+ All Categories
Home > Documents > Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k...

Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k...

Date post: 18-Jan-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
94
Thresholds for Some Basic Properties Eight Lectures on Random Graphs: Lecture 2 Oleg Pikhurko Carnegie Mellon University Basic Thresholds – p.1
Transcript
Page 1: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Thresholds forSome Basic Properties

Eight Lectures on Random Graphs: Lecture 2

Oleg Pikhurko

Carnegie Mellon University

Basic Thresholds – p.1

Page 2: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Graphs and Properties

Graph property = a collection of graphs.

Monotone = adding edges cannot violate it.

Gn,p = random order-n graph with edge probability p.

Whp = with high probability (approaching 1 as n → ∞).

Markov’s Inequality:for a random variable X ≥ 0 and a real a > 0

Pr [ X ≥ a ] ≤E [ X ]

a.

Basic Thresholds – p.2

Page 3: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Graphs and Properties

Graph property = a collection of graphs.

Monotone = adding edges cannot violate it.

Gn,p = random order-n graph with edge probability p.

Whp = with high probability (approaching 1 as n → ∞).

Markov’s Inequality:for a random variable X ≥ 0 and a real a > 0

Pr [ X ≥ a ] ≤E [ X ]

a.

Basic Thresholds – p.2

Page 4: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Graphs and Properties

Graph property = a collection of graphs.

Monotone = adding edges cannot violate it.

Gn,p = random order-n graph with edge probability p.

Whp = with high probability (approaching 1 as n → ∞).

Markov’s Inequality:for a random variable X ≥ 0 and a real a > 0

Pr [ X ≥ a ] ≤E [ X ]

a.

Basic Thresholds – p.2

Page 5: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Monotone Properties

Theorem For any monotone A and p1 ≤ p2

Pr [Gn,p1∈ A ] ≤ Pr [Gn,p2

∈ A ] .

Proof Define p0 ∈ [0, 1] by

p1 + (1 − p1) p0 = p2.

Let G1 ∈ Gn,p1and G0 ∈ Gn,p0

. Then G1 ∪ G0 ∼ Gn,p2.

Pr [ G1 ∈ A ] ≤ Pr [ G1 ∪ G0 ∈ A ] .

Basic Thresholds – p.3

Page 6: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Monotone Properties

Theorem For any monotone A and p1 ≤ p2

Pr [Gn,p1∈ A ] ≤ Pr [Gn,p2

∈ A ] .

Proof Define p0 ∈ [0, 1] by

p1 + (1 − p1) p0 = p2.

Let G1 ∈ Gn,p1and G0 ∈ Gn,p0

. Then G1 ∪ G0 ∼ Gn,p2.

Pr [ G1 ∈ A ] ≤ Pr [ G1 ∪ G0 ∈ A ] .

Basic Thresholds – p.3

Page 7: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Thresholds

p0 = p0(n) is a threshold for a monotone property A if ∀p(n)

Pr [Gn,p ∈ A ] →

{

0, if p/p0 → 0,

1, if p/p0 → ∞.

Example p0 = 1n is a threshold for having a cycle. Indeed,

if p = o(1/n), then

Pr [ ∃ cycle ] ≤ E [ #cycles ] =n

i≥3

(

n

i

)

(i − 1)!

2pi ≤

i≥3

(np)i → 0.

if p > 2+εn , then E [ e(G) ] = p

(n2

)

> (2 + ε) n−12 .

By Chernoff’s bound, whp e(G) ≥ n.

Basic Thresholds – p.4

Page 8: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Thresholds

p0 = p0(n) is a threshold for a monotone property A if ∀p(n)

Pr [Gn,p ∈ A ] →

{

0, if p/p0 → 0,

1, if p/p0 → ∞.

Example p0 = 1n is a threshold for having a cycle. Indeed,

if p = o(1/n), then

Pr [ ∃ cycle ] ≤ E [ #cycles ] =n

i≥3

(

n

i

)

(i − 1)!

2pi ≤

i≥3

(np)i → 0.

if p > 2+εn , then E [ e(G) ] = p

(n2

)

> (2 + ε) n−12 .

By Chernoff’s bound, whp e(G) ≥ n.

Basic Thresholds – p.4

Page 9: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Thresholds

p0 = p0(n) is a threshold for a monotone property A if ∀p(n)

Pr [Gn,p ∈ A ] →

{

0, if p/p0 → 0,

1, if p/p0 → ∞.

Example p0 = 1n is a threshold for having a cycle. Indeed,

if p = o(1/n), then

Pr [ ∃ cycle ] ≤ E [ #cycles ] =n

i≥3

(

n

i

)

(i − 1)!

2pi ≤

i≥3

(np)i → 0.

if p > 2+εn , then E [ e(G) ] = p

(n2

)

> (2 + ε) n−12 .

By Chernoff’s bound, whp e(G) ≥ n.

Basic Thresholds – p.4

Page 10: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Monotone ⇒ ∃ Threshold

Theorem (Bollobás-Thomason’87) Every non-trivialmonotone property A has a threshold.

Proof Choose p0 = p(1/2), i.e.

Pr [Gn,p0∈ A ] = 1/2.

p0 exists as f(p) = Pr [Gn,p ∈ A ] is a polynomial withf(0) = 0 and f(1) = 1.

Basic Thresholds – p.5

Page 11: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Monotone ⇒ ∃ Threshold

Theorem (Bollobás-Thomason’87) Every non-trivialmonotone property A has a threshold.

Proof Choose p0 = p(1/2), i.e.

Pr [Gn,p0∈ A ] = 1/2.

p0 exists as f(p) = Pr [Gn,p ∈ A ] is a polynomial withf(0) = 0 and f(1) = 1.

Basic Thresholds – p.5

Page 12: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

p0 = p(1/2) is a threshold

Given ε > 0, let (1 − ε)m < 1/2. Let p < p0/m. LetG1, . . . , Gm ∈ Gn,p and

H = G1 ∪ · · · ∪ Gm ∼ Gn,1−(1−p)m .

