 6.00000E+03

N !

FUNCTION GMN2O3 2.98150E+02 -998618.105+588.618611*T

-101.955918*T*LN(T)-.018843507*T**2+589054.519*T**(-1); 6.00000E+03

Page 84: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

75

N !

FUNCTION GLA2O3 2.98150E+02 -1835600+674.72*T-118*T*LN(T)-.008*T**2

+620000*T**(-1); 6.00000E+03 N !

FUNCTION GLM2O 2.98150E+02 +.5*GLA2O3#+GMN1O1#+27672; 6.00000E+03

N !

FUNCTION GLM3O 2.98150E+02 +.5*GLA2O3#+.5*GMN2O3#-63367+51.77*T

-7.19*T*LN(T)+232934*T**(-1); 6.00000E+03 N !

FUNCTION GLM4O 2.98150E+02 +.5*GLA2O3#+.75*GMN1O2#-91857+20.31*T;

6.00000E+03 N !

FUNCTION GVM4O 2.98150E+02 +.333333*GLA2O3#+GMN1O2#-53760;

6.00000E+03 N !

FUNCTION GSM3O 2.98150E+02 +GSROSOL#+.5*GMN2O3#-7730-14455-17*T;

6.00000E+03 N !

FUNCTION GS4O 2.98150E+02 +GHSERSR#+GHSERCO#+3*GHSEROO#-

7.8903236E+05+1.9868203E+02*T;

6.00000E+03 N !

FUNCTION GS3OV 2.98150E+02 +GHSERSR#+GHSERCO#+2.5*GHSEROO#-

8.0348280E+05+1.2050666E+02*T;

6.00000E+03 N !

FUNCTION GS2OV 2.98150E+02 +GHSERSR#+GHSERCO#+2*GHSEROO#-

7.3818232E+05+4.0237529E+01*T;

6.00000E+03 N !

FUNCTION GSVOV 2.98150E+02 +GHSERSR#+GHSEROO#;

6.00000E+03 N !

FUNCTION GVVV 2.98150E+02 +6*GLM2O#+4*GLM4O#+3*GVM4O#-12*GLM3O#

-254212; 6.00000E+03 N !

FUNCTION GL3OSSUB 2.98150E+02 -1261010.71-70.3237561*T+6.17*T*LN(T)

-.14132*T**2-1179500*T**(-1); 5.50000E+02 Y

-1301031.07+751.034485*T-125.1*T*LN(T)-.009245*T**2+958500*T**(-1);

1.22000E+03 Y

-1288831.07+669.968423*T-115.1*T*LN(T)-.009245*T**2+958500*T**(-1);

2.50000E+03 N !

FUNCTION GHSERLA 2.98150E+02 -7968.403+120.284604*T-26.34*T*LN(T)

-.001295165*T**2; 5.50000E+02 Y

-3381.413+59.06113*T-17.1659411*T*LN(T)-.008371705*T**2

+6.8932E-07*T**3-399448*T**(-1); 2.00000E+03 Y

-15608.882+181.390071*T-34.3088*T*LN(T); 4.00000E+03 N !

FUNCTION LV1 2.98150E+02 -4468; 6.00000E+03 N !

FUNCTION LV2 2.98150E+02 7.786; 6.00000E+03 N !

FUNCTION GL3O 2.98150E+02 +GL3OSSUB#+LV1#+LV2#*T; 6.00000E+03 N !

FUNCTION LV3 2.98150E+02 -1172133; 6.00000E+03 N !

FUNCTION LV4 2.98150E+02 218.918515; 6.00000E+03 N !

FUNCTION GL2OV 2.98150E+02 +GHSERLA#+GHSERCO#+2.5*GHSEROO#+LV3#

+LV4#*T; 6.00000E+03 N !

FUNCTION LV5 2.98150E+02 -1089320; 6.00000E+03 N !

FUNCTION LV6 2.98150E+02 310.899; 6.00000E+03 N !

FUNCTION GL4VO 2.98150E+02 +GHSERLA#+.75*GHSERCO#+3*GHSEROO#+LV5#

+LV6#*T; 6.00000E+03 N !

FUNCTION LV7 2.98150E+02 -1089320; 6.00000E+03 N !

Page 85: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

76

FUNCTION LV8 2.98150E+02 310.899; 6.00000E+03 N !

FUNCTION GLV4O 2.98150E+02

+.666666*GHSERLA#+GHSERCO#+3*GHSEROO#+LV7#

+LV8#*T; 6.00000E+03 N !

FUNCTION UN_ASS 298.15 0; 300 N !

TYPE_DEFINITION % SEQ *!

DEFINE_SYSTEM_DEFAULT ELEMENT 2 !

DEFAULT_COMMAND DEF_SYS_ELEMENT VA /- !

PHASE GAS:G % 1 1.0 !

CONSTITUENT GAS:G :CO,CO1O1,CO2,O,O2,O3,SR,SR2,SRO : !

PARAMETER G(GAS,CO;0) 2.98150E+02 +F7439T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF1 !

PARAMETER G(GAS,CO1O1;0) 2.98150E+02 +F7532T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF20 !

PARAMETER G(GAS,CO2;0) 2.98150E+02 +F7591T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF39 !

PARAMETER G(GAS,O;0) 2.98150E+02 +F13634T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF50 !

