+ All Categories
Home > Documents > Timing properties of MCP-PMT - Nagoya University · 2007/6/27-29 Photon Detector WS at Kobe 2...

Timing properties of MCP-PMT - Nagoya University · 2007/6/27-29 Photon Detector WS at Kobe 2...

Date post: 28-Apr-2019
Category:
Upload: ngotruc
View: 216 times
Download: 0 times
Share this document with a friend
21
Photon Detector Workshop at Kobe, 27-29 June 2007 Timing properties of MCP-PMT - Time resolution - Lifetime - Rate dependence K.Inami (Nagoya university, Japan)
Transcript

Photon Detector Workshop at Kobe, 27-29 June 2007

Timing properties of MCP-PMT

- Time resolution- Lifetime- Rate dependence

K.Inami (Nagoya university, Japan)

2007/6/27-29 Photon Detector WS at Kobe 2

Introduction

~400mm

Linear-array type photon detector

LX

20mm

Quartz radiatorx

y

z

Photon device for TOP counterCherenkov ring imaging counter with precise timing measurement (NIM A 440 (2000) 124)

Barrel PID upgrade for Super B factory

Single photon sensitivityGood transit time spread (TTS<50ps)Operational under 1.5T B-fieldPosition sensitive (~5mm)High detection efficiency

MCP-PMT is a best solution!

2007/6/27-29 Photon Detector WS at Kobe 3

MCP-PMTMicro-Channel-Plate

Tiny electron multipliersDiameter ~10µm, length ~400µm

High gain~106 for two-stage type

→ Fast time responsePulse raise time ~500ps, TTS < 50ps

can operate under high magnetic field (~1T)

Photo-cathode MCP plates Anode

Photon

Single photonChannel

~400µm

φ~10µm

Input electron

HV

MCP channel

2007/6/27-29 Photon Detector WS at Kobe 4

MCP-PMT for single photonTiming properties under B=0~1.5T parallel to PMT

HPK6 BINP8 HPK10 Burle25

1012513Bias angle (deg.)

bi-alkalimulti-alkalimulti-alkalimulti-alkaliphoto-cathode

2500360032003600Max. H.V. (V)

24261826Q.E.(%) (λ=408nm)

40434040Length-diameter ratio

251086MCP hole diameter(µm)50x50251811Effective size(mm)

71x715230.545PMT size(mm)

Burle2585011-501

HPK10R3809U-50-25X

BINP8N4428

HPK6R3809U-50-11X

MCP-PMT

2007/6/27-29 Photon Detector WS at Kobe 5

MCP-PMT for single photon (2)Setup

Single photon is generated by laser (408nm).B-field is parallel to tube axis.

HPK PLP-02Width 36ps

18GHz0~10dB

1.5GHz36dB

Philips 708

2007/6/27-29 Photon Detector WS at Kobe 6

MCP-PMT (output)Hamamatsu R3809U-50 (multi-alkali photo-cathode)

ADC (count/0.25pC)

0

200

400

600

100 120 140N

um

ber

of

Even

tsTDC (count/25psec)

0

500

1000

1500

-20

Nu

mb

er

of

Ev

en

ts

200

σ=46psfor single photon

single photon peak

Window size : 25mmφ

HPK10

MCP hole 10µmφ

HPK6

Window : 11mmφ

MCP hole 6µmφ0

200

400

600

800

1000

1200

100 110 120 130ADC (1bin/0.25pC)

even

t

0

200

400

600

800

1000

-20 -10 0 10 20

30.4psec

TDC(25ps/count)

even

tGain ~ 106

2007/6/27-29 Photon Detector WS at Kobe 7

105

106

107

0 0.2 0.4 0.6 0.8 1.2 1.4 1.61B (T)

Gai

n

HPK6: 3.6kVBINP8: 3.2kVHPK10: 3.4kVBurle25: 2.5kV

Pulse shape (B=0T)Fast raise time (~500ps)Broad shape for BINP8

Due to mismatch with H.V. supply and readout cableNo influence for time resolution

Gain v.s. B-fieldSmall hole diameter shows high stability against B-field.Explained by relation btw hole size and Larmor radius of electron motion under B-field.

1ns

500ps 1ns

10mV20mV

1ns

2mV 2mV

HPK6 BINP8

HPK10 Burle25

Pulse response

2007/6/27-29 Photon Detector WS at Kobe 8

MCP-PMT in B-fieldADC spectra with different angles under B=1.5T

Gain depends on the angle.Behaviors are slightly different.

