+ All Categories
Home > Documents > Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

Date post: 18-Dec-2016
Category:
Upload: sharad
View: 222 times
Download: 4 times
Share this document with a friend
40
This article was downloaded by: [University of Illinois at Urbana-Champaign] On: 23 September 2013, At: 08:26 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Separation Science and Technology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsst20 Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions Ali Mohammad a & Sharad Tiwari a a ANALYTICAL LABORATORY DEPARTMENT OF APPLIED CHEMISTRY, ZAKIR HUSAIN COLLEGE OF ENGINEERING AND TECHNOLOGY ALIGARH MUSLIM UNIVERSITY, ALIGARH, 202002, INDIA Published online: 23 Sep 2006. To cite this article: Ali Mohammad & Sharad Tiwari (1995) Thirty-Five Years of Thin- Layer Chromatography in the Analysis of Inorganic Anions, Separation Science and Technology, 30:19, 3577-3614, DOI: 10.1080/01496399508014147 To link to this article: http://dx.doi.org/10.1080/01496399508014147 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or
Transcript
Page 1: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

This article was downloaded by: [University of Illinois at Urbana-Champaign]On: 23 September 2013, At: 08:26Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,UK

Separation Science andTechnologyPublication details, including instructions forauthors and subscription information:http://www.tandfonline.com/loi/lsst20

Thirty-Five Years of Thin-LayerChromatography in the Analysisof Inorganic AnionsAli Mohammad a & Sharad Tiwari aa ANALYTICAL LABORATORY DEPARTMENT OF APPLIEDCHEMISTRY, ZAKIR HUSAIN COLLEGE OF ENGINEERINGAND TECHNOLOGY ALIGARH MUSLIM UNIVERSITY,ALIGARH, 202002, INDIAPublished online: 23 Sep 2006.

To cite this article: Ali Mohammad & Sharad Tiwari (1995) Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions, Separation Science andTechnology, 30:19, 3577-3614, DOI: 10.1080/01496399508014147

To link to this article: http://dx.doi.org/10.1080/01496399508014147

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all theinformation (the “Content”) contained in the publications on our platform.However, Taylor & Francis, our agents, and our licensors make norepresentations or warranties whatsoever as to the accuracy, completeness,or suitability for any purpose of the Content. Any opinions and viewsexpressed in this publication are the opinions and views of the authors, andare not the views of or endorsed by Taylor & Francis. The accuracy of theContent should not be relied upon and should be independently verified withprimary sources of information. Taylor and Francis shall not be liable for anylosses, actions, claims, proceedings, demands, costs, expenses, damages,and other liabilities whatsoever or howsoever caused arising directly or

Page 2: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

indirectly in connection with, in relation to or arising out of the use of theContent.

This article may be used for research, teaching, and private study purposes.Any substantial or systematic reproduction, redistribution, reselling, loan,sub-licensing, systematic supply, or distribution in any form to anyone isexpressly forbidden. Terms & Conditions of access and use can be found athttp://www.tandfonline.com/page/terms-and-conditions

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 3: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

SEPARATION SCIENCE AND TECHNOLOGY, 30(19), pp. 3577-3614, 1995

REVIEW

Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

ALI MOHAMMAD* and SHARAD TIWARI ANALYTICAL LABORATORY DEPARTMENT OF APPLIED CHEMISTRY ZAKIR HUSAIN COLLEGE OF ENGINEERING AND TECHNOLOGY ALIGARH MUSLIM UNIVERSITY ALIGARH 202002, INDIA

ABSTRACT

An exhaustive review focusing on types of stationary phases, mobile phases, detection reagents and techniques involved in the identification, separation, and determination of inorganic anions in various samples is presented. Results on thin- layer chromatographic studies of anions covering the period 1959 to December 1994 have been collected from all available sources such as research papers, re- view articles, Analytical Abstracts, Current Contents, and Chemical Absrracrs. Care has been taken to provide as much information as possible in a condensed form without omissions. This is the first review to provide all necessary informa- tion in respect of TLC separation of inorganic anions. A necessity is felt for devel- oping forced flow planar chromatographic techniques for the analysis of anionic species.

INTRODUCTION

The work on thin-layer chromatography (TLC) of inorganics published up to the end of 1972 has been admirably reviewed by Brinkman et al. (l), and that appearing during 1972-1980 has been presented by Kuroda and Volynets (2). The latest work on TLC of inorganics and organometal- lics covering the period 1978-1988 has been described by Mohammad and Varshney in a chapter of the Handbook of Thin-Layer Chromatography edited by Sherma and Fried (3). * To whom correspondence should be addressed

3577

Copyright 0 1995 by Marcel Dekker, Inc.

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 4: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3578 MOHAMMAD AND TlWARl

According to the literature, less emphasis has been given on the use of TLC in the analysis of anionic species. In spite of a number of interesting review articles or books published in the recent past (4-26), a review covering all aspects of TLC of anions has not yet appeared. The aim of this article is to present a complete report of work carried out exclusively on anions using TLC procedures since 1959, when the publication on TLC of inorganic compounds started to appear in Chemical Abstracts, till the end of 1994. To our knowledge, it is the first review to provide an up-to- date picture of anion TLC.

RESULTS

The results are encapsulated in Tables 1-5. The stationary phases, mo- bile phases, and detection reagents used in TLC analysis of inorganic anions are listed in Tables 1-3. Table 4 presents complete information about chromatographic systems as used by workers for analytical studies of various anions. (A list of abbreviations appears on pages 3607-3608.) Research papers on TLC of anions from some selected journals are shown

TABLE 1 Stationary Phases Used in TLC of Inorganic Anions

Code Stationary phases

SI SZ s 3

S4 Aluminum oxide G (Merck) ss

and Williams) s 6 Aluminum oxide G S l Alumina Sn Alumina containing 5% gypsum s9 Alumina (MN-Polygram Alox N) SIO SI 1

S,Z SI , SM Cellulose MN 300 HR SI5 Cellulose S I ~ Cellulose MN 300 SIT Cellulose MN 300 + 1 wt% sodium CM-Cellulose SIS Cellulose (Whatman) + 5.5 wt% starch S19 Cellulose (Polygram Cel MN 300)

Aluminum oxide D-5, silica gel D-0, aluminum oxide S Aluminum oxide (act. grade IV. 100-150 mesh) Aluniinum oxide G-kieselguhr G ( I : 1 wiw)

Aluminum oxide S (Hopkin and Williams), DS-5 (Camag), silica gel S (Hopkin

Alumina (CHD), alumina + silica gel G ( I : I , 1:2, and 2: 1 ) Cellulose (precoated plates; Merck) Cellulose (Avicel SF, tech. grade. precoated uniplates; F.M.C.) Cellulose (precoated uniplates, Avicel; Anal. Tech.) D

ownl

oade

d by

[U

nive

rsity

of

Illin

ois

at U

rban

a-C

ham

paig

n] a

t 08:

26 2

3 Se

ptem

ber

2013

Page 5: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS

TABLE I Continued

3579

Code Stationary phases

s20

S2l

s22

s 2 3

s24

s z s s26

s 2 7

S28

s29

s30

s31

s 3 2

s33

s34

s3s

s36

s37

S38

s39

s40

s4I

s42

s43

S44

s4s

s46

s 4 7

s49

sso S S l

s s 2

ss3 s54

s s s

ss7 sss ss9

S60

s 4 8

sS6

Cellulose (>300 mesh; Toyo Roshi) Cellulose (Avicel; F.M.C.) PEI-cellulose (precoated plates) Cellulose (for column chromatography; S and S) Cellulose (Fertigfolic F 1440, S and S ) Cellulose CC-41 (Whatman) Cellulose powder 142 dg and 140 dg + 2 wt% maize starch Cellulose powder 142 dg-cellulose 144 (2: 1 w/w) Cellulose, cellulose impregnated with polyethyleneimine Cellulose (144, 142 dg; S and S) Cellulose (144; S and S) Cellulose (Polygram Cel MN 300) Cellulose (Toyo Roshi) suspended in aq. sodium polyacrylate (Al) or in

cellulose acetate in DMF (Az), silica gel (Wakogel B-0) suspended in sodium polyacrylate (A3), or in cellulose acetate in DMF (Ad)

Cellulose (Avicel, tech. grade; F.M.C.) Cellulose MN 300 HR, silica gel MN-N-HR, starch Cellulose-DEAE in the formate form, cellulose microcrystalline (Avicel SF;

Cellulose (MN 300) impregnated with polyethyleneimine Cellulose microcrystalline Cellulose microcrystalline incorporating a fluorescent indicator ECTEOLA-cellulose (S and S) DEAE-cellulose MN 300 Polygram. Cellulose (ready thin layers on A1 foil; Carlo Erba), silica gel (ready thin layers

Cellulose (precoated plates; Merck, Darmstadt) Cellulose (Merck 5716, ready-made plates) Corn starch (Servo Miholj) Baker-flex DEAE cellulose sheets, PEI-F cellulose sheets, Eastman Kodak

Cellulose commercial Dowex 1-XiO, 1-X2, Bio-Rex 5 , zirconium hydroxide Dowex 2-XS (Cl- and Ac-), Lonex 25-SB (MN) (Ac-) Hydrous I1 antimony V oxide. Indium oxide plates (Cavadura 5 , Blazers) Keratin (unmodified, esterified, or deaminates) Kieselguhr G (Merck) Lucefol-quick layers Maize starch + 10 wt% gypsum Maize starch Polyarnide (Woelm), silica gel G, silica gel MN Polyamide plates (Woelm) Silica gel G, kieselguhr (Merck), lanthanum oxide (Aver Remy) Silica gel MN S-HR Silica gel

F.M.C.)

on Al foil; Carlo Erha), silica gel (Baker flex IB-F)

silica gel sheets 6060, Baker-flex silica gel 1B sheets

(continued)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 6: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3580 MOHAMMAD AND TlWARl

TABLE I Continued ~~

Code Stationary phases

Silica gel MN G-HR Silica gel H Silica gel (Merck) impregnated with 3% AgNO, (10 mL/4 g silica gel) Silica gel G Silica gel G (Res. Specialties) Silica gel G, Silufol UV 254: Fertigtolien (Kavalier CSSR) Silica gel (Wakogel B-0) + 10 wt% starch Domestic silica gels (250-300 mesh) Silica gel H (Merck) Silica gel + 7 wt% starch Silica gel G (Merck) Silica gel G (Merck) + 10 wt% Dowex SOW-XI (200-400 mesh, K')-4 wt%

CH3COOK, silica gel KSK (3-25 pn) + 10 wt% Dowex SOW-X8 (200-400 mesh, Na+)-5 wt% starch

Silica gel (Merck) + 5 wt% starch + 5 wt% Na2C03, silica gel (Merck) + 5 wt% starch

Silica gel (Merck) + 5 wt% starch Silica gel G + 10 wt% Dowex 50W-XI (200-400 mesh, K') + 2 wt%

Silica gel (Wakogel B-10) Sephadex G-200, LH 20 (Pharmacia Uppsala) Silica gel foils (Ready made) Silica gel (Wakogel B-O), instant TLC sheets (Gelman type SA) Silica gel sheets Sephadex G-25, G 200, LH 20 Silica gelicellulose microcrystalline Silica gel G and D Silufol U V 254 layers Chromagram silica gel sheets (Eastman Kodak 6061 polyvinyl alcohol binder) Silica gel GZ54 (Merck, Darmstadt, GFR) Silulor UV 254 (silica gel adsorbent with starch binder and a fluorescent

Silica gel G and D, S0:50 silica gel G-Silpearl, commercially prepared films

Silica gel KSS-4 Silica gel H 60, cellulose microcrystalline Silufol 254 type commercial plates Hydrated stannic oxide Silica gel + 5 wt% starch Silica gel G, alumina G (Merck) Silufol 254 Silica gel impregnated with methanolic solution of fluorescein Silica gel G and Zr(IV) molybdate Silica gel + antimonic acid Silica gel G, silica gel impregnated with O.l-S.O%' aq. CuSO4 solution

potassium acetate

indicator)

UV 254 (containing a mixture of Silpearl and silica gel)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 7: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 3581

TABLE I Continued

Code Stationary phases

Slw

Slol

SIo2

Silica gel G impregnated with 0.1% aq. CuS04, ZnS04, NiClz, CoC12, and

Silica gel G, alumina, cellulose microcrystalline, alumina + cellulose (1 : I , 1 :2,

Silica gel impregnated with 1% aq. CuS04 solution, silica gel G , alumina,

Co(NH3)&13

2:1), alumina + sil icagel(l : l , 1:2, 2:1)

cellulose microcrystalline, kaolin, kieselguhr G , alumina + cellulose ( I : I ) , kieselguhr + cellulose (1 :2, 2: I)

TABLE 2 Mobile Phases Used in TLC of Inorganic Anions

Code Mobile phases

MI M2 M3

Ms

Ms M7 Mg M9

MI,,

Organic layer of butanol-1-pyridine-water-NH3 (8:4:8: 1) Water, acetone, water-acetone (1 : l ) , acetone-conc. HzSOa-water (45:4: I ) Butanol-I-acetone-conc. NH3-water (X: 10:2: 1)

Butanol-1-water-pyridine (2: 2 : I ) , butanol-I-water-pyridine-NH3-acetone

0.05 N NaOH-acetone (3: 17) Water and NaOH (0.5 N and I N) Methanol-28% NH3 (10: lo), water-28% NH3 (10: 1) Aq. solutions of salts, acid, bases, and buffer solutions; KzS04, K3P04, and

NaF solutions; 1 N KNO3, 0.1 N Na2CO3 EMK, FA, acetone, methanol, FA + EMK/acetone/methanol/ethanol/n- propanol/isopropanol/n-butanol/butane-2-ol/50% picric acid solution in methanol (1:9, 4:6, I : ] , 6:4, 9:l vlv)

