+ All Categories
Home > Documents > Tk 4107 Reconfigurado .Rev2

Tk 4107 Reconfigurado .Rev2

Date post: 09-Nov-2015
Category:
Upload: alberto-garzon
View: 238 times
Download: 4 times
Share this document with a friend
Description:
ANALISIS ESTRCTURAL DE TECHO TK-4107
37
Page 1 of 37 OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2 TANK REPORT: Printed - 05/09/2014 9:54:38 ETANK FULL REPORT - TK 4107 RECONFIGURADO rev 2 ETank2000 FV 1.9.14 (26 Oct 2010) TABLE OF CONTENTS PAGE 1 ETANK SETTINGS SUMMARY PAGE 2 SUMMARY OF DESIGN DATA AND REMARKS PAGE 3 SUMMARY OF RESULTS PAGE 5 ROOF DESIGN PAGE 8 BOTTOM DESIGN PAGE 30 SEISMIC MOMENT PAGE 34 CAPACITIES AND WEIGHTS PAGE 36 MAWP & MAWV SUMMARY PAGE 37
Transcript
  • Page 1 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:38

    ETANK FULL REPORT - TK 4107 RECONFIGURADO rev 2ETank2000 FV 1.9.14 (26 Oct 2010)

    TABLE OF CONTENTS PAGE 1

    ETANK SETTINGS SUMMARY PAGE 2

    SUMMARY OF DESIGN DATA AND REMARKS PAGE 3

    SUMMARY OF RESULTS PAGE 5

    ROOF DESIGN PAGE 8

    BOTTOM DESIGN PAGE 30

    SEISMIC MOMENT PAGE 34

    CAPACITIES AND WEIGHTS PAGE 36

    MAWP & MAWV SUMMARY PAGE 37

  • Page 2 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:38

    ETANK SETTINGS SUMMARY

    To Change These ETank Settings, Go To Tools->Options, Behavior Tab. ----------------------------------------------------------------------

    No 650 Appendix F Calcs when Tank P = 0 -> Default : Verdadero -> This Tank : Verdadero Show MAWP / MAWV Calcs : Verdadero Enforce API Minimum thicknesses : Verdadero Enforce API Maximum Roof thickness : Verdadero Enforce Minimum Self Supp. Cone Pitch (2 in 12) : Verdadero Force Non-Annular Btm. to Meet API-650 5.5.1 : Falso Set t.actual to t.required Values : Verdadero Maximum 650 App. S or App. M Multiplier is 1 : Verdadero Enforce API Maximum Nozzle Sizes : Verdadero Max. Self Supported Roof thickness : 0,5 in. Max. Tank Corr. Allowance : 0,5 in. External pressure calcs subtract C.A. per V.5 : Falso Use Gauge Material for min thicknesses : Verdadero Enforce API Minimum Live Load : Verdadero Enforce API Minimum Anchor Chair Design Load = Bolt Yield Load : Verdadero

  • Page 3 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:38

    SUMMARY OF DESIGN DATA and REMARKS

    Job : TK 4107 RECONFIGURADO rev 2 Date of Calcs. : 05/09/2014 , 09:54 Mfg. or Insp. Date : 22/02/2012 Designer : OGY Project : MANTENIMIENTO DE TANQUES Tag Number : TK 4107 Plant : ECOPETROL Plant Location : TNP Site : CARTAGENA Design Basis : API-653 4th Edition, April 2009, & API-650 11th Edition, Addendum 2, Nov 2009

    ----------------------------------------------------------------------

    - TANK NAMEPLATE INFORMATION

    ----------------------------------------------------------------------

    - Operating Ratio: 0,4 - Design Standard: - API-650 11th Edition, Addendum 2, Nov 2009 - - (None) - - Roof : A-283 Gr C: 0,1875in. - - Shell (6): A-283 Gr C: 0,3125in. - - Shell (5): A-283 Gr C: 0,3342in. - - Shell (4): A-283 Gr C: 0,507in. - - Shell (3): A-283 Gr C: 0,683in. - - Shell (2): A-283 Gr C: 0,857in. - - Shell (1): A-283 Gr C: 1,031in. - - Bottom : A-283 Gr C: 0,3125in. -

    ----------------------------------------------------------------------

    Design Internal Pressure = 0 PSI or 0 IN. H2O Design External Pressure = 0 PSI or 0 IN. H2O

    MAWP = 0,1614 PSI or 4,47 IN. H2O MAWV = -0,0615 PSI or -1,70 IN. H2O

    OD of Tank = 150 ft Shell Height = 48,25 ft S.G. of Contents = 1 Max. Liq. Level = 48 ft

    Re-Rate Temperature = 200 F Tank Joint Efficiency = 0,85

    Ground Snow Load = 0 lbf/ft^2 Roof Live Load = 20 lbf/ft^2 Design Roof Dead Load = 0 lbf/ft^2

    Basic Wind Velocity = 100 mph Wind Importance Factor = 1 Using Seismic Method: API-650 10th Ed. Seismic Zone = 1 Site Amplification Factor = 1,5 Importance Factor = 1

    DESIGN NOTES

  • Page 4 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:38

    NOTE 1 : Tank is not subject to API-650 Appendix F.7

  • Page 5 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:38

    SUMMARY OF RESULTS

    Shell Material Summary (Bottom is 1) Shell Width Material Sd St Weight CA # (ft) (psi) (psi) (lbf) (in) 6 8,25 A-283 Gr C 25.960 27.000 49.554 0,0625 5 8 A-283 Gr C 25.960 27.000 51.389 0,0625 4 8 A-283 Gr C 25.960 27.000 77.952 0,0625 3 8 A-283 Gr C 25.960 27.000 105.002 0,0625 2 8 A-283 Gr C 23.595 26.000 131.739 0,0625 1 8 A-283 Gr C 23.595 26.000 158.471 0,0625 Total Weight 574.107 Shell API 653 Summary (Bottom is 1)

    -----------------------------------------------------------------

    Shell t.design(Sd) t.test(St) t.external t.required t.actual # (in.) (in.) (in.) (in.) (in.) -----------------------------------------------------------------

    6 0,1862 0,119 0 0,1862 0,3125 5 0,3276 0,2549 0 0,3276 0,3342 4 0,469 0,3908 0 0,469 0,507 3 0,6104 0,5268 0 0,6104 0,683 2 0,8209 0,6882 0 0,8209 0,857 1 0,9765 0,8294 0 0,9765 1,031 -----------------------------------------------------------------

    Structurally Supported Conical Roof Plate Material = A-283 Gr C, Struct. Material = A-36

    t.required = 0,1453 in. t.actual = 0,1875 in. Roof Joint Efficiency = 0,85

    Plate Weight = 135.406 lbf

    Rafters: 30 Rafters at Rad. 17,5 ft.: C 7 X 9.8 60 Rafters at Rad. 46,666 ft.: C 8 X 11.5 84 Rafters at Rad. 75 ft.: C 8 X 11.5

    Rafters Weight = 55.725 lbf

    Girders: 6 Girders at Rad. 17,5 ft.: C 15 X 40.0 12 Girders at Rad. 46,666 ft.: IPN 360

    Girders Weight = 20.752 lbf

    oguerraResaltado

  • Page 6 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:38

    Columns: 1 Column at Center: COMBO C9 X 13.4 + C12 X 20.7 6 Columns at Rad. 17,5 ft.: COMBO C9 X 13.4 + C12 X 20.7 12 Columns at Rad. 46,666 ft.: COMBO C9 X 13.4 + C12 X 20.7

