+ All Categories
Home > Documents > Thin Film Silicon Solar Cell

Thin Film Silicon Solar Cell

Date post: 08-Aug-2018
Category:
Upload: mukesh-jindal
View: 220 times
Download: 0 times
Share this document with a friend

of 41

Transcript
  • 8/22/2019 Thin Film Silicon Solar Cell

    1/41

    Thin Film Silicon Solar Cells

    Comparison between crystalline and amorphous silicon

    a-Si:H (and related materials) solar cells

    Transparent conducting Oxides (TCO)

    Multi-junction solar cells

    Solar modules and applications

    Thin film crystalline solar cells and heterojunctions

  • 8/22/2019 Thin Film Silicon Solar Cell

    2/41

    Photovoltaic Technologies

    Ribbon c-Si 2.2%

    a-Si/ucSi 5.2%

    CdTe 4.7%

    Ribbon c-Si 2.2%

    CIS 0.5%

    Others 0.1%

    multi c-Si 45.2%

    mono c-Si 42.2%

  • 8/22/2019 Thin Film Silicon Solar Cell

    3/41

    Comparison between the Photovoltaic Technologies

    DyeOrganic

    Thin

    Films

    III-V

    Si

  • 8/22/2019 Thin Film Silicon Solar Cell

    4/41

    c-Si : intrinsic better conversion efficiency

    a-Si:H : potential cost reduction

    Solar Cells : Comparison c-Si / a-Si:H

  • 8/22/2019 Thin Film Silicon Solar Cell

    5/41

    a-Si:H solar cell cannot be

    based onp n junction !

    The space-charge width W can be obtained from the Poisson equation with the diffusion length :

    L = (D)1/2 and the mobility : = eD/kT(D : diffusion coefficient).

    Diffusion effects are negligible dans a-Si:H (weak mobility). Carrier collection takes place within

    the space-charge region : the increase of this region is required.

    Comparison c-Si / a-Si:H

    c-Si a-Si:H

    diffusion length (m) 10 - 200 0.1 - 2electron mobility (cm2/V.s) 500 - 1000 0.05 - 1

    conductivity (S/cm) 10-4 - 104 10-13 - 102

    doping efficiency 1 10-3 - 10-2

    pn junction asymetrical ohmic

  • 8/22/2019 Thin Film Silicon Solar Cell

    6/41

    Comparison between crystalline and amorphous silicon

    a-Si:H (and related materials) solar cells

    Transparent conducting Oxides (TCO)

    Multi-junction solar cells

    Solar modules and applications

    Thin film crystalline solar cells and heterojunctions

  • 8/22/2019 Thin Film Silicon Solar Cell

    7/41

    p-i-n junction :

    Technological issues :

    Absorption of high energy photons

    (penetration length : 12-20 nm) Red light absorption (thickness limited by the

    space-charge width : 0.5 - 1 m)

    Band diagram of a p-i-n junction

    a-Si:H Cell Structure

    Width of the depletion region :

    a-Si:H i W 1m

    a-Si:H p,n W ~10-20 nm

    p et n regions are used to set-up the internal electric

    field but do not significantly contribute to the carrier

    collection (increase of defect densities in doping

    regions).

  • 8/22/2019 Thin Film Silicon Solar Cell

    8/41

    The Physics of a-Si:H Solar Cell

    Space charge regions and internal

    electric fieldE(x), without applied

    external voltage.

  • 8/22/2019 Thin Film Silicon Solar Cell

    9/41

    SiH4

    PH3

    NH3

    B H62

    Pumping

    RF electrode

    Plasma

    Substrate

    Flexible process allowing the growth of various Si

    structures (amorphous, microcrystalline), Sidoping and Si alloys : SiC, SiGe

    -1

    0

    1

    2

    3

    4

    0.8

    Log

    alpha

    (cm -1

    )

    1 1.2 1.4 1.6 1.8 2

    a-Ge:H

    a-SiGe:H

    a-Si:H

    Log

    (

    cm-1)

    Plasma Deposition (PECVD)

    Band gap tuning (opposite behaviorwith SiC)

    Energy (eV)

  • 8/22/2019 Thin Film Silicon Solar Cell

    10/41

    The increase of the crystalline

    volume fraction in c-Si leads to

    optical properties close to c-Si.

