+ All Categories
Home > Documents > Time Fractional Diffusion Equation - uni-due.de · W I S S E N T E C H N I K L E I D E N S C H A F...

Time Fractional Diffusion Equation - uni-due.de · W I S S E N T E C H N I K L E I D E N S C H A F...

Date post: 05-Sep-2019
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
51
W I S S E N T E C H N I K L E I D E N S C H A F T www.numerik.math.tugraz.at Time Fractional Diffusion Equation Sarah-Lena Bonkhoff Institut f ¨ ur Numerische Mathematik 9th Workshop on Analysis and Advanced Numerical Methods for Partial Differential Equations Strobl, 07 July 2016
Transcript

W I S S E N T E C H N I K L E I D E N S C H A F T

www.numerik.math.tugraz.at

Time Fractional DiffusionEquation

Sarah-Lena Bonkhoff

Institut fur Numerische Mathematik

9th Workshop on Analysis and Advanced Numerical Methods forPartial Differential EquationsStrobl, 07 July 2016

www.numerik.math.tugraz.at

Table of Contents

1. Time Fractional Diffusion Problem

2. Variational Formulation

3. Fundamental Solution

4. Single Layer Potential

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-20162

www.numerik.math.tugraz.at

Table of Contents

1. Time Fractional Diffusion Problem

2. Variational Formulation

3. Fundamental Solution

4. Single Layer Potential

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-20163

www.numerik.math.tugraz.at

Time Fractional Diffusion Equation

Model problem:

0∂αt u(x , t)−∆u(x , t) = f (x , t), in QT := Ω× (0,T ),

u(x , t) = 0, on ΣT := ∂Ω× (0,T ),

u(x ,0) = u0(x), for x ∈ Ω,

where Ω ⊂ Rn is a smooth and bounded domain and0 < α ≤ 1.

→ R0 ∂

αt : Riemann-Liouville derivative

→ C0 ∂

αt : Caputo derivative

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-20164

www.numerik.math.tugraz.at

Time Fractional Diffusion Equation

Model problem:

0∂αt u(x , t)−∆u(x , t) = f (x , t), in QT := Ω× (0,T ),

u(x , t) = 0, on ΣT := ∂Ω× (0,T ),

u(x ,0) = u0(x), for x ∈ Ω,

where Ω ⊂ Rn is a smooth and bounded domain and0 < α ≤ 1.

→ R0 ∂

αt : Riemann-Liouville derivative

→ C0 ∂

αt : Caputo derivative

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-20164

www.numerik.math.tugraz.at

Riemann-Liouville Definition

- Left R.-L. fractional derivative of order 0 < α ≤ 1 is defined as

R0 ∂

αt u(x , t) =

1Γ(1− α)

∂t

∫ t

0

u(x , τ)

(t − τ)αdτ,

where Γ(·) denotes Gamma function

Γ(x) =

∫ ∞0

tx−1e−t dt

- Right R.-L. fractional derivative of order 0 < α ≤ 1 is defined as

Rt ∂

αT u(x , t) = − 1

Γ(1− α)

∂t

∫ T

t

u(x , τ)

(τ − t)αdτ

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-20165

www.numerik.math.tugraz.at

Riemann-Liouville Definition

- Left R.-L. fractional derivative of order 0 < α ≤ 1 is defined as

R0 ∂

αt u(x , t) =

1Γ(1− α)

∂t

∫ t

0

u(x , τ)

(t − τ)αdτ,

where Γ(·) denotes Gamma function

Γ(x) =

∫ ∞0

tx−1e−t dt

- Right R.-L. fractional derivative of order 0 < α ≤ 1 is defined as

Rt ∂

αT u(x , t) = − 1

Γ(1− α)

∂t

∫ T

t

u(x , τ)

(τ − t)αdτ

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-20165

www.numerik.math.tugraz.at

Riemann-Liouville Definition

→ Laplace transform of the R.-L. derivative (n − 1 ≤ α < n)

LR0 Dα

t f (t); s = sα f (s)−n−1∑k=0

sk [R0 Dα−k−1t f (t)]t=0,

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-20166

www.numerik.math.tugraz.at

Caputo Definition

- Left Caputo fractional derivative of order 0 < α ≤ 1:

C0 ∂

αt u(x , t) =

1Γ(1− α)

∫ t

0

∂u(x , τ)

∂τ

1(t − τ)α

- Right Caputo fractional derivative of order 0 < α ≤ 1:

Ct ∂

αT u(x , t) = − 1

Γ(1− α)

∫ T

t

∂u(x , τ)

∂τ

1(τ − t)α

→ Laplace transform of the Caputo derivative (n − 1 < α ≤ n)

LC0 Dα

t f (t); s = sα f (s)−n−1∑k=0

sα−k−1f (k)(0),

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-20167

www.numerik.math.tugraz.at

Caputo Definition

- Left Caputo fractional derivative of order 0 < α ≤ 1:

C0 ∂

αt u(x , t) =

1Γ(1− α)

∫ t

0

∂u(x , τ)

∂τ

1(t − τ)α

- Right Caputo fractional derivative of order 0 < α ≤ 1:

Ct ∂

αT u(x , t) = − 1

Γ(1− α)

∫ T

t

∂u(x , τ)

∂τ

1(τ − t)α

→ Laplace transform of the Caputo derivative (n − 1 < α ≤ n)

LC0 Dα

t f (t); s = sα f (s)−n−1∑k=0

sα−k−1f (k)(0),

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-20167

www.numerik.math.tugraz.at

Fractional Derivatives

Relationship between R.-L. and Caputio derivatives for0 < α ≤ 1:

R0 ∂

αt u(x , t) =

u(x ,0)

Γ(1− α)tα+ C

0 ∂αt u(x , t)

- For homogeneous initial condition the R.-L. definition coincideswith the Caputo definition

- R.-L. derivatives for definitions of new function classes

- Caputo derivatives for handling inhomogeneous initial conditions

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-20168

www.numerik.math.tugraz.at

Fractional Derivatives

Relationship between R.-L. and Caputio derivatives for0 < α ≤ 1:

R0 ∂

αt u(x , t) =

u(x ,0)

Γ(1− α)tα+ C

0 ∂αt u(x , t)

- For homogeneous initial condition the R.-L. definition coincideswith the Caputo definition

- R.-L. derivatives for definitions of new function classes

- Caputo derivatives for handling inhomogeneous initial conditions

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-20168

www.numerik.math.tugraz.at

Analytical Solution

1D time fractional diffusion equation for 0 < α ≤ 1C0 ∂

αt u(x , t)− ∂2

x u(x , t) = 0, x ∈ (0,1), t ≥ 0u(0, t) = u(1, t) = 0, t ≥ 0

u(x ,0) = u0(x), x ∈ (0,1)

→ separation of variables:

u(x , t) = 2∞∑

k=1

Eα,1(−(kπ)2tα)sin(kπx)

∫ 1

0u0(τ)sin(kπτ) dτ

with Mittag-Leffler function

Eµ,ν(z) :=∞∑

k=0

zk

Γ(µk + ν), z ∈ C.

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-20169

www.numerik.math.tugraz.at

Analytical Solution

1D time fractional diffusion equation for 0 < α ≤ 1C0 ∂

αt u(x , t)− ∂2

x u(x , t) = 0, x ∈ (0,1), t ≥ 0u(0, t) = u(1, t) = 0, t ≥ 0

u(x ,0) = u0(x), x ∈ (0,1)

→ separation of variables:

u(x , t) = 2∞∑

k=1

Eα,1(−(kπ)2tα)sin(kπx)

∫ 1

0u0(τ)sin(kπτ) dτ

with Mittag-Leffler function

Eµ,ν(z) :=∞∑

k=0

zk

Γ(µk + ν), z ∈ C.

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-20169

www.numerik.math.tugraz.at

Analytical Solution

1D time fractional diffusion equation for 0 < α ≤ 1C0 ∂

αt u(x , t)− ∂2

x u(x , t) = 0, x ∈ (0,1), t ≥ 0u(0, t) = u(1, t) = 0, t ≥ 0

u(x ,0) = u0(x), x ∈ (0,1)

→ separation of variables:

u(x , t) = 2∞∑

k=1

Eα,1(−(kπ)2tα)sin(kπx)

∫ 1

0u0(τ)sin(kπτ) dτ

with Mittag-Leffler function

Eµ,ν(z) :=∞∑

k=0

zk

Γ(µk + ν), z ∈ C.