M4 0.2MKNO3

(8: 12:4: 1:8), butanol-I-water-pyridine-NH3 (8:8:4: 1)

MI, Acetone-water (9: 1) MI* Ethanol-pyridine-water-NHJ (15:5:4: 1) M13

M14 Acetone-water mixtures Mls Ethanol-isobutanol-propanol-2-water-trichloroacetic acid-NH3

Ethanol-pyndine-water-conc. NH3 (15 :5:4: 1); mixtures of butanol-1, HCI, HF, HBr, TOP0

(35: 15:20:30:5 g:O.4); methanol-isobutanol-water-FA-NH3 (50: 10: 3 1 : 0.3 : 9)

Water-ethanol-isobutanol-propanol-2-22% NH3-TCA (30: 15: 15:20:0.4:5 g); 22% NH3-methanol-isobutanol-water-FA (9: 50: 10: 31 : 0.3)

Butanol-l-20% TCA-acetone-25% NH3 (120:60:40: 3); propanol-l-20% TCA-25% NH3 (120:80: 3); isobutanol-20% TCA-acetone-25% NH3 (20 : 60 : 40 : 3)

5 g TCA-0.3 mL conc. NH3 dissolved in 100 mL ethanol-water or 100 mL propanol-2-water

M16

MI,

MI8

(continued)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 8: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3582 MOHAMMAD AND TlWARl

TABLE 2 Continued

Code Mobile phases

Propanol-2-TCA-20% aq. tetraethylammonium hydroxide-water (75 : 5 g : 1.6:25) used after 12 h: propanol-2-isobutanol-NH3 (40:20: 1 mL) set aside for 12 h

Dioxane-water-TCA-NH3 (65:27.5:5 g:O.25) Methanol-TCA-96% acetic acid-water (60: 15: I :4), TCA (3 g)-25% NH3 (30

MethanoL(100 g TCA with water to 500 mL + 22.7 mL NH3)-[96% acetic mL) made up to 1 L with water

acid-water (1 : 4)]-water (60: 10.3:5 : 8); propanol-2-isobutanol-water-conc. NH, (40:20:39: 1)

28% NH3, TCA, glacial acetic acid, water. isopropanol, and isobutanol 0.5-1.5 M solutions of NaCl and NHdCI DMF-butanone-water-NH3 (20: 20:99: I ) Methanol-dioxane-[(propanol-2-water (7: I)]-[%% TCA-water (1 : 4)]-( 125 g

TCA + 32 mL 25% NH3 to 1 L with water) (30: 15: 15:4:20) Acetone-TFA-water-conc. NH3 (140:6: 52.8 :0.6, 136: 6 : 56.8: 0.6,

132:6:62.8:0.6, 126: 6:66.8:0.6, 120:6: 72.8 :0.6) Methanol-dioxane-[propanol-2 + water (7 : I)]-[glacial acetic acid + water

(1:4)]-(125 g TCA + 32 mL 25% NH3 diluted to 1 L with water) (30: 15: 15:4:20)

with water)-[glacial acetic acid + water (1 :4)] (75 : 20: 25: 6) Methanol-[propanol-2 + water (7: 1)]-(125 g TCA + 32 mL 25% NH3 to 1 L

Dioxane-[160 g TCA + 82 mL 25% NH3 to I L with water (7:3)] Methanol-[propanol-2 + water (7: l)]-(75 g TCA + 80 mL 25% NH3 to 1 L

with water)-[glacial acetic acid + water (1:4)] (67.5:22:6:50:6) Methanol-dioxane-[propanol-2 + water (7 : l)]-[glacial acetic acid + water

(1:4)]-(125 g TCA + 32 mL 25% NH3 to 1 L with water) (9:3:2:1:5) 0.05-3.0 M LiCl Alcohols and/or dioxane- 10% TCA-98% acetic acid-25% NH3-water mixtures Propanol-2-dioxane- 10% TCA-987~ acetic acid-NH1-water

(30:40:27: 1:0.3: 1.7) Methanol-[propanol-2-water (7: 1)]-(125 g TCA + 32 mL 25% NH3 + water

to 1 L)-[W% GAA + water ( I :4)] (75 :20:25:6) Acidic: Acetone-acetic acid-water (35: I I :9); Methanol-TCA solution 1-19%

acetic acid (60: 10:3.5); Ethanol-water-TCA-28% NH, (80:20:5 g:0.2); Propanol-2-water-TCA-conc. NH3 (75: 25: 5 g:0.25); Propanol-2-water-89% FA-NH, (75: 20: 5: 0.1, pH to 1.4): Propanol-2-rer/-butanol-water-TCA (6: 8: 6: 1 9); Propanol-2-dioxane-TCA solution 2-96% acetic acid-water (26.25: 30: 15.6:0.6: 16. IS); Propanol-2-ethylene glycol monomethyl ether-TCA-25% NH3-water (80:40: 5 g:O.3:40); rert-Butanol-water-picric acid (20: 5 : 1 8): Dioxane-water-TCA-29% NH3 (60: 35 : 5 g: 0.25); Acetone-TCA solution 3-water (13 : 5 : 2)

I-water-NH, (25 : 5 : 1 1 : 9. to pH 11.4 with FA): Ethanol-propanol- 1-water-NH, (30: 30: 39: 1); Ethanol-isobutanol-water-25% NH3 (30:30:39: I ) : Propanol-l-water-28% NH3 (3: 1: 1); Propanol- 2-isobutanol-water-conc. NH, (40: 20:39: I ) : Pyridine-water-NH, (13:6: 1)

Basic: Methanol-28% NH,-IO% TCA-water (30:9:2: 18); Methanol-butanol-

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 9: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS

TABLE 2 Continued

3583

Code Mobile phases

M3s

M36

M37 M30

M39 M40

M41

M42 M43 M44 M45

M47 M40 M49

Mso Msi

M46

M52 Ms3 Ms4 Mss

M57 M56

M58

Ms9 M60 M6 I M62

Acetone-ethyl acetate-water (3: 1 : I , 6 : 1 : 3); Acetone-water (4: I); Acetone-ethyl acetoacetate-water (6: 3 : 1); Ethanol-water-1.5 N NH3 (6:2: 1); Methanol-butanol-water (2: 1: 1); Methanol-FA (100 mL: 10 drops); Butanol-2-4 N HCI (4: 1); Butanol-propanol-2-1.5 N NH3 ( I :2:3); Methanol-ethylenediamine (100 rnL : 10 drops)

FA, TCA, potassium acetate, 0.88 M NH3, water, pH Methanol, ethanol, propanol-2, isobutanol, tert-butanol, acetone, butanone,

Aqueous FA solutions Water-ethanol-isobutanol-propanol-2-22% NH3-TCA (30: 35 : 1.5 : 20: 0.4: 5 g);

Dioxane-[160 g TCA + 8 mL 25% NH3 to 1 L water (7:3)], methanol-[propanol-2-water (7: I ) , 125 g TCA + 32 mL 25% NH3 to 1 L with water]-[GAA-water (1 :4)] (75 : 20: 25 :6); Gradient elution with ethanol-water mixtures containing variable amounts of TCA and NH3, methanol, propanol-2, 10% TCA, 98% acetic acid, 25% NH3 (60: 14:25: 1:0.6); Methanol, 100 g TCA with water to 500 mL, then add 22.7 mL NH3-[96% acetic acid-water (1:4)], water (60: 10.3:5:8)

2.0 M LiCl Acetone, water, NHs, ether, chloroform, dioxane, pyridine, and alcohols in

Acetone, water, ether, dioxane, HNO3, TCA, GAA, ethylene glycol, and

27 mobile phases Propanol-2-water-acetic acid (20: 5 : 2) 6 M HCI Butanol-pyridine-1 N NH3 (2: 1:2) Basic and polar developing solvent systems Abel and MD-4 acid mobile solvents 28% NH3-acetone-n-butanol (60: 130: 30) 28% NH3-acetone-n-butanol (60: 130: 30); 28% NH3-acetone (2: 3);

TCA-propanol-2-water-0.1 M EDTA-25% NH3 (5 g: 80: 39: 1 :0.3) 3 M NH4N03; 3 M Ammonium hexafluorophosphate; 6 M NH4N03;

various ratios

alcohols in various ratios

Dioxane-water (3 : 2); Acetone-acetic acid-water (20: 1 : 20)

Acetone-heptane-0.29 M aq. tetrabutylammonium chloride (12: 2: 0.5); Acetone-heptane-0.072 M aq. tetrabutylammonium chloride (9: 3 :0.5)

Only one solvent system used Methanol-dioxane-88% isopropanol-20% acetic acid-9% TCA (50: 10: 15: 5 : 25) Butanol (or propano1)-methanol-water-TCA (35 : 35 : 25 : 5 g) Isopropanol-l3.5% TCA-25% NH3 water (140:40:0.6) 1.5 x 1 M NaNO3; I M LiN03; 2 M NH4NO3; 3 M NaCI; 2 M NaCl pH 5.0 buffer [20 mL pyridine + 13.4 mL glacial acetic acid (+ 0.25 M NaCl

Six aqueous organic acids Methanol-TCA-dimethylamine (55 : 3 : 52); Water-ethylene glycol (1 1 : I ) HC1-KC1 buffer (pH 2.5, 10.2); 0.2 M KCI (pH 5.0 with HCl) Propanol-2-water-20% NH3 (75 : 25 : 0.3) + added TFA

M sodium salicylate; 25% Ethanol

for oligophosphates) to 1 L with water]

{continued)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 10: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3584 MOHAMMAD AND TlWARl

TABLE 2 Continued

Code Mobile phases

Acetone-3 N NH3 (7:3); 3 N NH3, water Acetone-3 N NH, ( I : I ) Acetone-1% ammonium acetate (9: I ) ; Ethyl acetate-GAA (19: I) : Methanol-2

N HCI-acetone (7:2: I ) ; Acetone-conc. NH, (3: 1); Methanol-water (1: I) , Methanol-water-acetone ( 5 : 3: 2) + drop NH3 : Methanol-GAA (19: I ) ; Methanol-2 N HCI (19: I) ; Methanol-2 N HCI-acetone (13:3:2): Methanol-conc. H N 0 3 (19: I ) ; Methanol-2 N HCI (4: 1)

Butanol-FA ( I : 1) Acetone-6 N NH, (2:6, 2:5, 2:4, 2:3, 2:2, 2 : l ) : 1 N NH3; 1 N NH3-acetone

( 1 : I ) Ethyl acetate-ether saturated with water-TBP (25 : 25 : 1); Methanol-propanol-

1-water-conc. NH,-IO% TCA (50:30: 15:8: 1.5) Acetone-propanol-2-conc. NH3-water ( I 3 : 4 : 2 : 2) Butanol- 1 -propanol- 1 -di-n-butylamine (9 : 9 : 2) Butanone-ethanol-NH3 ( 5 : 5 : 2); Butanone-1-ethanol-water (2:2: I) Water saturated with isobutanol; 10-15% aq. ammonium acetate; water

Acetone-butanol-I-conc. NH3-water (13:4:2: I ) Methanol-conc. NH3-1092 TCA-water (10: 3: 1 :6 ) ; Propanol-2-THF-conc.

Methanol-water (3: I ) Butanol-acetone-NH,-pyridine (12: 5 : 1 : 2); Butanol-pyridine-NH3 (2 : 2: 1) Ethanol-butanol-1.6 N NH3 (75:75:4-12); Ethanol-butanol-1-1.6 N NH3-I M

Methanol-propanol-1-concn. NH3-water (10: 10: 1 : 2): Methanol-dioxane-

Methanol-NH,-lO% TCA-water (10:3: I :6 ) Methanol-conc, NH,-TCA-water (3 : 3 : 1 : 13) Methanol-conc. NH3-IO% TCA-water (10:3: 1 :6) Anhydrous alcohol-benzene ( I : 10) 0.1 or 0.2 M solutions of sodium salt of anion in 30 or 50% ethanol-water, after

saturated with isobutanoI-40% ammonium acetate (4: 1)

NH3 (5:3:2)

ammonium acetate (15: 15:2:0-8)

conc. NH3-water (3 :6: I : I )

application of solution of crystal violet at a starting point 5 cm above the lower edge of the plate

Solution of sodium salts of various anions of molarity: complex of Co(III), 0.2; Ni. 0.1; and Cu and Pt, 0.5

tert-Butanol-acetone-water (9: 35 : 6); Ethanol-propanol-l-GAA-acetone- water (37.5:37.5:5: 1 :20)

Acetone-water (10: I ) ; Methanol-butanol-I-water (3: 1 : I ) ; Acetone-benzene ( 1 : l )

Acetone-water (10: I): Methanol-butanol-1-water (3: 1 : I ) ; Butanol-l saturated with 2 N HNOl

Butanol-I-ethanol-water (2 :2 : I ) tert-Butanol-acetone-water (18: 70: 12) Acetone, butanone, 28% NH3, 14% NH3, 2% NH3 0.01 N HNO3: 3 N LiNO3; 3 N CH3COOLi; 0.01 N HN03-ethanol (1: l ) Acetone-FA-water (70: 10: 10); Butanol-ethanol-water (20:60: 20); Distilled

water; Propanol-CHC13-benzylamine (60: 30: 10)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 11: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 3585

TABLE 2 Continued

Code Mobile phases

Dioxane-methanol-conc. NH3-water (6 : 3 : 1 : 1); Heptanol-2-methanol-water (85: 10:s); Methanol; 99% Ethanol; 5% (v/v) water in butanol-1; Octanol-1 saturated with water; propanol-I-methanol (I : 1); Ethanol-n-butanol-aq. ammonia (75:75:4), (75:75:8), (75:75: 12); Ethanol-n-butanol-aq. NH3-l M CHsCOONH4 (75:75:10:0), (75:75:10:10), (75:75: 10:20), (75:75: 10:40)

