+ All Categories
Home > Documents > TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for...

TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for...

Date post: 19-Jan-2016
Category:
Upload: agatha-fisher
View: 220 times
Download: 0 times
Share this document with a friend
Popular Tags:
34
TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.
Transcript
Page 1: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

1

Parameters for e+e- circular collider in a 80 km tunnel

Marco Zanetti (MIT)

Credits for material to Frank, Patrick et al.

Page 2: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• Introduction, the physics case• Beamstrahlung• Top-up injection• Synchrotron radiation• Polarization• Integration with the experiments

Outline

2

Page 3: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• Get up to √s=350, top-antitop production, L=0.7x1034 cm-2s-1

• Higgs factory at Z+H threshold √s=250, L=5x1034 cm-2s-1

• GigaZ, L=1036 cm-2s-1, repeat LEP1 program in 5 min

• Possibility for several interaction points => multiply L, experimental redundancy

• Challenging but well established technology

• Cost-wise in the shadow of the proton-proton program

TLEP overview

3

Page 4: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP Physics performances: Higgs

4

• Sub percent precision on the Higgs couplings• Total width accessible via both ZZ decay and VBF production

Page 5: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP Physics performances: Higgs

5

Page 6: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• Unprecedented precision on EW observables:– (mW)~0.2 MeV, predict top mass at 100 MeV

• Probe the loop structure, ultimate closure test of SM• Beam energy assessed by means of resonant depolarization

– Dedicate one bunch during physics operation, no extrapolation needed

Physics performances: low √s

6

Page 7: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• People contest the non-upgradeability in √s of a circular e-e+ collider.

• Can a liner collider be upgraded to O(100) pp collider??• No doubts about the superiority of VLHC+TLEP in terms of

physics program.

Upgradeability to higher √s

7

Page 8: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP Parameters

8

Page 9: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP Parameters

9

Page 10: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• Bhabha scattering cross section (~0.215 barn) implies a burn-off lifetime of ~20 min at 1e34

• Solution: top-up injection– Fundamental also for Hubner factor => guarantee high integrated L

• High lumi => non-negligible beamstrahlung. Can we keep the beams circulating long enough?

Beam lifetime

10

A. Blondel

Page 11: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• TLEP(3) BS photon spectrum is much softer than ILC• Tails up to only a few GeV, compared to tens of GeV for ILC• As a consequence much reduced pairs background

BS Photons

11

BS spectrum pairs spectrum

Page 12: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• Softer BS photon spectrum implies much better luminosity profile

• Intrinsic feature of circular high lumi e+e- colliders

Luminosity profile

12

Page 13: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

Lifetime>4h =3%

• Simulate and track O(108) macroparticles and check the energy spread spectrum (Guinea-Pig)

• Lifetime computed from the fraction of particles beyond a given momentum acceptance ()

• Exponential dependence on

BS lifetime

13

TLEP-H

Page 14: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP Momentum acceptance

14

FNAL site filler

±1.6%

±2.0%

SLAC/LBNL design

KEK design

±1.3%

T. Sen, E. Gianfelice-Wendt, Y. Alexahin

Y. Cai

K. Oide

Page 15: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• Aiming at more than =3% could be difficult• Plenty of room for playing with relevant parameters (x and

charges per bunch) maintaining the same luminosity– In particular current aspect ratio y/x is same as LEP2

– Look at proposal by Uli Weinand et al. (2nd LEP3 workshop)

• Alternatively a more frequent injection can be envisaged• Visionary approach: charge compensation:

– 2 opposite charged bunches per side– Null charge, no beamstrahlung– Spurios e+e+ and e-e- collissions

• Bottomline: margin is there to cope with BS– TLEP-H is already almost ok!

Dealing with BS

15

Page 16: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• SPS-LEP experience:– e± from 3.5 to 20 GeV (later 22 GeV) in 265 ms (~62.26 GeV/s) [K.

Cornelis, W. Herr, R. Schmidt]

• Injection sequence [P. Collier, G. Roy]: – SPS-> top-up accelerator at 20 GeV– Accelerator from 20 to 120 GeV

• Overall acceleration time = 1.6 s• Total cycle time = 10 s looks conservative (→ refilling ~1% of

the LEP3 beam, for tbeam~16 min)

Top-up injection

16

Page 17: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP Top-up cycle

1710 s

energy of accelerator ring120 GeV

20 GeV

injection into collider

injection into accelerator

beam current in collider (15 min. beam lifetime)100%

99%

almost constant current

Page 18: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• Super efficient duty cycle achieved at PEPII• H factor not far from 1:

– July 3, 2006: H≈0.95– August 2007): H≈0.63

Top-up performances

18

J. Seeman,7 Dec. 2012

Before top-up

During top-up

Page 19: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• 2x100 MW supplied to the beams need to be cooled away, heat load non negligible

• Previous machines (e.g. PEP-II and SPEAR) coped with much higher heat load per meter

• Need to manage higher max photon energy though

Synchrotron radiation

19

N. Kurita, U. Wienands, SLAC

Page 20: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• pp

Synchrotron radiation

20

A. Fasso3rd TLEP3 Day

Page 21: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• LHeC equilibrium polarisation vs ring energy, full 3-D spin tracking results [D. Barber, U. Wienands, in LHeC CDR]

• Up to 80% at Z pole

Polarization

21

Page 22: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• Need to arrange the top up accelerator nearby the experiment

• Hole in the detector not acceptable • Long bypass around the experiments would impact sizably on

the overall cost– O(10)x4 additional km

• Accelerator and collider intersecting each other at the IP sharing a common beam pipe

• Definitely not straightforward..