As 1 − (1 − p)m ≤ pm ≤ p0,

1

2≤ Pr [ H 6∈ A ] ≤ Pr [ ∀i Gi 6∈ A ] =

(

1 − Pr [Gn,p ∈ A ])m

.

⇒ Pr [Gn,p ∈ A ] < ε.

Other direction: take Gn,p0∪ · · · ∪ Gn,p0

.

Basic Thresholds – p.6

Page 13: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

p0 = p(1/2) is a threshold

Given ε > 0, let (1 − ε)m < 1/2. Let p < p0/m. LetG1, . . . , Gm ∈ Gn,p and

H = G1 ∪ · · · ∪ Gm ∼ Gn,1−(1−p)m .

As 1 − (1 − p)m ≤ pm ≤ p0,

1

2≤ Pr [ H 6∈ A ] ≤ Pr [ ∀i Gi 6∈ A ] =

(

1 − Pr [Gn,p ∈ A ])m

.

⇒ Pr [Gn,p ∈ A ] < ε.

Other direction: take Gn,p0∪ · · · ∪ Gn,p0

.

Basic Thresholds – p.6

Page 14: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

p0 = p(1/2) is a threshold

Given ε > 0, let (1 − ε)m < 1/2. Let p < p0/m. LetG1, . . . , Gm ∈ Gn,p and

H = G1 ∪ · · · ∪ Gm ∼ Gn,1−(1−p)m .

As 1 − (1 − p)m ≤ pm ≤ p0,

1

2≤ Pr [ H 6∈ A ] ≤ Pr [ ∀i Gi 6∈ A ] =

(

1 − Pr [Gn,p ∈ A ])m

.

⇒ Pr [Gn,p ∈ A ] < ε.

Other direction: take Gn,p0∪ · · · ∪ Gn,p0

.

Basic Thresholds – p.6

Page 15: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Connectivity Property C

Idea 1: Connectivity = ∃ spanning tree

E [ # spanning trees ] = nn−2 · pn−1.

The “window” is

p = (1 + o(1))1

n.

E [ # spanning trees ] → 0 ⇒ G 6∈ C.E [ # spanning trees ] → ∞ 6⇒ G ∈ C.

Basic Thresholds – p.7

Page 16: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Connectivity Property C

Idea 1: Connectivity = ∃ spanning tree

E [ # spanning trees ] = nn−2 · pn−1.

The “window” is

p = (1 + o(1))1

n.

E [ # spanning trees ] → 0 ⇒ G 6∈ C.E [ # spanning trees ] → ∞

6⇒ G ∈ C.

Basic Thresholds – p.7

Page 17: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Connectivity Property C

Idea 1: Connectivity = ∃ spanning tree

E [ # spanning trees ] = nn−2 · pn−1.

The “window” is

p = (1 + o(1))1

n.

E [ # spanning trees ] → 0 ⇒ G 6∈ C.E [ # spanning trees ] → ∞ 6⇒ G ∈ C.

Basic Thresholds – p.7

Page 18: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Idea 2: Look at Cuts

Cut:

Cuts or Isolated Components?

Ck = # k-components

Observation: G ∈ C iff Ck = 0 ∀k ∈ [1, n/2].

Basic Thresholds – p.8

Page 19: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Idea 2: Look at Cuts

Cut:

Cuts or Isolated Components?

Ck = # k-components

Observation: G ∈ C iff Ck = 0 ∀k ∈ [1, n/2].

Basic Thresholds – p.8

Page 20: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Idea 2: Look at Cuts

Cut:

Cuts or Isolated Components?

Ck = # k-components

Observation: G ∈ C iff Ck = 0 ∀k ∈ [1, n/2].

Basic Thresholds – p.8

Page 21: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Connectivity Threshold

Theorem (Erdos-Renyi’60) Let

p =log n

n+

c

n.

Then Pr [Gn,p ∈ C ] →

e−e−c

, |c| = O(1),

0, c → −∞,

1, c → +∞.

In particular, p0(n) = log nn is a threshold for connectivity.

Basic Thresholds – p.9

Page 22: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

p = log nn + O(1)

n

Let∑

:=∑bn/2c

k=2 .

Pr[

Ck ≥ 1]

≤ E[

Ck

]

=∑

E [ Ck ] ≤∑

(

n

k

)

(1 − p)k(n−k)kk−2pk−1

[

(

n

k

)

≤ (en/k)k & (1 − x) ≤ e−x]

≤ n∑

(

O(log n) e−np+kp)k

→ 0.

Thus whp C2 = · · · = Cbn/2c = 0.

Basic Thresholds – p.10

Page 23: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

p = log nn + O(1)

n

Let∑

:=∑bn/2c

k=2 .

Pr[

Ck ≥ 1]

≤ E[

Ck

]

=∑

E [ Ck ] ≤∑

(

n

k

)

(1 − p)k(n−k)kk−2pk−1

[

(

n

k

)

≤ (en/k)k & (1 − x) ≤ e−x]

≤ n∑

(

O(log n) e−np+kp)k

→ 0.

Thus whp C2 = · · · = Cbn/2c = 0.

Basic Thresholds – p.10

Page 24: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

p = log nn + O(1)

n

Let∑

:=∑bn/2c

k=2 .

Pr[

Ck ≥ 1]

≤ E[

Ck

]

=∑

E [ Ck ] ≤∑

(

n

k

)

(1 − p)k(n−k)kk−2pk−1

[

(

n

k

)

≤ (en/k)k & (1 − x) ≤ e−x]

≤ n∑

(

O(log n) e−np+kp)k

→ 0.

Thus whp C2 = · · · = Cbn/2c = 0.

Basic Thresholds – p.10

Page 25: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

p = log nn + O(1)

n

Let∑

:=∑bn/2c

k=2 .

Pr[

Ck ≥ 1]

≤ E[

Ck

]

=∑

E [ Ck ] ≤∑

(

n

k

)

(1 − p)k(n−k)kk−2pk−1

[

(

n

k

)

≤ (en/k)k & (1 − x) ≤ e−x]

≤ n∑

(

O(log n) e−np+kp)k

→ 0.