    Band gap variation between 1.0 and 2.5 eV, from

    gaseous mixture (SiH4 with CH4 or GeH4).

    Low y values are generally used because of

    defect density increase with alloying

    Optical properties of Si structures and alloys

  • 8/22/2019 Thin Film Silicon Solar Cell

    11/41

    Window layers of a-Si:H solar cells

    Objective : the decrease of the blue light absorption in thep layer

    SiC is generally used for p doped window layer in a-Si:H solar cells

  • 8/22/2019 Thin Film Silicon Solar Cell

    12/41

    Metastability in Si thin film solar cells

    Advantage of partially crystallized Si thin films : significant reduction of mtastability

    effect (Staebler-Wronski)

  • 8/22/2019 Thin Film Silicon Solar Cell

    13/41

    a-Si:H solar cells

    Ag

    ZnO

    n

    ia-Si:H

    p

    ITO

    substrate

    Jsc = 14,36 mA/cm2

    Voc= 0.965 V

    FF = 0.672

    Stabilized efficiency = 9.3%

    Optimized performances

    (Sa= 0.25 cm 2

    )

    simplepin structure

  • 8/22/2019 Thin Film Silicon Solar Cell

    14/41

    General Trends of Si Thin Film Cells

    Same deposition process (PECVD)

    typical efficiency ~ 8 - 10 % whatever the silicon structure

    a-Si:H

    drawbacks : instability and weak deposition rate (0.1 0.2 nm/s)

    pm-Si : optical properties close of a-Si:H (Eg, Voc)

    advantage : high rate (~1 nm/s) induced by growth from crystallites

    nc-Si and c-Si : optical properties close of c-Si

    advantage : complementarity with the other materials

    possibility to combine within tandem structures

  • 8/22/2019 Thin Film Silicon Solar Cell

    15/41

    Comparison between crystalline and amorphous silicon

    a-Si:H (and related materials) solar cells

    Transparent conducting Oxides (TCO)

    Multi-junction solar cells

    Solar modules and applications

    Thin film crystalline solar cells and heterojunctions

  • 8/22/2019 Thin Film Silicon Solar Cell

    16/41

    Electrode window layer Two simultaneous requirements : conducting (3eV) with degeneratedn-type doping

    (Fermi level inside conduction band)

    Free carier absorption(intraband) and reflexionInterband absorption

    Transmission de ZnO:Al

    conc. Al

    Act ive mater ial

    TCO

    Back reflector

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    300 400 500 600 700 800 900 1000 1100

    J(mA/cm2)

    Wavelength (nm)

    5900K

    Other applications :

    Flat pannel displays

    Architectural glasses for thermal insulation

    Transparent Conducting Oxides (TCOs)

  • 8/22/2019 Thin Film Silicon Solar Cell

    17/41

    Deposition methods

    Sputtering Reactive sputtering (O2) MOCVD

    LPCVD

    Technology Cell application Advantages / Drawbacks

    Indium Tin

    Oxide (ITO)

    HIT cells, a-Si:H

    (back reflector)

    Performant

    Indium : expensive

    (limited resources)

    Non-textured

    Tin Oxide

    (SnO2:F)

    a-Si:H, CdTe Less expensive

    Textured during growth

    High temprature process

    Zinc Oxide(ZnO:Al) a/c-Si:H, CIGS Less expensiveResistant against H-

    plasma

    Texturation in/ex-situ

    Complex process

    Typical materialsTexturation

    TCO texturation favors light

    trapping in the cell can naturally appears duringdeposition (SnO2) or created aftergrowth (ZnO)