PARAMETER G(GAS,O2;0) 2.98150E+02 +F14003T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF69 !

PARAMETER G(GAS,O3;0) 2.98150E+02 +F14300T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF77 !

PARAMETER G(GAS,SR;0) 2.98150E+02 +F15641T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF84 !

PARAMETER G(GAS,SR2;0) 2.98150E+02 +F15650T#+R#*T*LN(1E-05*P);

6.00000E+03 N REF93 !

PARAMETER G(GAS,SRO;0) 2.98150E+02 +F12810T#+RTLNP#; 6.00000E+03 N

REF0 !

PHASE IONIC_LIQUID:Y % 2 2 2.06091 !

CONSTITUENT IONIC_LIQUID:Y :CO+2,CO+3,SR+2 : O-2,VA : !

PARAMETER G(IONIC_LIQUID,CO+2:O-2;0) 2.98150E+02 +2*GCOOLIQ#;

6.00000E+03 N REF0 !

PARAMETER G(IONIC_LIQUID,CO+3:O-2;0) 2.98150E+02 +2*GCOOS#+GHSEROO#

-76314+103.63*T; 6.00000E+03 N REF0 !

PARAMETER G(IONIC_LIQUID,SR+2:O-2;0) 2.98150E+02 +2*GSROLIQ#;

6.00000E+03 N REF0 !

PARAMETER G(IONIC_LIQUID,CO+2:VA;0) 2.98150E+02 +GCOLIQ#; 6.00000E+03

N REF0 !

PARAMETER G(IONIC_LIQUID,CO+3:VA;0) 2.98150E+02 +2*GCOLIQ#+2*GCOOS#

+GHSEROO#-76314+103.63*T-3*GCOOLIQ#; 6.00000E+03 N REF0 !

PARAMETER G(IONIC_LIQUID,SR+2:VA;0) 2.98150E+02 +GSRLIQ#; 6.00000E+03

N REF0 !

Page 86: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

77

PARAMETER G(IONIC_LIQUID,CO+2,SR+2:O-2;0) 2.98150E+02 +V98#+V99#*T;

6.00000E+03 N REF0 !

PARAMETER G(IONIC_LIQUID,CO+2:O-2,VA;0) 2.98150E+02 +182675-30.556*T;

6.00000E+03 N REF0 !

PARAMETER G(IONIC_LIQUID,CO+2:O-2,VA;2) 2.98150E+02 +54226-20*T;

6.00000E+03 N REF0 !

PARAMETER G(IONIC_LIQUID,CO+3,SR+2:O-2;0) 2.98150E+02 +V98#+V99#*T;

6.00000E+03 N REF0 !

TYPE_DEFINITION & GES A_P_D BCC_A2 MAGNETIC -1.0 4.00000E-01 !

PHASE BCC_A2 %& 2 1 1.5 !

CONSTITUENT BCC_A2 :SR : O,VA : !

PARAMETER G(BCC_A2,SR:O;0) 2.98150E+02 0.0 ; 3.00000E+03 N REF0 !

PARAMETER G(BCC_A2,SR:VA;0) 2.98150E+02 +GSRBCC#; 3.00000E+03 N REF0 !

PHASE CO2O3 % 2 2 3 !

CONSTITUENT CO2O3 :CO+3 : O-2 : !

PARAMETER G(CO2O3,CO+3:O-2;0) 2.98150E+02 +GCO2O3#; 6.00000E+03 N

REF0 !

PHASE CO3O4:I % 3 1 2 4 !

CONSTITUENT CO3O4:I :CO+2,CO+3 : CO+2,CO+3 : O-2 : !

PARAMETER G(CO3O4,CO+2:CO+2:O-2;0) 2.98150E+02 +NCO3O4#+2*ICO3O4#

+23.05272*T; 6.00000E+03 N REF0 !

PARAMETER G(CO3O4,CO+3:CO+2:O-2;0) 2.98150E+02 +2*ICO3O4#+23.05272*T;

6.00000E+03 N REF0 !

PARAMETER G(CO3O4,CO+2:CO+3:O-2;0) 2.98150E+02 +NCO3O4#; 6.00000E+03

N REF0 !

PARA G(CO3O4,CO+3:CO+3:O-2;0) 298.15 0; 6000 N!

PARAMETER G(CO3O4,CO+2,CO+3:CO+2:O-2;0) 2.98150E+02 -30847+44.249*T;

6.00000E+03 N REF0 !

PARAMETER G(CO3O4,CO+2,CO+3:CO+3:O-2;0) 2.98150E+02 -30847+44.249*T;

6.00000E+03 N REF0 !

TYPE_DEFINITION ' GES A_P_D COO MAGNETIC -3.0 2.80000E-01 !

PHASE COO %' 2 1 1 !

CONSTITUENT COO :CO+2 : O-2 : !

PARAMETER G(COO,CO+2:O-2;0) 2.98150E+02 +GCOOS#; 6.00000E+03 N REF0 !

PARAMETER TC(COO,CO+2:O-2;0) 2.98150E+02 -870; 6.00000E+03 N REF0 !

PARAMETER BMAGN(COO,CO+2:O-2;0) 2.98150E+02 2; 6.00000E+03 N REF0 !

Page 87: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

78

TYPE_DEFINITION ( GES A_P_D FCC_A1 MAGNETIC -3.0 2.80000E-01 !

PHASE FCC_A1 %( 2 1 1 !

