+ All Categories
Home > Documents > This work is addressed to the problem of constructing...

This work is addressed to the problem of constructing...

Date post: 11-Feb-2018
Category:
Upload: nguyencong
View: 215 times
Download: 0 times
Share this document with a friend
6
Reta de Union Matemati genti Volumen 36, 1990. CONSTRUCTING BIRATIONAL GES WITH. GIVEN EQUIUBRIUM POINTS EZIO MARCHI a JORGE A. OVIE 152 ) ) ) ) ) ) ABSTR ACT. This work is addresse d to the problem of consu cting birational games with predetermined equili brium points. We develop techniques wh ich general ize those introduced for bima- trix games. A necessary a nd suffic ient cond it ion for a pa ir of stra tegies to be a unique equil ibr ium point of a birat ional g ame is g iven. KEY WORDS . Two-person gam es. Birat ional games. Equ ilibriu� points. Construct ing birat ional games. Un iqueness. I. INTRODUCT ION This work is concer ned with presen ting techniques for constru£ ting birational games wi th prede termin ed equilibri um points. These techniques are sim ilar to the me thod for cons truc ting bimatrix games. A birational game is def ined by a quadruple (A,B;C,D) of re al mxn matrices together w ith the Cartesi an product XxY of al l Part of this research was supported by CONlCET and UNSL, San Luis, Argentina.
Transcript

Revista de Ja Union Matematica Argentina Volumen 36, 1990.

CONSTRUCTING BIRATIONAL GAMES WITH. GIVEN EQUIUBRIUM POINTS

EZIO MARCHI and JORGE A. OVIEDO

152

) ) ) )

) )

) ) )

A B S T RA C T . Thi s work i s addr es s ed to the problem o f construct ing ) b irat ional games with predet ermined equil ibr ium po int s . We ) develop techn iques which g eneral i z e tho s e introduc ed for b ima -tr ix games .

A nece s sary and suff ic i ent cond i t ion for a pair of s trat eg i e s to be a un ique equ i l ibr ium po int of a b irat ional game is g iven .

K E Y W O R D S . Two -p er son game s . B irat ional games . Equ i l ibr iu� po int s . Construc t ing b irat ional games . Uniquene s s .

I . I NT RO D U C T I O N

This work i s concerned with pr e s ent ing t echnique s for cons tru£ t ing b irat ional games with pr edet ermined equ i l ibr ium po int s . The s e t echn ique s ar e s imilar to the method for cons truct ing

) ) )

)

)

b imatr ix game s . ) A b irat ional game i s def ined by a quadrupl e (A , B ; C , D ) of r eal ) mxn matr ices tog ether with the Carte s ian produc t XxY of a l l

P a r t o f t h i s r e s e a r c h wa s s up p o r t e d b y C ON l C E T a n d UN S L , S an L u i s , Ar g en t i n a .

) ) ) ) ) )

153

m -d imens ional probab i l ity vector s X and a l l n - d imens ional pro ­bab i l ity vectors Y . When B=D=Jm , n ' wher e Jm , n i s the mxn matrix with every el ement equal to 1 , a b irat ional game reduc es to an ord inary b imatr ix game .

I f (x , y ) E XxY , the payo ffs of the game (A , B ; C , D ) for pl ayer i, i = 1 , 2 , i s defined by E (x , y ) = xAy/xBy and F (x , y) = xCy/xDy , re spec t ivel y . E (x , y) ( F (x , y) ) i s def ined ( though po s s ibly equal to +00) prov ided i t s numerator and denominator are no t s imul ta ­neou s ly equa l to O .