Acetone; Acetone-water (83 : 17) 0.01 M HCI; 4M LiCI; Ethanol-0.01 M HCI ( I : 1) Acetone, dioxane mixed with NaOH or NH40H solutions Isopropanol-ethanol-water (9: 4: 3) Ethanol-dioxane-water-NH40H (30: 60: 50: 25) Methanol solutions containing 10 g water/100 mL, 0-3.7 M HCI or 0-3.8 M in

HNO3 I M KNO3 Acetone-butanol-25% NH3-water (65:20: 10: 5 ) Ethanol-pyridine-water-NH3 (60: 20: 16: 4) Acetone-C.&-water (16:5: 2) Butanol-CsH~N-water-25% NH4OH (80:40: 80:s); Ethanol-water (70:40) Acetone-FA-water (7: I : 1) Various alcohol-aq. ammonia systems Various alcohol-NH4OH systems n-Propanol-conc. NHsOH (2: I), n-Propanol-pyridine-water (5:3 : 3) Ammonia buffer (pH 10) system Methanol-benzene-EtOAC-EtCoMe-NH3 (6: 6:6:2: 1)

Butanol-acetone-water (45:45: 10) Acetone-water (10: I); Methanol-butanol-water (3 : 1 : 1); Butanol standardized

Butanol-propanol-water (1 : 3 : 1) Polyhydric alcohols; Formamide; DMF; Methyl amine; Pyridine; Water;

Methanol; Ethanol; Other alcohols; Ketones, Esters; Water-acetone (lo:%, 20:80); Dioxane; 25% aq. ammonia; Water-methanol (5:95, 10:90); Water-ethanol (5 :95 , 10:90); Water-isopropanol (10:90, 20:80); Water-tert- butanol (20:80, 30:70); Water-MezCOCHCHzCOMe (20: 80, 30:70); Water-pyridine ( 5 : 9 5 , 10:90); Aq. ammonia-methanol (20:80, 40:60); Aq. ammonia-ethanol (20:80, 40:60); Aq. ammonia-isopropanol (20:80, 30: 70); Aq. ammonia-tert-butanol (40: 60, 60:40); Aq. ammonia-acetone (20: 80, 30:70); Aq. ammonia-dioxane (40:60, 60:40); Aq. ammonia-DMF (20:80, 40:60, 60:40); Aq. ammonia-(CHzOH)z (20:80, 40:60); Aq. ammonia- butanol (60:40, 80:20)

Acetone-butanol-10% NH40H-water (65: 20: 105) Propanol-NH40H (2: I ) THF-acetic acid-water (10: 1 : 1) Acetone-butanol-conc. NHs-water (3: 4: 2: 1); Butanol-ethanol-cone.

NH3-water (2:2: 1 : 1) Pyridine-water-n-butanol-NH4OH (20: 40: 40: 5) Toluene-acetic acid (10:2) Aq. organic acid systems

ACetOIle-CsH6 (1 : 1)

with 2 N HNO3.

(continued)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 12: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3586 MOHAMMAD AND TlWARl

TABLE 2 Continued

Code

MI23

MI24

M12s

~ ~~ ~ ~-

Mobile phases

HCI-acetone ( l : 9 , 9: I ) ; NaCI-acetone ( l : 9 , 9 : I ) ; HBr-acetone (1:9, 9: I ) ; NHsOH-acetone (1 :9, 9: 1); FA-acetone ( I :9, 9: I)

Propan-2-01; butan-2-01; and r-butanol; 10% solutions of DPA or DEAH in methanol; DMA and TEA; acetone; EMK; isobutyl methyl ketone and acetophenone; phenol; FA (22 M); FA (22 M) mixed with alcohols, amines, ketones in the ratio 1:9, 1: 1, 9 : l ; DMA, TEA, s-butylamine; 10% methanolic solution of DPA; 10% methanolic solution of DEAH; isobutyl methyl ketone; EMK; acetophenone, propan-2-01; butane-2-01; t-butanol and phenol; 10% DPA or DEAH in methanol; or TEA or DMA-acetone or EMK or acetophenone-FA ( 5 : 3 5 : 6 0 ) ; 10% DPA or DEAH in methanol or TEA-isopropanol or isobutanol-FA ( 5 : 35 : 60): DMA-isopropanol or isobutanol-FA ( 5 : 35 : 60)

3 : 1 : 6, 5 : 1 : 4); H2S04/HC104/HC1-DMSO-acetone ( I : 1 : 8) FA-acetone (l:9); DMSO-acetone ( l : 8 , 3:6, 6:3); FA-DMSO-acetone (1: 1:8,

Distilled water Acetone-chloroform (3 : I ) ; Acetone-0.1 M HCI (4: I ) 0.1 M HCI-acetone ( I :9); 1.0 M FA; 1.0 M sodium formate; Double distilled

water

TABLE 3 Detection Reagents Used in TLC of Inorganic Anions

Code Detection reagents

D2 D3 D4 Ds

D6 D7

Aq. saturated AgNO3 solution: AsO;, AsOC.H2POC, CrOt-, I - , Br- , CI-,

FeC13 (10%) solution containing 10 mL HCI (2 M): I - , H ~ P O I , Cloy Sodium nitroprusside (20%) aq. solution: S2- KI (10%) solution containing 10 mL HCI (2 M): 104, 103, BrOF , Cloy, NO? FeS04 (10%) aq. solution containing 20 mL HzSO4 (2 M): SCN-, CH3COO-,

Aq. saturated solution of K2Cr207 containing 10 mL HzS04 (2 M): AsO; , SO:-. Mixture of 100 mL HXO-saturated BuOH, 0.93 g PhNH, and 1.66 g o-phthalic

acid and heated for 20 min at 130°C. Specific color for each anion has been reported.

s2- , s20:-, cro-

Fe(CN)a-, Fe(CN)d-

Ammonical solution of AgNO3 and fluorscein: I - . Br - , CI- 5% AgN03 followed by exposure to sunlight: I - 5% KI followed by 6 N HCI: 101. IO4-, Te(IV) 10% K4[Fe(CN)6] in 5 N HCI: MOO:-, TeOa (KI solution + starch)-HCI solution: IOT AgNO3 solution: I -, RuOa- gives dark spot itself Autoradiography was also used KI in 1 N HCI: 1 0 < , 1 0 4 , BrOT , CrO;- 1% FeC13 solution in 2 M HCI: SCN-, MOOS-, Fe(CN)Z-, Fe(CN)g-

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 13: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 3587

TABLE 3 Continued

Code Detection reagents

D17

D l S

Di9 DZO

Dz I

D22

D23

D24

D25 D26

D27

D28

D29

D30 D3 1

D32 D33

D34 D35

D36 D37 D38 D39 D40

D41

D42

Saturated solution of AgNO3 in methanol: I - , Br- , CI-, 103, 104, VO< , CH3COO-, S20:-, CrOa-,

30 mL of 2% Ph2NH solution mixed with 20 mL of 4 M HzS04: NOT, NOT, IO?, ,104, BrOl , WOj-, VO3 , Mn04

2% alcoholic solution of pyrogallol: MOO:- 1% BaCO3 solution followed by spraying with 2% phenolphthalein solution in

methanol: Sol- Halide ions are detected by spraying with a 1% AgNO3 solution, which prior to

its use is mixed (ratio 9: 1) with a solution of 0.5% of fluorescein + 0.5% of DCF containing a few drops of 4 N NH3

0.04% bromocresol green in ethanol, made just basic with 0.1 N NaOH: Anions (acids)

0.1% bromocresol purple in ethanol made just basic with dil. NH40H: Anions (halides)

Mix equal volumes of 3.3% AgN03 in water and 0.3% sodium fluoresceinate in water. Examine in UV light: Anions

1% (NH4)2M004 + 1% ZnClz in 10% HCI: PO$- For visualization of the halides the plates were sprayed with an ethanolic

solution of DCF (0.1%, w/v), and then oversprayed with AgNO3 under UV light. The F- appeared as a yellow spot and other halides as dark spots

Mixture of 5 g (NH&Mo04, 420 mL H20, 50 mL 0.1 N HCI, and 25 mL 60% HCI04. Plates were irradiated for 10-15 min with UV light with peak wavelength of 365 nm. Orthophosphate appeared as yellow spots, all other showed blue spots

Autoradiogram 200 mm by 50 mm detection. Kodak royal medical x-ray film. Time of exposure 24 to 48 h. 23°C

Molybdate solution (300 g NaHS03, 10 g Na2S03, and 2 g metal dissolved in lo00 mL HzO)

(NH&Mo04 + SnC12 Detection in UV light, obtaining blue or white spots on a white background Detection by molybdophosphate reaction followed by reduction Detection by spraying with Hanes and Isherwood reagent [C. S. Hanes and F.

(NH.&Mo04 solution AgN03, DCF: BOT, F - , CI-, Br-, I - , H A s 0 4 , AsOT, SO:-, NOT, S20:-,

FeC13: Fe(CN)a-, Fe(CN)$-, SCN- AgN03: POj-, S20:-, Cr20:- 10% KI in 2 N HCI: BrOz , IOT , BrOF , ClOl , SZOS DCF, AgN03, Kojic acid, o-coumaric acid: C203-, C0:- Kojic acid, o-coumaric acid, DCF, Laurents acid, heated DCF, Laurents acid,

Molybdate-HCIO4 reagent, heated at 70"C, exposed to UV light. Blue spots of

1 volume 3.3% aq. AgNO3 and 1 volume 0.3% Na salt of fluorescein and

A. Isherwood, Nature, 164, 1107 (1949)l

CN-, S2-

heat: COj-, SO;-, NOT

phosphates

exposed to daylight or UV light: Sulfate yellow spots on a pink background

(continued)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 14: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3588

TABLE 3 Continued

MOHAMMAD AND TlWARl

Code Detection reagents

Alizarin-zirconium lake and AgNO3, 101, and BrO< (brown), CIOT appeared as a light tan color in about 15 min. Using DCF the spots of HAsOj-, SO:-, and NO? were tan, pink, and red, respectively. AgNO3 gave pink color to AsO;. Under UV light the AsOl spot was yellow and the SO:- spot became lighter in color. CzOi- showed a red band. SO; (black band) and NOT (light tan) were best detected by spraying with DCF and Laurents acid followed by heating for few minutes at 110°C. AgNO3 and DCF gave visible pink to SzO:.~ which later turned to reddish brown. SzOg- formed a distinct visible brown on a yellow background with KI. A visible dark gray and dark brown detected the CN- and Sz- with DCF, AgN03

tetrahydrate) + 2% ascorbic acid in 10% TCA 1% aq. solution of ( N H ~ ) ~ M o ~ O Z ~ . ~ H Z O (ammonium heptamolybdate

254 nm UV indicator 1% AgNO3 solution: NO< (brown), CIOT (beige), Sz- (intense chestnut,

disappears under UV), SCN.. (pale rose, violet gray under UV), CN- (light brown, brown under UV), Fe(CN)%~- (rose violet under UV), Fe(CN)z- (yellow. disappears under UV)

Benzidine solution: NO; (yellow), BrOy (violet). ClO3 (bright blue) 2540 A UV light: CI- (purple). Br- (gray), I - (black), CIO, (rose), BrOT

1% (NH4)2Mo04 in 0.6 M HCI. followed by 1% tin(I1) chloride in 10% HCL:

I % (NH&MoO4 in 0.125 M HzS04. followed by saturated oxalic acid and 1%

Methylene blue: Re(IV)CIg-. ReOP KI in 1 N to 10 N HCI: Halation of free iodine (dark brown) Fluorescent morin-aluminum complex for detection. (Dissolve 5 g each of

(deep red), 103 (red)

phosphate

tin(1I) chloride in 10% HCI: silicate

AlCl3 and monn in a mixture of 10 mL of 30% acetic acid, 20 mL of 98% ethanol. and 20 mL of water. Viewed under UV light at 365 nm)

1% aq. solution of palladium chloride in HCI Detection of anions by comparing the colors with a color table within 20 min.