CONSTITUENT FCC_A1 :CO,SR : O,VA : !

PARAMETER G(FCC_A1,CO:O;0) 2.98150E+02 +GFCCCO#+GHSEROO#-213318

+107.071*T; 6.00000E+03 N REF0 !

PARAMETER G(FCC_A1,SR:O;0) 2.98150E+02 0.0 ; 3.00000E+03 N REF0 !

PARAMETER G(FCC_A1,CO:VA;0) 2.98150E+02 +GFCCCO#; 6.00000E+03 N

REF0 !

PARAMETER TC(FCC_A1,CO:VA;0) 2.98150E+02 1396; 6.00000E+03 N REF0 !

PARAMETER BMAGN(FCC_A1,CO:VA;0) 2.98150E+02 1.35; 6.00000E+03 N

REF0 !

PARAMETER G(FCC_A1,SR:VA;0) 2.98150E+02 +GHSERSR#; 3.00000E+03 N REF0 !

TYPE_DEFINITION ) GES A_P_D HCP_A3 MAGNETIC -3.0 2.80000E-01 !

PHASE HCP_A3 %) 2 1 .5 !

CONSTITUENT HCP_A3 :CO : O,VA : !

PARAMETER G(HCP_A3,CO:O;0) 2.98150E+02 +GFCCCO#+.5*GHSEROO#-122309

+66.269*T; 6.00000E+03 N REF0 !

PARAMETER G(HCP_A3,CO:VA;0) 2.98150E+02 +GHSERCO#; 6.00000E+03 N

REF0 !

PARAMETER TC(HCP_A3,CO:VA;0) 2.98150E+02 1396; 6.00000E+03 N REF0 !

PARAMETER BMAGN(HCP_A3,CO:VA;0) 2.98150E+02 1.35; 6.00000E+03 N

REF0 !

PHASE SR2CO2O5 % 4 2 1 1 5 !

CONSTITUENT SR2CO2O5 :SR+2 : CO+2 : CO+4 : O-2 : !

PARAMETER G(SR2CO2O5,SR+2:CO+2:CO+4:O-2;0) 2.98150E+02 -

1.7445327E+06+1.1128024E+03*T

-2.1373449E+02*T*LN(T)-2.3798830E-02*T**2+1.6354101E+06*T**(-1); 6.00000E+03 N

REF0 !

PHASE SR2COO4 % 3 2 1 4 !

CONSTITUENT SR2COO4 :SR+2 : CO+4 : O-2 : !

PARAMETER G(SR2COO4,SR+2:CO+4:O-2;0) 2.98150E+02 -

1.5915017E+06+8.7617033E+02*T

-1.4951359E+02*T*LN(T)-3.1876258E-02*T**2+3.8665981E+05*T**(-1); 6.00000E+03 N

REF0 !

PHASE SR6CO5O15 % 4 6 4 1 15 !

CONSTITUENT SR6CO5O15 :SR+2 : CO+4 : CO+2 : O-2 : !

Page 88: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

79

PARAMETER G(SR6CO5O15,SR+2:CO+4:CO+2:O-2;0) 2.98150E+02 -

5.8879969E+06+3.8040193E+03*T

-6.0223129E+02*T*LN(T)-8.9528710E-02*T**2+4.8635240E+06*T**(-1); 6.00000E+03 N

REF0 !

PHASE SRCOO3:I % 3 1 1 3 !

CONSTITUENT SRCOO3:I :SR+2,VA : CO+2,CO+3,CO+4,VA : O-2,VA : !

PARAMETER G(SRCOO3,SR+2:CO+2:O-2;0) 2.98150E+02 +GHSEROO#+GS2OV#

+15.8759*T; 6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,VA:CO+2:O-2;0) 2.98150E+02 +.5*GVVV#+GL2OV#-

2*GL4VO#

+1.5*GLV4O#+2*GHSEROO#+9.82536*T; 6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,SR+2:CO+3:O-2;0) 2.98150E+02 +.5*GHSEROO#+GS3OV#

+11.2379*T; 6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,VA:CO+3:O-2;0) 2.98150E+02 +GL3O#+.5*GVVV#-

2*GL4VO#

+1.5*GLV4O#+1.5*GHSEROO#-1.41254*T; 6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,SR+2:CO+4:O-2;0) 2.98150E+02 +GS4O#; 6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,VA:CO+4:O-2;0) 2.98150E+02 +.33333*GVVV#

-1.33333*GL4VO#+2*GLV4O#+GHSEROO#+4.35029*T; 6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,SR+2:VA:O-2;0) 2.98150E+02 +GSM3O#-

GLM3O#+2*GLM4O#

-1.5*GVM4O#+.5*GVVV#+2*GHSEROO#+12.62121*T; 6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,VA:VA:O-2;0) 2.98150E+02 +GVVV#+3*GHSEROO#;

6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,SR+2:CO+2:VA;0) 2.98150E+02 -2*GHSEROO#+GS2OV#

+15.8759*T; 6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,VA:CO+2:VA;0) 2.98150E+02 +.5*GVVV#+GL2OV#-

2*GL4VO#

+1.5*GLV4O#-GHSEROO#+9.82536*T; 6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,SR+2:CO+3:VA;0) 2.98150E+02 -2.5*GHSEROO#+GS3OV#