A po int (x , y) in XxY i s an equi l ibr ium po int o f the game (A , B ; C , D ) if xAy/xBy � �Ay/�By for a l l � E X and xCy/xDy �

� xCn /xDn for a l l n E Y . Marchi [ 1 9 7 6 ] proved that every rat io nal game (A , B ; C , D ) with B > 0 and D > 0 ( i . e . , every el ement b . . , d . . of B , D are po s i t ive real ) ha s an equi l ibr ium po int . l.J l. J Von Neumann [ 1 9 3 7 ] in the cour s e o f analy z ing a model of econo mic growth , has been the f ir s t in cons ider ing a two - person z ero - sum game with nonl inear payo ff funct ion . Subsequent devel£. pment of the model ha s been synthes i z ed by Morgenst ern and Thomp son [ 1 9 7 6 ] . The same payoff func t ion appears in a spec ial ca s e o f a stochast ic game propo s ed by Shapl ey [ 1 9 5 3 ] . Marchi [ 1 9 7 6 ] ext ended and g eneral i z ed the equ i l ibr ium po int s of a r� t ional game to a . n� person game with a rat iOnal payoff func ­t ion . Marchi [ 1 9 7 9 ] and Marchi , Tara z aga , E lor z a [ 1 9 8 3 - 4 ] ap ­pl i ed such resul t s to obta in a new approach to expand ing eco ­nomie s .

I I . C O N S T R U C T I N G A G A M E W I T H G I V E N E Q U I L I B R I U M P O I N T S

Let (x , y) be an equi l ibr ium po int , w i th a = xAy/xBy and S = xCy/xDy the corr e spond ing payoffs . Deno t e by S ex ) , S (y ) , M (x ) and M (y) the fol l owing s et s :

S ex ) { i : M (y ) { i :

wher e A . ( B . ) l. . l. . i s lumn of C (D ) .

x . > O } l. A . y = l. . aB o y} l. .

the ith row

S (y)

and M (x)

of A (B ) and

0 : Yj > O }

0 : xC . = . J

C . ( D . ) t he . J . J

SXD .j }

j th co -

154

THEOREM 2 . 1 . L e t (x , y ) r e pr e s e n t a p a i r of pro b ab i l i t y v e a t o r s

in XxY, l e t a , S b e r e a l num b e r s a n d l e t B , D > 0 b e mxn re a l

matr i a e s . T h e r e e xi s t two ma tr i a e s A and C s u a h t ha t t he b i r a ­

t i o na l g a m e (A , B ; C , D ) has (x , y ) a s an e q u i l i b r i um p o i n t a n d

a , S a s t h e aorre sponding payoff t o t h e p l a y e r s .

Pro o f . Without lo s s of g eneral ity we as sume that a > 0 and S > 0 (becaus e if xAy/xBy < 0 there exi s t s c > 0 such t hat x (A+cB ) y/xBy > 0 ; a s im i lar re sul t i s val id for S ) . Regard x

and y a s l inear transformat ions from Em and En to E 1 , r e spect i ­vely . L e t c 1 , . . . , cm _ 1 and a 1 , . . . , an _ 1 b e ba s e s re spect ively , for the nul l spac es o f

n - 1 A . = aB o + r A · ka k , � . �. k= 1 �

for j E S ly) , l e t C . = .

• J

ry r eal number s . For i

x and y . Fo r i E S ex ) l et where A i k ar e arb i trary r ea l number s and

m - 1 SD . + I ykJ· c k , where ykJ. ar e arb i tra ­

. J k= 1 fI. S ex ) , l e t A . = ( 1 / 2 ) aB . . For j rt. S (y ) , . � . . � .

l et B . = ( 1 / 2 ) SB . . Then the b irat ional game (A , B ; C , D ) ha s an • J • J

equ i l ibt ium pD int (x ,y) .

A po int (x , y) o f XxY i s sa id to be a compl etely mixed po int if

) ) )

) )

) )

.J ) )

) )

X . > 0 , i = 1 , . . . , m , and. y . > 0 , j 1 , . . . , n . ) 1. J

THEOREM 2 . 2 . L e t (x , y) b e a aomp l e te l y mixed p o i n t and B ,D > O.

A n e a e s sary and suffi a i e n t a o ndi t i o n for t h e exi s t e n a e of a bira t i o na l game (A , B ; C , D ) t h a t ha s (x , y) a s i t s u n i q u e aomp l e -

t e l y -m i x e d e qu i l i b r i um p o i n t i s t h a t m n .