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-20169

www.numerik.math.tugraz.at

Example

u(x , t) = 2∞∑

k=1

Eα,1(−(kπ)2tα)sin(kπx)

∫ 1

0u0(τ)sin(kπτ) dτ

u0(x) = x(1− x), x ∈ (0,1)

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

0.25

distance

time

U(x

,t)

solution for α = 1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

0.25

distance

time

U(x

,t)

solution for α = 12

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201610

www.numerik.math.tugraz.at

Table of Contents

1. Time Fractional Diffusion Problem

2. Variational Formulation

3. Fundamental Solution

4. Single Layer Potential

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201611

www.numerik.math.tugraz.at

Fractional Derivative Spaces [Ervin and Roop (2007)]

For r , s > 0 and I = (0,T ) we consider the anisotropic Sobolevspaces

H r ,s(Ω× I) = L2(I; H r (Ω)) ∩ Hs(I; L2(Ω))

Define Hsl (I) as the closure of C∞0 (I) with respect to the norm

‖v‖Hsl (I) :=

(‖v‖2L2(I) + |v |2Hs

l (I)

) 12, |v |Hs

l (I) := ‖R0 Dst v‖L2(I).

→ analogue we can define the spaces Hsr (I) and Hs

c (I) with

|v |Hsr (I) := ‖Rt Ds

T v‖L2(I)

|v |Hsc (I) := |(R

0 Dst v , R

t DsT v)L2(I)|

12 , s 6= n − 1

2

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201612

www.numerik.math.tugraz.at

Fractional Derivative Spaces [Ervin and Roop (2007)]

For r , s > 0 and I = (0,T ) we consider the anisotropic Sobolevspaces

H r ,s(Ω× I) = L2(I; H r (Ω)) ∩ Hs(I; L2(Ω))

Define Hsl (I) as the closure of C∞0 (I) with respect to the norm

‖v‖Hsl (I) :=

(‖v‖2L2(I) + |v |2Hs

l (I)

) 12, |v |Hs

l (I) := ‖R0 Dst v‖L2(I).

→ analogue we can define the spaces Hsr (I) and Hs

c (I) with

|v |Hsr (I) := ‖Rt Ds

T v‖L2(I)

|v |Hsc (I) := |(R

0 Dst v , R

t DsT v)L2(I)|

12 , s 6= n − 1

2

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201612

www.numerik.math.tugraz.at

Fractional Derivative Spaces [Ervin and Roop (2007)]

For r , s > 0 and I = (0,T ) we consider the anisotropic Sobolevspaces

H r ,s(Ω× I) = L2(I; H r (Ω)) ∩ Hs(I; L2(Ω))

Define Hsl (I) as the closure of C∞0 (I) with respect to the norm

‖v‖Hsl (I) :=

(‖v‖2L2(I) + |v |2Hs

l (I)

) 12, |v |Hs

l (I) := ‖R0 Dst v‖L2(I).

→ analogue we can define the spaces Hsr (I) and Hs

c (I) with

|v |Hsr (I) := ‖Rt Ds

T v‖L2(I)

|v |Hsc (I) := |(R

0 Dst v , R

t DsT v)L2(I)|

12 , s 6= n − 1

2

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201612

www.numerik.math.tugraz.at

Properties

- For s 6= n + 12 the spaces Hs

c (I) and Hs0(I) are equal with

seminorms and norms

- For 0 < α < 1 and w ∈ Hα(I), v ∈ C∞0 (I):(R0 Dα

t w , v)

I=(

w , Rt Dα

T v)

I

- For 0 < α < 1 and w ∈ H1(I),w(0) = 0, v ∈ Hα2 (I)(

R0 Dα

t w , v)

I=(

R0 D

α2

t w , Rt D

α2

T v)

I

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201613

www.numerik.math.tugraz.at

Properties

- For s 6= n + 12 the spaces Hs

c (I) and Hs0(I) are equal with

seminorms and norms

- For 0 < α < 1 and w ∈ Hα(I), v ∈ C∞0 (I):(R0 Dα

t w , v)

I=(

w , Rt Dα

T v)

I

- For 0 < α < 1 and w ∈ H1(I),w(0) = 0, v ∈ Hα2 (I)(

R0 Dα

t w , v)

I=(

R0 D

α2

t w , Rt D

α2

T v)

I

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201613

www.numerik.math.tugraz.at

Properties

- For s 6= n + 12 the spaces Hs

c (I) and Hs0(I) are equal with

seminorms and norms

- For 0 < α < 1 and w ∈ Hα(I), v ∈ C∞0 (I):(R0 Dα

t w , v)