+11.2379*T; 6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,VA:CO+3:VA;0) 2.98150E+02 +GL3O#+.5*GVVV#-

2*GL4VO#

+1.5*GLV4O#-1.5*GHSEROO#-1.41254*T; 6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,SR+2:CO+4:VA;0) 2.98150E+02 -3*GHSEROO#+GS4O#;

6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,VA:CO+4:VA;0) 2.98150E+02 +.33333*GVVV#

-1.33333*GL4VO#+2*GLV4O#-2*GHSEROO#+4.35029*T; 6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,SR+2:VA:VA;0) 2.98150E+02 +GSM3O#+2*GLM4O#

-1.5*GVM4O#+.5*GVVV#-GLM3O#-GHSEROO#+12.62121*T; 6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,VA:VA:VA;0) 2.98150E+02 +GVVV#; 6.00000E+03 N

REF0 !

PARAMETER G(SRCOO3,SR+2,VA:CO+2:O-2;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

Page 89: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

80

N REF0 !

PARAMETER G(SRCOO3,SR+2:CO+2,VA:O-2;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,SR+2:CO+2:O-2,VA;0) 2.98150E+02 +3.5878637E+05;

6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,VA:CO+2,VA:O-2;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,VA:CO+2:O-2,VA;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,SR+2,VA:CO+3:O-2;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,SR+2:CO+3,VA:O-2;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,SR+2:CO+3:O-2,VA;0) 2.98150E+02 +2.0604770E+05;

6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,VA:CO+3,VA:O-2;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,VA:CO+3:O-2,VA;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,SR+2,VA:CO+4:O-2;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,SR+2:CO+4,VA:O-2;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,SR+2:CO+4:O-2,VA;0) 2.98150E+02 -4.5330455E+05;

6.00000E+03 N REF0 !

PARAMETER G(SRCOO3,VA:CO+4,VA:O-2;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,VA:CO+4:O-2,VA;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,SR+2,VA:VA:O-2;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,SR+2:VA:O-2,VA;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,VA:VA:O-2,VA;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03 N

REF0 !

Page 90: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

81

PARAMETER G(SRCOO3,SR+2,VA:CO+2:VA;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,SR+2:CO+2,VA:VA;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,VA:CO+2,VA:VA;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,SR+2,VA:CO+3:VA;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,SR+2:CO+3,VA:VA;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,VA:CO+3,VA:VA;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,SR+2,VA:CO+4:VA;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,SR+2:CO+4,VA:VA;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,VA:CO+4,VA:VA;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PARAMETER G(SRCOO3,SR+2,VA:VA:VA;0) 2.98150E+02 +1.0000000E+07;

6.00000E+03

N REF0 !

PHASE SRO % 2 1 1 !

CONSTITUENT SRO :SR+2,VA : O-2 : !

PARAMETER G(SRO,SR+2:O-2;0) 2.98150E+02 +GSROSOL#; 6.00000E+03 N

REF0 !

PARA G(SRO,VA:O-2;0) 298.15 0; 6000 N!

PHASE SRO2 % 1 1.0 !

CONSTITUENT SRO2 :SRO2 : !

PARAMETER G(SRO2,SRO2;0) 2.98150E+02 +GSRO2SOL#; 6.00000E+03 N REF0 !

LIST_OF_REFERENCES

NUMBER SOURCE

REF1 9

REF20 6

Page 91: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

82

REF39 1

REF50 4

REF69 5

REF77 1

REF84 8

REF93 0

!

Page 92: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

83

Bibliography

[1-116]

1. Catalan, G. and J.F. Scott, Physics and Applications of Bismuth Ferrite. Advanced

Materials, 2009. 21(24): p. 2463-2485.

2. Cheong, S.W. and M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity.

Nature Materials, 2007. 6(1): p. 13-20.

3. Ederer, C. and N.A. Spaldin, Recent progress in first-principles studies of

magnetoelectric multiferroics. Current Opinion in Solid State & Materials Science, 2005.

9(3): p. 128-139.

4. Eerenstein, W., N.D. Mathur, and J.F. Scott, Multiferroic and magnetoelectric materials.

Nature, 2006. 442(7104): p. 759-765.

5. Hautier, G., A. Jain, and S.P. Ong, From the computer to the laboratory: materials

discovery and design using first-principles calculations. Journal of Materials Science,

2012. 47(21): p. 7317-7340.

6. Hill, N.A., Why are there so few magnetic ferroelectrics? Journal of Physical Chemistry

B, 2000. 104(29): p. 6694-6709.

7. Hill, N.A., Density functional studies of multiferroic magnetoelectrics. Annual Review of

Materials Research, 2002. 32: p. 1-37.

8. Hur, N., et al., Electric polarization reversal and memory in a multiferroic material

induced by magnetic fields. Nature, 2004. 429(6990): p. 392-395.

9. Izyumskaya, N., Y. Alivov, and H. Morkoc, Oxides, Oxides, and More Oxides: High-

Oxides, Ferroelectrics, Ferromagnetics, and Multiferroics. Critical Reviews in Solid

State and Materials Sciences, 2009. 34(3-4): p. 89-179.

10. Kan, E., et al., Ferroelectricity in Perovskites with s(0) A-Site Cations: Toward Near-

Room-Temperature Multiferroics. Angewandte Chemie-International Edition, 2010.

49(9): p. 1603-1606.