Spraying with a solution of Na2MoO4. NH4NO3, and HNO, Spraying with (NH4)?MoO4 in HNO, followed by 1.2,4-aminonapthosulfonic

A coloring agent containing SnCI2 was sprayed on the TLC plate lndirect fluorometric detection Radioactivity techniques: CI- . Br-. I - . AsOj- AsOd- 10% (NH4)2MoO4 followed by 10% SnClz in 1 M HCI: phosphates 0.1% bromocresol purple in ethanol: OAc -. HCO; 5% KI in 1 M HCI: CIO; . BrO3 . 101 10% FeC13: SCN-. Fe(CN)a- , Fe(CN)%- 1 M NH3 solution saturated with H?S 0.4% (NH&MoO4 in 8% HN03 followed by 1% SnCll in 10% HCI 1% aq. FeS04 I % aq. Fe(N03)2

13 spraying reagents were used

acid in NaS03 solution

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 15: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 3589

TABLE 3 Continued

Code Detection reagents

D67 D68 D69 D70 D7I D72 D73

D74

D75

D76 D77

D78

D79

DRO

D8l DRZ

D83

Du4 D85

D86

DR7

D88 D89

D90 D91

5% (NH&Mo04 solution in 50% HN03 2% AgN03: C1-, Br-, 1- 1% bromocresol purple and NH40H: F- I% KI in 0.1 N HCI: CIOF, BrOF, 101 0.05% methylene blue: CIOT (violet spot against blue background) 0.1% solution of congo red: BOI- 0.2 N solution of AgNO3: Sz- , CrOa-, AsOg-, AsOi- (variation of spots from

yellow to brown) Chevalier indicator (40 mg methyl red, 80 mg bromomethyl blue, 80 mg PPL, 2

mL 0.1 N Na2C03, 50 mL 95% ethanol, 50 mL HzO): NOT, SO:- Plates were sprayed with a reagent containing 5 mL 60% HC104, 10 mL HCI,

and 25 mL 4% (NH4)2Mo04 in 100 mL solution followed by spraying with a solution of 0.5% 2,4-diaminophenol-HCl and 5% Na2S03. Polyphosphoric acids were indicated by blue spots on a yellow background

Detection by exposure to light. Anions were identified partly in daylight and partly in UV light by spraying

Anion identification by RF values and detection by spraying with following with Fe(SCN), , fluorescein-CuS04 or AgN03-fluorescein

reagents. 0.1 N AgNO3: Br- (white), I- (yellow). 2% FeCI3: SCN- (red), Fe(CN)a-, Fe(CN)b- (blue), 2% Pb(NO&: C10- (yellow)

ClOl , CIOT, CIOL

SOa-, SO:- (pale yellow spots on a pink colored background)

Spots sprayed with bromocresol purple and detected by UV light: C10-,

BaC12 solution acidified with acetic acid and with sodium rhodizonate solution:

0.1 mol/L AgN03 solution: polythionates and thiosulfate (dark brown spots) Color change of complex by using strong base and acid confirms the presence

Aq. solution of K2S: Co(II1) complex Alcoholic solution of rubeanic acid: Cu(II), Ni(II1) complexes Rubeanic acid acidified with HCI and plate must be heated to 100°C: Pt(I1)

0.1 N NH3 solution of AgNO3 or 0.1% solution of bromocresol green in 50%

Sorbent impregnated with Luminophor-L 36 and observed in UV light:

AgN03: S2- . Fuchsine: SO:- . Cu(0AC);-benzidine-methanol: CN- Detection by spraying with 5% CuSO4 solution. NOT appears as a green spot,

and after heating OAc- appears as a blue spot, and after extended heating, the S 2 0 : - appears as a dark brown, nearly black spot, and S2- as a lighter shade. After very strong heating, the hypophosphite produces a reddish brown color. Spraying with 2% FeCI3 solution revealed NOT and OAc- in the cold or with mild heating as a greenish blue color, and for a short time, S20:- and S2- as a brownish red color which did not reappear even after strong heating

of boron

complex

ethanol: halides and sulfate

polythionates

8% (wlv) AgNO3 in acetone containing 10% (v/v) water Scintillation counting when 35S-labeled materials were used

(continued)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 16: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3590

TABLE 3 Continued

MOHAMMAD AND TlWARl

Code Detection reagents

GM counter for nonradioactive samples 5% aq. FeCI3: I - 10% HCI and 5% aq. KI solution: IOF , I 0 4 1% starch solution: I2

1% aq. KMn04 solution: So$-, SOj- AgN03 + H2S followed by removal of excess AgNO3 with CO$--free H2O Aq. bromocresol green, adjusted to the transition point with NH40H, and

Ammonical AgN03: sulfates 10% aq. KSCN and 10% SnClz in HCI ( 1 : 1) (prepared fresh daily): SeO! (red

Spot-test reagents Bromocresol purple: halides a-Naphthylamine-sulfanilic acid ( I : 1): NOT Fluorescein solution and a mixture of acetic acid and 30%, H202: Br- (bright

red spot appears on a yellow background) Radiometric detection 0.2% PhzNH in HzS04: All anions reported appear as blue spots Cu(OAC)z, benzidine acetate, and KBr Ammonium ferric sulfate: thiocyanate and selenocyanate Tolidine-HCI: B r 0 ~ Benzidine in 2 N acetic acid: Fe(CN)%- Aq. FeCI3 solution: Fe(CN)z- Detection at 250 nm with a dual wavelength densitometer Alizarin, AgNO3, and MnS04 in HzS04; KI in 2 M HCI; and FeS04 + FeCh

Marshall’s reagent [sulfanilic acidhaphthyl) ethylenediamine]: NO? (intense

Aq. 1% K4Fe(CN)$-: C202- Chromatographic zones highly colored (Fe complexes) or fluorescent under UV

light: terbium complexes

appeared as pale spots on a blue green background: polythionates

orange spot), MOO:- (red), R e 0 4 (yellow)

were used for detection

red purple zone).

TABLE 4 Chromatographic Systems Used for Analytical Studies

Stationary Mobile Detection phases phases Anions studied reagents Conditionskemarks Refs.

SI MI ASOF, AsOi- , HZPOi, D I - D ~ Saturated chamber. Run 1.5 cm in 27, 28 CrOi- , .SO;-, CI-, B r - , 1 - . 1 0 ~ , 1 0 ~ , BrOi. NO?, CIO, , Fe(CN)d-. [Fe(CN)sI4-, CH3COO-, CNS-, SO$-

1-2 rnin. Circular development

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 17: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 3591

TABLE 4 Continued ~ ~ ~ ~~ ~ ~~

Stationary Mobile Detection phases phases Anions studied reagents Condltionslremarks Refs

sz Mz

s3

S4

SS

Sr,

S? Sn

s9

SlO

M3

M4

Ms

M6

M? M?

M9

Mia

Sl I Mi1

IOT , IOb , XeO3

CIOC, ClOl , ClOT , CIO-, BrOy ,101, BrOY, BrO-

CI-, Br- , I-

CrOi-, CI-, Br- , I - , BrO,, ClOj' , Fe(CN)%-, Fe(CN)Z-, SCN-, AsOZ-. SO$-

NOT

I - , IO~,IOb, Te(1V) MoO3-,TeO;,IO?,I-,

101, BrOl , CrOS-, 10:. RuOi-

CrZO3-

Fe(CN)i-, Fe(CN)%-, SCN-, C r O - , Cr*O?-, I - , Br-, CI-, POI-,

NOT, NOT, BrO1 , MOO$-, SO$-, S20$-, CH3COO-

V O l , woi-, lor, IOb ,

CI-, Br-, I -

-

D7

Dn

-

-

D9, Dio Dii, Di4

Dis

D16-DZO

Dzi

Run 18-20 cm. The method is used to separate carrier-free amounts of 131"Xe03 from parent ~ ~ ~ ~ 1 0 ~ and also to obtain "'XeO3 from neutron-irradiated sodium perxenate

Run 10 cm in 40-50 min. CIO- and BrO- decompose in NH3

Run 16 cm. Slurry prepared with dil. HNO3

Temp. 30-32°C. Circular development. The solution is diluted until its color after TLC matches that of a standard: accuracy +S%

Saturated chamber. Run 15 cm, The method is applied to the determination of nitrate in feeds. The sample solution is applied as a continuous band. After TLC, the nitrate-containing zone is scraped off and reacted with 3.4- xylenol in sulfuric acid medium. The reaction product is extracted with petroleum ether and subsequently the organic layer is shaken with aq. alkali. After separation of the layers, the absorbance of the aq. layer is determined at 430 nm

Run 10 cm Ascending technique. Run 10 cm

Developed for 30 min. Effect of pH and salt concentration is discussed and the adsorption is compared with the tendency for the formation of ion pairs between anions and A13+ as observed in paper electrophoresis

Ascending technique. Run 10 cm. Plates activated at 100 t 5°C. Mutual separation of I - , Br- C1- , NOT , and NO< in the presence of transition metals has been studied

Accommodated plate. Hellendahl jar. Run 3 cm in 10-20 min. Number of thin-layer separations

29

30

31

32

33

34 3s

36

37

38

(continued)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 18: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3592

TABLE 4 Continued

MOHAMMAD AND TlWARl

~~

Stationary Mobile Detection phases phases Anions studied reagents Conditionslrernarks Refs

s12

SI1

s14

SIC

s 1 b

s17

sl9

F - , Poi-. SOi- . SOi- . Cl - . NO1

poi-. soi-. coi

F-. C1-. Br-. I

Ortho-, pyro-. and hexametaphosphates. All samples show presence of traces of other phosphates

Ortho-. pyro-. tri-. and tetra- phosphates

Ortho-, pyro-. tripoly-. trimeta-. and tetrametaphosphates. hypophosphite, phosphite, hypophosphate.

have been reported which can be used to introduce chromatography in the teaching laboratory. Mostly cations have been chromatographed along with a few anions

TLC is used as a method of water analysis. Cations were also chromatographed

Saturated chamber. Run 10 cm in approx. 30 min. Cations were also chromatographed. Marked differences in RF values upon temp. change

Run 14 2 0.5 cm in 30-40 min. Separation of halides from cations has been studied; it is due to cation exchange on the cellulose. F- appears as a yellow spot, while other halides appear as dark spots. Na' and NH2 appear as diffused yellow spots, while K + appears as a light brown spot

.Dzr

Run 1.5-2 h

Run 14 cm in 1.5-2 h. Saturated chamber. An extensive study is made of the influence of the composition of the mobile phase on the efficiency of the separation

Run 15 cm in 100 min. TLC and subsequent semiquantitative determinations serve as guides to the use of optimum sample size for quantitative analysis on ion- exchange columns. The method is applied to the analysis of tetracycline preparations

Run 14 cm in 25-34 min or 39-65 min. RF values of phosphates as a function of layer thickness (mg/cm'), time of run (min). and water content have been plotted

Saturated chamber. Run 6-7 cm in I h. Temp. 19.5-20.5"C

39

40

41

42

43

44

45

46

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 19: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 3593

TABLE 4 Continued

Stationary Mobile Detection phases phases Anions studied reagents Conditions/remarks Refs.

SlS

S1s

s 2 0

SZl

s2z

S23

s2s

M20

Ma

M22

M23

M24

M23

M26

M27

commercial sodium meta- phosphate glass, commercial sodium hexametaphosphate glass, sodium polyphosphate glass (n = 20-30)

Ortho- and pyrophosphates

Mono-, di-, and triphosphates

Ortho-, pyro-, trimeta-, tetrameta-, pentameta-, hexameta-, heptameta-, octameta-, tripoly-, tetra- poly-, pentapoly-, and hexapolyphosphates

Ortho-, pyro-, tripoly-, trimeta-, tetrameta-, pentameta-, hexameta-, heptameta-, octameta-, nonameta-, and decametaphosphates

Ortho-, pyro-, tripoly-, trimeta-, tetrameta-, and hexametaphosphates

triamidophosphates Diamido- and

Ortho-, pyro-, tripoly-, trimeta-, and tetrametaphosphates

D28

D ~ Y

D30

D30

D30

D3 1

D29

D2s

Run 13.5 cm in 1 h. Temp. 23°C. Kodak royal medical x-ray film for detection, time of exposure 24 to 48 h

phosphates is successful. Short time of run makes it superior to PC

Temp. 5°C

Run in 90 min. Separation of

Saturated chamber. Run 10 cm.

Saturated chamber. Run 10 cm. Temp. 5°C

Saturated chamber. Run 10 cm. Temp. 5°C

Plates accommodated for 45 min. Run 17 cm in 20-30 min (isothermal) or 20-70 min (gradient). Chromatography carried out under isothermal conditions (20-70°C) and at a temperature gradient (0.5-2.7%

Saturated chamber. Run 10 cm in 100 min. Semiquantitative determination of the phosphates is carried out by comparing color intensity and size of the spots with those of standard substances

Run 15 cm in approx. 55 min. For quantitative determinations the appropriate part of the cellulose layer is scraped off and treated with 0.1 N HzS04. After filtration and addition of molvbdate reagent, Dhotometrv

cm)

41

48

49

50

51

52

53

54

- . (continued)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 20: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3594

TABLE 4 Continued

MOHAMMAD AND TlWARl

Stationary Mobile Detection phases phases Anions studied reagents Conditionsiremarks Refs.

s 2 b M28

s 2 7 M2a

szs M30

s29

s30

SlS

M31

M32

-

s3I M33

Mono-, di-, tri-, tetra-, penta-. hexa-, hepta-. octa-, trimeta-, tetrameta-, pentameta-, hexameta-, and heptametaphosphates

Mono-, hexa-, tn-, and tetrametaphosphates

Ortho-, poly-, tripoly-, trimeta-, tetrameta-, and hexametaphosphates

Polycondensed phosphates

Mono-, tn-, and tridecaphosphates

Mono-, di-, and triphosphates

Mono, di, tn, trimeta, and tetrameta long-chain phosphates

is carried out at 822 nm. TLC is applied in a study on the use of phosphates as melting agents in processed cheese

Two-dimensional TLC. Ml and M4 yield successful separation of monohexa-, trimeta-, and heptametaphosphates

Run 16 cm in approx. 75 min. TLC separation of phosphates. Phosphate-containing zones are removed from the thin layer. The organic material is destroyed by treatment with HC104 and the phosphates are hydrolyzed. Color development is done using molybdate and hydrazine sulfate, and photometry is carried out at 825 nrn

22-25°C. The method can be used to estimate the relative chain-length of unknown polyphosphates. The TLC system described in this paper has been used to separate polyphosphates formed by caries-conducive streptococcus SL-1 in J. M. Tanzer and M. I . Krichevsky, Biochem. Biophys. Acra, 215, 368 (1970)

Saturated chamber. Run 12-14 cm in 1.5 or 5 h. TLC and TLEP of phosphates. Polyzonal analysis is helpful for the elucidation of phase formation of eluent components

Saturated chamber. Run in 4 h (ascending on normal plate) or in up to 12 h (ascending on wedge- shaped plate). TLC and TLEP of phosphates

400 V. TLC separation of polyphosphates at right angles to the prior electrophoresis

Run in 60 min (ascending) or 90 min (radial or circular). Separation of food colors,

DX Run 16 cm in approx. 60 min.