Thus whp C2 = · · · = Cbn/2c = 0.

Basic Thresholds – p.10

Page 26: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

p = log nn + O(1)

n

Let∑

:=∑bn/2c

k=2 .

Pr[

Ck ≥ 1]

≤ E[

Ck

]

=∑

E [ Ck ] ≤∑

(

n

k

)

(1 − p)k(n−k)kk−2pk−1

[

(

n

k

)

≤ (en/k)k & (1 − x) ≤ e−x]

≤ n∑

(

O(log n) e−np+kp)k

→ 0.

Thus whp C2 = · · · = Cbn/2c = 0.

Basic Thresholds – p.10

Page 27: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

p = log nn + O(1)

n (cont.)

Thus, whp Gn,p ∈ C iff C1 = 0 (i.e. no isolated vertices).

It is enough to prove Pr [ C1 = 0 ] → e−e−c

because

0 ≤ Pr [ C1 = 0 ] − Pr [ C ∈ C ]

≤ Pr [ ∃i ∈ [2, n/2] Ci > 0 ] → 0.

Basic Thresholds – p.11

Page 28: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

p = log nn + O(1)

n (cont.)

Thus, whp Gn,p ∈ C iff C1 = 0 (i.e. no isolated vertices).

It is enough to prove Pr [ C1 = 0 ] → e−e−c

because

0 ≤ Pr [ C1 = 0 ] − Pr [ C ∈ C ]

≤ Pr [ ∃i ∈ [2, n/2] Ci > 0 ] → 0.

Basic Thresholds – p.11

Page 29: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Poisson Distribution with Mean µ

n independent trials, Pr [ success ] = µn , constant µ.

Poisson(µ) = # successes as n → ∞.

E [ # successes ] = n ×µ

n= µ

Pr [ i successes ] =

(

n

i

)

pi (1 − p)n−i →µi e−µ

i!.

Basic Thresholds – p.12

Page 30: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Poisson Distribution with Mean µ

n independent trials, Pr [ success ] = µn , constant µ.

Poisson(µ) = # successes as n → ∞.

E [ # successes ] = n ×µ

n= µ

Pr [ i successes ] =

(

n

i

)

pi (1 − p)n−i →µi e−µ

i!.

Basic Thresholds – p.12

Page 31: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Poisson Distribution with Mean µ

n independent trials, Pr [ success ] = µn , constant µ.

Poisson(µ) = # successes as n → ∞.

E [ # successes ] = n ×µ

n= µ

Pr [ i successes ] =

(

n

i

)

pi (1 − p)n−i →µi e−µ

i!.

Basic Thresholds – p.12

Page 32: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Isolated Vertices

E [ C1 ] = n(1 − p)n−1 → e−c.

The k-th Factorial Moment:

Mk[X] = E [ (X)k ] = E [ X(X − 1) . . . (X − k + 1) ] .

For fixed k

Mk[C1] = (n)k (1 − p)k(n−1)−(k2) → (e−c)k = Mk[Poisson(e−c)].

This is known to imply that C1 → Poisson(e−c). In particular,

Pr [ C1 = 0 ] → e−e−c

.

Basic Thresholds – p.13

Page 33: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Isolated Vertices

E [ C1 ] = n(1 − p)n−1 → e−c.

The k-th Factorial Moment:

Mk[X] = E [ (X)k ] = E [ X(X − 1) . . . (X − k + 1) ] .

For fixed k

Mk[C1] = (n)k (1 − p)k(n−1)−(k2) → (e−c)k = Mk[Poisson(e−c)].

This is known to imply that C1 → Poisson(e−c). In particular,

Pr [ C1 = 0 ] → e−e−c

.

Basic Thresholds – p.13

Page 34: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Isolated Vertices

E [ C1 ] = n(1 − p)n−1 → e−c.

The k-th Factorial Moment:

Mk[X] = E [ (X)k ] = E [ X(X − 1) . . . (X − k + 1) ] .

For fixed k

Mk[C1] = (n)k (1 − p)k(n−1)−(k2) → (e−c)k = Mk[Poisson(e−c)].

This is known to imply that C1 → Poisson(e−c). In particular,

Pr [ C1 = 0 ] → e−e−c

.

Basic Thresholds – p.13

Page 35: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Isolated Vertices

E [ C1 ] = n(1 − p)n−1 → e−c.

The k-th Factorial Moment:

Mk[X] = E [ (X)k ] = E [ X(X − 1) . . . (X − k + 1) ] .

For fixed k

Mk[C1] = (n)k (1 − p)k(n−1)−(k2) → (e−c)k = Mk[Poisson(e−c)].

This is known to imply that C1 → Poisson(e−c). In particular,

Pr [ C1 = 0 ] → e−e−c

.

Basic Thresholds – p.13

Page 36: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Sharp Threshold

Connectivity Threshold

p0 is a sharp threshold for a monotone A if ∀ ε > 0 whp

Gn,(1−ε)p06∈ A and Gn,(1+ε)p0

∈ A.

Examples,

connectivity: sharp,

having a triangle: not sharp,

having a cycle: ‘one-sided sharp’.

Basic Thresholds – p.14

Page 37: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Sharp Threshold

Connectivity Threshold

p0 is a sharp threshold for a monotone A if ∀ ε > 0 whp

Gn,(1−ε)p06∈ A and Gn,(1+ε)p0

∈ A.

Examples,

connectivity: sharp,

having a triangle: not sharp,

having a cycle: ‘one-sided sharp’.

Basic Thresholds – p.14

Page 38: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Friedgut’s Theorem

Note: Sharp threshold ⇒ ∂∂pPr [Gn,p ∈ A ] 6= O

(

1p

)

.

Theorem (Friedgut’99) If for a monotone A

∂pPr [Gn,p ∈ A ] = O

(

1

p

)

,

then ∀ ε > 0 there is a finite family F of graphs such that∀n, p

Pr [Gn,p ∈ A4 {an F-subgraph} ] ≤ ε.