    TCO technologies

  • 8/22/2019 Thin Film Silicon Solar Cell

    18/41

    Sputtering (and reactive sputtering)

  • 8/22/2019 Thin Film Silicon Solar Cell

    19/41

    Comparison between crystalline and amorphous silicon

    a-Si:H (and related materials) solar cells

    Transparent conducting Oxides (TCO)

    Multi-junction solar cells

    Solar modules and applications

    Thin film crystalline solar cells and heterojunctions

    M lti l j ti S l C ll

  • 8/22/2019 Thin Film Silicon Solar Cell

    20/41

    The theoretical best efficiency of over 20%occurs with a combination of 1.8 eV in the

    top cell (a-Si:H) and 1.2 eV in the bottom.

    Multiple-junction Solar Cells

    Possible tandem

    structure

    Tandem can have two or three electrical

    terminals. The introduction of an internal TCO

    layer is incompatible with epitaxy

  • 8/22/2019 Thin Film Silicon Solar Cell

    21/41

    Thin film Multi-junctions

    a Si:H and c Si/a Si:H Cells

  • 8/22/2019 Thin Film Silicon Solar Cell

    22/41

    10 nmP(a-SiC:H)

    I (a-Si:H)~0.3 m

    N(a-Si:H)

    Contact Al

    SnO2

    Glass substrate

    pin Structure

    400 600 800 100

    Spectral

    respo

    nse[a.u.]

    Wavelength [nm]

    a-Si:H

    c-Si:H

    Micromorph

    0

    5

    10

    15

    0 0.5 1 1.5

    Current(mA)

    Voltage (V)

    1 cm2 Hybrid cell

    AM 1.5, 25 oC

    (KANEKA double-light

    source simulator)

    Jsc: 14.4 mA/cm2

    Voc: 1.41 V

    F.F. : 0.719

    Eff: 14.5%

    0

    5

    10

    15

    0 0.5 1 1.5

    Current(mA)

    Voltage (V)

    0

    5

    10

    15

    0 0.5 1 1.5

    Current(mA)

    Voltage (V)

    1 cm2 Hybrid cell

    AM 1.5, 25 oC

    (KANEKA double-light

    source simulator)

    Jsc: 14.4 mA/cm2

    Voc: 1.41 V

    F.F. : 0.719

    Eff: 14.5%

    0

    5

    10

    15

    0 0.5 1 1.5

    Current(mA)

    Voltage (V)

    0

    5

    10

    15

    0 0.5 1 1.5

    Current(mA)

    Voltage (V)

    1 cm2 Hybrid cell

    AM 1.5, 25 oC

    (KANEKA double-light

    source simulator)

    Jsc: 14.4 mA/cm2

    Voc: 1.41 V

    F.F. : 0.719

    Eff: 14.5%

    0

    5

    10

    15

    0 0.5 1 1.5

    Current(mA)

    Voltage (V)

    0

    5

    10

    15

    0 0.5 1 1.5

    Current(mA)

    Voltage (V)

    1 cm2 Hybrid cell

    AM 1.5, 25 oC

    (KANEKA double-light

    source simulator)

    Jsc: 14.4 mA/cm2

    Voc: 1.41 V

    F.F. : 0.719

    Eff: 14.5%

    0

    5

    10

    15

    0 0.5 1 1.5

    Current(mA)

    Voltage (V)

    0

    5

    10

    15

    0 0.5 1 1.5

    Current(mA)

    Voltage (V)

    1 cm2 Hybrid cell

    AM 1.5, 25 oC

    (KANEKA double-light

    source simulator)

    Jsc: 14.4 mA/cm2

    Voc: 1.41 V

    F.F. : 0.719

    Eff: 14.5%light

    Gl ass

    TCO

    c-Si :H

    (Bottom cell )

    a-Si :H(Top cell)

    Back

    contacts

    pin/pin Tandem

    a-Si:H and c-Si/a-Si:H Cells

    c-Si less sensitive to light-degradation effects

  • 8/22/2019 Thin Film Silicon Solar Cell

    23/41

    Comparison between crystalline and amorphous silicon

    a-Si:H (and related materials) solar cells

    Transparent conducting Oxides (TCO)

    Multi-junction solar cells

    Solar modules and applications

    Thin film crystalline solar cells and heterojunctions

    Thin Film Solar Cells Based on a-Si:H

  • 8/22/2019 Thin Film Silicon Solar Cell

    24/41

    Schematic representation of light

    trapping in a-Si:H single junction

    and tandem cell ( micromorph ).