    Columns Weight = 31.109 lbf

    Bottom Type: Flat Bottom: Non-Annular Bottom Floor Material = A-283 Gr C t.required = 0,225 in. t.actual = 0,3125 in. Bottom Joint Efficiency = 0,85

    Total Weight of Bottom = 226.287 lbf

    TOP END STIFFENER: L3x3x3/8, A-36, 3386, lbf

  • Page 7 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:38

    SUPPORTED CONICAL ROOF (from Brownell & Young)

    Roof Plate Material: A-283 Gr C, Sd = 25.960 PSI, Fy = 30.000 PSI (API-650 Table 5-2b) Structural Material: A-36, Sd = 27.376 PSI, Fy = 36.000 PSI (API-650 Table 5-2b)

    R = 75 ft pt = 0,75 in/ft (Cone Roof Pitch)

    Theta = ATAN(pt/12) = ATAN(0,0625) = 3,5763 degrees

    Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 0,75*150^2/48 = 351,563 ft^2

    Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

    Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*150 = 75 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*75^2 = 17.671 ft^2

    S = Ground Snow Load = 0 lbf/ft^2 Sb = Balanced Design Snow Load = 0 lbf/ft^2 Su = Unbalanced Design Snow Load = 0 lbf/ft^2

    Dead_Load = Insulation + Plate_Weight + Added_Dead_Load = (0)(0/12) + 7,6491 + 0 = 7,6491 lbf/ft^2

    Roof Loads (per API-650 Appendix R)

    Pe = PV*144 = 0*144 = 0 lbf/ft^2

    e.1b = DL + MAX(Sb,Lr) + 0,4*Pe = 7,6491 + 20 + 0,4*0 = 27,649 lbf/ft^2

    e.2b = DL + Pe + 0,4*MAX(Sb,Lr) = 7,6491 + 0 + 0,4*20 = 15,649 lbf/ft^2

    T = Balanced Roof Design Load (per API-650 Appendix R) = MAX(e.1b,e.2b) = 27,649 lbf/ft^2

    e.1u = DL + MAX(Su,Lr) + 0,4*Pe = 7,6491 + 20 + 0,4*0 = 27,649 lbf/ft^2

    e.2u = DL + Pe + 0,4*MAX(Su,Lr) = 7,6491 + 0 + 0,4*20 = 15,649 lbf/ft^2

  • Page 8 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:38

    U = Unbalanced Roof Design Load (per API-650 Appendix R) = MAX(e.1u,e.2u) = 27,649 lbf/ft^2

    Lr_1 = MAX(T,U) = 27,649 lbf/ft^2

    P = Max. Design Load = Lr_1 = 27,649 lbf/ft^2 = 0,192 PSI

    l = Maximum Rafter Spacing (Per API-650 5.10.4.4) = (t - ca) * SQRT(1.5 * Fy / P) = (0,1875 - 0,0063)*SQRT(1,5*30.000/0,192) = 87,75 in.

    MINIMUM # OF RAFTERS

    < FOR OUTER SHELL RING >

    l = 84 in. since calculated l > 84 in. (7 ft)

    N_min = 2*PI*R/l = 2*PI*(75)(12)/84 = 67,32

    N_min must be a multiple of 12, therefore N_min = 72

    Actual # of Rafters = 84

    Minimum roof thickness based on actual rafter spacing

    l = 67,32 in. (actual rafter spacing)

    t-Calc = l/SQRT(1.5*Fy/p) + CA = 67,32/SQRT(1.5*30.000/0,1920) + 0,0063 = 0,1453 in. NOTE: Governs for roof plate thickness.

    RLoad_Max = Maximum Roof Load based on actual rafter spacing

    RLoad_Max = 216(Fy)/(l/(t - ca))^2 = 216(30.000)/(67,32/(0,1875 - 0,0063))^2 = 62,63 lb/ft^2

    Let Max_T1 = RLoad_Max

    P_ext_1 (Vacuum limited by actual rafter spacing) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[62,63 - 7,6491 - 0,4 * Max(0,20)]/144 = -0,3263 PSI or -9,04 IN. H2O

    Pa_rafter_3 = P_ext_1 = -0,3263 PSI or -9,04 IN H2O.

    < FOR GIRDER RING Outer Radius = 46,6667 ft > # of Girders (N) = 12

  • Page 9 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:38

    l = 84 in. since calculated l > 84 in. (7 ft) N_min = (24*N*R/l)*SIN(360/2N) = ((24*12*46,6667)/84)*SIN(360/(2*12)) = 41,41

    N_min must be a multiple of 12, therefore N_min = 48

    Actual # of Rafters = 60

    Minimum roof thickness based on actual rafter spacing

    l = 58,64 in. (actual rafter spacing)

    t-Calc = l/SQRT(1.5*Fy/p) + CA = 58,64/SQRT(1.5*30.000/0,1920) + 0,0063 = 0,1274 in. NOTE: Does not govern for roof plate thickness.

    RLoad_Max = Maximum Roof Load based on actual rafter spacing

    RLoad_Max = 216(Fy)/(l/(t - ca))^2 = 216(30.000)/(58,64/(0,1875 - 0,0063))^2 = 82,54 lb/ft^2

    Let Max_T1 = RLoad_Max

    P_ext_1 (Vacuum limited by actual rafter spacing) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[82,54 - 7,6491 - 0,4 * Max(0,20)]/144 = -0,4645 PSI or -12,87 IN. H2O

    Pa_rafter_2 = P_ext_1 = -0,4645 PSI or -12,87 IN H2O.

    < FOR GIRDER RING Outer Radius = 17,5 ft > # of Girders (N) = 6

    l = 84 in. since calculated l > 84 in. (7 ft) N_min = (24*N*R/l)*SIN(360/2N) = ((24*6*17,5)/84)*SIN(360/(2*6)) = 15,00

    N_min must be a multiple of 6, therefore N_min = 18

    Actual # of Rafters = 30

    Minimum roof thickness based on actual rafter spacing

    l = 43,98 in. (actual rafter spacing)

    t-Calc = l/SQRT(1.5*Fy/p) + CA = 43,98/SQRT(1.5*30.000/0,1920) + 0,0063 = 0,0971 in. NOTE: Does not govern for roof plate thickness.

    RLoad_Max = Maximum Roof Load based on actual rafter spacing

    RLoad_Max = 216(Fy)/(l/(t - ca))^2 = 216(30.000)/(43,98/(0,1875 - 0,0063))^2 = 146,74 lb/ft^2

  • Page 10 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:39

    Let Max_T1 = RLoad_Max

    P_ext_1 (Vacuum limited by actual rafter spacing) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[146,74 - 7,6491 - 0,4 * Max(0,20)]/144 = -0,9104 PSI or -25,23 IN. H2O

    Pa_rafter_1 = P_ext_1 = -0,9104 PSI or -25,23 IN H2O.

    t.required Must be >= 0,09 in. (per API-653)

    t.required = MAX( 0.09 , t-Calc ) = 0,1453 in.