Because of the different bias angle of MCP hole HPK6: 13deg, 6µm, BINP8: 5deg, 8µm

0

0.02

0.04

0.06

100 150 200 250 300

0.05

0.1

0.15

0.2

100 120 140 160 1800

ADC channel (/0.25pC)

φ=0o

φ=30o

φ=45o

φ=60o

φ=0o

φ=15o

φ=30o

φ=45o

ADC channel (/0.25pC)

# of

eve

nt (

arbi

trar

y) HPK6 BINP8

Photo-cathode MCP plates Anode

Photon

2007/6/27-29 Photon Detector WS at Kobe 9

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1.2 1.4 1.61B (T)

TT

S (p

s)

HPK6: HV 3.6kVBINP8: HV 3.2kVHPK10: HV 3.6kVBurle25:HV 2.5kV

0

20

40

60

80

100

120

10 6 107

BINP8HPK6

HPK10Burle25

Gain

TT

S(ps

)

Single photon

Single photon

Time responseTTS v.s. B-field

Small hole diameter shows high stability and good resolution.

TTS v.s. GainFor several HV and B-field conditions30~40ps resolution was obtained for gain>106

Hole size need <~10µmto get time resolution of ~30ps under 1.5T B-field.

2007/6/27-29 Photon Detector WS at Kobe 10

LifetimeHow long can we use MCP-PMT under high hit rate?

(Nucl. Instr. Meth. A564 (2006) 204.)

Light load by LED pulse (1~5kHz)20~100 p.e. /pulse (monitored by normal PMT)

55-60%65%XX OOAl protection

40-6037%Correction eff.

5deg13degBias angle

30~40ps29ps3~4x1061.5x1061.9x106Gain

34psTTS

16-20%19%21%Quantum eff. at 400nm

Multi-alkali (NaKSbCs)Photo-cathode

18mmφ11mmφEffective area

Russian (x5)HPK (x2)

2007/6/27-29 Photon Detector WS at Kobe 11

Lifetime - Q.E. -

0

0.5

1

0 10 20 30Integrated irradiation(x1013 photons/cm2)

Rel

ativ

e Q

.E.

λ=400nm

Time in Super-B factory (year)0 5 10 15

Relative Q.E. by single photon laser

Without Al protectionDrop <50% within 1yr.

With Al protectionLong lifeNot enough for Russian PMTs

Enough lifetime for HPK’s MCP-PMT with Al protection layer

HPK w/ AlHPK w/o AlRussian w/ AlRussian w/o Al

2007/6/27-29 Photon Detector WS at Kobe 12

Lifetime - Q.E. vs wavelangth -Q.E. after lifetime test (Ratio of Q.E. btw. before,after)

Large Q.E. drop at longer wavelengthNumber of Cherenkov photons;only 13% drop (HPK w/Al)

Number of generated Cherenkov photon:~1/λ2

10-2

10-1

1

10

200 300 400 500 600 700 800 900λ(nm)

Q.E

.(%

)

HPK w/ AlHPK w/o Al

BINP w/ Al (#32)BINP w/ Al (#35)BINP w/ Al (#38)BINP w/o Al (#6)BINP w/o Al (#11)BINP before

HPK before

10-3

10-2

10-1

1

200 300 400 500 600 700 800 900λ(nm)

Rel

ativ

e Q

.E.

HPK w/ AlHPK w/o Al

BINP w/ Al (#32)BINP w/ Al (#35)BINP w/ Al (#38)BINP w/o Al (#6)BINP w/o Al (#11)

2007/6/27-29 Photon Detector WS at Kobe 13

Lifetime - Gain -

0

0.25

0.5

0.75

1

0 10 20 30Integrated irradiation(x1013 photons/cm2)

Rel

ativ

e G

ain

Time in Super-B factory (year)0 5 10 15

Estimate from output charge for single photon irradiation

<1013photons/cm2

Drop fast

>1013photons/cm2

Drop slowly

Single photon detection: OKCan recover gain by increasing HV

HPK w/ AlHPK w/o AlRussian w/ AlRussian w/o Al

2007/6/27-29 Photon Detector WS at Kobe 14

Lifetime - T.T.S. -

0

20

40

60

80

100

0 10 20 30Integrated irradiation(x1013 photons/cm2)

TT

S(p

s)

Russian w/o Al (#6)

HPK w/o Al

Russian w/ Al(#32)

HPK w/ Al

-before-after

σ=31psσ=36ps

σ=43psσ=32ps

σ=34psσ=34ps

σ=29psσ=33ps

HPK w/ AlHPK w/o AlRussian w/ AlRussian w/o Al

Time resolution for single photonNo degradation!Keep ~35ps

2007/6/27-29 Photon Detector WS at Kobe 15

Multi-anode MCP-PMT (1)

NoAl protection layer

2Number of MCP stage

4 channel linear arrayAnode

27.5 x 27.5 x 14.8 mmSize

22 x 22 mm(64%)Effective area

0.3 mmAnode gaps

5.3 x 22 mmAnode size (1ch)

~60%Aperture

10 µmMCP Channel diameter

~20%(λ=350nm)Q.E.