11. Nan, C.W., et al., Multiferroic magnetoelectric composites: Historical perspective,

status, and future directions. Journal of Applied Physics, 2008. 103(3).

12. Neaton, J.B., et al., First-principles study of spontaneous polarization in multiferroic

BiFeO3. Physical Review B, 2005. 71(1).

13. Picozzi, S. and C. Ederer, First principles studies of multiferroic materials. Journal of

Physics-Condensed Matter, 2009. 21(30).

14. Picozzi, S. and A. Stroppa, Advances in ab-initio theory of multiferroics Materials and

mechanisms: modelling and understanding. European Physical Journal B, 2012. 85(7).

15. Picozzi, S., et al., Microscopic mechanisms for improper ferroelectricity in multiferroic

perovskites: a theoretical review. Journal of Physics-Condensed Matter, 2008. 20(43).

16. Ramesh, R. and N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nature

Materials, 2007. 6(1): p. 21-29.

17. Raveau, B., Strongly correlated electron systems: From chemistry to physics. Comptes

Rendus Chimie, 2011. 14(9): p. 856-864.

18. Setter, N., et al., Ferroelectric thin films: Review of materials, properties, and

applications. Journal of Applied Physics, 2006. 100(5).

19. Wang, J., et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003.

299(5613): p. 1719-1722.

20. Battle, P.D., et al., Layered Ruddlesden-Popper manganese oxides: Synthesis and cation

ordering. Chemistry of Materials, 1997. 9(2): p. 552-559.

Page 93: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

84

21. Dudarev, S.L., et al., Electron-energy-loss spectra and the structural stability of nickel

oxide: An LSDA+U study. Physical Review B, 1998. 57(3): p. 1505-1509.

22. Kolesnik, S., et al., Tuning of magnetic and electronic states by control of oxygen content

in lanthanum strontium cobaltites. Physical Review B, 2006. 73(21).

23. Lee, Y.-L., et al., Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid

oxide fuel cell cathodes. Physical Review B, 2009. 80(22).

24. Music, D. and J.M. Schneider, Elastic properties of Srn+1TinO3n+1 phases (n=1-3,

infinity). Journal of Physics-Condensed Matter, 2008. 20(5): p. 5.

25. Suntivich, J., et al., A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from

Molecular Orbital Principles. Science, 2011. 334(6061): p. 1383-1385.

26. Tian, W., et al., Transmission electron microscopy study of n=1-5 Srn+1TinO3n+1

epitaxial thin films. Journal of Materials Research, 2001. 16(7): p. 2013-2026.

27. Wang, L., T. Maxisch, and G. Ceder, Oxidation energies of transition metal oxides within

the GGA+U framework. Physical Review B, 2006. 73(19).

28. Zinkevich, M., Thermodynamics of rare earth sesquioxides. Progress in Materials

Science, 2007. 52(4): p. 597-647.

29. Kohn, W. and L.J. Sham, SELF-CONSISTENT EQUATIONS INCLUDING EXCHANGE

AND CORRELATION EFFECTS. Physical Review, 1965. 140(4A): p. 1133-&.

30. Andersson, J., et al., THERMO-CALC & DICTRA, computational tools for materials

science. Calphad, 2002. 26(2): p. 273-312.

31. Liu, Z.-K., First-Principles Calculations and CALPHAD Modeling of Thermodynamics.

Journal of Phase Equilibria and Diffusion, 2009. 30(5): p. 517-534.

32. Wang, Y., et al., Ab initio lattice stability in comparison with CALPHAD lattice stability.

Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2004. 28(1): p.

79-90.

33. Hautier, G., et al., Accuracy of density functional theory in predicting formation energies

of ternary oxides from binary oxides and its implication on phase stability. Physical

Review B, 2012. 85(15): p. 155208.

34. Stevanović, V., et al., Correcting density functional theory for accurate predictions of

compound enthalpies of formation: Fitted elemental-phase reference energies. Physical

Review B, 2012. 85(11): p. 115104.

35. Hillert, M., et al., A two-sublattice model for molten solutions with different tendency for

ionization. Metallurgical and Materials Transactions A, 1985. 16(1): p. 261-266.

36. Ouchi, H. and S. Kawashima, Dielectric ceramics for microwave application. Jpn. J.

Appl. Phys. Suppl., 1985. 1985(24): p. 60-64.

37. Fuierer, P.A. and R.E. Newnham, La2Ti2O7 ceramics. J. Am. Ceram. Soc., 1991. 74(11):

p. 2876-2881.

38. Shang, S.-L., et al., First-principles thermodynamics from phonon and Debye model:

Application to Ni and Ni3Al. Computational Materials Science, 2010. 47(4): p. 1040-

1048.

39. MacChesney, J.B. and H.A. Sauer, The System La2O3— TiO2; Phase Equilibria and

Electrical Properties. Journal of the American Ceramic Society, 1962. 45(9): p. 416-422.

40. Ismailzade, I.G. and F.A. Mirishli, Nekatorie voprosi kristalohimii segnetolek. Izv. Akad.

Nauk SSSR. Ser. Fiz, 1968. 33.

41. Fedorov, N.F., et al., A new perovskite-like compound (12H) La4Ti3O12. Russ. J. Inorg.

Chem, 1979. 24(5): p. 1166-1170.