D32

D33 Run 10 cm in 30 min. Temp.

D3.4

D34

D34 TLEP separation of phosphates at

-

59

60

61

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 21: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 3595

TABLE 4 Continued

Stationary Mobile Detection phases phases Anions studied reagents Conditions/remarks Refs.

s3z

s33

s34

s3s

SlS

s36

M~~ Ortho-, pyro-, tripoly-, trimeta-, and tetrametaphosphates

M36 Metaphosphimates, imido- di-, mono-, diamidotrimeta-, and imidotrimetaphosphates; sulfate, thiosulfate, trithionate, tetra- and pentathionates

M3, F-, CI-, Br-, 1-

M38 Mono-, di-, tn-, tetra-, penta-, hexa-, hepta-, octa-, and polyorthophosphates

Ortho (Pi), pyro (PPi), and M39 tripoly (PPPi) phosphates

phenolic compounds, catechnol amine and serotonin metabolites; narcotics also studied. Techniques are useful for separating large amounts of a substance in the presence of small amounts of second substance. R F values are larger than those with ascending chromatography. Circular RF values are equal to the square root of the corresponding ascending R F values

Run 10 cm in 15-80 min or in 1-6.5 h. Closed chamber. When acidic developing solvents were used, the order of RF values was ortho- > poly- > metaphosphate, and when basic solvents were used the order of RF values was meta- > ortho- > polyphosphate

Run in 20-70 min. Microcrystalline cellulose can be successfully used to separate a large number of inorganic anions. The method has been applied to both thin- layer and column chromatography. The TLC plates gave a remarkably hard surface which stands up in a variety of solvents

Saturated chamber. Run 15 cm. Comparison of TLC and PC for the separation of inorganic compounds. Layer thickness 250 pm on 20 x 20 cm (for P- species) or 10 x 20 cm (for S- species) glass plates

Ascending technique. Run 15 cm. 0.25 mm thick layers

Relationship between the chromatographic behavior and the structural uniis of polyorthophosphates has been examined

Work on the hydrolysis of various phosphates, particularly PPi and PPPi, as catalyzed by an inorganic redox system. A simple, rapid technique for the

62

63

64

65

66

67

-

(continued)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 22: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3596

TABLE 4 Continued

MOHAMMAD AND TlWARl

Stationary Mobile Detection phases phases Anions studied reagents Conditionsiremarks Refs.

S 3 Y

S40

s4 I

SI5

D47, D.ra

MUJ C l O l . CIO; , CIO;. B r 0 1 . - 102,IO.C. SO?. soi- . POJ-.BOl-. B i O k NO,, NO<. SIO?. F - . CIV. B r r , 1-

- Various phosphates -

separation and identification of Pi, PPi. and PPPi has been proposed

TLC separation and identification. Layer thickness = 500 pm. Run in 1.5-3 h

TLC separation and identification. In each case the influence of various solvent mixtures as well as the limiting concentrations on chromatographic development was studied

separation. The addition of TEA to the cellulose resulted in an increase in development and a decrease in separation efficiency. The optimum concn. for separation was 0.5-15'6 anion

Run 10 cm in 1 h. Layer thickness 0.6 mm. SiOy and phosphates are mutually noninterfering. Polymers of HZSiO, are not detected. The detection limit of SiO3 is 0.006 pg; of SiOr 0.012 pLgicm?

Ascending technique. Studies o n valancy states of rhenium

Saturated chamber. Run 9 cm in 2 h. TLC and electrophoresis of halates

TLC separation of oxyanions and halogens. Halogen ions readily solvated by a proton-donating solvent in the mobile phase. gave smaller R F values owing to the dipole-dipole interactions

separation of phosphates. Cu, Zn, Ca. Mg. Al, and Fe(I1I) ions distort the chromatogram for separation of P oxo-anions by TLC. The possibility of the analysis of samples containing large amount of Ai(II1) and Fe(1II) was studied

Interference of Mo in the detection of phosphates by PC and TLC was studied. MOW) 0.09 and Mo(V1) 2 1.2 mgimL interfere in the analysis of solutions containing -3 mg PimL.

Ascending technique. TLC

influence of cations on the

68

69

70

71

72

73

74

75

76

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 23: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 3597

TABLE 4 Continued ~~~ ~~ ~ -~ ~

Stationary Mobile Detection phases phases Anions studied reagents Conditionsiremarks Refs.

s 4 2 M48

s53

s55

s55

SlS

Sl5

s46

SlS

M49

Mso

M5 I

Ms2

M53

Ms5

F - , C l - , Br-,IOi,I06, BrOi , ClOZ , ClOi , ClO'i , so3-, sol-, S2- , Si203-, SCN-, Fe(CN)a-, Fe(CN)%-, C r W , Cr205-, NO?, NO,, PO$-, WOi- , MOO$-, VO; , VOa-. AsO?, AsOa-, SeOS-, SeOl-

penta-, hexa-, cyclotri-, and cyclotetraphosphates

Mono- di-, tri-, tetra-,

Polyhedral borane anions 26 anions

Monofluorophosphate

Polyphosphates, condensed phosphates

M s ~ Polyphosphate

Sl5 M56 NOT, I - , S'-, 101, S - cetrimide

Saturated chamber. Run 10 cm. 15 inorganic oxyanions, e.g., P o i - , B & - , and NO? ; 5 hexose phosphate, 6 hexose sulfates, adenosine 5-mono-, di- and triphosphates; and 2 steroid sulfates were separated by TLC using various solvents

Ascending technique. Run 10 cm. TLC of inorganic compounds. The RF values become higher as the electronegativity of the halogen decreases or as the ionic radius increases

Run 10 cm (circular) or 15 cm (ascending) in 6-8 h. Complex mixtures of condensed phosphates were separated. Circular TLC provides better separations

Ascending technique Anion separation by TLC on plates

the size of microscope slides Na2PO3F is detected in extracts of

toothpastes by TLC. The sensitivity was t 5 &pot. Spot measured by planimetry, Method is suitable for quality control of toothpastes containing Na2P03F

Run 10-13 cm in 2-3 h. Detection of polyphosphates in fish products with TLC. Detection limit was 1 mg/mL for poly- and triphosphates and 4 m g h L for hexametaphosphate

Determination of polyphosphate in meat products by TLC. Recovery rate was 93.3-98.1%. Ham samples contained 0.42-0.63 mg polyphosphate and 0.80-1.18 mg phosphate/g. Light scanning at 780 nm was used to quantitate polyphosphate

Nonabsorbing and nonfluorescing anions. Anions in the low nanogram level can be recognized visually by using a hand-held UV lamp of excitation

77

78

79

80 81

82

83

84

8.5

(continued)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 24: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3598

TABLE 4 Continued

MOHAMMAD AND TlWARl

Stationary Mobile Detection phases phases Anions studied reagents Conditions/remarks Refs.

s 4 7 MS7 I - , B r - , CI-, 10,. SCN- . B&<, ClOl , Fe(CN& I

Fe(CN)%-, AsOT, AsO~C, PzOf-, P o i - . HzPO?, tripoly P

S48

s49

sso

ss I

s52

ss3

Ms8 Oligo- and amidophosphates

MS9 17 anions Mw HzPOI,SOS

Ma2 Polyphosphates

- Ortho-, pyro-, tripoly-. and tetrapolyphosphates

s 5 7 MM Phosphates

TLC on ion-exchange resins. Several separations of anions from cations are reported. TLC on flexible plastic supports; realization of new analytical applications

Run in 70 min. Room temperature for oligo and 5°C for amidophosphates. The procedure reportedly couples the advantages of TLC with those of ion-exchange techniques

Qualitative separations Run 0.6-1.0 cm in 110-120 s.

Thin-film sorptography allows the separation of minute amounts (10-7-10-14 g) of substances

After their preparation, all layers are allowed to stand for 4 h in the buffer solution subsequently used as the mobile phase. After equilibration, the plates are rinsed with water and dried at room temperature

Photodensitometric determination of the phosphates is superior to photometric determination. The method is applied to the analysis of food additives after fractionation by TLC

Determination of the content of condensed phosphates in liquid commercial fertilizers of the polyphosphate type. Quick development time as compared to PC. High reproducibility of results has been reported

Run 15 cm in 90 min. Ascending TLC: about mole of the ions was detectable

separation of anions Run I5 cm in 90 min. TLC

- Saturated chamber. Run 10 cm in IS-55 min. Temp. 20°C. TLC is used for the analysis of the detonators lead azide, mercury fulminate, and lead tricinate

D 7 5 Identification and determination of phosphates in dairy products by

86-93

94

95 96

97

98

99

100

101

102

103

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 25: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 3599

TABLE 4 Continued

Stationary Mobile Detection phases phases Anions studied reagents Conditions/remarks Refs.

SSS

S60

~~ ~ -

TLC. Recoveries were 82.7 to 95. 9%

SS8 M67 I- , Br-, CI-, NOT, NOT, - Radioinorganic TLC 104 10,- , MnOl , SCN-,

SeOf- , TeOi-, MOO$-, Crz05-, Fe(CN)k, Fe(CN)%-, Po i -

SO$-, so3-, szoi-,

M68 c l - , P o i - , so$-

s6I

s 6 Z

563

S64

ss9

Sn7

-

D76

M75 I - , IOI - M76 CIO-, C loy , CIOT , ClOl D79

Separation of reaction products of neutron-irradiated NH4CI. TLC, radiochemistry

Saturated chamber. Development immediately after application of the spots; plates protected from light. Separation of various oxidation stages of iodine by TLC and electrophoresis

Saturated chamber. Run 10 cm in 55-95 min. Separation of halides and pseudohalides by TLC

Run 5.5 cm. Temp. 24 ? 1°C. Study of anions from Group I of Treadwells scheme by TLC and spot tests

vapor. Horizontal and ascending development on 2.5 mm-wide thin-layer strips. Quantitative analysis of I-, Br- , CI-, and Poi- by TLPC. Sequence of anion containing bands: I - band < Br- band < CI- band < Poi - band

Run in 30-40 min Run in 50-60 or 70-80 min. The

methods are used to study the chemical fate of Na pyrophosphate and Na salts of chloro(oxy) acids upon neutron irradiation and the influence of the presence of metal ions

Run 12 cm in 40 min Separation and identification by

TLC and PC. Attempts to separate the anions by PC were not successful

Plates accommodated to water

M77 S203- , s3oa-, SdOg-, Dso, Dsl Saturated chamber. Run in 2-2.7 s a - , s 6 0 2 - h. ascending technique. The

method is applied to semiquantitative determination of low valence sulfur compounds such as polythionates by TLC

I05

106

107

108

109-111

112 1 I3

I14 1 I5

I16

(continued)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 26: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3600

TABLE 4 Continued

MOHAMMAD AND TlWARl

Stationary Mobile Detection phases phases Anions studied reagents Conditionsiremarks Refs.

Sl9 M78 SO??. S O V , SzOi-, -

S68 M79 Phosphite, phosphate. -

szoi-, s,oi-. s,oi-. S J O C , s a -

pyrophosphate, hypophosphate

polymetaphosphates; Na and K salts

Stis Me0 Ortho-. tripoly-. and -

s70

s71

s69

s 6 9

Ma3 NOT, NO<. CHCI?COO-, - CH2CIC00 . CHICOO-. CIOi . CIO;, C1 . Br- , I-.coi-.soi-.so~

Mnr CI . Br- . I ~, NO?. NO<. Dn>-Dns HCOO-. CH?COO-. OCN- . SCN- . SeCN-. SO2 . S O ? ? . SzO??. HzO

and colorimetry with methylene blue. Layer thickness -300 pm, on 200 x 200 x 3 mm glass plates

Run in 45 min. TLC separation of sulfates and polythionates

Run 14 cm in 30-240 min. Separation of various phosphoric acid ions by TLC

Run 10 cm in 45 min. Elongated spots are obtained with all phosphates. A reliable conclusion regarding the presence or absence of a single component in a two- or three- component mixture is sometimes possible

Run in 50-60 min

Saturated chamber. Run in 10 min. Colorimetric determination and TLC identification of boron as boric acid in caviar in 0-5 pg range. Aq. extract of caviar is made alkaline and evaporated to dryness. The residue is dissolved in curcumin solution treated with acetic acid-HzSOa (I : I ) and diluted with alcohol

Run 12-13 cm. Temp. 17-18°C. The RF values are considered to give a relative measure of the degree of hydration of the various anions. No special detection procedure for spot, as it was sufficiently colored. Layer thickness -0.2s mm on 20 cm glass plates. Object of this study was to clarify the effect of hydration of anions on ion-pair formation by means of chromatography of the dyestuff

Temp. 20-23°C. TLC of inorganic salts. Behavior of square planar complexes in comparison with that of octahedral complexes. Layer thickness -0.25 mm on 20 cm glass plates

S- and BN-chambers. Run in 30-40 min. Separation of anions by TLC

1 I7

118

119

I20

121

122

123

I24

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 27: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 3601

TABLE 4 Continued

Stationary Mobile Detection phases phases Anions studied reagents Conditionshemarks Refs.

s 7 3 M a 6

s 7 4

s 6 2

s 7 s

s 7 6

s 7 7

S78

S7Y

M87

M88

Ms9

M W

M9l

My2

M93

sao M94

SSl M9s

s 8 2 M%

I - , 101, I04 , so$- , so$-, I2

D88 Run 10 cm in 10 or 35 min. CN- is separated as Hg(CN)2 (RF = 0.65) from all other anions (RF = 0.00) in the system

Plate accommodated for 30 min. Run 13 cm in 20, 65, or 80 rnin

Run 5 cm in 30 min. Temp. 21°C

Combined C- and BN-cells and glass tanks with ground caps. Run 10 cm in 30-40 min. Electrophoresis and TLC of organic base polythionates

Sandwich chamber. Run 10 cm in 24-27 min

Adsorption of inorganic anions

Foils not activated. TLC separation and detection of pseuodohalides on ready-made foils

S-chamber, run 10 cm. Gelman ITLC chambers, run 13 cm. Ascending technique, run 2-2.7 h. H2SzO6 is separated from H z S 0 4 by TLC on extremely thin layers ( ~ 9 0 Fm)

Ascending technique. Run 7 cm. Application of TLC to radiochemical inspection of iodide and sulfite

and dps are the distances traveled by the sample and Dextran Blue, respectively

TLC separation of anions. The simplicity of the eluents ensures good reproducibility

RF calculated by dsidps, where ds

125

126

I27

128

1 29

130

131

132, 133

134

135

136

(continued)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 28: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3602

TABLE 4 Continued

MOHAMMAD AND TlWARl

Stationary Mobile Detection phases phases Anions studied reagents Conditionsiremarks Refs.