  • Page 11 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:39

    RAFTER DESIGN

    < SPAN TO SHELL >

    Maximum Rafter Span = 29,91 ft Average Rafter Spacing on Inner Girders = 3,451 ft Average Rafter Spacing on Shell = 5,609 ft Average Plate Width = (3,451 + 5,609)/2 = 4,53 ft

    Mmax = Maximum Bending Moment Mmax = wl^2/8 where, w = (0,192)(4,53)*12 + 11,5/12 = 11,4 lbf/in l = (29,91)(12) = 358,92 in. Mmax = (11,4)(358,92)^2/8 = 183574, in-lbf

    Z req'd = Mmax/27.376 = 183574,/27.376 = 6,71 in^3 Actual Z = 8,14 in^3 using C 8 X 11.5

    W_Max (Max. stress allowed for each rafter in ring 3) = Z * Sd * 8 / l^2 = 8,14 * 27.376 * 8 / 358,92^2 = 13,8385 lbf/in.

    Max_P (Max. Load allowed for each rafter in ring 3) = (W_Max - W_Rafter/12)/(Average Plate Width*12) = (13,8385 - 11,5/12)/(4,53*12) = 0,2369 PSI

    Let Max_T1 = Max_P * 144

    P_ext_2 (Vacuum limited by Rafter Type) = -2.5 * [(Max_T1 - DL - Max(Snow_Load,Lr)] / 144 = -2.5 * [(34,1136 - 7,6491 - Max(0,20)] / 144 = -0,1122 PSI or -3,11 IN. H2O Pa2_rafter_3 = P_ext_2 (limited by Rafter Type)

    < SPAN TO GIRDER RING Outer Radius = 46,6667 ft >

    Maximum Rafter Span = 31,431 ft Average Rafter Spacing on Inner Girders = 1,75 ft Average Rafter Spacing on Outer Girders = 4,831 ft Average Plate Width = (1,75 + 4,831)/2 = 3,291 ft

    Mmax = Maximum Bending Moment Mmax = wl^2/8 where, w = (0,192)(3,291)*12 + 11,5/12 = 8,54 lbf/in l = (31,431)(12) = 377,17 in. Mmax = (8,54)(377,17)^2/8 = 151861, in-lbf

    Z req'd = Mmax/27.376 = 151861,/27.376 = 5,55 in^3 Actual Z = 8,14 in^3 using C 8 X 11.5

    W_Max (Max. stress allowed for each rafter in ring 2) = Z * Sd * 8 / l^2 = 8,14 * 27.376 * 8 / 377,17^2 = 12,5316 lbf/in.

  • Page 12 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:39

    Max_P (Max. Load allowed for each rafter in ring 2) = (W_Max - W_Rafter/12)/(Average Plate Width*12) = (12,5316 - 11,5/12)/(3,291*12) = 0,2931 PSI

    Let Max_T1 = Max_P * 144

    P_ext_2 (Vacuum limited by Rafter Type) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[42,2064 - 7,6491 - 0,4 * Max(0,20)]/144 = -0,1844 PSI or -5,11 IN. H2O Pa2_rafter_2 = P_ext_2 (limited by Rafter Type)

    < TO GIRDER RING Outer Radius = 17,5 ft >

    Maximum Rafter Span = 17,5 ft Average Rafter Spacing on Outer Girders = 3,5 ft Average Plate Width = (0 + 3,5)/2 = 1,75 ft

    Mmax = Maximum Bending Moment Mmax = wl^2/8 where, w = (0,192)(1,75)*12 + 9,8/12 = 4,85 lbf/in l = (17,5)(12) = 210,00 in. Mmax = (4,85)(210,00)^2/8 = 26736, in-lbf

    Z req'd = Mmax/27.376 = 26736,/27.376 = 0,98 in^3 Actual Z = 6,08 in^3 using C 7 X 9.8

    W_Max (Max. stress allowed for each rafter in ring 1) = Z * Sd * 8 / l^2 = 6,08 * 27.376 * 8 / 210,00^2 = 30,1943 lbf/in.

    Max_P (Max. Load allowed for each rafter in ring 1) = (W_Max - W_Rafter/12)/(Average Plate Width*12) = (30,1943 - 9,8/12)/(1,75*12) = 1,3989 PSI

    Let Max_T1 = Max_P * 144

    P_ext_2 (Vacuum limited by Rafter Type) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[201,4416 - 7,6491 - 0,4 * Max(0,20)]/144 = -1 PSI due to Rafter Type Pa2_rafter_1 = P_ext_2 (limited by Rafter Type)

  • Page 13 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:39

    GIRDER DESIGN

    < AT GIRDER RING Outer Radius = 46,6667 ft > Number of Girders = 12 Girder Length = 24,156 ft

    Wi = Load due to inner rafters and roof = (RaftLoad_inner)(RaftSpan)(12in/ft)(NumRaft_inner/NumGird) = (8,54)(14,58)(12)(5) = 7.471 lbf Wo = Load due to outer rafters & roof = (RaftLoad_outer)(RaftSpan)(12in/ft)(NumRaft_outer/NumGird) = (11,4)(14,1667)(12)(7) = 13.566 lbf W1 = (Wi + Wo)/L_gird (Total rafter and roof load per girder length) = (7.471 + 13.566)/(24,156*12) = 72,57 lbf/in

    w = Total load including weight of girder = 72,57 + (57,1/12) = 77,33 lbf/in

    Mmax = Maximum Bending Moment Mmax = wl^2/8 Mmax = (77,33)(289,87)^2/8 = 812214, in-lbf

    Z req'd = Mmax/Sd = 812214,/27.376 = 29,67 in^3 Actual Z = 77,8 in^3 using IPN 360

    W_Max (Max. stress allowed for each girder in ring 2) = Z * Sd * 8 / l^2 = 77,8 * 27.376 * 8 / 289,872^2 = 202,7809 lbf/in.

    let C1 = (RaftSpan)(12in/ft)(NumRaft_inner/NumGird) = (14,58)(12)(5) = 874,8in. let C2 = (RaftSpan)(12in/ft)(NumRaft_outer/NumGird) = (14,1667)(12)(7) = 1.190in.

    F_Max (Max. Load allowed for each girder in ring 2) = W1_Max + GirdLen*12 = 57.401 lbf

    Back calculate Max_P from F_Max, using: F_Max = [Max_P*(RafterSpacing_inner*12) + RWgt_inner/12]*C1 + [Max_P*(RafterSpacing_outer*12) + RWgt_outer/12]*C2

    Solve for Max_P: Max_P = [12*F_max - R1wgt*C1 - R2wgt*C2] / 144* [X1*C1 + X2*C2] = [12*57.401 - 11,5*874,8 - 11,5*1.190] / 144*[3,291*874,8 + 4,53*1.190] = 0,5585 PSI

    Let Max_T1 = Max_P * 144

    oguerraResaltado

  • Page 14 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:39

    P_ext_4 (Vacuum limited by Girder Type) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[80,424 - 7,6491 - 0,4 * Max(0,20)]/144 = -0,4498 PSI or -12,47 IN. H2O Pa_girder_2 = P_ext_4 (limited by Girder Type)

    < AT GIRDER RING Outer Radius = 17,5 ft > Number of Girders = 6 Girder Length = 17,5 ft

    Wi = Load due to inner rafters and roof = (RaftLoad_inner)(RaftSpan)(12in/ft)(NumRaft_inner/NumGird) = (4,85)(8,75)(12)(5) = 2.546 lbf Wo = Load due to outer rafters & roof = (RaftLoad_outer)(RaftSpan)(12in/ft)(NumRaft_outer/NumGird) = (8,54)(14,5833)(12)(10) = 14.945 lbf W1 = (Wi + Wo)/L_gird (Total rafter and roof load per girder length) = (2.546 + 14.945)/(17,5*12) = 83,29 lbf/in

    w = Total load including weight of girder = 83,29 + (40/12) = 86,62 lbf/in

    Mmax = Maximum Bending Moment Mmax = wl^2/8 Mmax = (86,62)(210,00)^2/8 = 477493, in-lbf

    Z req'd = Mmax/Sd = 477493,/27.376 = 17,44 in^3 Actual Z = 46,5 in^3 using C 15 X 40.0

    W_Max (Max. stress allowed for each girder in ring 1) = Z * Sd * 8 / l^2 = 46,5 * 27.376 * 8 / 210^2 = 230,9268 lbf/in.

    let C1 = (RaftSpan)(12in/ft)(NumRaft_inner/NumGird) = (8,75)(12)(5) = 525in. let C2 = (RaftSpan)(12in/ft)(NumRaft_outer/NumGird) = (14,5833)(12)(10) = 1.750in.