Basic Thresholds – p.15

Page 39: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Friedgut’s Theorem

Note: Sharp threshold ⇒ ∂∂pPr [Gn,p ∈ A ] 6= O

(

1p

)

.

Theorem (Friedgut’99) If for a monotone A

∂pPr [Gn,p ∈ A ] = O

(

1

p

)

,

then ∀ ε > 0 there is a finite family F of graphs such that∀n, p

Pr [Gn,p ∈ A4 {an F-subgraph} ] ≤ ε.

Basic Thresholds – p.15

Page 40: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Applying Friedgut’s Theorem

Difficult to apply: the type of A ∪ B depends on which oneappears ‘earlier’.

Theorem (Achlioptas-Friedgut’99) For fixed k ≥ 3k-colorability has a sharp threshold.

Basic Thresholds – p.16

Page 41: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Applying Friedgut’s Theorem

Difficult to apply: the type of A ∪ B depends on which oneappears ‘earlier’.

Theorem (Achlioptas-Friedgut’99) For fixed k ≥ 3k-colorability has a sharp threshold.

Basic Thresholds – p.16

Page 42: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Model Gn,M

Gn,M : random M edges.

Gn,p: edge probability p.

Theorem For a monotone A,

Pr[

Gn,M ∈ A]

is a non-decreasing function of M .

Basic Thresholds – p.17

Page 43: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Model Gn,M

Gn,M : random M edges.

Gn,p: edge probability p.

Theorem For a monotone A,

Pr[

Gn,M ∈ A]

is a non-decreasing function of M .

Basic Thresholds – p.17

Page 44: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Model Gn,M

Gn,M : random M edges.

Gn,p: edge probability p.

Theorem For a monotone A,

Pr[

Gn,M ∈ A]

is a non-decreasing function of M .

Basic Thresholds – p.17

Page 45: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Relating Gn,p and Gn,M

Theorem For any non-trivial monotone A, there is athreshold M0, that is,

Pr[

Gn,M ∈ A]

{

0, if M/M0 → 0,

1, if M/M0 → ∞.

Theorem Let M = log n+cn

(n2

)

. Then

Pr[

Gn,M ∈ C]

e−e−c

, |c| = O(1),

0, c → −∞,

1, c → +∞.

In particular, M0 = n log n is a threshold for connectivity.

Basic Thresholds – p.18

Page 46: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Relating Gn,p and Gn,M

Theorem For any non-trivial monotone A, there is athreshold M0, that is,

Pr[

Gn,M ∈ A]

{

0, if M/M0 → 0,

1, if M/M0 → ∞.

Theorem Let M = log n+cn

(n2

)

. Then

Pr[

Gn,M ∈ C]

e−e−c

, |c| = O(1),

0, c → −∞,

1, c → +∞.

In particular, M0 = n log n is a threshold for connectivity.

Basic Thresholds – p.18

Page 47: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Relating Gn,p and Gn,M

Theorem For any non-trivial monotone A, there is athreshold M0, that is,

Pr[

Gn,M ∈ A]

{

0, if M/M0 → 0,

1, if M/M0 → ∞.

Theorem Let M = log n+cn

(n2

)

. Then

Pr[

Gn,M ∈ C]

e−e−c

, |c| = O(1),

0, c → −∞,

1, c → +∞.

In particular, M0 = n log n is a threshold for connectivity.

Basic Thresholds – p.18

Page 48: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Connectivity of Gn,M

Proof Enough to consider |c| = O(1). Take small ε > 0. Let

p =log n + c − ε

n.

Take G ∈ Gn,p. Let l = M − e(G). If l ≥ 0, let

H = G + l random edges; H ∼ Gn,M .

By Chernoff’s bound, Pr [ e(G) > M ] → 0. Hence,

Pr[

Gn,M ∈ C]

≥ Pr [ G ∈ C ]−Pr [ e(G) > M ] ≥ e−e−c+ε

− o(1).

Upper bound: remove edges from Gn,p, p = log n+c+εn .

Basic Thresholds – p.19

Page 49: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Connectivity of Gn,M

Proof Enough to consider |c| = O(1). Take small ε > 0. Let

p =log n + c − ε

n.

Take G ∈ Gn,p. Let l = M − e(G). If l ≥ 0, let

H = G + l random edges; H ∼ Gn,M .

By Chernoff’s bound, Pr [ e(G) > M ] → 0. Hence,

Pr[

Gn,M ∈ C]

≥ Pr [ G ∈ C ]−Pr [ e(G) > M ] ≥ e−e−c+ε

− o(1).

Upper bound: remove edges from Gn,p, p = log n+c+εn .

Basic Thresholds – p.19

Page 50: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Connectivity of Gn,M

Proof Enough to consider |c| = O(1). Take small ε > 0. Let

p =log n + c − ε

n.

Take G ∈ Gn,p. Let l = M − e(G). If l ≥ 0, let

H = G + l random edges; H ∼ Gn,M .

By Chernoff’s bound, Pr [ e(G) > M ] → 0. Hence,

Pr[

Gn,M ∈ C]

≥ Pr [ G ∈ C ]−Pr [ e(G) > M ] ≥ e−e−c+ε

− o(1).

Upper bound: remove edges from Gn,p, p = log n+c+εn .

Basic Thresholds – p.19

Page 51: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Hitting Time Version

Random graph process:

G0 = n isolated vertices;

GM+1 = GM + a random edge.

Hitting time τ [A ] = min{M : GM ∈ A}.

Theorem (Erdos-Renyi’60) Whp τ [ δ ≥ 1 ] = τ [ C ].

Proof Let B = {H : δ ≥ 1 & H 6∈ C}.

Idea 1:

Pr [ ∃M : GM ∈ B ] ≤∑

M

Pr[

Gn,M ∈ B]

6→ 0.

Basic Thresholds – p.20

Page 52: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Hitting Time Version

Random graph process:

G0 = n isolated vertices;

GM+1 = GM + a random edge.

Hitting time τ [A ] = min{M : GM ∈ A}.

Theorem (Erdos-Renyi’60) Whp τ [ δ ≥ 1 ] = τ [ C ].