S 8 3 M97

SSd M9s

MS9 SSS

s86

S87

S88

S89

Mim

Mi01

Mi02

MI03

Mia(

Mior

NO?, NO?, AsOJ-, CN- , SCN-

CN-. OCN-

V O r , 101, 101, I - , Br r . CI- , BrO<, ClOi , BrOa , NOT, SCN-, AsOi , ReOp, SeOi- , TeOi- , TeOj-, MoOi-, CrOi-.

Fe(CN)i-, Fe(CN)%- SzOjV,POa-, AsOa-,

F - , C l - , Br-, I -

NO,, NO2

Bisarenechromium iodides

25 organic and inorganic anions

Fe (CN)k , Fe(CN)d- . SCN-. CN-

Identification and separation of ions by TLC and PC. Ascending technique. RF: CN- = 0.09, OCN- = 0.29

the order SO$- > SlOa- > S205-. TLC of sulfates and pol ythionates

Ascending TLC. Run 10 i_ 0.5 cm. Layer thickness 250 pm. Anions determined colorimetrically. Influence of solvent composition on the RF values of anions has been reported

Ascending technique. Run 15 cm. Wide-mouthed glass jars closed with rubber stoppers. PC on Whatman No. 1 strips impregnated with various hydrous oxides

The relative mobilities decreased in

TLC identification, determination, and detection limits of halides on activated commercially available films. The RF values and detection limits were F- 6, I pg; CI- 25, 2 pg; Br- SO, 8 pg; I - 72, 2 Fg, respectively

semiquantitative determination of nitrite and ammonium ions

TLC separation. Silica gel is Characterized by the following parameters. Specific pore volume, 0.61-0.74 cm3/g; specific surface, 550450 m’lg; medium pore radius, 6-20 A; pH, 3.0

reported. Sensitivities of anions with various detection reagents are given

limits of pseudohdlides. The RF values and detection limits were Fe(CN)i- 0.50,O. 1 p g ; Fe(CN)%- 0.90, 0.1 p g ; SCN- 0.95, 0.08 p g ; CN- 0.65, 20 Fg; respectively

TLC identification and

TLC separation procedure

TLC separation and detection

137

138

139

140

141

142

143

144

145

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 29: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 3603

TABLE 4 Continued

Stationary Mobile Detection phases phases Anions studied reagents Conditionshemarks Refs.

S60

S60

s91

S60 s93

S64

S60

Br- residues

MI07

Mica

Milo Mi11

Mi12

POa-, MOOS-, TeOi , RuOi- , TeOj-, I -

CI-, Br-, NOT, SCN-, I CN-

SCN-, selenocyanate

C loy , BrOT , 10,- , NOT, SzOS-, SOi- , C r W , Poi - , AsOl-, AsO%-, Fe(CN)i-, Fe(CN)%-

were allowed to dry in air and then immersed in a color reagent

BrOT D m Detection of bromate in bread after 155 TLC separation. Recoveries of 100 or lo00 pg BrOi from flour, dough, and bread were 72-92%.

I - , Br-, CI-, SCN-,

Quantitative TLC determination of Br- residues in crops after soil treatment by methyl bromide. The calibration curve is linear for 10-90 ppm Br-

Ascending TLC. Effect of alcohol type, alcohol-aq. NH, volume ratio, and NH, concentration on the separation efficiency and rate were followed

Ascending TLC. Correlation between the RF values and dielectric constants of the eluent system can be expressed by RF = k(log E) + log q, where k and q are constants characteristic of the migrating anion

TLC and paper electrophoresis of anions. Detection limit were -0.1 pg. The relative standard deviations were 6 and 8% for detecting NOT and Fe(CN)i- in molasses. The calibration curve were linear for 1-5 pg anion

Analytical applications of hydrated stannic oxide as an ion- exchanger were investigated by TLC. Binder-free thin layers of hydrated stannic oxide are useful for some binary separations of anions -

TLC detection of CN- as Hg(CN)2 among 22 anions was studied; 25 cations also studied. Thin-layer glass sticks (2.5 mm diam x 13 cm) were used

Microdetermination of anions by densitometry. Ascending technique; run 7 cm. Detection limits were 0.2 pg SCN- and 0.01 pg selenocyanate

Thin-layer sticks were used. Sticks

146

147

148

149

150

151 152

153

154

(continued)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 30: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3604 MOHAMMAD AND TlWARl

TABLE 4 Continued

Stationary Mobile Detection phases phases Anions studied reagents Conditionsiremarks Refs.

SY4

S60

s95

S60

SO?

St41

Mi17 NOT DlUb

MIl8 Phosphate iP). silicate tSi) D I P

Limit of detection was 0.1 pg/g. No bromate was detected in commercial flour (40 samples) and bread (72 samples)

Quantitative separation and recovery of anions by TLC. Determination of the ions in bleach and fixer solutions. R F values are not influenced by the presence of 500-fold excess of halides, halogen-containing anions, nitrate, nitrite, carbonates. sulfates, sulfites, thiosulfate, CN ~, SCN ~, and phosphates (which are usually found in polluted water) in the spotting solution

TLC procedure is reported for the detection of Br- in 0.5 g tissue samples (mouse whole blood, plasma, and liver) in the presence of CI using as indicator bromocresol purple. The peak area can be used to detect Br- concentrations, and the sensitivity is improved 50- fold over direct spot spraying. Results are linear for 0.02-0.50 rmol Br- . Rr values of Br' and C1- vary with concentration

Determination of NO< by TLC. Densitometric evaluation

Determination of P and Si as their molybdate complexes by TLC. RF values are 0.64 and 0.53 for P and Si, respectively. Calibration curve was linear for 12.5-125 ng P or Si. P and Si were detected in serum after treating with TCA

TLC Separation and identification by

Sensitive and selecrive reaction for nitrate application in TLC. Allows rapid detection of N O i down to 5 ng. Method is used for the detection of NO< in food and water samples. 55 cations or

156

157

158

159

160

161

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 31: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 3605

TABLE 4 Continued

Stationary Mobile Detection phases phases Anions studied reagents Conditionsiremarks Refs.

S6(1 Mim

S%

s97

s98

SlW

S64

MID

Mizs

NOZ

Br-, 1-

I - , Br-, F- , IOF, BrOC, NO?, NOT, POI-

I-, 101, IOP , BrOi , SCN-, B r r , CrOj-, AsOi-, Poi-, S 2 0 5 -

I - , Br-, NOT. N o r , SCN-, VOy , CrOa-, C r D - , MoOi- , WOa- , POI-, Fe(CN)a-, Fe(CN)8-

anions do not interfere in detection

TLC densitometric determination of nitrite in saliva. As low as 1.67 ng/pL could be detected by application of 50 ng saturated and 30 pL aliquots of saliva. Sensitivity, precision, and accuracy appear to be adequate for use of the method in clinical analysis

presence of I ~. Br- forms red- colored spot on the plate

TLC and PC studies for the separation of anions

Rapid TLC microgram determination of ferricyanide (1-40 pg) and dichromate (2-10 pg) ions was achieved

TLC separation and identification of anions. Detection limits were 1 pg for V O 1 , NOT, NO?, SCN-, and Fe(CN)%- ; 0.5 pg for Fe(CN)i-, CrOa-, and Crz03- ; 0.1 pg for Moot- and WOi-; 10 pg for POI- and I - ; and 100 pg for Br-

Ascending technique, run 10 cm. TLC separation of common anions with 69 mobile phases studied. Significant aspect of this study is the separation of iodate from large excesses of I -, Br- , CI- , and vice versa

Ascending technique, run 10 cm. Layer thickness 0.2.5 mm. TLC microgram separation and determination of anions. Effect of pH on RF values examined. Detection limits of anions have been reported

Ascending technique, run 10 cm. Layer thickness 0.25 mm. Effect of cations on anions separation studied. TLC parameters such as ARF, separation factor (a), caoacity factor ( K ’ ) . and

TLC detection of bromine in the

Ascending technique, run 10 cm.

I62

163

164

165

166

167

I68

169

(continued)

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 32: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3606 MOHAMMAD AND TlWARl

TABLE 4 Continued

Stationary Mobile Detection phases phases Anions studied reagents Conditionsiremarks Refs.

SlOl

resolution (Rs) have been calculated. Detection limits (microgram) were 104, 4.15; 10,. 4.08; BrOl , 0.76; MoOa-, 6.61; I - , 7.65; Fe(CN)i-, 5.24

Layer thickness 0.25 mm. TLC identification and separation of anions on mixed bed systems. NOT in artificial seawater has been identified. Effect of CaClz, MgC12, and NaHCO, on ternary separations has been examined. Detection limits (microgram) were Mn0.i. 0.75; VOT , 0.70; SCN-, 7.63; 10,. 8.71; 104, 8.30; Fe(CN)$-, 0.70

Anions in the form of metal

complexes and salts of protonated DAM were separated

Layer thickness 0.25 mm. TLC of anions and their quantitative determination by volumetry and

technique. Detection limit of few anions also reported

Mi26 I - , Br- , CI-, NO;, NO<. Dla-Ds Ascending technique, run I0 cm. 170 MnOP , SCN -, 101. IOa , B ~ O T , V 0 1 , CrOi- , CrzOi-. WOi- , Poi-, Fe(CN&, Fe(CN)8-

MI?, I- . Br- , CI-, C l O i , C104. D I I ~ Radial or ascending technique. 171 NO<, NOT, SCN-. SO$-, HzPOi- diantipyrilmethane (DAM)

M I X I - , Br - . CI-, NO?, NOT, D K - D I ~ Ascending technique, run 10 cm. 172 SCN-, 101~10~~ BrO,, C r W , CrzOi-, woi- +

MOO$-, M070&, POj-, Fe(CN)a-, Fe(CN)%- spot area measurement

TABLE 5 Number of Papers Appearing in Different Journals on TLC of Anions During 1959-1994

No. Name of journal No. of publications

1 2 3 4 5 6 7 8 9

10 11 12

Journal of Chromatography Fresenius’ Zeitschrift fuer Analytische Che Analytical Chemistry Bulletin de la Societe Chirnique de France Helvetica Chimica Acta Seifen, Oele, Fette, Wachse Bunseki Kagakic Mikrochimica Acta Microchemical Journal Bulletin of the Chemical Society of Japan Chromatographia Journal of Radioanalytical Chemistry

.mie 24 10 6 6 5 5 5 5 5 4 3 2

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 33: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 3607

\%* METAL IONS METAL COMPLEXES

0 ANIONS

140

120

100

80

60

40

20

0 1970-1974 1975-1979 1980-19841985-19891990-1994

FIG. 1 TLC publications on metal ions, metal complexes, and anions (1970-1994).

in Table 5 . Work done on TLC of anions, metal ions, and metal complexes during 1970-1994 is compared in Fig. 1 .

ACKNOWLEDGMENT

One of the authors (S.T.) expresses his gratitude to the Council of Scien- tific and Industrial Research (CSIR), New Delhi, for providing financial support in the form of a Senior Research Fellowship.

ABBREVIATIONS

TCA TFA GAA FA THF EMK DMF DCF PC

trichloroacetic acid trifluoroacetic acid glacial acetic acid formic acid tetrahydrofuran ethyl methyl ketone dimethylformamide dichlorofluorescein paper chromatography

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 34: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

MOHAMMAD AND TlWARl 3608

DMSO TLPC TLEP TLC DPA TEA DMA DEAH PPL

1.

2.

3.

4. 5 .

6.

7.

8.

9.

10.

11. 12. 13.

14.

15. 16.

17.

18.