    F_Max (Max. Load allowed for each girder in ring 1) = W1_Max + GirdLen*12 = 47.795 lbf

    Back calculate Max_P from F_Max, using: F_Max = [Max_P*(RafterSpacing_inner*12) + RWgt_inner/12]*C1 + [Max_P*(RafterSpacing_outer*12) + RWgt_outer/12]*C2

    Solve for Max_P: Max_P = [12*F_max - R1wgt*C1 - R2wgt*C2] / 144* [X1*C1 + X2*C2] = [12*47.795 - 9,8*525 - 11,5*1.750] / 144*[1,75*525 + 3,291*1.750] = 0,5732 PSI

    Let Max_T1 = Max_P * 144

  • Page 15 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:39

    P_ext_4 (Vacuum limited by Girder Type) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[82,5408 - 7,6491 - 0,4 * Max(0,20)]/144 = -0,4645 PSI or -12,87 IN. H2O Pa_girder_1 = P_ext_4 (limited by Girder Type)

  • Page 16 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:39

    COLUMN DESIGN

    < AT GIRDER RING Outer Radius = 46,6667 ft > Number of Columns = 12

    l = Column Length = 570,0756 in = 47,51 ft (as computed)

    r = Radius of gyration

    if l/r must be less than 180, then

    r req'd = l/180 = 570,0756/180 = 3,17 in. Actual r = 3,41 in. using COMBO C9 X 13.4 + C12 X 20.7

    P = Total roof load supported by each column = (77,33)(24,156)(12) = 22.416 lbf

    Fa = Allowable Compressive Stress (Per API-650 5.10.3.4)

    Per API-650 5.10.3.3, R = L/r = 167,2 (actual)

    Cc = Column Slenderness Ratio = SQRT[2PI^2E/Fy] = SQRT[2PI^2(28.799.999)/(36.000)] = 125,7

    FS = Factor of Safety = 5/3 + 3*(167,2)/(8*(125,7)) - (167,2)^3/(8*(125,7)^3) = 1,8713

    Since R

  • Page 17 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:39

    P_ext_3 (Vacuum limited by Column Type) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[61,2 - 7,6491 - 0,4 * Max(0,20)]/144 = -0,3163 PSI or -8,77 IN. H2O Pa_column_3 = P_ext_3 (limited by Column Type)

    < AT GIRDER RING Outer Radius = 17,5 ft > Number of Columns = 6

    l = Column Length = 582,4119 in = 48,53 ft (as computed)

    r = Radius of gyration

    if l/r must be less than 180, then

    r req'd = l/180 = 582,4119/180 = 3,24 in. Actual r = 3,41 in. using COMBO C9 X 13.4 + C12 X 20.7

    P = Total roof load supported by each column = (86,62)(17,5)(12) = 18.190 lbf

    Fa = Allowable Compressive Stress (Per API-650 5.10.3.4)

    Per API-650 5.10.3.3, R = L/r = 170,8 (actual)

    Cc = Column Slenderness Ratio = SQRT[2PI^2E/Fy] = SQRT[2PI^2(28.799.999)/(36.000)] = 125,7

    FS = Factor of Safety = 5/3 + 3*(170,8)/(8*(125,7)) - (170,8)^3/(8*(125,7)^3) = 1,8626

    Since R

  • Page 18 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:39

    W_Max (Max. weight allowed for each column in ring 2) = 48.778 lbf

    Max_P (Max. Load allowed for each column in ring 2) Let Max_T1 = Max_P * 144

    P_ext_3 (Vacuum limited by Column Type) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[74,016 - 7,6491 - 0,4 * Max(0,20)]/144 = -0,4053 PSI or -11,23 IN. H2O Pa_column_2 = P_ext_3 (limited by Column Type)

    CENTER COLUMN

    l = Column Length = 612 in = 51 ft (user specified)

    r = Radius of gyration

    if l/r must be less than 180, then

    r req'd = l/180 = 612/180 = 3,4 in. Actual r = 3,41 in. using COMBO C9 X 13.4 + C12 X 20.7

    P = Total load supported by center column = [(rafter length)(rafter load)(# of inner rafters)]/2 = [(17,5 ft)(12 in/ft)(4,85 lbf/in)(30)]/2 = 15.277 lbf

    Fa = Allowable Compressive Stress (Per API-650 5.10.3.4)

    Per API-650 5.10.3.3, R = L/r = 179,5 (actual)

    Cc = Column Slenderness Ratio = SQRT[2PI^2E/Fy] = SQRT[2PI^2(28.799.999)/(36.000)] = 125,7

    FS = Factor of Safety = 5/3 + 3*(179,5)/(8*(125,7)) - (179,5)^3/(8*(125,7)^3) = 1,8382

    Since R

  • Page 19 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:40

    A_reqd = P/Fa = [15.277 + (612/12)(34,1)]/4.603 = 3,7 in^2

    F = actual induced stress for the column = P/A = [ 15.277 + (612/12)(34,1) ] / 9,92 = 1.715 PSI

    W_Max (Max. weight allowed for each column in ring 1) = 43.923 lbf

    Max_P (Max. Load allowed for each column in ring 1) Let Max_T1 = Max_P * 144

    P_ext_3 (Vacuum limited by Column Type) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[90,0144 - 7,6491 - 0,4 * Max(0,20)]/144 = -0,5164 PSI or -14,31 IN. H2O Pa_column_1 = P_ext_3 (limited by Column Type)

    Roof_Area = 36*PI*OD^2/COS(Theta) = 36*PI*(150)^2/COS() = 2.549.655 in^2

    ROOF WEIGHT

    Weight of Roof Plates = (density)(t)(PI/4)(12*OD - t)^2/COS(Theta) = (0,2833)(0,1875)(PI/4)(1.800 - 0,1875)^2/COS(3,5763) = 135.406 lbf (New) = 130.893 lbf (Corroded)

    Weight of Roof Plates supported by shell = 46.304 lbf (New) = 44.760 lbf (Corroded)

    Weight of Rafters = 55.725 lbf (New) Weight of Girders = 20.752 lbf (New) Weight of Columns = 31.109 lbf (New)

    Total Weight of Roof = 242.992 lbf (New) = 238.479 lbf (Corroded)

    (From API-650 Figure F-2) Wc = 0,6 * SQRT[Rc * (t-CA)] (Top Shell Course) = 0,6 * SQRT[899,6875 * (0,3125 - 0,0625)] = 8,9984 in.

    (From API-650 Figure F-2) Wh = 0,3 * SQRT[R2 * (t-CA)] (or 12", whichever is less) = 0,3 * SQRT[14.428 * (0,1875 - 0,0063)] = MIN(15,3414, 12) = 12 in.