Proof Let B = {H : δ ≥ 1 & H 6∈ C}.

Idea 1:

Pr [ ∃M : GM ∈ B ] ≤∑

M

Pr[

Gn,M ∈ B]

6→ 0.

Basic Thresholds – p.20

Page 53: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Hitting Time Version

Random graph process:

G0 = n isolated vertices;

GM+1 = GM + a random edge.

Hitting time τ [A ] = min{M : GM ∈ A}.

Theorem (Erdos-Renyi’60) Whp τ [ δ ≥ 1 ] = τ [ C ].

Proof Let B = {H : δ ≥ 1 & H 6∈ C}.

Idea 1:

Pr [ ∃M : GM ∈ B ] ≤∑

M

Pr[

Gn,M ∈ B]

6→ 0.

Basic Thresholds – p.20

Page 54: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Idea 2: Using GM ⊂ GM+1

Fix large c > 0. Let m± = b log n±cn c.

Pr [ ∃M : GM ∈ B ] ≤ Pr [ ∃M ≤ m− δ(GM ) ≥ 1 ]

+ Pr [ ∃M ∈ (m−, m+) GM ∈ B ]

+ Pr [ ∃M ≥ m+ GM 6∈ C ]

= p− + p0 + p+

Now,

p+ = Pr [Gn,m+6∈ C ] = 1 − e−e−c

+ o(1),

p− = Pr [ δ(Gn,m−

) ≥ 1 ] = e−ec

+ o(1).

Basic Thresholds – p.21

Page 55: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Idea 2: Using GM ⊂ GM+1

Fix large c > 0. Let m± = b log n±cn c.

Pr [ ∃M : GM ∈ B ] ≤ Pr [ ∃M ≤ m− δ(GM ) ≥ 1 ]

+ Pr [ ∃M ∈ (m−, m+) GM ∈ B ]

+ Pr [ ∃M ≥ m+ GM 6∈ C ]

= p− + p0 + p+

Now,

p+ = Pr [Gn,m+6∈ C ] = 1 − e−e−c

+ o(1),

p− = Pr [ δ(Gn,m−

) ≥ 1 ] = e−ec

+ o(1).

Basic Thresholds – p.21

Page 56: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Idea 2: Using GM ⊂ GM+1

Fix large c > 0. Let m± = b log n±cn c.

Pr [ ∃M : GM ∈ B ] ≤ Pr [ ∃M ≤ m− δ(GM ) ≥ 1 ]

+ Pr [ ∃M ∈ (m−, m+) GM ∈ B ]

+ Pr [ ∃M ≥ m+ GM 6∈ C ]

= p− + p0 + p+

Now,

p+ = Pr [Gn,m+6∈ C ] = 1 − e−e−c

+ o(1),

p− = Pr [ δ(Gn,m−

) ≥ 1 ] = e−ec

+ o(1).

Basic Thresholds – p.21

Page 57: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

The Old Trick

Recall: B = {H : δ ≥ 1 & H 6∈ C}.

Aim: Pr [ ∃M ∈ (m−, m+) GM ∈ B ] → 0.

Let

p =log n − c − ε

n,

G ∈ Gn,p.

Basic Thresholds – p.22

Page 58: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Counting Components (Again)

Lemma Whp C1 ≤ log n and C2 = · · · = Cbn/2c = 0, i.e. G

consists of at most log n isolated vertices and onecomponent.

Proof

E [ C1 ] = n(1 − p)n−1 ≤ ec+ε + o(1) = O(1).

So Pr [ C1 > log n ] < E[ C1 ]log n → 0.

We already proved that whp C2 = · · · = Cbn/2c = 0.

Basic Thresholds – p.23

Page 59: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Counting Components (Again)

Lemma Whp C1 ≤ log n and C2 = · · · = Cbn/2c = 0, i.e. G

consists of at most log n isolated vertices and onecomponent.

Proof

E [ C1 ] = n(1 − p)n−1 ≤ ec+ε + o(1) = O(1).

So Pr [ C1 > log n ] < E[ C1 ]log n → 0.

We already proved that whp C2 = · · · = Cbn/2c = 0.

Basic Thresholds – p.23

Page 60: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Process between m− and m+

Pr [ ∃M ∈ (m−, m+) : GM ∈ B ] ≤ Pr [ e(G) > m− ]

+ Pr [ C1 > log n ]

+ Pr [ ∃k ∈ [2, n/2] Ck = 0 ]

+ m+

(log n2

)

(n2

)

− o(n2)→ 0.

Putting all together: whp τ [ C ] = τ [ δ ≥ 1 ].

Basic Thresholds – p.24

Page 61: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Process between m− and m+

Pr [ ∃M ∈ (m−, m+) : GM ∈ B ] ≤ Pr [ e(G) > m− ]

+ Pr [ C1 > log n ]

+ Pr [ ∃k ∈ [2, n/2] Ck = 0 ]

+ m+

(log n2

)

(n2

)

− o(n2)→ 0.

Putting all together: whp τ [ C ] = τ [ δ ≥ 1 ].

Basic Thresholds – p.24

Page 62: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Some Spanning Subgraphs

Pr [Gn,p ∈ A ] →

{

0, c → −∞,

1, c → +∞,

Erdos & Renyi’66:A = {perfect matching}, n even, p = log n+c

n .

Korshunov’83, Komlós & Szemerédi’83:A = {Hamiltonian}, p = log n+log log n+c

n .

Riordan’00:A = {d-dimensional cube}, n = 2d, p = 1

4 + c log dd .

Basic Thresholds – p.25

Page 63: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Perfect Matchings

Gn,n,p: random subgraph of Kn,n, Pr [ edge ] = p

(or random n × n 0/1-matrix).

Theorem (Erdos & Renyi’64) Let p = log n+cn and G ∈ Gn,n,p.

ThenPr [ G has a matching ] → e−2e−c

.

In particular, p0 = log nn is a sharp threshold.

Basic Thresholds – p.26

Page 64: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Perfect Matchings

Gn,n,p: random subgraph of Kn,n, Pr [ edge ] = p

(or random n × n 0/1-matrix).