42. German, M. and L.M. Kovba, Hexagonal perovskite phases in La2O3-TiO2-MO systems

(M=Mg, Ca, Sr, Ba). Russ. J. Inorg. Chem, 1983. 28(9): p. 2377-2379.

Page 94: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

85

43. Saltikova, V.A., et al., La4Ti3O12-BaTiO3 system. Russ. J. Inorg. Chem, 1985. 30(1): p.

190-193.

44. Jonker, G.H. and E.E. Havinga, The influence of foreign ions on the crystal lattice of

barium titanate. Materials Research Bulletin, 1982. 17(3): p. 345-350.

45. Škapin, S.D., D. Kolar, and D. Suvorov, Phase stability and equilibria in the La2O3-

TiO2 system. Journal of the European Ceramic Society, 2000. 20(8): p. 1179-1185.

46. Morris, R.E., J.J. Owen, and A.K. Cheetham, THE STRUCTURE OF LA4TI9O24 FROM

SYNCHROTRON X-RAY-POWDER DIFFRACTION. Journal of Physics and Chemistry

of Solids, 1995. 56(10): p. 1297-1303.

47. Ishizawa, N., et al., Compounds with perovskite-type slabs. III. The structure of a

monoclinic modification of Ca2Nb2O7. Acta Crystallographica Section B, 1980. 36(4): p.

763-766.

48. Gasperin, P.M., Acta Crystallographica Section B, 1975. 31.

49. Ishizawa, N., et al., Compounds with perovskite-type slabs. V. A high-temperature

modification of La2Ti2O7. Acta Crystallographica Section B, 1982. 38(2): p. 368-372.

50. Nanamats.S, et al., NEW FERROELECTRIC - LA2TI2O7. Ferroelectrics, 1974. 8(1-2): p.

511-513.

51. Helean, K.B., et al., Formation enthalpies of rare earth titanate pyrochlores. Journal of

Solid State Chemistry, 2004. 177(6): p. 1858-1866.

52. Bogatov Y. E., O.O.A., Molodkin A. K., Safronenko M. G., Phase Equilibria in the

La2O3-VO System. Russ. J. Inorg. Chem., 1996. 41: p. 828-830.

53. Aidebert, P. and J.P. Traverse, Etude par diffraction neutronique des structures de haute

température de La2O3 et Nd2O3. Materials Research Bulletin, 1979. 14(3): p. 303-323.

54. Traverse J.P., C.J.P., and Foex M., Chimie Minérale, Etude des transformations

cristallines présentées a haute température par le composé LaYbO3. C. R. Seances Acad.

Sci., Ser. C, 1968. 267: p. 391-394.

55. Sugiyama, K. and Y. Takéuchi, The crystal structure of rutile as a function of

temperature up to 1600°C. Zeitschrift für Kristallographie - Crystalline Materials, 1991.

194(3-4): p. 305-313.

56. Škapin, S., D. Kolar, and D. Suvorov, X-ray Diffraction and Microstructural

Investigation of the Al2O3-La2O3-TiO2 System. Journal of the American Ceramic

Society, 1993. 76(9): p. 2359-2362.

57. Kresse, G. and J. Furthmuller, Efficient iterative schemes for ab initio total-energy

calculations using a plane-wave basis set. Physical Review B, 1996. 54(16): p. 11169-

11186.

58. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-

wave method. Physical Review B, 1999. 59(3): p. 1758-1775.

59. Blöchl, P., Projector augmented-wave method. Physical Review B, 1994. 50(24): p.

17953-17979.

60. Perdew, J.P. and A. Zunger, Self-interaction correction to density-functional

approximations for many-electron systems. Physical Review B, 1981. 23(10): p. 5048-

5079.

61. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made

simple (vol 77, pg 3865, 1996). Physical Review Letters, 1997. 78(7): p. 1396-1396.

62. Methfessel, M. and A.T. Paxton, High-precision sampling for Brillouin-zone integration

in metals. Physical Review B, 1989. 40(6): p. 3616-3621.

63. Blöchl, P.E., O. Jepsen, and O.K. Andersen, Improved tetrahedron method for Brillouin-

zone integrations. Physical Review B, 1994. 49(23): p. 16223-16233.

Page 95: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

86

64. Moruzzi, V.L., J.F. Janak, and K. Schwarz, Calculated thermal properties of metals.

Physical Review B, 1988. 37(2): p. 790-799.

65. Mei, Z.-G., et al., First-Principles Study of Lattice Dynamics and Thermodynamics of

TiO2 Polymorphs. Inorganic Chemistry, 2011. 50(15): p. 6996-7003.

66. Birch, F., Finite Elastic Strain of Cubic Crystals. Physical Review, 1947. 71(11): p. 809-

824.

67. Scientific Group Thermodata Europe (SGTE), Thermodynamic Properties of Inorganic

Materials. Landolt-Boernstein New Series, Group IV, ed. Lehrstuhl für Theoretische

Hüttenkunde. Vol. 19. 1999, Verlag Berlin Heidelberg: Springer.

68. Redlich, O. and A. Kister, Algebraic Representation of Thermodynamic Properties and

the Classification of Solutions. Ind Eng Chem, 1948. 40(2): p. 345.

69. Petrova, M.A., A.S. Novikova, and R.G. Grebenshchikov, Phase Relations in the

Pseudobinary Systems La2TiO5–Lu2TiO5 and Gd2TiO5–Tb2TiO5. Inorganic Materials,

2003. 39(5): p. 509-513.