  • Page 20 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:40

    Top End Stiffener: L3x3x3/8 Aa = (Cross-sectional Area of Top End Stiffener) = 2,11 in^2

    Using API-650 Fig. F-2, Detail b End Stiffener Detail

    Ashell = Contributing Area due to shell plates = Wc*(t_shell - CA) = 8,9984 * (0,3125 - 0,0625) = 2,25 in^2

    Aroof = Contributing Area due to roof plates = Wh*(t_roof - CA) = 12 * (0,1875 - 0,0063) = 2,175 in^2

    A = Actual Part. Area of Roof-to-Shell Juncture (per API-650) = Aa + Aroof + Ashell = 2,11 + 2,175 + 2,25 = 6,535 in^2

    < Uplift on Tank > Per designer, not using API-650 App. F since P = 0 P_max_external = -0,1122 PSI or -3,11 IN. H2O

  • Page 21 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:40

    SHELL COURSE RE-RATING (Bottom Course is #1)

    Course # 1; Material: A-283 Gr C; Width = 8ft

    API-653 ONE FOOT METHOD

    Sd = 23.595 PSI (allowable design stress per API-653 4.3.3.1)

    RE-RATE CONDITION G = 1 (per API-653)

    < Re-Rate Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 48 + 2.31*0/1 = 48ft

    t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653) = 2,6*150*(48 - 1)*1/(23.595*0,85) + 0,0625 = 0,9765 in.

    hMax_1 = E*Sd*(t_1 - CA_1)/(2,6*OD*G) + 1 = 0,85*23.595*(1,031 - 0,0625) / (2,6 * 150 * 1) + 1 = 50,8051 ft.

    Pmax_1 = (hMax_1 - H) * 0,433 * G = (50,8051 - 48) * 0,433 * 1 = 1,2146 PSI

    Pmax_int_shell = Pmax_1

    Pmax_int_shell = 1,2146 PSI

    HYDROSTATIC TEST CONDITION

    < Re-Rate Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 48 + 2.31*0/1 = 48ft

    t.test = 2,6*150*(48 - 1)/(26.000*0,85) = 0,8294 in.

    Course # 2; Material: A-283 Gr C; Width = 8ft

    API-653 ONE FOOT METHOD

    Sd = 23.595 PSI (allowable design stress per API-653 4.3.3.1)

    RE-RATE CONDITION G = 1 (per API-653)

    < Re-Rate Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 40 + 2.31*0/1 = 40ft

  • Page 22 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:40

    t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653) = 2,6*150*(40 - 1)*1/(23.595*0,85) + 0,0625 = 0,8209 in.

    hMax_2 = E*Sd*(t_2 - CA_2)/(2,6*OD*G) + 1 = 0,85*23.595*(0,857 - 0,0625) / (2,6 * 150 * 1) + 1 = 41,8572 ft.

    Pmax_2 = (hMax_2 - H) * 0,433 * G = (41,8572 - 40) * 0,433 * 1 = 0,8042 PSI

    Pmax_int_shell = Min(Pmax_int_shell, Pmax_2) = Min(1,2146, 0,8042)

    Pmax_int_shell = 0,8042 PSI

    HYDROSTATIC TEST CONDITION

    < Re-Rate Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 40 + 2.31*0/1 = 40ft

    t.test = 2,6*150*(40 - 1)/(26.000*0,85) = 0,6882 in.

    Course # 3; Material: A-283 Gr C; Width = 8ft

    API-653 ONE FOOT METHOD

    Sd = 25.960 PSI (allowable design stress per API-653 4.3.3.1)

    RE-RATE CONDITION G = 1 (per API-653)

    < Re-Rate Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 32 + 2.31*0/1 = 32ft

    t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653) = 2,6*150*(32 - 1)*1/(25.960*0,85) + 0,0625 = 0,6104 in.

    hMax_3 = E*Sd*(t_3 - CA_3)/(2,6*OD*G) + 1 = 0,85*25.960*(0,683 - 0,0625) / (2,6 * 150 * 1) + 1 = 36,1076 ft.

    Pmax_3 = (hMax_3 - H) * 0,433 * G = (36,1076 - 32) * 0,433 * 1 = 1,7786 PSI

    Pmax_int_shell = Min(Pmax_int_shell, Pmax_3) = Min(0,8042, 1,7786)

    Pmax_int_shell = 0,8042 PSI

  • Page 23 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:40

    HYDROSTATIC TEST CONDITION

    < Re-Rate Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 32 + 2.31*0/1 = 32ft

    t.test = 2,6*150*(32 - 1)/(27.000*0,85) = 0,5268 in.

    Course # 4; Material: A-283 Gr C; Width = 8ft

    API-653 ONE FOOT METHOD

    Sd = 25.960 PSI (allowable design stress per API-653 4.3.3.1)

    RE-RATE CONDITION G = 1 (per API-653)

    < Re-Rate Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 24 + 2.31*0/1 = 24ft

    t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653) = 2,6*150*(24 - 1)*1/(25.960*0,85) + 0,0625 = 0,469 in.

    hMax_4 = E*Sd*(t_4 - CA_4)/(2,6*OD*G) + 1 = 0,85*25.960*(0,507 - 0,0625) / (2,6 * 150 * 1) + 1 = 26,1496 ft.

    Pmax_4 = (hMax_4 - H) * 0,433 * G = (26,1496 - 24) * 0,433 * 1 = 0,9308 PSI

    Pmax_int_shell = Min(Pmax_int_shell, Pmax_4) = Min(0,8042, 0,9308)

    Pmax_int_shell = 0,8042 PSI

    HYDROSTATIC TEST CONDITION

    < Re-Rate Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 24 + 2.31*0/1 = 24ft

    t.test = 2,6*150*(24 - 1)/(27.000*0,85) = 0,3908 in.

    Course # 5; Material: A-283 Gr C; Width = 8ft

    API-653 ONE FOOT METHOD

    Sd = 25.960 PSI (allowable design stress per API-653 4.3.3.1)

  • Page 24 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:41

    RE-RATE CONDITION G = 1 (per API-653)

    < Re-Rate Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 16 + 2.31*0/1 = 16ft

    t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653) = 2,6*150*(16 - 1)*1/(25.960*0,85) + 0,0625 = 0,3276 in.

    hMax_5 = E*Sd*(t_5 - CA_5)/(2,6*OD*G) + 1 = 0,85*25.960*(0,3342 - 0,0625) / (2,6 * 150 * 1) + 1 = 16,3727 ft.

    Pmax_5 = (hMax_5 - H) * 0,433 * G = (16,3727 - 16) * 0,433 * 1 = 0,1614 PSI

    Pmax_int_shell = Min(Pmax_int_shell, Pmax_5) = Min(0,8042, 0,1614)

    Pmax_int_shell = 0,1614 PSI

    HYDROSTATIC TEST CONDITION

    < Re-Rate Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 16 + 2.31*0/1 = 16ft

    t.test = 2,6*150*(16 - 1)/(27.000*0,85) = 0,2549 in.

    Course # 6; Material: A-283 Gr C; Width = 8,25ft

    API-653 ONE FOOT METHOD

    Sd = 25.960 PSI (allowable design stress per API-653 4.3.3.1)

    RE-RATE CONDITION G = 1 (per API-653)

    < Re-Rate Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 8 + 2.31*0/1 = 8ft

    t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-653) = 2,6*150*(8 - 1)*1/(25.960*0,85) + 0,0625 = 0,1862 in.

    hMax_6 = E*Sd*(t_6 - CA_6)/(2,6*OD*G) + 1 = 0,85*25.960*(0,3125 - 0,0625) / (2,6 * 150 * 1) + 1 = 15,1449 ft.