I=(

w , Rt Dα

T v)

I

- For 0 < α < 1 and w ∈ H1(I),w(0) = 0, v ∈ Hα2 (I)(

R0 Dα

t w , v)

I=(

R0 D

α2

t w , Rt D

α2

T v)

I

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201613

www.numerik.math.tugraz.at

Variational Formulation [Li and Xu (2010)]

Find u ∈ H1,α20 (QT ), u(x ,0) = 0:(

R0 ∂

α2

t u, Rt ∂

α2

T v)

QT

+ (∂xu, ∂xv)QT= (f , v)QT

for all v ∈ H1,α20 (QT ), v(x ,0) = 0 and 0 < α < 1.

→ Bilinearform is continuous and coercive

⇒ Existence and uniqueness of the solution by Lax-Milgram

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201614

www.numerik.math.tugraz.at

Variational Formulation [Li and Xu (2010)]

Find u ∈ H1,α20 (QT ), u(x ,0) = 0:(

R0 ∂

α2

t u, Rt ∂

α2

T v)

QT

+ (∂xu, ∂xv)QT= (f , v)QT

for all v ∈ H1,α20 (QT ), v(x ,0) = 0 and 0 < α < 1.

→ Bilinearform is continuous and coercive

⇒ Existence and uniqueness of the solution by Lax-Milgram

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201614

www.numerik.math.tugraz.at

Table of Contents

1. Time Fractional Diffusion Problem

2. Variational Formulation

3. Fundamental Solution

4. Single Layer Potential

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201615

www.numerik.math.tugraz.at

Model Problem

Time fractional diffusion equation with Caputo derivativeC0 ∂

αt u −∆u = 0, in QT = Ω× (0,T ),

u|ΣT= g, on ΣT = Γ× (0,T ),

u(x ,0) = 0, for x ∈ Ω,

0 < α ≤ 1 and Ω open and bounded with smooth boundary.

Consider the fractional diffusion equation

(C0 ∂

αt −∆)G(x , t) = δ(x , t).

→ Fourier-Laplace transform:

(|ξ|2 + sα)ˆG(ξ, s) = 1

⇔ ˆG(ξ, s) =1

|ξ|2 + sα

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201616

www.numerik.math.tugraz.at

Model Problem

Time fractional diffusion equation with Caputo derivativeC0 ∂

αt u −∆u = 0, in QT = Ω× (0,T ),

u|ΣT= g, on ΣT = Γ× (0,T ),

u(x ,0) = 0, for x ∈ Ω,

0 < α ≤ 1 and Ω open and bounded with smooth boundary.

Consider the fractional diffusion equation

(C0 ∂

αt −∆)G(x , t) = δ(x , t).

→ Fourier-Laplace transform:

(|ξ|2 + sα)ˆG(ξ, s) = 1

⇔ ˆG(ξ, s) =1

|ξ|2 + sα

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201616

www.numerik.math.tugraz.at

Model Problem

Time fractional diffusion equation with Caputo derivativeC0 ∂

αt u −∆u = 0, in QT = Ω× (0,T ),

u|ΣT= g, on ΣT = Γ× (0,T ),

u(x ,0) = 0, for x ∈ Ω,

0 < α ≤ 1 and Ω open and bounded with smooth boundary.

Consider the fractional diffusion equation

(C0 ∂

αt −∆)G(x , t) = δ(x , t).

→ Fourier-Laplace transform:

(|ξ|2 + sα)ˆG(ξ, s) = 1

⇔ ˆG(ξ, s) =1

|ξ|2 + sα

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201616

www.numerik.math.tugraz.at

Fundamental Solution

Laplace transform of the Mittag-Leffler function:

Ltν−1Eµ,ν(−λtµ); s =

∫ ∞0

e−st tν−1Eµ,ν(−λtµ) dt

=sµ−ν

sµ + λ

→ Fourier transform of the fundamental solution:

ˆG(ξ, s) =1

|ξ|2 + sα↔ G(ξ, t) = tα−1Eα,α(−|ξ|2tα)

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201617

www.numerik.math.tugraz.at

Fundamental Solution

Laplace transform of the Mittag-Leffler function:

Ltν−1Eµ,ν(−λtµ); s =

∫ ∞0

e−st tν−1Eµ,ν(−λtµ) dt

=sµ−ν

sµ + λ

→ Fourier transform of the fundamental solution:

ˆG(ξ, s) =1

|ξ|2 + sα↔ G(ξ, t) = tα−1Eα,α(−|ξ|2tα)

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201617

www.numerik.math.tugraz.at

Fundamental Solution

→ invert Fourier transform:

G(x , t) = (2π)−n2

∫Rn

tα−1Eα,α(−|ξ|2tα)eiξx dξ

= π−n2 tα−1|x |−nH(1)

(14|x |2t−α

),

where

H(1)(z) := H2012

[z∣∣∣(α,α)( n

2 ,1),(1,1)

]=

12πi

∫C

Γ( n2 + s)Γ(1 + s)

Γ(α + αs)z−s ds,

is the Mellin-Barnes integral definition of the Fox H-function

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201618

www.numerik.math.tugraz.at

Table of Contents

1. Time Fractional Diffusion Problem

2. Variational Formulation

3. Fundamental Solution

4. Single Layer Potential

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201619

www.numerik.math.tugraz.at

Single Layer Potential

→ For a given boundary distribution σ(x , t) ∈ C∞(ΣT ) we definethe single layer potential

u(x , t) = Sσ(x , t) =

∫ t

0

∫Γ

σ(y , τ)G(x − y , t − τ) dsy dτ,

for x ∈ Ω, t ∈ (0,T )

→ Boundary integral equation:

Vσ(x , t) := γ(Sσ)(x , t) = γ(u)(x , t) = g(x , t),

for (x , t) ∈ ΣT

→ For 0 < s < 1 the operator

V : H−s,−α2 s(ΣT )→ H1−s,α2 (1−s)(ΣT )

is continuous

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201620

www.numerik.math.tugraz.at

Single Layer Potential

→ For a given boundary distribution σ(x , t) ∈ C∞(ΣT ) we definethe single layer potential

u(x , t) = Sσ(x , t) =

∫ t

0

∫Γ

σ(y , τ)G(x − y , t − τ) dsy dτ,

for x ∈ Ω, t ∈ (0,T )

→ Boundary integral equation:

Vσ(x , t) := γ(Sσ)(x , t) = γ(u)(x , t) = g(x , t),

for (x , t) ∈ ΣT

→ For 0 < s < 1 the operator

V : H−s,−α2 s(ΣT )→ H1−s,α2 (1−s)(ΣT )

is continuous

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201620

www.numerik.math.tugraz.at

Single Layer Potential

→ For a given boundary distribution σ(x , t) ∈ C∞(ΣT ) we definethe single layer potential

u(x , t) = Sσ(x , t) =

∫ t

0

∫Γ

σ(y , τ)G(x − y , t − τ) dsy dτ,

for x ∈ Ω, t ∈ (0,T )

→ Boundary integral equation:

Vσ(x , t) := γ(Sσ)(x , t) = γ(u)(x , t) = g(x , t),

for (x , t) ∈ ΣT

→ For 0 < s < 1 the operator

V : H−s,−α2 s(ΣT )→ H1−s,α2 (1−s)(ΣT )

is continuous

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201620

www.numerik.math.tugraz.at

Jump Relations

Applying the time reversal operator κT u(x , t) = u(x ,T − t):∫ T

0

C0 ∂

αt ϕ(t) (κTψ)(t) dt =

∫ T

0(κTϕ)(t) C

0 ∂αt ψ(t) dt

for ϕ ∈ C1([0,T ]) and ψ ∈ C1([0,T ]), ψ(0) = 0

→ Green’s formula for the fractional diffusion equation:∫QT

(C0 ∂

αt −∆)u κT v − κT u (C

0 ∂αt −∆)v dx dt

= 〈γ(u), γ1(κT v)〉 − 〈γ1(u), γ(κT v)〉

for a smooth test function with v(x ,0) = 0

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201621

www.numerik.math.tugraz.at

Jump Relations

Applying the time reversal operator κT u(x , t) = u(x ,T − t):∫ T

0

C0 ∂

αt ϕ(t) (κTψ)(t) dt =

∫ T

0(κTϕ)(t) C

0 ∂αt ψ(t) dt

for ϕ ∈ C1([0,T ]) and ψ ∈ C1([0,T ]), ψ(0) = 0

→ Green’s formula for the fractional diffusion equation:∫QT

(C0 ∂

αt −∆)u κT v − κT u (C

0 ∂αt −∆)v dx dt

= 〈γ(u), γ1(κT v)〉 − 〈γ1(u), γ(κT v)〉

for a smooth test function with v(x ,0) = 0

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201621

www.numerik.math.tugraz.at

Jump Relations [Kemppainen, Ruotsalainen (2010)]

⇒ For every ψ ∈ H−12 ,−

α4 (ΣT ) there hold the jump relations

[γ(Sψ)] = 0,[γ1(Sψ)] = −ψ.

