+ All Categories
Home > Documents > Today's Lecture Machine Translation - University of...

Today's Lecture Machine Translation - University of...

Date post: 25-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
12
Machine Translation 12: (Non-neural) Statistical Machine Translation Rico Sennrich University of Edinburgh R. Sennrich MT – 2018 – 12 1 / 27 Today’s Lecture So far, main focus of lecture was on: neural machine translation research since 2013 today, we look at (non-neural) Statistical Machine Translation, and research since 1990 R. Sennrich MT – 2018 – 12 1 / 27 MT – 2018 – 12 1 Statistical Machine Translation Basics Phrase-based SMT Hierarchical SMT Syntax-based SMT R. Sennrich MT – 2018 – 12 2 / 27 Refresher: A probabilistic model of translation Suppose that we have: a source sentence S of length m (x 1 ,...,x m ) a target sentence T of length n (y 1 ,...,y n ) We can express translation as a probabilistic model: T * = arg max T P (T |S ) = arg max T P (S |T )P (T ) Bayes’ theorem We can model translation via two models: language model to estimate P (T ) translation model to estimate P (S|T ) Without continuous space representations, how to estimate P (S |T )? break it up into smaller units R. Sennrich MT – 2018 – 12 3 / 27
Transcript
Page 1: Today's Lecture Machine Translation - University of Edinburghhomepages.inf.ed.ac.uk/rsennric/mt18/12_4up.pdf · 2018. 3. 5. · University of Edinburgh R. Sennrich MT 2018 12 1/27

Machine Translation12: (Non-neural) Statistical Machine Translation

Rico Sennrich

University of Edinburgh

R. Sennrich MT – 2018 – 12 1 / 27

Today’s Lecture

So far, main focus of lecture was on:neural machine translationresearch since ≈2013

today, we look at (non-neural) Statistical Machine Translation,and research since ≈ 1990

R. Sennrich MT – 2018 – 12 1 / 27

MT – 2018 – 12

1 Statistical Machine TranslationBasicsPhrase-based SMTHierarchical SMTSyntax-based SMT

R. Sennrich MT – 2018 – 12 2 / 27

Refresher: A probabilistic model of translation

Suppose that we have:a source sentence S of length m (x1, . . . , xm)a target sentence T of length n (y1, . . . , yn)

We can express translation as a probabilistic model:

T ∗ = argmaxT

P (T |S)

= argmaxT

P (S|T )P (T ) Bayes’ theorem

We can model translation via two models:

language model to estimate P (T )translation model to estimate P (S|T )

Without continuous space representations, how to estimate P (S|T )?→ break it up into smaller units

R. Sennrich MT – 2018 – 12 3 / 27

Page 2: Today's Lecture Machine Translation - University of Edinburghhomepages.inf.ed.ac.uk/rsennric/mt18/12_4up.pdf · 2018. 3. 5. · University of Edinburgh R. Sennrich MT 2018 12 1/27

Word Alignment

chicken-and-egg problemlet’s break up P (S|T ) into small units (words):

we can estimate an alignment given a translation modelexpectation step

we can estimate translation model given a an alignment(using relative frequencies)maximization step

what can we do if we have neither?

solution: Expectation Maximization Algorithm

initialize model

iterate between estimating alignment and translation model

simplest model based on lexical translation; more complex modelsconsider position and fertility

R. Sennrich MT – 2018 – 12 4 / 27

Word Alignment: IBM Models [Brown et al., 1993]

EM Algorithm

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

• Initial step: all alignments equally likely

• Model learns that, e.g., la is often aligned with the

Chapter 4: Word-Based Models 14

R. Sennrich MT – 2018 – 12 5 / 27

Word Alignment: IBM Models [Brown et al., 1993]

EM Algorithm

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

• After one iteration

• Alignments, e.g., between la and the are more likely

Chapter 4: Word-Based Models 15

R. Sennrich MT – 2018 – 12 5 / 27

Word Alignment: IBM Models [Brown et al., 1993]

EM Algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

• After another iteration

• It becomes apparent that alignments, e.g., between fleur and flower are morelikely (pigeon hole principle)

Chapter 4: Word-Based Models 16

R. Sennrich MT – 2018 – 12 5 / 27

Page 3: Today's Lecture Machine Translation - University of Edinburghhomepages.inf.ed.ac.uk/rsennric/mt18/12_4up.pdf · 2018. 3. 5. · University of Edinburgh R. Sennrich MT 2018 12 1/27

Word Alignment: IBM Models [Brown et al., 1993]

EM Algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

• Convergence

• Inherent hidden structure revealed by EM

Chapter 4: Word-Based Models 17

R. Sennrich MT – 2018 – 12 5 / 27

Word Alignment: IBM Models [Brown et al., 1993]