Theorem (Erdos & Renyi’64) Let p = log n+cn and G ∈ Gn,n,p.

ThenPr [ G has a matching ] → e−2e−c

.

In particular, p0 = log nn is a sharp threshold.

Basic Thresholds – p.26

Page 65: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Using Hall’s Theorem

Proof No matching ⇔ ∃S s.t.

|S| = |Γ(S)| + 1,

|S| ≤ dn/2e,

∀x ∈ Γ(S) |Γ(x) ∩ S| ≥ 2.

Pr [ ∃ such S : |S| ≥ 2 ] ≤ E [ # such S ]

≤ 2

dn/2e∑

s=2

(

n

s

)(

n

s − 1

)(

s

2

)s−1

p2s−2(1 − p)s(n−s+1) = o(ne−pn).

E [ C1 ] = 2n(1 − p)n → 2 e−c. As before C1 → Poisson(2e−c).

Basic Thresholds – p.27

Page 66: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Using Hall’s Theorem

Proof No matching ⇔ ∃S s.t.

|S| = |Γ(S)| + 1,

|S| ≤ dn/2e,

∀x ∈ Γ(S) |Γ(x) ∩ S| ≥ 2.

Pr [ ∃ such S : |S| ≥ 2 ] ≤ E [ # such S ]

≤ 2

dn/2e∑

s=2

(

n

s

)(

n

s − 1

)(

s

2

)s−1

p2s−2(1 − p)s(n−s+1) = o(ne−pn).

E [ C1 ] = 2n(1 − p)n → 2 e−c. As before C1 → Poisson(2e−c).

Basic Thresholds – p.27

Page 67: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Using Hall’s Theorem

Proof No matching ⇔ ∃S s.t.

|S| = |Γ(S)| + 1,

|S| ≤ dn/2e,

∀x ∈ Γ(S) |Γ(x) ∩ S| ≥ 2.

Pr [ ∃ such S : |S| ≥ 2 ] ≤ E [ # such S ]

≤ 2

dn/2e∑

s=2

(

n

s

)(

n

s − 1

)(

s

2

)s−1

p2s−2(1 − p)s(n−s+1) = o(ne−pn).

E [ C1 ] = 2n(1 − p)n → 2 e−c. As before C1 → Poisson(2e−c).

Basic Thresholds – p.27

Page 68: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Model Gn,n,M

Gn,n,M : random M edges of Kn,n.

Theorem Let M = log n+cn n2 and G ∈ Gn,n,p. Then

Pr [ G has a matching ] → e−2e−c

.

In particular, M0 = n log n is a sharp threshold.

Basic Thresholds – p.28

Page 69: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Model Gn,n,M

Gn,n,M : random M edges of Kn,n.

Theorem Let M = log n+cn n2 and G ∈ Gn,n,p. Then

Pr [ G has a matching ] → e−2e−c

.

In particular, M0 = n log n is a sharp threshold.

Basic Thresholds – p.28

Page 70: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Model Gn,n,M

Gn,n,M : random M edges of Kn,n.

Theorem Let M = log n+cn n2 and G ∈ Gn,n,p. Then

Pr [ G has a matching ] → e−2e−c

.

In particular, M0 = n log n is a sharp threshold.

Basic Thresholds – p.28

Page 71: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Random Graph Process GM ⊂ Kn,n

Hitting time version: τ [ matching ] = τ [ δ ≥ 1 ].

Proof Take large c and m± = b log n±cn c.

Interesting interval: M ∈ (m−, m+)

Pr [ ∃|S| : |S| ≥ 3 ] ≤ m+ E [ # such S ] → 0.

Pr [ ∃|S| : |S| = 2 ] ≤ Pr [ Gm−

has such 2-element S ]

+ Pr [ C1(Gm−

) > log n ]

+ log n Pr [ such 2-element S is created ]

→ 0.

Basic Thresholds – p.29

Page 72: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Random Graph Process GM ⊂ Kn,n

Hitting time version: τ [ matching ] = τ [ δ ≥ 1 ].

Proof Take large c and m± = b log n±cn c.

Interesting interval: M ∈ (m−, m+)

Pr [ ∃|S| : |S| ≥ 3 ] ≤ m+ E [ # such S ] → 0.

Pr [ ∃|S| : |S| = 2 ] ≤ Pr [ Gm−

has such 2-element S ]

+ Pr [ C1(Gm−

) > log n ]

+ log n Pr [ such 2-element S is created ]

→ 0.

Basic Thresholds – p.29

Page 73: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Random Graph Process GM ⊂ Kn,n

Hitting time version: τ [ matching ] = τ [ δ ≥ 1 ].

Proof Take large c and m± = b log n±cn c.

Interesting interval: M ∈ (m−, m+)

Pr [ ∃|S| : |S| ≥ 3 ] ≤ m+ E [ # such S ] → 0.

Pr [ ∃|S| : |S| = 2 ] ≤ Pr [ Gm−

has such 2-element S ]

+ Pr [ C1(Gm−

) > log n ]

+ log n Pr [ such 2-element S is created ]

→ 0.

Basic Thresholds – p.29

Page 74: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Random Graph Process GM ⊂ Kn,n

Hitting time version: τ [ matching ] = τ [ δ ≥ 1 ].

Proof Take large c and m± = b log n±cn c.

Interesting interval: M ∈ (m−, m+)

Pr [ ∃|S| : |S| ≥ 3 ] ≤ m+ E [ # such S ] → 0.

Pr [ ∃|S| : |S| = 2 ] ≤ Pr [ Gm−

has such 2-element S ]

+ Pr [ C1(Gm−

) > log n ]

+ log n Pr [ such 2-element S is created ]

→ 0.

Basic Thresholds – p.29

Page 75: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

General Spanning Subgraphs

Theorem (Alon-Füredi’92) Let v(H) = n, ∆(H) ≤ d

D = d2 + 1 and G ∈ Gn,p.

If npd

D − log n → ∞, then whp H ⊂ G.