19. 20.

dimethylsulfoxide thin-layer precipitation chromatography thin-layer electrophoresis thin-layer chromatography diphen ylamine triethanolamine dimet h ylamine diethylamine hydrochloride phenolphthalein

REFERENCES

U . A. Th. Brinkman, G . De Vries, and R. Kuroda. J . Chrornatogr., 85(2), 187-526 (1973); Chem. Abstr., 79. 152483d (1973). R. Kuroda and M. P. Volynets, in CRC Handbook of Chromatography: Inorganics, VoI. I (M. Qureshi. Ed.), CRC Press, Boca Raton, Florida, 1987. A. Mohammad and K. G. Varshney, in Httndbook of Thin-Layer Chromatography ( J . Sherma and B. Fried, Eds.), Dekker. New York, 1990, pp. 463-539. R. E. Kaiser. Planar Chromatography, Vo/ . I , Huethig, Heidelberg, 1986. B. Fried and J . Sherrna. Thin Layer Chromatography, Techniques and Applications, 2nd ed.. Dekker. New York. 1986. E. Katz, Quantirati\~e Analysis Using Chromatographic Techniques, Wiley, Chiches- ter. 1987. J . C. Touchstone, “Modern Thin Layer Chromatography,” in Ultratrace Analysis of Pharmaceuticals and Other Compounds of Interest (S. Ahuja, Ed. ) , Wiley, New York, 1986, p. 149. L . R. Treiber, Quuntitati\,e Thin Luyer Chromatography and I t s Ind~cstrial Applica- tions, Dekker, New York, 1987. F . Geiss, Fundumenrals qf Thin Luyer Chromatography (Planur Chromatography), Huethig, Heidelberg. 1987. V . G. Berezkin and A. G. Bochkov, Qleantitati\~e Instrumental Methods in TLC, Heuthig, Heidelberg. 1988. Camag TLC Catalog. Camag Scientific Co., Wilmington. North Carolina 1988-1994. H. Ohrui, Bunseki. (6). 470-471 (1989); Chem. Abstr., 112, 245361e (1990). I . V . Pletnev. E. 1. Morosanova, and Yu. A. Zolotov,Ana/. Sci.. 6(6), 863-866 (1990); Chem. Abstr., 114. 135123k (1991). J . Gasparic. Ad\.. Chrornutogr. ( N . Y . ) . 31. 153 (1992): Chern. Abstr., 116, 266301f (1992). I . Ojanpera, Trends A n d . CI7ein.. 11. 222 (1992). S. Hara, Kikan Kagakrc Sosarstc, (9). 105-106 (1990); Chin . Abstr., 115, 196857~ ( I99 1 ). H . Engelhardt. Nariir. Chem. Tech. Lab., 41(2). S21-S27 (1993); Chem. Abstr., 118, 224404c (1993). S . Gocan, Cliroinatogr. Sci. Ser. . 52, 139-174 (1990); Chem. Absrr., 113, 90382e (1990). H. E. Hauck and W . Jost. Ihid.. 47.251-330 (1990); Clrem. Absrr.. 113,90365b (1990). Sz. Nyiredy, J . Chrornatogr.. Libr.. 5 / A . 109 (1992); Cliem. Abstr., 116, 187184s (1992).

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 35: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 3609

21.

22 I

23.

24.

25. 26.

27.

28.

29.

30. 31. 32. 33.

34. 35.

36.

37.

38.

39.

40. 41.

42. 43,

44.

45.

46.

47. 48.

49.

50.

E. M. Basova, T. A. Bol’shova, 0. A. Shpigun, and V. M. Ivanov, Zh. Anal. Khim., 48(7), 1094-1115 (1993); Chem. Abstr., 119, 285205f (1993). H. J. Issaq, Trends Anal. Chem., 9, 36 (1990). K. Robards, S. Clarke, and E. Patsalides, Analyst, 113(12), 1757-1779 (1988); Chem. Abstr., 110, 165097q (1989). K. Oguma and K. Ishida, Bunseki, (71, 549-556 (1989); Chem. Abstr., 112, 171074n (1990). J. Sherma, Anal. Chem., 66(12), 67R-83R (1994); Chem. Abstr., 120, 3380225, (1994). E. Heftmann (Ed.), Chromatography, 5th ed., Elsevier Science Publishers, Amster- dam, The Netherlands, 1993. M. H. Hashmi, M. A. Shahid, A. A. Ayaz, F. R. Chughtai, N. Hasan, and A. S. Add, Anal. Chem., 38(11), 1554-1558 (1966); Chem. Abstr., 65, 19290f (1966). F. R. Malik and B. ud Din, Pak. J . Sci. Znd. Res. . 11(2), 166-171 (1968); Chem. Abstr., 70, 21720v (1968). I. S. Kirin, V. K. Isupov, and Yu. K. Gusev, Radiokhimiya, 12(3), 500-505 (1970); Chem. Abstr., 73, 136902k (1970). W. Peschke, J. Chromatogr., 20(3), 572-579 (1965); Chem. Absrr., 64, 11837d (1966). S. Tustanowski, lbid., 31, 270-273 (1967). M. H. Hashmi and N. A. Chughtai, Mikrochim. Acra, (S), 1040-1044 (1968). D. W. Hatcher and E. D. Schall, J . Assoc. OH. Agr. Chem., 48(3), 648-653 (1965); Chem. Abstr., 63, 7580h (1965). Y. Maki, J. Radioanal. Chem., 27(1), 33-45 (1975); Chem. Absrr., 84, 10074a (1976). Y. Maki and Y. Murakami, Nippon Kagaku Kaishi, (l), 85-90, 1973; Chem. Abstr., 78, 91515w (1973). M. Lederer and C. Polcaro, J . Chromatogr., 84(2), 379-386 (1973); Chem. Abstr., 79, 129554~ (1973). A. Mohammad, M. Ajmal, N. Fatima, and J. Ahmad, J . Liq. Chromatogr., 14(8), 3283-3300 (1991); Chem. Abstr., 115, 293809~ (1991). U. A. Th. Brinkman and G. De Vries, J. Chem. Educ., 49(8), 545-546 (1972); Chem. Abstr., 77, 113190~ (1972). F. D. Houghton, Microchem. J., 10(1-4), 340-345 (1966); Chem. Abstr., 64, 1136g ( 1966). F. D. Houghton, J . Chromatogr., 24, 494-498 (1966). L. S. Bark, R. J. T. Graham, and D. McCormick, Anal. Chim. Acta, 35(2), 268-270 (1966); Chem. Abstr., 65, 4630a (1966). J. Aurenge, Bull. Soc. Chim. Fr., p. 1525 (1963). J . Aurenge, M. Degeorges, and J. Normand, Ibid., (3), 508-511 (1964); Chem. Absrr., 61, 8f (1964). H. D. Beckstead, W. N. French, and J. F. Truelove, Can. J. Pharm. Sci., 2(1), 9-13 (1967); Chem. Abstr., 67, 5738q (1967). J. Buriknek and j. Cifka, Fresenius’ J . Anal. Chem., 213(1), 1-9 (1965); Chem. Abstr., 63, 12629c (1965). D. Th. Burns and J. D. Lee, Mikrochim. Acta, ( I ) , 206-210 (1969); Chem. Abstr., 70, 73803u (1969). N. L. Clesceri and G. F. Lee, Anal. Chem., 36, 2207-2208 (1964). E. Heinerth, Seifen, Oele, Fette, Wachse, 90(5), 105-110 (1964); Chem. Abstr., 61, 12209h (1964). T . Iida and T. Yamabe, J . Chromatogr., 41(2), 163-167 (1969); Chem. Absrr., 71, 95198~ (1969). T. Iida and T. Yamabe, Ibid., 54(3), 413-421 (1971); Chem. Absrr., 74,9159311 (1971).

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 36: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

361 0 MOHAMMAD AND TlWARl

51. T. IidaandT. Yarnabe,Ibid.,56(2). 373-378(1971); Chem.Abstr., 74, 116278d(1971). 52. C. Liteanu, F. Margineanu, and D. Macarovici, Re)’ . Roum. Chim., 12(5), 503-509

(1967); Chem. Abstr., 68, 18472~ (1968). 53. Cs. Lovasz and J . Kappler, Mefalloberflaeche, 25(3), 73-74 (1971); Chem. Abstr.,

75, 14663d (1971). 54. K. H. Ney and 0. P. Garg, Fefte. Seifen. Anstrichm., 72(4), 279-285 (1970): Chem.

Abstr., 73, 23966r (1970). 55. T. Roessel, Fresenius’ J. Anal. Chem., 197, 333-347 (1963); Chem. Abstr., 60, 22f

(1964). 56. T. Roessel and H. Kiesslich, Ibid.. 229(2), 96-109 (1967); Chem. Abstr., 67, 70241m

( 1967). 57. J . M. Tanzer, M. 1. Krichevsky, and B. M. Chassy, J. Chromatogr., 38(4), 526-531

(1968); Chem. Abstr., 70, 34912j (1969). 58. E. F. Wagner, Seifen, Oele, Fette, Wachse, 93(23), 865-870 (1967); Chem. Abstr.,

69, 8235a (1968). 59. E. F. Wagner, Ibid., 94(14), 443-448 (1968); Chem. Abstr., 69, 73743d (1968). 60. E. F. Wagner, Ibid., 94(2), 27-30 (1968); Chem. Absfr . , 69, 48909e (1968). 61. P. Wollenweber, J. Chromatogr., 33(1), 175-185 (1968); Chem. Abstr., 68, 84850s

(1968). 62. T. Yamabe, T. Iida, and N. Takai, Bull. Chem. Soc. J p n . , 41(8), 1959-1960 (1968);

Chem. Abstr., 69, 113145~ (1968). 63. D. T. Haworth and R. M. Ziegert, J. Chromatogr., 38(4), 544-547 (1968); Chem.

Absrr., 70, 43667k (1969). 64. F. H. Pollard. C. Nickless, K. Burton, and I. Hubbard, Microchem. J . , 10(1-4),

131-147 (1966); Chem. Absrr., 64, 13366e (1966). 65. R. Kuroda, K. Oguma, and M. Otani, J. Chrornatogr., 96(2), 223-228 (1974): Chem.

Abstr., 81, 159414g (1974). 66. U. A. Th. Brinkman and R. Jochemsen, Fresenius’ J. Anal. Chem., 273(3), 199-202

(1976); Chem. Absfr. , 84 , 170008k (1976). 67. R. A. Scott and C. P. Haight Jr . , Anal. Chem., 47(14), 2439-2440 (1975); Chem.

Abstr., 83, 201450j (1975). 68. R. Gallego, J . L. Bernal, and A. Martinez, Quim. Anal., 31(2), 69-73 (1977); Chem.

Abstr., 88, 181811a (1978). 69. R. Gallego, J. L. Bernal, and A. Martinez, Ibid., 31(3), 123-129 (1977); Chem. Abstr.,

89, S2717w (1978). 70. R. Gallego, J. L. Bernal, and A. Martinez, Ibid., .?!(it. 3-7 (1977); Chem. Abstr., 88,

130226f (1978). 71. M. E. Q. Pilson and R . J . Fragala, Anal. Chim. Acta, 52(3), 553-555 (1970); Chem.

Abstr., 74, 28612~ (1971). 72. M. Pavlova,J. Chromatogr. ,JI(l) . 346-347 (1970): Chem. Abstr., 73, 115981~ (1970). 73. M. Lederer and M. Sinibaldi, Ibid., 60(2), 275-279 (1971); Chem. Abstr., 75, 115335d

( 197 1). 74. T. Okumura, K. Hiraki, and Y . Nishikawa, Bicnseki Kagaku, 26(9), 582487 (1977);

Chem. Abstr., 88, 181808e (1978). 75. E. A. Prodan, I. L. Shashkova, and T. N. Galkova, Zh. Anal. Khim., 33(12),

2304-2309 (1978); Chem. Absfr . , 90, 1321712 (1979). 76. T. N. Galkova, L. 1. Petrovskay, I. L. Shashkova, and E. A. Prodan, Ibid., 38(9),

1640-1643 (1983); Chem. Abstr., 99, 205212m (1983). 77. T. Okurnura, Tulanta, 26(2), 171-173 (1979); Chrm. Abstr., 91, 101397~ (1979).

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 37: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 361 1

78,

79.

'80.

81.

82.

83.

84.

85.

86.

87. 88. 89. 90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102. 103. 104. 105.

T. Okumura and Y. Nishikawa, Bunseki Kagaku, 25(7), 419-423 (1976); Chem. Abstr., 86, 11461~ (1977). V. D. CaniC, M. N. TurihC, S. M. PetroviC, and S. E. PetroviC, Anal. Chem., 37(12), 1576-1577 (1965); Chem. Abstr., 64, 2726f (1966). G. R. Wellum, E. I. Toplin, L. P. Andersen, and R. Sneath, J . Chromatogr., 103(1), 153-159 (1975); Chem. Abstr., 82, 1185708 (1975). G. Buchbauer and R. E. Markis, Sci. Pharm., 51(1), 48-53 (1983); Chem. Abstr., 99, 3232411 (1983). I. Iordanova and D. Lolova, Khig. Zdraveopaz., 27(5), 488-491 (1984); Chem. Abstr., 102, 119417f (1985). W. Vyneke, Rev. Agric. (Brussels), 39(1), 177-183 (1986); Chem. Abstr., 105, 132228b (1986). H. Zeng and K. Lu, Shipin Yu Fajiao Gongye, (2), 47-52, (1987); Chem. Abstr., 107, 57548s (1987). Y. Ma and E. S. Yeung, Anal. Chem., 60(7), 722-724 (1988); Chem. Abstr., 108, 123532f (1988). J. A. Berger, G. Meyniel, and J. Petit, C. R. Acad. Sci., Paris, 25(6), 1116-1118 (1962); Chem. Abstr., 58, 950b (1963). J. A. Berger, G. Meyniel, and J. Petit, Bull. Soc. Chim. Fr., p. 3176 (1964). J . A. Berger, G. Meyniel, and J. Petit, Ibid., p. 3179 (1964). J. A. Berger, G. Meyniel, and J. Petit, C. R. Acad. Sci., Paris, 259, 2231 (1964). J. A. Berger, G. Meyniel, and J. Petit, J. Chromatogr., 29(1), 190-202 (1967); Chem. Abstr., 67, 87395n (1967). J. A. Berger, G. Meyniel, J. Petit, and P. Blanquet, Bull. Soc. Chim. Fr., ( l l ) , 2662-2667 (1963); Chem. Abstr., 60, 4758a (1964). J. Petit, J. A. Berger, J. L . Chabard, G. Besse, and G. Voissiere, Ibid., (3). 1027-1033 (1969); Chem. Abstr., 71, 27110~ (1969). J . Petit, J. A. Berger, G. Gaillard, and G. Meyniel, J. Chromatogr., 39(1), 167-172 (1969); Chem. Abstr., 70, 111441j (1969). H. Kroschwitz, E. Pungor, and S. Ferenczi, Talanta, 19(5), 695-697 (1972); Chem. Abstr., 77, 2845% (1972). A. K. Misra and R. P. S. Rajput, Proc. Natl. Acad. Sci., India, Sect. A , 61(4), 469-473 (1991); Chem. Abstr., 116, 268102r (1992). E. Cremer and E. Seidl, Chromatographia, 3(1), 17-18 (1970); Chem. Abstr., 72, 128332~ (1970). P. R. Brady and R. M. Hoskinson, J . Chromatogr., 54(1), 55-63 (1971); Chem. Abstr., 74, 60459~ (1971). M. Covello and 0. Schettino, Farmaco, Ed. Prat., 20(8), 396-406 (1965); Chem. Abstr., 63, 322211, (1965). D. Lucansky, V. Batora, J. Teren, V. Nigrovicova, and Z. Kohut, Agrochemia (Brati- slava), 20(10), 299-302 (1980); Chem. Abstr., 94, 29257r (1981). S. M. PetroviC and V. D. CaniC, Fresenius' J . Anal. Chem., 228(5), 339-341 (1967); Chem. Abstr., 67, 70240k (1967). V. D. CaniC, M. N. TurciC, M. B. Bugarski VojinoviE, and N. U. PeriSiC, Ibid., 229(2), 93-96 (1967); Chem. Abstr., 67, 7024211 (1967). 0. Boehm, Symp. Chem. Probl. Stab. Explos., Stockholm, May 1967, p. 124. E. Kirst, Nahrung, 29(4), 391-396 (1985); Chem. Abstr., 102, 219718~ (1985). A. Moghissi, J. Chromatogr., 13(2), 542-548 (1964); Chem. Abstr., 60, 12645g (1964). H. Seiler and M. Seiler, Helv. Chim. Acta, 48(1), 117-1 19 (1965); Chem. Abstr., 62, 10020g (1965).