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201622

www.numerik.math.tugraz.at

Coercivity

Theorem (Kemppainen, Routsalainen (2010))

The single layer operator V : H−12 ,−

α4 (ΣT )→ H

12 ,α4 (ΣT ) is an

isomorphism. Futhermore, it is coercive, i.e. there exists a positiveconstant c such that

〈Vσ, σ〉 ≥ c‖σ‖2H− 1

2 ,−α4 (ΣT )

for all σ ∈ H−12 ,−

α4 (ΣT ).

→ TFDE admits a unique solution u(x , t) ∈ H1,α2 (QT )

u(x , t) = Sσ(x , t),

where σ ∈ H−12 ,−

α4 (ΣT ) is the unique solution of

Vσ = g, g ∈ H12 ,

α4 (ΣT )

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201623

www.numerik.math.tugraz.at

Coercivity

Theorem (Kemppainen, Routsalainen (2010))

The single layer operator V : H−12 ,−

α4 (ΣT )→ H

12 ,α4 (ΣT ) is an

isomorphism. Futhermore, it is coercive, i.e. there exists a positiveconstant c such that

〈Vσ, σ〉 ≥ c‖σ‖2H− 1

2 ,−α4 (ΣT )

for all σ ∈ H−12 ,−

α4 (ΣT ).

→ TFDE admits a unique solution u(x , t) ∈ H1,α2 (QT )

u(x , t) = Sσ(x , t),

where σ ∈ H−12 ,−

α4 (ΣT ) is the unique solution of

Vσ = g, g ∈ H12 ,

α4 (ΣT )

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201623

www.numerik.math.tugraz.at

Outlook

- Investigation of the boundary integral operators

→ apply the theory of boundary integral equation to thefractional diffusion equation

- Behavior of the fundamental solution

- Space time discretizations for the time fractional diffusionequation

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201624

www.numerik.math.tugraz.at

[1] DIETHELM, K., AND WEILBEER, M.Initial-boundary value problems for time-fractional diffusion-wave equations andtheir numerical solution.1st IFAC Workshop on Fractional Differentiation and its Applications (2004).

[2] ERVIN, V. J., AND ROOP, J. P.Variational solution of fractional advection dispersion equations on boundeddomains in Rd .Numer. Methods Partial Differential Equations 23, 2 (2007), 256–281.

[3] KEMPPAINEN, J.Properties of the single layer potential for the time fractional diffusion equation.J. Integral Equations Appl. 23, 3 (2011), 437–455.

[4] KEMPPAINEN, J., AND RUOTSALAINEN, K.Boundary integral solution of the time-fractional diffusion equation.In Integral methods in science and engineering. Vol. 2. Birkhauser Boston, 2010.

[5] LI, X., AND XU, C.Existence and uniqueness of the weak solution of the space-time fractionaldiffusion equation and a spectral method approximation.Commun. Comput. Phys. 8, 5 (2010), 1016–1051.

[6] PODLUBNY, I.Fractional differential equations.Mathematics in Science and Engineering. Academic Press, 1999.

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201625

www.numerik.math.tugraz.at

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201626

www.numerik.math.tugraz.at

Asymptotic Behavior [Kemppainen (2011)]

G(x , t) =

π−

n2 tα−1|x |−nH(1)

( 14 |x |

2t−α), x ∈ Rn, t > 0

0, x ∈ Rn, t > 0

(i) if z := 14 |x |

2t−α ≥ 1, then

|G(x , t)| ≤ Ct−αn2 −1+α exp(−σt−

α2−α |x |

22−α ),

where σ = 41

α−2αα

2−α (2− α)

(ii) if z ≤ 1, then

|G(x , t)| ≤ C

t−1 n = 2t−

α2 −1 n = 3

t−α−1(| log(|x |2t−α)|+ 1) n = 4t−α−1|x |−n+4 n > 4

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201627

www.numerik.math.tugraz.at

Asymptotic Behavior [Kemppainen (2011)]

G(x , t) =

π−

n2 tα−1|x |−nH(1)