Proof Let F = H2; ∆(F ) < D.

Lemma (Hajnal-Szemerédi’70):∃ F -stable sets V1 ∪ · · · ∪ VD = V (F ), each |Vi| = n

D ± 1.

Take V (G) = U1 ∪ · · · ∪ UD with |Ui| = |Vi|.

Basic Thresholds – p.30

Page 76: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

General Spanning Subgraphs

Theorem (Alon-Füredi’92) Let v(H) = n, ∆(H) ≤ d

D = d2 + 1 and G ∈ Gn,p.

If npd

D − log n → ∞, then whp H ⊂ G.

Proof Let F = H2; ∆(F ) < D.

Lemma (Hajnal-Szemerédi’70):∃ F -stable sets V1 ∪ · · · ∪ VD = V (F ), each |Vi| = n

D ± 1.

Take V (G) = U1 ∪ · · · ∪ UD with |Ui| = |Vi|.

Basic Thresholds – p.30

Page 77: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Partial H-Embeddings

Build fi : V1 ∪ · · · ∪ Vi → U1 ∪ · · · ∪ Ui inductively.Let m = |Vi+1| = |Ui+1| and

F = { (u, v) : u ∈ Ui+1, v ∈ Vi+1 ΓH(v) ⊂ fi(ΓG(u)) }.

Observe F ∼ Gm,m,≥pd.

Pr [ FAIL ] = Pr [ no matching ]

= O(m e−pm) = o(1/D).

So, whp fi exists ∀ i ∈ [D], i.e. H ⊂ G.

Basic Thresholds – p.31

Page 78: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Partial H-Embeddings

Build fi : V1 ∪ · · · ∪ Vi → U1 ∪ · · · ∪ Ui inductively.Let m = |Vi+1| = |Ui+1| and

F = { (u, v) : u ∈ Ui+1, v ∈ Vi+1 ΓH(v) ⊂ fi(ΓG(u)) }.

Observe F ∼ Gm,m,≥pd.

Pr [ FAIL ] = Pr [ no matching ]

= O(m e−pm) = o(1/D).

So, whp fi exists ∀ i ∈ [D], i.e. H ⊂ G.

Basic Thresholds – p.31

Page 79: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Random Edge-Weights

The model: Random independent weights we, e ∈([n]

2

)

,each uniformly distributed in (0, 1).

T = the minimal spanning tree.

Let ζ(3) =∑∞

i=1 i−3.

Theorem (Frieze’85)

1. E [ w(T ) ] → ζ(3).

2. ∀ε > 0 Pr [ |w(T ) − ζ(3)| > ε ] → 0.

Proof of 1. Let Gp =(

[n], {e : we ≤ p})

∼ Gn,p.

Basic Thresholds – p.32

Page 80: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Random Edge-Weights

The model: Random independent weights we, e ∈([n]

2

)

,each uniformly distributed in (0, 1).

T = the minimal spanning tree.

Let ζ(3) =∑∞

i=1 i−3.

Theorem (Frieze’85)

1. E [ w(T ) ] → ζ(3).

2. ∀ε > 0 Pr [ |w(T ) − ζ(3)| > ε ] → 0.

Proof of 1. Let Gp =(

[n], {e : we ≤ p})

∼ Gn,p.

Basic Thresholds – p.32

Page 81: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Random Edge-Weights

The model: Random independent weights we, e ∈([n]

2

)

,each uniformly distributed in (0, 1).

T = the minimal spanning tree.

Let ζ(3) =∑∞

i=1 i−3.

Theorem (Frieze’85)

1. E [ w(T ) ] → ζ(3).

2. ∀ε > 0 Pr [ |w(T ) − ζ(3)| > ε ] → 0.

Proof of 1. Let Gp =(

[n], {e : we ≤ p})

∼ Gn,p.

Basic Thresholds – p.32

Page 82: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

An Expression for w(T )

w(T ) =∑

e∈T

we

=∑

e∈T

∫ 1

p=01we>p dp

=

∫ 1

p=0

e∈T

1we>p dp

=

∫ 1

p=0

∣{e ∈ T : e 6∈ Gp}

∣dp

=

∫ 1

p=0(κ(Gp) − 1)) dp.

where κ(G) = # components of G.

Basic Thresholds – p.33

Page 83: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

An Expression for w(T )

w(T ) =∑

e∈T

we

=∑

e∈T

∫ 1

p=01we>p dp

=

∫ 1

p=0

e∈T

1we>p dp

=

∫ 1

p=0

∣{e ∈ T : e 6∈ Gp}

∣dp

=

∫ 1

p=0(κ(Gp) − 1)) dp.

where κ(G) = # components of G.

Basic Thresholds – p.33

Page 84: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

An Expression for w(T )

w(T ) =∑

e∈T

we

=∑

e∈T

∫ 1

p=01we>p dp

=

∫ 1

p=0

e∈T

1we>p dp

=

∫ 1

p=0

∣{e ∈ T : e 6∈ Gp}

∣dp

=

∫ 1

p=0(κ(Gp) − 1)) dp.

where κ(G) = # components of G.

Basic Thresholds – p.33

Page 85: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

An Expression for w(T )

w(T ) =∑

e∈T

we

=∑

e∈T

∫ 1

p=01we>p dp

=

∫ 1

p=0

e∈T

1we>p dp

=

∫ 1

p=0

∣{e ∈ T : e 6∈ Gp}

∣dp

=

∫ 1

p=0(κ(Gp) − 1)) dp.

where κ(G) = # components of G.

Basic Thresholds – p.33

Page 86: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

An Expression for w(T )

w(T ) =∑

e∈T

we

=∑

e∈T

∫ 1

p=01we>p dp

=

∫ 1

p=0

e∈T

1we>p dp

=

∫ 1

p=0

∣{e ∈ T : e 6∈ Gp}

∣dp

=

∫ 1

p=0(κ(Gp) − 1)) dp.

where κ(G) = # components of G.