IBM Model 1 and EM

• Probabilitiesp(the|la) = 0.7 p(house|la) = 0.05

p(the|maison) = 0.1 p(house|maison) = 0.8

• Alignments

la •maison•

the•house•

la •maison•

the•house•

@@@

la •maison•

the•house•,

,, la •

maison•the•house•

@@@,

,,

p(e, a|f) = 0.56 p(e, a|f) = 0.035 p(e, a|f) = 0.08 p(e, a|f) = 0.005

p(a|e, f) = 0.824 p(a|e, f) = 0.052 p(a|e, f) = 0.118 p(a|e, f) = 0.007

• Countsc(the|la) = 0.824 + 0.052 c(house|la) = 0.052 + 0.007

c(the|maison) = 0.118 + 0.007 c(house|maison) = 0.824 + 0.118

Chapter 4: Word-Based Models 21

R. Sennrich MT – 2018 – 12 5 / 27

Linear Models

T ∗ = argmaxT

P (S|T )P (T ) Bayes’ theorem

T ∗ ≈ argmaxT

M∑

m=1

λmhm(S, T ) [Och, 2003]

linear combination of arbitrary features

Minimum Error Rate Training to optimize feature weights

big trend in SMT research: engineering new/better features

R. Sennrich MT – 2018 – 12 6 / 27

Word-based SMT

core ideacombine word-based translation model and n-gram language model tocompute score of translation

consequences+ models are easy to compute

- word translations are assumed to be independent of each other:only LM takes into account context

- poor at modelling long-distance phenomena:n-gram context is limited

R. Sennrich MT – 2018 – 12 7 / 27

Page 4: Today's Lecture Machine Translation - University of Edinburghhomepages.inf.ed.ac.uk/rsennric/mt18/12_4up.pdf · 2018. 3. 5. · University of Edinburgh R. Sennrich MT 2018 12 1/27

MT – 2018 – 12

1 Statistical Machine TranslationBasicsPhrase-based SMTHierarchical SMTSyntax-based SMT

R. Sennrich MT – 2018 – 12 8 / 27

Phrase-based SMT

core ideaBasic translation unit in translation model is not word, but word sequence(phrase)

consequences+ much better memorization of frequent phrase translations

- large (and noisy) phrase table

- large search space; requires sophisticated pruning

- still poor at modelling long-distance phenomena

Mr Steiger gone to Cologne

Herr Steiger nach Köln gefahren

unfortunately ,

leider ist

has

R. Sennrich MT – 2018 – 12 9 / 27

Phrase Extraction

extraction rules based on word-aligned sentence pairphrase pair must be compatible with alignment......but unaligned words are okphrases are contiguous sequences

Extracting Phrase Translation Rules

Ishall

bepassing

some

onto

you

comments

Ich

werd

eIh

nen

die

ents

prec

hend

enAn

mer

kung

enau

shän

dige

n

shall be = werde

Syntax-based Statistical Machine Translation 36

R. Sennrich MT – 2018 – 12 10 / 27

Phrase Extraction

extraction rules based on word-aligned sentence pairphrase pair must be compatible with alignment......but unaligned words are okphrases are contiguous sequences

Extracting Phrase Translation Rules

Ishall

bepassing

some

onto

you

commentsIc

hwe

rde

Ihne

ndi

een

tspr

eche

nden

Anm

erku

ngen

aush

ändi

gen

some comments = die entsprechenden Anmerkungen

Syntax-based Statistical Machine Translation 37

R. Sennrich MT – 2018 – 12 10 / 27

Page 5: Today's Lecture Machine Translation - University of Edinburghhomepages.inf.ed.ac.uk/rsennric/mt18/12_4up.pdf · 2018. 3. 5. · University of Edinburgh R. Sennrich MT 2018 12 1/27

Phrase Extraction

extraction rules based on word-aligned sentence pair

phrase pair must be compatible with alignment...

...but unaligned words are ok

phrases are contiguous sequencesExtracting Phrase Translation Rules

Ishall

bepassing

some

onto

you

comments

Ich

werd

eIh

nen

die

ents

prec

hend

enAn

mer

kung

enau

shän

dige

nwerde Ihnen die entsprechenden Anmerkungen aushändigen = shall be passing on to you some comments

Syntax-based Statistical Machine Translation 38R. Sennrich MT – 2018 – 12 10 / 27

Common Features in Phrase-based SMT

phrase translation probabilities (in both directions)

word translation probabilities (in both directions)

language model

reordering model

constant penalty for each phrase used

sparse features with learned cost for some (classes of) phrase pairs

multiple models of each type possible

R. Sennrich MT – 2018 – 12 11 / 27

Decoding

Translation Options

he

er geht ja nicht nach hause

it, it

, he

isare

goesgo

yesis

, of course

notdo not

does notis not

afterto

according toin

househome

chamberat home

notis not

does notdo not

homeunder housereturn home

do not

it ishe will be

it goeshe goes

isare

is after alldoes

tofollowingnot after

not tonot

is notare notis not a

• The machine translation decoder does not know the right answer– picking the right translation options– arranging them in the right order