Pro o f . As sume m = n . Choo s e , a s before , a bas i s a 1 , . . . , an _ 1

for the nul l spac e of y . Let c 1 , . . . , cn_ 1 b e a bas i s for the

nul l spac e of x . Let A be the nxn matr ix who s e i.- t h row i s A . = aB o + a ; , i = 1 , . . . , n - 1 . Let A = aB Let C be the � . � . � n . n . nxn matr ix who s e j - th column i s C . SD . + C . j = 1 , . . . ,n- 1 .

• J • J J

Let C = BC • Then (A , B ; C , D ) ha s an equil ibr ium po int (x , y ) . . n . n Let (x * , y * ) be ano ther compl etely -miXed equil ibr ium po int with

) )

'>

)

) )

) )

)

155

payoffs a * , S * . Then Ay* = a *By* and x *C = S *x *D , in part icu ­l ar A y* = a *B y * and x*C = S *x*D . I t fo l l ows from the n . n . . n . n definit ions of A and B that a * = a and S * = S ; but the

. n . n

sys t ems (A - aB ) z = 0 and ( C - SD) w = 0 have rank n - 1 , imp ly ing x = x* and y = y* .

The proof of the nec e s s ity i s s imilar to the proof g iven by Mil lham [ 1 9 7 3 , Theorem 2 ] .

We general i z e Theor em 2 . 2 for arb itrary probab il ity vector s .

THEOREM 2 . 3 . L e t (x , y) b e a p a i r of probab i l i ty v e e t o r s and

B , D > O . A n e c e s sary a n d suffi c i e n t eondi t i o n fo r the exi s t en ­

e e o f a b i r a t i o n a l game t ha t has (x , y ) a s i t s u n i q u e e qu i l i ­

brium p o i n t i s t ha t I S (x ) 1 = I S (y ) I .

We omit the proof s inc e it i s s imilar to that of Kre ep s [ 1 974] .

In our cas e we have t o replace systems ( 1 ) and ( 2 ) in Kr eep s ' paper by the fo l lowing

m L x . (c . . - c · 1 - S (d . . - d · 1 ) ) = 0

i= 1 1 1J 1 1 J 1 m L x i (c ij - C i 1 - S (d ij - d i 1 ) ) � 0

i= l

n L YJ. ( a iJ· .,a 1 j - S ( b iJ· -b 1 j )) = 0

j = l n L y . (a . . -a l j - S ( b . . - b 1 j ) ) � 0 j = 1 J 1J 1 J

j = 2 , ; . . , k .

)

2 ( 1 )

j = � +l , . . . ,n .

i = 2 , . . . , k1 . r (2)

j = kl + 1 , . . . ,m. J

Under the cond it ions g iven by Mi l lhan [ 1 9 7 3 , Theor em 4 ] two equi l ibr ium po int s in b imatr ix games are int erchangeabl e . Thi s r e sult i s found t o ho l d true a l so for b irat ional game s .

1 1 1 1 2 2 2 2 . . THEOREM 2 . 4 . L e t (x , y , a , S ) , (x , y , a , S ) b e two equ� l � -

b r i um p o i n t s and p a y o ffs for a b i r a t i ona l game (A , B ; C , D) . A 1 . 1 1 1 n e e e s sary and s uffi c i e n t e o ndi t i on fo .!' (x , y , a , S ) ,

(x 2 , y2 , a2 , S 2 ) t o b e i n t e r c hang e a b l e i s S (x 1 ) � M (y2 ) , S (x2 ) � M (y 1 ) , S (y 1 ) � M ex2 ) , S (/ ) � M (x 1 ) .

Pro o f ·

x : > 0 1 x � > 0 1

Suppo se

imp l i e s impl i e s

(x l , y 2 ) A . y 2

1 . A . y 1 1 .

156

and (x 2 , y l ) 2 2 a, B . y 1 . 1 2 a, B . Y 1 •

or or

are equi l ibr ium po int s . Then

S (x l ) 2 £ M ey ) , and s imilarly S (x 2 ) .£:; 1 M (y ) . The rema inder

of the nec e s s ity aspec t s of the proo f are c l ear .