Basic Thresholds – p.33

Page 87: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Computing E [ w(T ) ]

E [ w(T ) ] =

∫ 1

p=0E [ κ(Gp) − 1) ] dp

∫3 log n

n

p=0E [ κ(Gp) ] dp

∫3 log n

n

p=0

n1/3

k≥1

(

n

k

)

kk−2 pk−1 (1 − p)k(n−k) (1 + O(k2p)) dp

→n1/3

k≥1

nkkk−2

k!

∫ 1

p=0pk−1 (1 − p)k(n−k) dp

=n1/3

k≥1

nkkk−2

k!×

(k − 1)! (k(n − k))!

(k(n − k + 1))!→

k≥1

1

k3.

Basic Thresholds – p.34

Page 88: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Computing E [ w(T ) ]

E [ w(T ) ] =

∫ 1

p=0E [ κ(Gp) − 1) ] dp

∫3 log n

n

p=0E [ κ(Gp) ] dp

∫3 log n

n

p=0

n1/3

k≥1

(

n

k

)

kk−2 pk−1 (1 − p)k(n−k) (1 + O(k2p)) dp

→n1/3

k≥1

nkkk−2

k!

∫ 1

p=0pk−1 (1 − p)k(n−k) dp

=n1/3

k≥1

nkkk−2

k!×

(k − 1)! (k(n − k))!

(k(n − k + 1))!→

k≥1

1

k3.

Basic Thresholds – p.34

Page 89: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Computing E [ w(T ) ]

E [ w(T ) ] =

∫ 1

p=0E [ κ(Gp) − 1) ] dp

∫3 log n

n

p=0E [ κ(Gp) ] dp

∫3 log n

n

p=0

n1/3

k≥1

(

n

k

)

kk−2 pk−1 (1 − p)k(n−k) (1 + O(k2p)) dp

→n1/3

k≥1

nkkk−2

k!

∫ 1

p=0pk−1 (1 − p)k(n−k) dp

=n1/3

k≥1

nkkk−2

k!×

(k − 1)! (k(n − k))!

(k(n − k + 1))!→

k≥1

1

k3.

Basic Thresholds – p.34

Page 90: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Computing E [ w(T ) ]

E [ w(T ) ] =

∫ 1

p=0E [ κ(Gp) − 1) ] dp

∫3 log n

n

p=0E [ κ(Gp) ] dp

∫3 log n

n

p=0

n1/3

k≥1

(

n

k

)

kk−2 pk−1 (1 − p)k(n−k) (1 + O(k2p)) dp

→n1/3

k≥1

nkkk−2

k!

∫ 1

p=0pk−1 (1 − p)k(n−k) dp

=n1/3

k≥1

nkkk−2

k!×

(k − 1)! (k(n − k))!

(k(n − k + 1))!→

k≥1

1

k3.

Basic Thresholds – p.34

Page 91: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Computing E [ w(T ) ]

E [ w(T ) ] =

∫ 1

p=0E [ κ(Gp) − 1) ] dp

∫3 log n

n

p=0E [ κ(Gp) ] dp

∫3 log n

n

p=0

n1/3

k≥1

(

n

k

)

kk−2 pk−1 (1 − p)k(n−k) (1 + O(k2p)) dp

→n1/3

k≥1

nkkk−2

k!

∫ 1

p=0pk−1 (1 − p)k(n−k) dp

=n1/3

k≥1

nkkk−2

k!×

(k − 1)! (k(n − k))!

(k(n − k + 1))!→

k≥1

1

k3.

Basic Thresholds – p.34

Page 92: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Above the Connectivity Threshold

Lemma Let p = 3 log nn . Then

Pr [Gn,p 6∈ C ] = o(1/n).

Proof As before, we argue that

bn/2c∑

k=1

E [ Ck ] = O(n e−pn) = o(1/n).

Hence, E[

w(T \ G3 log n/n)]

≤ n × o(1/n) → 0.

Basic Thresholds – p.35

Page 93: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

Above the Connectivity Threshold

Lemma Let p = 3 log nn . Then

Pr [Gn,p 6∈ C ] = o(1/n).

Proof As before, we argue that

bn/2c∑

k=1

E [ Ck ] = O(n e−pn) = o(1/n).

Hence, E[

w(T \ G3 log n/n)]

≤ n × o(1/n) → 0.

Basic Thresholds – p.35

Page 94: Thresholds for Some Basic Properties - math.cmu.eduaf1p/MAA2005/L2.pdf · (1 p)k(n k)kk 2pk 1 h n k (en=k)k & (1 x) e x i n X O(logn)e np+kp k! 0: Thus whp C2 = = Cbn=2c = 0: Basic

References[1] D. Achlioptas and E. Friedgut, A sharp threshold for k-colorability, Random Struct.

Algorithms 14 (1999), 63–70.

[2] B. Bollobás, Random graphs, 2d ed., Cambridge Univ. Press, 2001.

[3] B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7 (1987), 35–38.

[4] P. Erdos and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar.Acad. Sci. 5 (1960), 17–61.

[5] P. Erdos and A. Rényi, On the existence of a factor of degree one of a connectedrandom graph, Acta Math. Acad. Sci. Hung. 17 (1966), 359–368.

[6] E. Friedgut, Sharp thresholds of graph properties, and the k-sat problem, J. Amer.Math. Soc. 12 (1999), 1017–1054.

[7] A. M. Frieze, On the value of a random minimum spanning tree problem, DiscreteApplied Math. 10 (1985), 47–56.

[8] S. Janson, T. Łuczak, and A. Rucinski, Random graphs, Wiley-Intersci. Publ., 2000.

[9] J. Komlós and E. Szemerédi, Limit distribution for the existence of Hamiltonian cyclesin a random graph, Discrete Math. 43 (1983), 55–63.

[10] A. D. Korshunov, A new version of the solution of a problem of Erdos and Rényi onHamiltonian cycles in undirected graphs, Random graphs ’83 (Poznan, 1983), vol. 118,North-Holland, 1985, pp. 171–180.

[11] O. Riordan, Spanning subgraphs of random graphs, Combin. Prob. Computing 9(2000), 125–148.

Basic Thresholds – p.36


Recommended