70. Pandey, H.N., The theoretical elastic constants and specific heats of rutile. Physica

Status Solidi, 1965. 11(2): p. 743-751.

71. ThermoCalc Software. 2013 [cited 2013; Available from: http://www.thermocalc.com/.

72. Toyoura, K., et al., First-principles thermodynamics of La2O3-P2O5 pseudobinary

system. Physical Review B, 2011. 84(18): p. 184301.

73. Saal, J.E., et al., Thermodynamic Properties of Co3O4 and Sr6Co5O15 from First-

Principles. Inorganic Chemistry, 2010. 49(22): p. 10291-10298.

74. Kim, D.-W., et al., Molecular Dynamic Simulation in Titanium Dioxide Polymorphs:

Rutile, Brookite, and Anatase. Journal of the American Ceramic Society, 1996. 79(4): p.

1095-1099.

75. Al-Khatatbeh, Y., K.K.M. Lee, and B. Kiefer, High-pressure behavior of TiO2 as

determined by experiment and theory. Physical Review B, 2009. 79(13): p. 134114.

76. Shcherbakova L.G., K.A.V., Breusov O.N., THE SYSTEMS TiO2-Ln2O3 UNDER THE

INFLUENCE OF SHOCK WAVES. Inorg. Mater., 1979. 15: p. 1724-1729.

77. Lopatin S.S., B.I.N., Quaternary Oxides (CaxM1-x)2(Ti1-xNbx)2O7 with Pyrochlore and

Perovskite-like Layer Structures. Russ. J. Inorg. Chem., 1984. 29: p. 1506-1509.

78. Zhang, F.X., et al., Structural change of layered perovskite La2Ti2O7 at high pressures.

Journal of Solid State Chemistry, 2007. 180(2): p. 571-576.

79. German M., K.L.M., X-ray diffraction investigation of phases with a perovskite-like layer

structure. Russ. J. Inorg. Chem., 1985. 30: p. 176-180.

80. Grundy, A.N., B. Hallstedt, and L.J. Gauckler, Assessment of the La-Sr-Mn-O system.

Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2004. 28(2): p.

191-201.

81. Yang, M., Y. Zhong, and Z.-K. Liu, Defect analysis and thermodynamic modeling of

LaCoO3-delta. Solid State Ionics, 2007. 178(15-18): p. 1027-1032.

82. Kelly, N., and Saal, J. E. and Zhang L. A. and Zhang, J. and Manga, V. R. and Du, Q.

and Carolan, M. and Liu, Z. K., Assessment of La1-xSrxCoO3-delta oxygen

nonstoichiometry data, in Solid State Ionics. 2010.

83. Lee, K.W. and W.E. Pickett, Correlation effects in the high formal oxidation-state

compound Sr2CoO4. Physical Review B, 2006. 73(17).

84. Sun, J., et al., Crystal growth and structure determination of oxygen-deficient

Sr6Co5O15. Inorganic Chemistry, 2006. 45(20): p. 8394-8402.

85. Muñoz, A., et al., Crystallographic and magnetic structure of SrCoO_{2.5}

brownmillerite: Neutron study coupled with band-structure calculations. Physical

Review B, 2008. 78(5): p. 054404.

Page 96: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

87

86. Iwasaki, K., et al., Electrical conductivity and seebeck coefficient of Sr6Co5O14.3 single

crystal. Japanese Journal of Applied Physics Part 1-Regular Papers Brief

Communications & Review Papers, 2007. 46(1): p. 256-260.

87. Le Toquin, R., et al., Time-resolved in situ studies of oxygen intercalation into SrCoO2.5,

performed by neutron diffraction and X-ray absorption spectroscopy. Journal of the

American Chemical Society, 2006. 128(40): p. 13161-13174.

88. Vashook, V.V., M.V. Zinkevich, and Y.G. Zonov, Phase relations in oxygen-deficient

SrCoO2.5-delta. Solid State Ionics, 1999. 116(1-2): p. 129-138.

89. Gellings, P.a.B., HJM, The CRC handbook of solid state electrochemistry. 1997: CRC.

90. Harrison, W.T.A., S.L. Hegwood, and A.J. Jacobson, A POWDER NEUTRON-

DIFFRACTION DETERMINATION OF THE STRUCTURE OF SR6CO5O15,

FORMERLY DESCRIBED AS THE LOW-TEMPERATURE HEXAGONAL FORM OF

SRCOO3-X. Journal of the Chemical Society-Chemical Communications, 1995(19): p.

1953-1954.

91. Matsuno, J., et al., Metallic ferromagnet with square-lattice CoO2 sheets. Physical

Review Letters, 2004. 93(16).

92. Ishiwata, S., et al., Uniaxial colossal magnetoresistance in the Ising magnet

SrCo_{12}O_{19}. Physical Review B, 2011. 83(2): p. 020401.

93. Dann, S.E. and M.T. Weller, STRUCTURE AND OXYGEN STOICHIOMETRY IN

SR3CO2O7-Y (0.94-LESS-THAN-OR-EQUAL-TO-Y-LESS-THAN-OR-EQUAL-TO-1.22).

Journal of Solid State Chemistry, 1995. 115(2): p. 499-507.