Multi-alkaliPhoto cathode

22(effective area)27.5mm

1ch

2ch

3ch

4ch

SL10R&D with Hamamatsu for TOP counter

• Large effective area 64% by square shape• Position information 4ch linear anode (5mm pitch)

2007/6/27-29 Photon Detector WS at Kobe 16

Multi-anode (2)Single photon detectionFast raise time: ~400psGain=1.5x106 @B=1.5TT.T.S.(single photon): ~30ps @B=1.5TPosition resoltion: <5mmCorrection eff.: ~50%

Nucl. Instr. Meth. A528 (2004) 768.

Basic performance is OK!Same as single anode MCP-PMT

Raise time~400ps

tdc(time walk collection)

0

1000

2000

3000

4000

5000

6000

-25 -20 -15 -10 -5 0 5 10 15 20 25

ID

Entries

Mean

RMS

3542

19316

1.479

4.464

319.3 / 9

Constant 4725. 52.34

Mean -0.5600 0.1162E-01

Sigma 1.150 0.8783E-02

1bin/25ps

coun

t

T.T.S.: σ~30ps

2007/6/27-29 Photon Detector WS at Kobe 17

Rate dependenceGain vs. photon rate

For high intensity beamGain drop for high rate

>105 count/cm2/sDue to lack of elections inside MCP holesDepending on RC variables

10-2

10-1

1

1 10 102

103

104

105

106

107

108

109

SL10HPK6BINP

Ndet(count/cm2/sec)

Super B-factory@L=2x10 /cm /sec

35 2R

elat

ive

Gai

n24~393116MCP capacitance

(pF/cm2)

380~100014396MCP resistance (MΩ cm2)

BINPHPK6SL10

MCP

MCP channel

Electrode Enough for TOP counter

2007/6/27-29 Photon Detector WS at Kobe 18

High resolution TOFStructure

Small-size quartz (cm~mm length)Cherenkov light (Decay time ~ 0) extremely reduce time dispersion compared to scintillation (τ ~ ns)

MCP-PMT (multi-alkali photo-cathode)TTS ~ 30ps even for single photongives enough time resolution for smaller number of detectable photons

Readout electronicsσelec.: 4psTime-correlated Single Photon Counting Modules (SPC-134, Becker & Hickl GMbH’s)

CFD, TAC and ADC Channel width = 813fsElectrical time resolution = 4ps RMS

Test counter

2007/6/27-29 Photon Detector WS at Kobe 19

Beam test setup3GeV/c π− beam

at KEK-PS π2 line

PMT: R3809U-50-11XQuartz radiator

10φx40zmm with Al evaporation

0

100

200

300

40 80 120

4.1ps

Even

tsTDC (ch/0.814ps)

Elec. resolutionBeamTrig.1

Trig.2TOF1 TOF2

30cm

Trig.1 Coinc. Discri.Divider

Trig.2

TOF2

TOF1PowerSpliter

Discri.

Discri.Divider

Start Stop

π, 3GeV/c-

SPC-134

2007/6/27-29 Photon Detector WS at Kobe 20

Beam test resultWith 10mm quartz radiator

+3mm quartz windowNumber of photons ~ 180Time resolution = 6.2psIntrinsic resolution ~ 4.7ps

Without quartz radiator3mm quartz windowNumber of photons ~ 80

Expectation ~ 20 photo-electrons

Time resolution = 7.7ps

Even

ts

100

200

300

400

40 80 120 1400TDC (ch/0.814ps)

6.2ps

100

200

300

40 80 120 1400

TDC

7.7ps

(ch/0.814ps)Ev

ents

2007/6/27-29 Photon Detector WS at Kobe 21

SummaryMCP-PMT studies

Good time resolution of ~35ps for single photonEven under B=1.5T

Gain~106 with <10µm MCP holeLong lifetime (<10% QE drop) until 3x1014photons/cm2

Need Al protection layerGain degradation if Ndet >105 counts/cm2/s

Enough performance for TOP counter in super B factory

High resolution TOF; ~5ps time resolutionAn apprication of fast MCP-PMT

ReferencesM. Akatsu et.al., Nucl. Instr. Meth. A528 (2004) 768.K. Inami et.al., Nucl. Instr. Meth. A560 (2006) 303.N. Kishimoto et.al., Nucl. Instr. Meth. A564 (2006) 204.


Recommended