Integration with the Experiments

22

Page 23: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP Extrapolation

23

LEP2→TLEP-H SLC→ILC 250

peak luminosity x400 x2500

energy x1.15 x2.5

vertical geom. emittance x1/5 x1/400

vert. IP beam size x1/15 x1/150

e+ production rate x1/2 ! x65

commissioning time <1 year → ? >10 years →?

TLEP-HLEP3

Page 24: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

BACKUP

24

Page 25: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

luminosity formulae & constraints

SR radiation power limit

beam-beam limit

>30 min beamstrahlung lifetime (Telnov) → Nb,x

→minimize =y/x, y~x(y/xand respect y≥z

Page 26: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

LEP2 LHeC LEP3 TLEP-Z TLEP-H TLEP-tbeam energy Eb [GeV] circumference [km] beam current [mA] #bunches/beam #e−/beam [1012] horizontal emittance [nm] vertical emittance [nm] bending radius [km] partition number Jε

momentum comp. αc [10−5] SR power/beam [MW] β∗

x [m] β∗

y [cm] σ∗

x [μm] σ∗

y [μm] hourglass Fhg

ΔESRloss/turn [GeV]

104.526.7442.3480.253.11.118.5111.552703.50.983.41

6026.710028085652.52.61.58.1440.181030160.990.44

12026.77.244.0250.102.61.58.1500.20.1710.320.596.99

45.58011802625200030.80.159.01.09.0500.20.1780.390.710.04

1208024.38040.59.40.059.01.01.0500.20.1430.220.752.1

175805.4129.020 0.19.01.01.0500.20.1630.320.659.3

LEP3/TLEP parameters -1 soon at SuperKEKB:x*=0.03 m, Y*=0.03 cm

SuperKEKB:y/x=0.25%

Page 27: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

LEP2 LHeC LEP3 TLEP-Z TLEP-H TLEP-tVRF,tot [GV] max,RF [%]ξx/IP ξy/IPfs [kHz] Eacc [MV/m] eff. RF length [m] fRF [MHz] δSR

rms [%] σSR

z,rms [cm] L/IP[1032cm−2s−1] number of IPs Rad.Bhabha b.lifetime [min] ϒBS [10−4] nγ/collision BS/collision [MeV] BS

rms/collision [MeV] critical SR energy [MeV]

3.640.770.0250.065 1.67.54853520.221.611.2543600.20.080.10.30.81

0.50.66N/AN/A0.6511.9427210.120.69N/A1N/A0.050.160.020.070.18

12.05.70.090.082.19206007000.230.319421890.6031441.47

2.04.00.120.121.29201007000.060.19103352 7440.413.66.20.02

6.09.40.100.100.44203007000.150.174902 32150.5042650.43

12.04.90.050.050.43206007000.220.25652 54150.5161951.32

LEP3/TLEP parameters -2 LEP2 was not beam-beam limited

LEP data for 94.5 - 101 GeV consistently suggest a beam-beam limit of ~0.115 (R.Assmann, K. C.)

Page 28: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• Beamstrahlung dependencies:

• Flat beams, vertical size affects only luminosity• For a given bunch length, horizontal size and particles per

bunch drive the BS effects• Same dependencies for the BS photon energy• Circular collider parameters designed to lead to smaller BS

Beamstrahlung

28

Υ∝Nγ

σ z(σ x +σ y )

N (1010) z (cm) x (m) y (m) Nx (10-6 mrad)

NY (10-6 mrad)

x (m) y (cm)

ILC 2 0.03 0.75 0.008 10 0.035 0.013 0.04

LEP3 100 0.23 71 0.32 6000 28 0.2 0.1

TLEP-H 50 0.23 43 0.22 2200 12 0.2 0.1

Page 29: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• Scan relevant BS parameters:– B*x to scale horizontal beam dimension– Number of particle per bunch

• BS lifetime for nominal parameters (assuming =0.04):– LEP3: >~ 30 min– TLEP-H: ~day

• >4h for =0.03, ~4 min for =0.02

Dealing with BS

29

LEP3, =0.02 LEP3, =0.04

Page 30: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• The spectrum is softer and n is smaller than ILC, but (T)LEP(3) have up to ~x100 more particles per bunch.

• Comparable power dissipation for ILC and circular colliders, O(10) kW

• Most of the power dissipated at very small angle

Power

30

LEP3

Pow

er (W

/0.2

mra

d)

Page 31: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

FNAL site filler

SLAC/LBNL design

circular HFs – arc lattice

IHEP design

T. Sen, E. Gianfelice-Wendt, Y. Alexahin

Q. Qin

K. Oide

Y. Cai

KEK design

Page 32: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

βx*=20cm,βy*=0.5cm

FNAL site filler

SLAC/LBNL design

circular HFs – final-focus design

IHEP design

T. Sen, E. Gianfelice-Wendt, Y. Alexahin

Q. Qin

Y. Cai

K. Oide

KEK design

Page 33: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP

• SR handling and radiation shielding • optics effect energy sawtooth [separate arcs?! (K. Oide)]• beam-beam interaction for large Qs and significant hourglass

effect• IR design with even larger momentum acceptance • integration in LHC tunnel (LEP3)• Pretzel scheme for TERA-Z operation?• impedance effects for high-current running at Z pole

Summary of issues

33

Page 34: TLEP 1 Parameters for e + e - circular collider in a 80 km tunnel Marco Zanetti (MIT) Credits for material to Frank, Patrick et al.

TLEP M. Peskin statement on TLEP


Recommended