    Time deposition of the Si layers is a

    technological issue in practical

    applications

    An anti-reflection coating (n=1.2)can be added on top of the glass

    substrate.

    Thin Film Solar Cells Based on a Si:H

    Si Thin Film Modules

  • 8/22/2019 Thin Film Silicon Solar Cell

    25/41

    Typical cell interconnection systems and packaging (EVA : ethylene-vynil-acetate polymer foil).

    Cells can be manufactured on large area substrates (6-8 m2) on 3 mm thick float glass.

    Series connection needed for pactical applications (Vused= 12 30 V). Laser scribing is used to

    subdivide TCO and Si layers into parallel stripes. The slight offset between scribes is required for serie

    connection.

    w : photo-inactive interconnection width.

    Thin Film Module Performance

  • 8/22/2019 Thin Film Silicon Solar Cell

    26/41

    odu e e o a ce

    Stabilized efficiency of a-Si:H based

    PV modules manufactured byvarious companies

    Si Thin Film Modules

  • 8/22/2019 Thin Film Silicon Solar Cell

    27/41

    Easy to make thin film solar modules

    A solar cell gives about 0.5 volt

    Many cells connected together make a solar module

    Thin film solar cells are interconnected during the fabrication of the

    thin layers - no handling of individual cells as in the conventional

    techniques

    Encapsulation needed to protect the solar cellsCrystalline Si module Thin film module

    Si Thin Film Modules

    Thin Film Modules on Flexible System

  • 8/22/2019 Thin Film Silicon Solar Cell

    28/41

    Iowa Thin Film Technologies : roll-to-roll production of a-Si/a-Si tandem PV modules on polyimid

    substrates for consumer applications, capacity about 5 10 MWp, stabilised efficiencies are 4 5%.

    y

    Silicon based thin film deposition possible on flexible substrates : steel or aluminium foils,

    polymers compatible with PECVD process (150 C)

    Thin Film Modules : Building-Integrated PV

  • 8/22/2019 Thin Film Silicon Solar Cell

    29/41

    g g

    PV faade of a Bavarian

    Ministry (Munich)

    Principle and appearance of semi transparent a-Si

    semitransparent modules (material removal by laser

    scribing)

    a-Si:H cells for indoor applications

  • 8/22/2019 Thin Film Silicon Solar Cell

    30/41

    The energy gap of a-Si:H is higher, and thus best matched to the spectrum of the indoorlight sources

    Due to the much lower indoor irradiance, light-induced degradation is a lesser issue

    Applications : calculator, wall mounted sensors, alarm clocks

    pp

    Thin Film Module : Life cycle analysis

  • 8/22/2019 Thin Film Silicon Solar Cell

    31/41

    sdsd

    1840 MJ/ module : a significant impact of Front-end line

    Thin Film Module : Life cycle analysis

    Thin Film Module : Life cycle analysis

  • 8/22/2019 Thin Film Silicon Solar Cell

    32/41

    Thin Film Module : Life cycle analysis

    Front end impact

  • 8/22/2019 Thin Film Silicon Solar Cell

    33/41

    Comparison between crystalline and amorphous silicon

    a-Si:H (and related materials) solar cells

    Transparent conducting Oxides (TCO)

    Multi-junction solar cells

    Solar modules and applications

    Thin film crystalline solar cells and heterojunctions

    Si Cells : Comparison Bulk crystalline / Thin Films

  • 8/22/2019 Thin Film Silicon Solar Cell

    34/41

    c-Si : thick material required to allow the full conversion of the solar spectrum(indirect band gap)

    PECVD Si thin films : cost reduction expected

    Thin Films Crystalline Silicon Solar Cells (1)

  • 8/22/2019 Thin Film Silicon Solar Cell

    35/41

    Using the simple rule (bandedge)-1, the c-Si wafer thickness for sufficient absorption of the solar

    spectrum is > 700 m (without light management). Such a large thikness is not desirable for

    commercial production.