  • Page 25 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:41

    Pmax_6 = (hMax_6 - H) * 0,433 * G = (15,1449 - 8) * 0,433 * 1 = 3,0937 PSI

    Pmax_int_shell = Min(Pmax_int_shell, Pmax_6) = Min(0,1614, 3,0937)

    Pmax_int_shell = 0,1614 PSI

    HYDROSTATIC TEST CONDITION

    < Re-Rate Condition G = 1 >

    H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 8 + 2.31*0/1 = 8ft

    t.test = 2,6*150*(8 - 1)/(27.000*0,85) = 0,119 in.

    Wtr = Transposed Width of each Shell Course = Width*[ t_thinnest / t_course ]^2,5

    Transforming Courses (1) to (6)

    Wtr(1) = 8*[ 0,3125/1,031 ]^2.5 = 0,4046 ft Wtr(2) = 8*[ 0,3125/0,857 ]^2.5 = 0,6423 ft Wtr(3) = 8*[ 0,3125/0,683 ]^2.5 = 1,1328 ft Wtr(4) = 8*[ 0,3125/0,507 ]^2.5 = 2,3861 ft Wtr(5) = 8*[ 0,3125/0,3342 ]^2.5 = 6,7639 ft Wtr(6) = 8*[ 0,3125/0,3125 ]^2.5 = 8 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 19,3297 ft

    INTERMEDIATE WIND GIRDERS (API 650 Section 5.9.7) V (Wind Speed) = 100 mph Ve = vf = Velocity Factor = (vs/120)^2 = (100/120)^2 = 0,6944 Re-Rate PV = 0 PSI, OR 0 In. H2O

    Z = Required Top Comp Ring Section Modulus (per API-650 5.1.5.9.e) = 0,91 in^3,

    For Structural Roof and OD > 60 ft, Minimum Required Angle is 3 x 3 x 3/8 in. Actual Z = 1,152 in^3 Using L3x3x3/8, Wc = 10,0644

    (PER API-650 Section 5.9.7)

    * * * NOTE: Using the thinnest shell course, t_thinnest, instead of top shell course.

    * * * NOTE: Not subtracting corrosion allowance per user setting.

    ME = 28.799.999/28.799.999 = 1

  • Page 26 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:41

    Hu = Maximum Height of Unstiffened Shell = {ME*600.000*t_thinnest*SQRT[t_thinnest/OD]^3} / Ve) = {1*600.000*0,3125*SQRT[0,3125/150]^3} / 0,6944 = 25,6745 ft

    Wtr = Transposed Width of each Shell Course = Width*[ t_thinnest / t_course ]^2,5

    Transforming Courses (1) to (6)

    Wtr(1) = 8*[ 0,3125/1,031 ]^2.5 = 0,4046 ft Wtr(2) = 8*[ 0,3125/0,857 ]^2.5 = 0,6423 ft Wtr(3) = 8*[ 0,3125/0,683 ]^2.5 = 1,1328 ft Wtr(4) = 8*[ 0,3125/0,507 ]^2.5 = 2,3861 ft Wtr(5) = 8*[ 0,3125/0,3342 ]^2.5 = 6,7639 ft Wtr(6) = 8*[ 0,3125/0,3125 ]^2.5 = 8 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 19,3297 ft

    L_0 = Hts/# of Stiffeners + 1 = 19,3297/1 = 19,33 ft.

    No Intermediate Wind Girders Needed Since Hu >= L_0

    SHELL COURSE #1 SUMMARY -------------------------------------------

    t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,9765, 0, 0) = 0,9765 in.

    Course Minimum t shall not be less than 0,1" + CA (per API-653 Section 4.3.3.1)

    t-653min = 0,1625 in.

    t.required = MAX(t.design, t.min653) = MAX(0,9765,0,1625) = 0,9765 in.

    < API-653 4.3.2.1 > t1 (lowest average thickness in the shell course) t1 must be >= t.required = 0,9765 in. t2 (least min. thickness in an area of shell course) t2 must be >= 0,6*(t.required - CA) + CA = 0,610900 in. t.actual = 1,031 in.

    Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*150)-1,031]*12*8*1,031 = 158.471 lbf (New) = 148.870 lbf (Corroded)

    SHELL COURSE #2 SUMMARY -------------------------------------------

  • Page 27 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:42

    t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,8209, 0, 0) = 0,8209 in.

    Course Minimum t shall not be less than 0,1" + CA (per API-653 Section 4.3.3.1)

    t-653min = 0,1625 in.

    t.required = MAX(t.design, t.min653) = MAX(0,8209,0,1625) = 0,8209 in.

    < API-653 4.3.2.1 > t1 (lowest average thickness in the shell course) t1 must be >= t.required = 0,8209 in. t2 (least min. thickness in an area of shell course) t2 must be >= 0,6*(t.required - CA) + CA = 0,517540 in. t.actual = 0,857 in.

    Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*150)-0,857]*12*8*0,857 = 131.739 lbf (New) = 122.136 lbf (Corroded)

    SHELL COURSE #3 SUMMARY -------------------------------------------

    t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,6104, 0, 0) = 0,6104 in.

    Course Minimum t shall not be less than 0,1" + CA (per API-653 Section 4.3.3.1)

    t-653min = 0,1625 in.

    t.required = MAX(t.design, t.min653) = MAX(0,6104,0,1625) = 0,6104 in.

    < API-653 4.3.2.1 > t1 (lowest average thickness in the shell course) t1 must be >= t.required = 0,6104 in. t2 (least min. thickness in an area of shell course) t2 must be >= 0,6*(t.required - CA) + CA = 0,391240 in. t.actual = 0,683 in.

    Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*150)-0,683]*12*8*0,683 = 105.002 lbf (New) = 95.396 lbf (Corroded)

    SHELL COURSE #4 SUMMARY -------------------------------------------

    t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,469, 0, 0) = 0,469 in.

  • Page 28 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:42

    Course Minimum t shall not be less than 0,1" + CA (per API-653 Section 4.3.3.1)

    t-653min = 0,1625 in.

    t.required = MAX(t.design, t.min653) = MAX(0,469,0,1625) = 0,469 in.

    < API-653 4.3.2.1 > t1 (lowest average thickness in the shell course) t1 must be >= t.required = 0,469 in. t2 (least min. thickness in an area of shell course) t2 must be >= 0,6*(t.required - CA) + CA = 0,306400 in. t.actual = 0,507 in.

    Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*150)-0,507]*12*8*0,507 = 77.952 lbf (New) = 68.345 lbf (Corroded)

    SHELL COURSE #5 SUMMARY -------------------------------------------

    t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,3276, 0, 0) = 0,3276 in.

    Course Minimum t shall not be less than 0,1" + CA (per API-653 Section 4.3.3.1)

    t-653min = 0,1625 in.

    t.required = MAX(t.design, t.min653) = MAX(0,3276,0,1625) = 0,3276 in.

    < API-653 4.3.2.1 > t1 (lowest average thickness in the shell course) t1 must be >= t.required = 0,3276 in. t2 (least min. thickness in an area of shell course) t2 must be >= 0,6*(t.required - CA) + CA = 0,221560 in. t.actual = 0,3342 in.

    Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*150)-0,3342]*12*8*0,3342 = 51.389 lbf (New) = 41.780 lbf (Corroded)

    SHELL COURSE #6 SUMMARY -------------------------------------------

    t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,1862, 0, 0) = 0,1862 in.

    Course Minimum t shall not be less than 0,1" + CA (per API-653 Section 4.3.3.1)

  • Page 29 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:42

    t-653min = 0,1625 in.

    t.required = MAX(t.design, t.min653) = MAX(0,1862,0,1625) = 0,1862 in.

    < API-653 4.3.2.1 > t1 (lowest average thickness in the shell course) t1 must be >= t.required = 0,1862 in. t2 (least min. thickness in an area of shell course) t2 must be >= 0,6*(t.required - CA) + CA = 0,136720 in. t.actual = 0,3125 in.

    Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*150)-0,3125]*12*8,25*0,3125 = 49.554 lbf (New) = 39.645 lbf (Corroded)

  • Page 30 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:43

    FLAT BOTTOM: NON-ANNULAR PLATE DESIGN

    Bottom Plate Material : A-283 Gr C Annular Bottom Plate Material : A-516 Gr 70

    Bottom_Area = PI/4*(Bottom_OD)^2 = PI/4*(1.804)^2 = 2.556.011 in^2

    Weight = Density * t.actual * Bottom_Area = 0,2833 * 0,3125 * 2.556.011 = 226.287 lbf (New) = 135.772 lbf (Corroded)

    < API-653 >

    Calculation of Hydrostatic Test Stress & Product Design Stress (per API-653 Table 4-5 footnote b)

    t_1 : Original Bottom (1st) Shell Course thickness.

    H'= Max. Liq. Level + P(psi)/(0,433) = 48 + (0)/(0,433) = 48 ft

    St = Hydrostatic Test Stress in Bottom (1st) Shell Course = (2,6)(OD)(H' - 1)/t_1 = (2,6)(150)(48 - 1)/(1,031) = 17.779 PSI. (Within 24900 PSI limit for Non-Annular Bottom)

    Sd = Product Design Stress in Bottom (1st) Shell Course = (2,6)(OD)(H' - 1)(G)/(t_1 - ca_1) = (2,6)(150)(48 - 1)(1)/(0,9685) = 18.926 PSI. (Within 23200 PSI limit for Non-Annular Bottom)

    --------------------------

    t_min = 0,1 + 0,125 = 0,225 in. (per API-653 Table 4-4)

    t-Calc = t_min = 0,225 in.

    t-Actual = 0,3125 in.

    < FLAT BOTTOM: NON-ANNULAR SUMMARY >

    t.required = t-Calc = 0,225 in. t.actual = 0,3125 in.

  • Page 31 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:43

    NET UPLIFT DUE TO INTERNAL PRESSURE (See roof report for calculations) Net_Uplift = -647.065 lbf Anchorage NOT required for internal pressure.

    WIND MOMENT (Per API-650 SECTION 5.11)

    vs = Wind Velocity = 100 mph vf = Velocity Factor = (vs/120)^2 = (100/120)^2 = 0,6944

    Wind_Uplift = Iw * 30 * vf = 1 * 30 * 0,6944 = 20,8333 lbf/ft^2

    API-650 5.2.1.k Uplift Check P_F41 = WCtoPSI(0,962*Fy*A*TAN(Theta)/D^2 + 8*t_h) P_F41 = WCtoPSI(0,962*30.000*6,535*0,0625/150^2 + 8*0,1813) = 0,0711 PSI Limit Wind_Uplift/144+P to 1.6*P_F41 Wind_Uplift/144 + P = 0,1447 PSI 1.6*P_F41 = 0,1138 PSI

    Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41) Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P) Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144) = MIN(20,8333,16,3814) = 16,3814 lbf/ft^2

    Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 0,75*150^2/48 = 351,563 ft^2

    Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

    Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*150 = 75 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*75^2 = 17.671 ft^2

    M_roof (Moment Due to Wind Force on Roof) = (Wind_Uplift)(Ap)(Xw) = (16,3814)(17.671)(75) = 21.711.295 ft-lbf

    Xs (Moment Arm of Wind Force on Shell) = H/2 = (48,25)/2 = 24,125 ft

    As (Projected Area of Shell) = H*(OD + t_ins / 6) = (48,25)(150 + 0/6) = 7.238 ft^2

    M_shell (Moment Due to Wind Force on Shell) = (Iw)(vf)(18)(As)(Xs) = (1)(0,6944)(18)(7.238)(24,125) = 2.182.559 ft-lbf

  • Page 32 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:43

    Mw (Wind moment) = M_roof + M_shell = 21.711.295 + 2.182.559 = 23.893.854 ft-lbf

    W = Net weight (PER API-650 5.11.3) (Force due to corroded weight of shell and shell-supported roof plates and weight of Minimum Liquid less 40% of F.1.2 Uplift force.)

    W_net_tank_weight = W_shell + W_roof - 0,4*P*(PI/4)(144)(OD^2) = 516.172 + 44.760 - 0,4*0*(PI/4)(144)(150^2) = 560.932 lbf

    W_min_Liquid = 1.099.645 lbf

    W = W_net_tank_weight + W_min_Liquid = 1.660.577 lbf

    RESISTANCE TO OVERTURNING (per API-650 5.11.2)

    An unanchored Tank must meet these two criteria: 1) 0,6*Mw + MPi < (MDL + MF_min_liq)/1,5 2) Mw + 0,4MPi < (MDL + MF)/2

    Mw = Destabilizing Wind Moment = 23.893.854 ft-lbf

    MPi = Destabilizing Moment about the Shell-to-Bottom Joint from Design Pressure. = P*(PI*OD^2/4)*(144)*(OD/2) = 0*(3,1416*150^2/4)*(144)*(75) = 0 ft-lbf

    MDL = Stabilizing Moment about the Shell-to-Bottom Joint from the Shell and Roof weight supported by the Shell. = (W_shell + W_roof)*OD/2 = (516.172 + 44.760)*75 = 42.069.900 ft-lbf

    tb = Bottom Plate thickness less C.A. = 0,1875 in.

    wl = Circumferential loading of contents along Shell-To-Bottom Joint. = 4,67*tb*SQRT(Sy_btm*H_liq) = 4,67*0,1875*SQRT(30.000*48) = 1.051 lbf/ft

    wl_min_liq = Circumferential loading of Minimum-Level contents along Shell-To-Bottom Joint. = 4,67*ta*SQRT(Sy_btm*H_min_liq) = 4,67*0,1875*SQRT(30.000*1) = 151,6627 lbf/ft

    MF_min_liq = wa_min_liq*PI*OD = 151,6627*3,1416*150 = 151,6627 lbf

  • Page 33 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:43

    MF = Stabilizing Moment due to Bottom Plate and Liquid Weight. = (OD/2)*wl*PI*OD = (75)(1.051)(3,1416)(150) = 37.136.570 ft-lbf

    Criteria 1 0,6*(23.893.854) + 0 < (42.069.900 + 71.469)/1,5 Since 14.336.310 < 28.094.250, Tank is stable.

    Criteria 2 23.893.854 + 0,4 * 0 < (42.069.900 + 37.136.570)/2 Since 23.893.850 < 39.603.240, Tank is stable.