94. Pelloquin, D., et al., A new thermoelectric misfit cobaltite: [Sr2CoO3][CoO2]1.8. Solid

State Sciences, 2004. 6(2): p. 167-172.

95. Viciu, L., et al., Structure and magnetic properties of the orthorhombic n=2 Ruddlesden–

Popper phases Sr3Co2O5+δ (δ=0.91, 0.64 and 0.38). Journal of Solid State Chemistry,

2006. 179(2): p. 500-511.

96. Hill, J.M., et al., Local defect structure of Sr_{3}Co_{2}O_{x} (5.64⩽x⩽6.60): Evolution

of crystallographic and magnetic states. Physical Review B, 2006. 74(17): p. 174417.

97. Rodriguez, J. and J.M. Gonzalezcalbet, RHOMBOHEDRAL SR2CO2O5 - A NEW

A2M2O5 PHASE. Materials Research Bulletin, 1986. 21(4): p. 429-439.

98. Rodriguez, J., et al., PHASE-TRANSITIONS IN SR2CO2O5 - A NEUTRON

THERMODIFFRACTOMETRY STUDY. Solid State Communications, 1987. 62(4): p.

231-234.

99. Takeda, Y., et al., PHASE RELATION AND OXYGEN-NON-STOICHIOMETRY OF

PEROVSKITE-LIKE COMPOUND SRCOOX (2.29 LESS-THAN X LESS-THAN 2.80).

Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1986. 541(9-10): p. 259-270.

100. Vashook, V.V., et al., Oxygen non-stoichiometry and electrical conductivity of the binary

strontium cobalt oxide SrCoOx. Solid State Ionics, 1997. 99(1-2): p. 23-32.

101. Vashuk, V.V., et al., DEVIATION FROM OXYGEN STOICHIOMETRY IN A DOUBLE

OXIDE OF STRONTIUM-COBALT. Inorganic Materials, 1993. 29(5): p. 730-734.

102. Bezdicka, P., et al., PREPARATION AND CHARACTERIZATION OF FULLY

STOICHIOMETRIC SRCOO3 BY ELECTROCHEMICAL OXIDATION. Zeitschrift Fur

Anorganische Und Allgemeine Chemie, 1993. 619(1): p. 7-12.

103. Nemudry, A., P. Rudolf, and R. Schollhorn, Topotactic electrochemical redox reactions

of the defect perovskite SrCoO2.5+x. Chemistry of Materials, 1996. 8(9): p. 2232-2238.

104. Nickell, R.A., et al., Hg/HgO electrode and hydrogen evolution potentials in aqueous

sodium hydroxide. Journal of Power Sources, 2006. 161(2): p. 1217-1224.

105. Liu, D.a.L., BG, Environmental engineer's handbook. 1999: CRC.

Page 97: THERMODYNAMIC INVESTIGATION OF TRANSITION METAL OXIDES …

88

106. Ichikawa, N., et al., Reduction and oxidation of SrCoO2.5 thin films at low temperatures.

Dalton Transactions, 2012. 41(35): p. 10507-10510.

107. Taguchi, H., M. Shimada, and M. Koizumi, EFFECT OF OXYGEN VACANCY ON THE

MAGNETIC-PROPERTIES IN THE SYSTEM SRCOO3-DELTA (0 LESS-THAN-DELTA-

LESS-THAN 0.5). Journal of Solid State Chemistry, 1979. 29(2): p. 221-225.

108. Taguchi, H., M. Shimada, and M. Koizumi, ELECTRICAL-PROPERTIES OF

FERROMAGNETIC SRCOO3-DELTA (0 LESS-THAN-DELTA-LESS-THAN. Materials

Research Bulletin, 1980. 15(2): p. 165-169.

109. Kresse, G. and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals

and semiconductors using a plane-wave basis set. Computational Materials Science,

1996. 6(1): p. 15-50.

110. Chen, M., B. Hallstedt, and L.J. Gauckler, Thermodynamic assessment of the Co-O

system. Journal of Phase Equilibria, 2003. 24(3): p. 212-227.

111. Risold, D., B. Hallstedt, and L.J. Gauckler, The strontium-oxygen system. Calphad-

Computer Coupling of Phase Diagrams and Thermochemistry, 1996. 20(3): p. 353-361.

112. Ishida, K. and T. Nishizawa, The Co-Sr system (cobalt-strontium). Journal of Phase

Equilibria, 1992. 13(3): p. 272-272.

113. Ito, Y., et al., Atomic resolution analysis of the defect chemistry and microdomain

structure of brownmillerite-type strontium cobaltite. Journal of the American Ceramic

Society, 2002. 85(4): p. 969-976.

114. Sunstrom, J.E., et al., The synthesis and properties of the chemically oxidized perovskite,

La1-xSrxCoO3-delta (0.5 <= x <= 0.9). Journal of Solid State Chemistry, 1998. 139(2):

p. 388-397.

115. Hanashima, T., et al., Compositional dependence of X-ray absorption spectra on

magnetic circular dichroism and near-edge structure at Co K edge in La1-xSrCoO3 (0

<= x <= 0.6). Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes &

Review Papers, 2004. 43(7A): p. 4171-4178.

116. Berry, F.J., J.F. Marco, and X.L. Ren, Reduction properties of phases in the system

La0.5Sr0.5MO3 (M = Fe, Co). Journal of Solid State Chemistry, 2005. 178(4): p. 961-

969.


Recommended