Suppo s e , on the other hand , that the g iven cond it ions holds . The 1 2 2 2 2 cond it ion S ex ) .£:; M ey ) impl ie s that if Ai . y < a, B i . y then

x� = 0 , and the cond it ion S (y2 ) £ M (x l ) impl i e s that if x l c . B I x I n . then y� 0 , from which if fo l l ows that (x l , y 2 )

• J • J J i s an equi l ibr ium po int with payo ffs a, 2 and B l . The re s t o f the proof is ident ical in natur e to that s tated .

REFEREN C E S

[ 1 ] KRE P S , V . L . [ 1 9 7 4 ] , B..i.matJr...i. x g am e.6 w..i.t h un..i.q u e eq u..i.i..i. bJr...i.um po ..i.nt.6 , In t J o u rn a l o f G am e T h eo r y , vo l . 3 , I s s u e 2 : 1 1 5- 1 1 8 .

[ 2 ] MAR C H I , E . [ 1 9 7 6 ] , E q u..i.i..i. bJr...i. um p o ..i. nt.6 0 6 Jr.at..i.o n ai N - p eJr..6 o n g am e.6 , J o u r n a l Ma t h . An a l . a n d A p p l i c . 5 4 , 1 : 1 - 4 .

[ 3 ] MARC H I , E . [ 1 9 7 9 ] , Ei m o d e io d e c.Jr. e c...i.m..i. e nto d e v o n N eum an n p aJr.a un num eJr.o aJr. b..i.tJr.aJr...i.o d e pai.6 e.6 , R ev . Un i o n Ma t . A r ­g�nt i n a . 2 9 : 8 5 - 9 5 .

[ 4 ] MARCHI , E , TARAZAGA , P . a n d E L O R Z A , E . [ 1 9 8 3 - 4 ] , F UJr.t h eJr. t o ­p..i.c..6 ..i.n v o n N euma n n gJr.o wth mo d ei , P o r t u g a l i e Ma t h ema t i c a 4 2 ( 3 ) : 2 5 5 - 2 6 4 .

[ 5 ] MILLHAN , C . B . [ 1 9 7 3 ] , Co n.6 :tJr. uc.t..i.ng bim atJr.i x g am e..6 w..i.t h .6 p e c.iai pJr.o p eJr.ti e.6 , N a v . Re s . L o g . Q u a r t . 1 9 , N ° 4 . 7 0 9 - 7 1 4 .

[ 6 ] MORGENT E RN , O . a n d THOMP S ON , G . L . [ 1 9 7 6 ] , M at h emati c.ai T h e.o Jr. y 0 6 e x p a n ding a n d c. o ntJr.a c.ti ng ec.o no mie.6 , D . C . H e a t h ,

-

Lex ing to n � Ma s s �

) ) ) ) ) ) ) )

) ) ) ') :I

) )

\ )

)

}

)

) )

167

[ 7 ] S HAPt EY , L . S . [ 1 9 5 6 ] , Sto c h�� tlc g �m e� , P r o c . N a t . A c a d . S c i . U . S . A . 3 9 : 1 0 9 5 - 1 1 0 0 .

[ 8 ] V o n NEUMANN , J . [ 1 9 3 7 ] , � b e� eln � ko no ml� c h e� Gt elc hung� ­� y� t em und eln e V e��ttg em eln e�ung d e� B� o uwe�� c h en Flx ­p u n kt� �t z e� , E r g e bn i s s e e in e s Ma t h ema t i s c h e n Ko l l o qu ium s 8 , 7 3 - 8 3 . T r an s l a t e d in Rev i ew o f E c o n om i c s S t u d i e s 1 9 4 5 - 6 .

I n s t i t u t o d e Ma t �mi t i c a Ap l i c a d a S an L u i s

Un iv e r s i d a d Na c io n a l d e S a n L u i s

Ej e r c i t o d e l o s An d e s 9 5 0 5 7 0 0 - S an L u i s

Rec ib ido en mar z o de 1 9 9 0 .


Recommended