    RESISTANCE TO SLIDING (per API-650 5.11.4)

    F_wind = vF * 18 * As = 0,6944 * 18 * 7.238 = 90.469 lbf

    F_friction = Maximum of 40% of Weight of Tank = 0,4 * (W_Roof_Corroded + W_Shell_Corroded + W_Btm_Corroded + RoofStruct + W_min_Liquid) = 0,4 * (44.760 + 516.172 + 135.772 + 107.586 + 1.099.645) = 761.574 lbf

    No anchorage needed to resist sliding since

    F_friction > F_wind

    Anchorage NOT required since Criteria 1, Criteria 2, and Sliding ARE acceptable.

  • Page 34 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:43

    SEISMIC MOMENT (API-650 APPENDIX E & API-620 APPENDIX L)

    Ms (Seismic Moment) Ms = Z*I*(C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W2*X2)

    Z = 0,075 Zone coefficient for zone 1 (from Table E-2) I = 1 Importance Factor S = 1,5 Site amplification factor (from Table E-3)

    C1 = 0,6 = Lateral earthquake force coefficient

    k = 0,6426 (factor for D/H = 3,125 from figure E-4)

    T = Natural Period of First Sloshing Mode = k*SQRT(OD) = 0,6426*SQRT(150) = 7,87

    C2 = Lateral Earthquake Force Coefficient = 3,375(S)/T^2 = 3,375(1,5)/(7,87)^2 = 0,0817

    From Figures E-2 & E-3 X1_H = X1/H chart factor X2_H = X2/H chart factor W1_Wt = W1/Wt chart factor W2_Wt = W2/Wt chart factor Wt = Weight of tank contents @ Max. Liquid Level

    X1 = (X1_H)*H = (0,375)*48 = 18 X2 = (X2_H)*H = (0,551)*48 = 26,4468 W1 = (W1_Wt)*Wt = (0,3696)*52.831.149 = 19.526.655 W2 = (W2_Wt)*Wt = (0,5755)*52.831.149 = 30.405.306 Ws = W_shell + W_Insulation (New Condition) = 574.107 + 0 = 574.107 Wr = W_roof + Snow Load + W_Insulation (New Condition) = 135.406 + 0 + 0 = 135.406

    C1*Ws*Xs = 0,6*(574.107)(24,125) = 8.310.199 C1*Wr*Ht = 0,6*(135.406)(48,25) = 3.920.004 C1*W1*X1 = 0,6*(19.526.655)(18) = 210.887.882 C2*W2*X2 = (0,0817)(30.405.306)(26,4468) = 65.728.904

    Ms = Z*I*(C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W2*X2) = (0,075)(1)(8.310.199 + 3.920.004 + 210.887.882 + 65.728.904) = 21.663.525 ft-lbf

    W_shell = Weight of Shell (New Condition) W_roof2 = Weight of Roof Plates Supported By Shell (New)

    wt = (W_shell + W_roof2)/(PI*OD) (New Condition) = (574.107 + 46.304)/(PI*150) = 1317, lbf/ft

    RESISTANCE TO OVERTURNING (per Section E.4.1, E.4.2, assuming no anchors)

    wl = 7,9*(tb1)*SQRT(Sy*G*H) = 7,9*(0,1875)*SQRT(38.000*1*48) = 2.001 lbf/ft

    where tb1 = t - CA = 0,1875 in. (for Bottom Plate)

  • Page 35 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:43

    1,25*G*H*OD = 1.25(1)(48)(150) = 9.000 lbf/ft

    UNANCHORED TANKS (Section E.5.1)

    Ms/[OD^2(wt+wl)] = 21.663.525/[(150^2)(1317, + 2.001)] = 0,2902

    b = wt + 1,273(Ms)/OD^2 = max longitudinal compressive force = 1317, + 1,273(21.663.525)/(150)^2 = 2.542 lbf/ft

    MAXIMUM ALLOWABLE SHELL COMPRESSION (Section E.5.3)

    b/(12t) = Max Longitudinal Compressive Stress = 2.542/(12*(1,031 - 0,0625)) = 219 PSI

    G*H*OD^2/t^2 = (1)(48)(150^2)/(1,031 - 0,0625)^2 = 1.151.395

    Fa = 10^6*t/OD = (10^6)(1,031 - 0,0625)/150 = 6.457 PSI

    t = 1,031 - 0,0625 = 0,9685 in. (OK since b/(12t)

  • Page 36 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:43

    CAPACITIES and WEIGHTS

    Maximum Capacity (to upper TL) : 6.369.476 gal Design Capacity (to Max Liquid Level) : 6.330.672 gal Minimum Capacity (to Min Liquid Level) : 131.889 gal NetWorking Capacity (Design - Min.) : 6.198.783 gal

    New Condition Corroded -----------------------------------------------------------

    Shell 574.107 lbf 516.172 lbf Roof Plates 135.406 lbf 130.893 lbf Rafters 55.725 lbf 55.725 lbf Girders 20.752 lbf 20.752 lbf Columns 31.109 lbf 31.109 lbf Bottom 226.287 lbf 135.772 lbf Stiffeners 3.386 lbf 3.386 lbf Nozzle Wgt 0 lbf 0 lbf Misc Roof Wgt 0 lbf 0 lbf Misc Shell Wgt 0 lbf 0 lbf Insulation 0 lbf 0 lbf -----------------------------------------------------------

    Total 1.046.772 lbf 893.809 lbf

    Weight of Tank, Empty : 1.046.772 lbf Weight of Tank, Full of Product (SG=1): 54.202.597 lbf Weight of Tank, Full of Water : 54.202.597 lbf Net Working Weight, Full of Product : 52.778.100 lbf Net Working Weight, Full of Water : 52.778.100 lbf

    Foundation Area Req'd : 17.671 ft^2

    Foundation Loading, Empty : 59,24 lbf/ft^2 Foundation Loading, Full of Product (SG=1) : 3.067 lbf/ft^2 Foundation Loading, Full of Water : 3.067 lbf/ft^2

    SURFACE AREAS Roof 17.706 ft^2 Shell 22.737 ft^2 Bottom 17.671 ft^2

    Wind Moment 23.893.854 ft-lbf Seismic Moment 21.663.525 ft-lbf

    MISCELLANEOUS ATTACHED ROOF ITEMS

    MISCELLANEOUS ATTACHED SHELL ITEMS

  • Page 37 of 37OG INGENIERIA LTDA - TK 4107 RECONFIGURADO rev 2

    TANK REPORT: Printed - 05/09/2014 9:54:43

    MAWP & MAWV SUMMARY FOR TK 4107 RECONFIGURADO rev 2

    MAXIMUM CALCULATED INTERNAL PRESSURE

    MAWP = 2,5 PSI or 69,28 IN. H2O (per API-650 App. F.1.3 & F.7)

    MAWP = Maximum Calculated Internal Pressure (due to shell) = 0,1614 PSI or 4,47 IN. H2O

    MAWP = Maximum Calculated Internal Pressure (due to roof) = 36,0473 PSI or 999 IN. H2O

    TANK MAWP = 0,1614 PSI or 4,47 IN. H2O

    MAXIMUM CALCULATED EXTERNAL PRESSURE

    MAWV = -1 PSI or -27,71 IN. H2O (per API-650 V.1)

    MAWV = Maximum Calculated External Pressure (due to shell) = -0,0615 PSI or -1,7 IN. H2O

    MAWV = Maximum Calculated External Pressure (due to roof) = -0,1122 PSI or -3,11 IN. H2O

    MAWV = N.A. (not calculated due to columns)

    TANK MAWV = -0,0615 PSI or -1,7 IN. H2O


Recommended