( 14 |x |

2t−α), x ∈ Rn, t > 0

0, x ∈ Rn, t > 0

(i) if z := 14 |x |

2t−α ≥ 1, then

|G(x , t)| ≤ Ct−αn2 −1+α exp(−σt−

α2−α |x |

22−α ),

where σ = 41

α−2αα

2−α (2− α)

(ii) if z ≤ 1, then

|G(x , t)| ≤ C

t−1 n = 2t−

α2 −1 n = 3

t−α−1(| log(|x |2t−α)|+ 1) n = 4t−α−1|x |−n+4 n > 4

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201627

www.numerik.math.tugraz.at

Asymptotic Behavior [Kemppainen (2011)]

G(x , t) =

π−

n2 tα−1|x |−nH(1)

( 14 |x |

2t−α), x ∈ Rn, t > 0

0, x ∈ Rn, t > 0

(i) if z := 14 |x |

2t−α ≥ 1, then

|G(x , t)| ≤ Ct−αn2 −1+α exp(−σt−

α2−α |x |

22−α ),

where σ = 41

α−2αα

2−α (2− α)

(ii) if z ≤ 1, then

|G(x , t)| ≤ C

t−1 n = 2t−

α2 −1 n = 3

t−α−1(| log(|x |2t−α)|+ 1) n = 4t−α−1|x |−n+4 n > 4

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201627

www.numerik.math.tugraz.at

Caputo Derivative

For 0 < α < 1 and w ∈ H1(I), v ∈ Hα2 (I) we have(

C0 Dα

t w , v)

I=(

R0 D

α2

t w , Rt D

α2

T v)

I−(

w(0)t−α

Γ(1− α), v)

I.

⇒ Variational Formulation: find u ∈ H1,α20 (QT ):

(R0 ∂

α2

t u, Rt ∂

α2

T v)

QT

+ (∂xu, ∂xv)QT= (f , v)QT +

(u(x ,0)t−α

Γ(1− α), v)

QT

for all v ∈ H1,α20 (QT ).

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201628

www.numerik.math.tugraz.at

Caputo Derivative

For 0 < α < 1 and w ∈ H1(I), v ∈ Hα2 (I) we have(

C0 Dα

t w , v)

I=(

R0 D

α2

t w , Rt D

α2

T v)

I−(

w(0)t−α

Γ(1− α), v)

I.

⇒ Variational Formulation: find u ∈ H1,α20 (QT ):

(R0 ∂

α2

t u, Rt ∂

α2

T v)

QT

+ (∂xu, ∂xv)QT= (f , v)QT +

(u(x ,0)t−α

Γ(1− α), v)

QT

for all v ∈ H1,α20 (QT ).

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201628

www.numerik.math.tugraz.at

Continuity

Theorem (Kemppainen, Ruotsalainen (2010))Let 0 < s < 1. The operator

V : H−s,−α2 s(ΣT )→ H1−s,α2 (1−s)(ΣT )

is continuous.

- Sφ = G ∗ γ′(φ)

- ψ 7→ G ∗ ψ : H r ,α2 rcomp(Rn × (0,T ))→ H r+2,α2 (r+2)

loc (Rn × (0,T )) iscontinuous

- Trace γ : H r ,s(QT )→ Hλ,µ(ΣT ) is continuous and surjective forλ = r − 1

2 , µ = sr λ and r > 1

2 , s ≥ 0

- γ′ : H−λ,−µ(ΣT )→ H−r ,−scomp (Rn × (0,T ))

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201629

www.numerik.math.tugraz.at

Continuity

Theorem (Kemppainen, Ruotsalainen (2010))Let 0 < s < 1. The operator

V : H−s,−α2 s(ΣT )→ H1−s,α2 (1−s)(ΣT )

is continuous.

- Sφ = G ∗ γ′(φ)

- ψ 7→ G ∗ ψ : H r ,α2 rcomp(Rn × (0,T ))→ H r+2,α2 (r+2)

loc (Rn × (0,T )) iscontinuous

- Trace γ : H r ,s(QT )→ Hλ,µ(ΣT ) is continuous and surjective forλ = r − 1

2 , µ = sr λ and r > 1

2 , s ≥ 0

- γ′ : H−λ,−µ(ΣT )→ H−r ,−scomp (Rn × (0,T ))

Sarah-Lena Bonkhoff, Institut fur Numerische Mathematik07-07-201629


Recommended