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 38: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

361 2 MOHAMMAD AND TlWARl

106.

107.

108.

109.

110. 1 1 1 . 112. 113.

114. 115.

116.

117.

118.

119. 120. 121.

122.

123.

124.

125.

126. 127.

128.

129.

130. 131.

132.

133. 134.

H. Behrens. Frrrenirrs’ J . 4nol . Clzenr., 236(1). 396-406 (1968); Qzern. Absrr., 69, 24138b (19681. E. Gagliardi and G. Pokorny. Mikrocfiirn. Acra, (4). 699-704 (1965); Chem. Abstr . , 63, 171 14b (1965). A. Longo and J . Z. Netto. Rct.. Fur. Farm. Odonrol. Araraqrrrira, 3(2), 225-230 (1969); Chern. Ah.trr., 73. 83497y (1970). M. Muto, Nippon Kagakrr Zusshi. 85(1 I ) . 782-784 (1964); Chenr. Ahstr., 63, 12299~ (1965). M. Muto. Ibid.. 85, 147 (1964). M. Muto, Ibid.. 86(1), 91-93 (1965); Chem. Absfr.. 63, 14034~ (1965). H. Seiler and T. Kaffenberger. Helv. Cliirn. Acrri, 4 4 3 , 1282-1283 (1961). H. Seiler and M. Seiler. Ibid.. 50(8), 2477-2481 (1967); Chern. Abstr., 68, 44900b (1968). E. H. Taylor, J. Phurtn. Sci.. 54(4). 639-640 (1965); C/ietn. Ahsrr., 63, 429h (1965). H. Thielemann, Mikrocliirn. Acfci. ( 5 ) . 746-747 (1971); Chern. Abstr., 75. 154855t (1971). K . Naito, S. Takei, and T. Okabe. Bull. Chem. SOC. J p n . , 4 3 3 , 1360-1364 (1970); Chern. Absrr.. 73, 41461b (1970). H. Seiler and H. Erlenmeyer. H e l r . Cliini. Acra. 47(1), 264-266 (1964); Cheni. Absrr., 61, 8e (1964). R. V. Bogdanov and A. 0. Pyalling. Vestn. Leningr. Unit.., Fiz . , Khim., (9), 160-161 (1969): Cliem. Abstr., 71. 119216f (1969). G. Kunovits, Seifen. O d e . Ferte , Wachse. 92, 591 (1966). H. Seiler. He1v. Chirn. Acfa. 44(5). 1753-1755 (1961). J . W. Brunstad. J. Assoc. Qff. A d . Chum., 5 1 ( 5 ) . 987-991 (1968); Chem. Absfr., 69, 95142j (1968). T. Baba. K . Sakushirna, and H. Yoneda, Brr11. Chern. Soc. Jpn . , 4 3 3 ) . 931-932 (1970); Chern. Absrr., 72. 1 2 5 6 2 1 ~ (1970). T. Baba and H. Yoneda. Ibid.. 43(8) . 2478-2481 (1970): C/ienZ. Abstr. , 73, 115886t (1970). 1. N. Brezgunova. V. V . Smolyaninov. and N . I . Kharlamova, Zh. Fiz. Khim., 45(7), 1785-1787 (1971); Chenr. Ahsrr.. 75, 122420f (1971). K. Kawanabe. A. Fujikova. N. Hirasawa. K. Kobayashi. and K. Maruyama, Bunseki Kagakir. 20(1). 100-102 (1971): Chum. Abstr.. 74. 319633b (1971). K. Kawanabe. S. Takitani. M. Miyazaki. and 2. Tamura, Ibid.. 13, 976 (1964). A. Longo and J . Z. Netto, Re).. F(Jc. F w n . Odotrrol. Araraqicara. 4(2), 335-341 (1970); Chern. Ahsrr., 76. 8 0 5 7 3 ~ (1972). V . V . Srnolyaninov. J. Chronzutogr-.. 5 3 2 ) . 337-343 (1970); Chern. Abstr., 74, 60688t (1971). T. Takeuchi and Y . Tsunoda. Nippori Kagdir Ztrsshi. 87(3). 251-254 (1966); Chern. Ahsrr., 65. I1380d (1966). V . Di Gregorio and M. Sinibaldi. J . Clirornarogr., 129, 407 (1976). H. Thielemann. Freseniirs’ J. Anal. C/ier?i.. 270(2). 128 (1974); Chem. Absrr., 81, I141 1Zr (1974). S. Schoenhem. H. Goerz. and G. Ackerrnann, J. Rodioanul. C h n . , 26(1), 73-77 (1975); C/iem. Absrr.. 83. 187948~ (1975). D. P. Kelly, J. Chrornutogr.. 5 1 ( 2 ) . 343-345 (1970): Cliern. Absrr., 73, 115976~ (1970). M. Tanase, E . Shikata. and H. Arnano. J. Niicl. Sci. Techno/.. 133) . 125-131 (1976); Clrem. Abstr.. 85. 13435a (1976).

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 39: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

TLC ANALYSIS OF INORGANIC ANIONS 3613

135.

136.

137. 138. 139.

140.

141. 142.

143.

144.

145. 146.

147.

148. 149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

M. Sinibaldi and M. Lederer, J. Chromatogr., 107(1), 210-212 (1975); Chern. Abstr., 82, 175681t (1975). R. Frache, A. Dadone, and F. Baffi, Chromatographia, 7(6), 305 (1974); Chem. Abstr., 81, 72165~ (1974). H. Thielemann, Pharmazie, 25(4), 271-272 (1970); Chem. Abstr., 73, 126573q (1970). H. Thielemann, Z . Chem., 13(8), 302-303 (1973); Chem. Abstr., 80, 33457j (1974). A. M. Phipps, Anal. Chem., 43(3), 467-469 (1971); Chem. Abstr., 74, 106807m (1971). C. Polcaro and M. Lederer, 1. Chromatogr., 94(1), 313-315 (1974); Chem. Abstr., 81, 176767s (1974). H. Thielemann, Z . Chem., 16(7), 283 (1976); Chem. Abstr., 85, 136620q (1976). H. Thielemann, Fresenius’ J . Anal. Chem., 279(5), 365 (1976); Chem. Abstr., 85, 4037511 (1976). A. V. Mamaeva and I. P. Ogloblina, Fiz. Khim. Metody Anal., 3,89-91(1978); Chem. Abstr., 91, 150752q (1979). J. Z. Netto, A. Longo, and L. W. Hanai, An. Farm. Quim. Sao Paulo, l 8 ( l ) , 103-123 (1978); Chem. Abstr., 90, 179494~ (1979). H. Thielemann, Pharmazie, %(lo), 665 (1979); Chem. Abstr., 92, 190636g (1980). L. A. Gordts, A. Vandezande, P. P. Van Cauwenberge, and W. V. Haver, J . Ayric. Food Chem., 27(1), 132-134 (1979); Chem. Abstr., 90, 70639x (1979). J. Benes, Collect. Czech. Chem. Commun., 44(4), 1034-1039 (1979); Chem. Abstr., 91, 32209v (1979). J . Benes, Zbid., 44(5), 1406-1412 (1979); Chem. Abstr., 91, 133409r (1979). J . Franc and E. Kosikova, J . Chromatogr., 187(2), 462-465 (1980); Chem. Abstr., 92, 103669d (1980). A. K. Sen and U. Ch. Ghosh, J. Liq. Chromatogr., .?(I), 71-79 (1980); Chem. Abstr., 92, 121105~ (1980). H. M. Chawla, N. N. Ralhan, N. K. Garg, and S. S. Chibber, J. High Resolution Chromatogr., Chromatogr. Commun., 3(12), 651-652 (1980); Chem. Abstr., 94, 202101k (1981). K. Kawanabe and K. Maruyama, Me@ Yakka Daigaku Kenkyu Kiyo, (lo), 25-33 (1980); Chem. Abstr., 94, 149564k (1981). J . A. Stratis, I. N. Papadoyannis, and G. S. Vasilikiotis, Microchem., J., 26(1), 40-44 (1981); Chem. Abstr., 94, 113784t (1981). K. Kawanabe and K. Maruyama, Yakugaku Zasshi, 101(10), 912-917 (1981); Chem. Abstr., 96, 45420k (1982). T . Nagayama, M. Nishijima, H. Kamimura, K. Yasuda, S. Kazuo, I. Akihiro, H. Ushiyama, and N. Yasuta, Shokuhin Eiseigaku Zasshi, 23(3), 253-258 (1982); Chem. Abstr., 97, 9053911 (1982). K. Ravindhranath and P. B. Janardhan, Indian J. Chem., 21A(2), 150-152 (1982); Chem. Abstr., 97, 655731-11 (1982). G. V. Alexeeff, P. Munoz, and W. W. Kilgore, J . Agric. Food Chem., 30(4), 780-782 (1982); Chem. Abstr., 97, 35502~ (1982). J. Franc, Czech. CS 210,119 (C1. GOIN 31/08) 15 July 1982, Appl. 79/31560 (24 May 1979); Chem. Abstr., 98, 154643~ (1983). K. Taguchi, K. Ogata, K. Tanaka, S. Tanabe, and T. Imanari, Bunseki Kagaku, 32(1), 20-23 (1983); Chem. Abstr., 98, 100431h (1983). J. Z. Netto, A. F. C. Graner, and M. Ionashiro, Ecletica Quim., 9, 45-49 (1984); Chem. Abstr., 104, 141201~ (1986).

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13

Page 40: Thirty-Five Years of Thin-Layer Chromatography in the Analysis of Inorganic Anions

3614 MOHAMMAD AND TlWARl

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

G . De Vnes and U . A. Th. Brinkman, Mikrochim. Acta, 2(1-2), 47-52 (1984); Chem. Abstr., 101, 122177n (1984). J . Sherrna, A. P. Lee, M. S. Bowker, and A. J. Kind, Tech. Appl . Thin Layer Chro- matogr. (Proc. Bienn. Symp. Thin Layer Chromatogr.), 3rd, 1982, pp. 215-222 (Pub. 1985); Chem. Abstr.. 102. 2162762 (1985). W. Werner, Fresenius’ J . Anal. Chem.. 321(4), 374 (1985); Cliem. Abstr.. 103,97985f (1985). R. P. S. Rajput and S. Agrawal. Anal. Lett., 18(A 14). 1783-1788 (1985); Chem. Absrr., 104, 61146q (1986). A. K. Misra and R. P. S . Rajput, J . Liq. Chromatogr., 11(15), 3145-3161 (1988); Chem. Abstr., 111 , 145855~ (1989). A. Mohammad and S . Tiwari, Chromarographia, 30(7/8), 405-409 (1990); Chem. Abstr., 114, 94212t (1991). M. Ajmal, A. Mohammad, N. Fatima, and J . Ahmad, J . Planar Chromatogr., Mod. TLC, 3(September-October), 396-400 (1990); Chem. Abstr., 114, 135132n (1991). A. Mohamrnad and S . Tiwari, Microchem. J . , 44(1), 39-48 (1991); Chem. Abstr., 115, 125792j (1992). A. Mohammad and S . Tiwari, J. Planar Chromatogr., Mod. TLC, 4(Novernber-De- cember). 485-487 (1991); C h m . Abstr.. 116, 206834~ (1992). A. Mohammad and S . Tiwari, Microclretn. J . , 47(3). 379-385 (1993); Chem. Absrr., 119, 39750v (1993). 0. Shadrin. V. Zhivopistsev. and A. Timerbaev, Chromarographia, 35(9-12). 667-670 (1993); Chem. Abstr., 119, 61812~ (1993). A. Mohammad, S. Tiwari. and J. P. S . Chahar, J . Chromatogr. Sci., In Press.

Received by editor March 20, 1995

Dow

nloa

ded

by [

Uni

vers

ity o

f Il

linoi

s at

Urb

ana-

Cha

mpa

ign]

at 0

8:26

23

Sept

embe

r 20

13


Recommended