    Calculation ot the maximum achievable current

    density (MACD) for a AR-coated c-Si solar cell as a

    function of the cell thickness (AM 1.5 incident

    spectrum)

    At a thickness of 300 m, the current density

    is within 5% of the saturation value 300 m

    is suitable for fabricating high-efficiency c-Si

    cells.

    Thin Films Crystalline Silicon Solar Cells (2)

  • 8/22/2019 Thin Film Silicon Solar Cell

    36/41

    Thinner wafers conserve material (cost reduction) and also offer a performance advantage by

    decreasing the bulk-carrier recombination within the solar cell.

    Calculation of the Voc variation of a c-Si front

    textued solar cell as a function of thickness for high

    and low surface-recombination velocities (front and

    back velocities assumed to be equal)

    However, as the cell thickness is reduced, the

    surface recombination becomes an inceasingly

    important component of the total recombination.

    Wafer thickness and surface recombination

    should be reduced simultaneously.

    HIT Heterojunction with intrinsic thin layer

  • 8/22/2019 Thin Film Silicon Solar Cell

    37/41

    Device motivations :

    Tendancy of thin crystalline Silicon wafers begin to be

    incompatible with high temperature process (dopantdiffusion, aluminium annealing): curvature creation

    Substitution of the dopant implantation by PECVD growth

    a-Si:H used for c-Si surface passivation

    HIT process

    Thin silicon wafer (100 m)

    Cleaning and etching for wafer texturation

    PECVD growth of intrinsic and dopped a-

    Si:H

    Sputtering growth of ITOITO texturationfrom c-Si

    passivatedinterfaces

    HIT Heterojunction with intrinsic thin layer

    HIT Heterojunction with intrinsic thin layer

  • 8/22/2019 Thin Film Silicon Solar Cell

    38/41

    HIT Heterojunction with intrinsic thin layer

    intrinsic a-Si:H used for c-Si surface

    passivation : dangling bondpassivation (surface recombination

    becomes crucial when the device thickness

    decreases)

    doped a-Si:H for diode creation (front

    end) and BSF (back contact)

    TCO : optimised optical performances

    Structure of a HIT cell

    Heterojunction (HIT) : band profiles

  • 8/22/2019 Thin Film Silicon Solar Cell

    39/41

    Front contact

    The vacuum level (that of a free electron at rest outside the solid) is the same for the two Si materials.

    The band discontinuity is due to the differences of the electron affinities (and doping) :

    ABE = c

    Further advantage of the HIT

    structure : combines different

    band gap materials

    Ev favors hole collection

    Ec creates a potential barrierfor electrons (crossed by

    tunnelling)

    Heterojunction (HIT) : band profiles

  • 8/22/2019 Thin Film Silicon Solar Cell

    40/41

    Heterojunction (HIT) : band profiles

    Back contact (BSF)

    Evcreates a potential barrier forholes (crossed by tunnelling)

    Ec favors BSF effect (electrons

    repelling)

    HIT Heterojunction with intrinsic thin layer

  • 8/22/2019 Thin Film Silicon Solar Cell

    41/41

    Performances

    www.sanyo.com

    World record (10 x 10cm) (SANYO)

    VOC=0.722V

    JSC=38.64mA/cm2

    FF=78.8

    = 22%

    Commercial production

    - SANYO (Japan) cells PV modules (205-230 W)

    - Year production 400-500 MW/y- Module efficiency : ~20%

    - Available in Europe since 2003


Recommended