→ Search problem solved by heuristic beam search

Chapter 6: Decoding 9

R. Sennrich MT – 2018 – 12 12 / 27

DecodingDecoding: Hypothesis Expansion

er geht ja nicht nach hause

are

pick any translation option, create new hypothesis

Chapter 6: Decoding 12

R. Sennrich MT – 2018 – 12 13 / 27

Page 6: Today's Lecture Machine Translation - University of Edinburghhomepages.inf.ed.ac.uk/rsennric/mt18/12_4up.pdf · 2018. 3. 5. · University of Edinburgh R. Sennrich MT 2018 12 1/27

DecodingDecoding: Hypothesis Expansion

er geht ja nicht nach hause

are

it

he

create hypotheses for all other translation options

Chapter 6: Decoding 13

R. Sennrich MT – 2018 – 12 13 / 27

Decoding

Decoding: Hypothesis Expansion

er geht ja nicht nach hause

are

it

hegoes

does not

yes

go

to

home

home

also create hypotheses from created partial hypothesis

Chapter 6: Decoding 14

R. Sennrich MT – 2018 – 12 13 / 27

Decoding

Decoding: Find Best Path

er geht ja nicht nach hause

are

it

hegoes

does not

yes

go

to

home

home

backtrack from highest scoring complete hypothesis

Chapter 6: Decoding 15

R. Sennrich MT – 2018 – 12 13 / 27

Decoding

large search space (exponential number of hypotheses)reduction of search space:

recombination of identical hypothesespruning of hypotheses

efficient decoding is a lot more complex in SMT than in neural MT

R. Sennrich MT – 2018 – 12 14 / 27

Page 7: Today's Lecture Machine Translation - University of Edinburghhomepages.inf.ed.ac.uk/rsennric/mt18/12_4up.pdf · 2018. 3. 5. · University of Edinburgh R. Sennrich MT 2018 12 1/27

MT – 2018 – 12

1 Statistical Machine TranslationBasicsPhrase-based SMTHierarchical SMTSyntax-based SMT

R. Sennrich MT – 2018 – 12 15 / 27

Hierarchical SMT

core ideause context-free grammars (CFG) rules as basic translation units→ allows gaps

consequences+ better modeling of some reordering patterns

Herr Steigerleider Kölnist nach gefahren

Mr Steigerunfortunately Cologne , has gone to

- overgeneralisation is still possible

Herr Steiger nichtleider Kölnist nach gefahren

Herr Steiger does notunfortunately Cologne, has gone to

R. Sennrich MT – 2018 – 12 16 / 27

Hierarchical Phrase Extraction

Extracting Hierarchical Phrase Translation Rules

Ishall

bepassing

some

onto

you

comments

Ich

werd

eIh

nen

die

ents

prec

hend

enAn

mer

kung

enau

shän

dige

n

werde X aushändigen= shall be passing on X

subtractingsubphrase

Syntax-based Statistical Machine Translation 39

R. Sennrich MT – 2018 – 12 17 / 27

Decoding

Decoding via (S)CFG derivationSCFG Derivations1 | s1

• Derivation starts with pair of linked s symbols.

Syntax-based Statistical Machine Translation 12

R. Sennrich MT – 2018 – 12 18 / 27

Page 8: Today's Lecture Machine Translation - University of Edinburghhomepages.inf.ed.ac.uk/rsennric/mt18/12_4up.pdf · 2018. 3. 5. · University of Edinburgh R. Sennrich MT 2018 12 1/27

Decoding

Decoding via (S)CFG derivationSCFG Derivations1 | s1

⇒ s2 x3 | s2 x3

• s→ s1 x2 | s1 x2 (glue rule)

Syntax-based Statistical Machine Translation 13

R. Sennrich MT – 2018 – 12 18 / 27

Decoding

Decoding via (S)CFG derivationSCFG Derivations1 | s1

⇒ s2 x3 | s2 x3

⇒ s2 x4 und x5 | s2 x4 and x5

• x→ x1 und x2 | x1 and x2

Syntax-based Statistical Machine Translation 14

R. Sennrich MT – 2018 – 12 18 / 27

Decoding

Decoding via (S)CFG derivationSCFG Derivations1 | s1

⇒ s2 x3 | s2 x3

⇒ s2 x4 und x5 | s2 x4 and x5

⇒ s2 unzutreffend und x5 | s2 unfounded and x5

• x→ unzutreffend | unfounded

Syntax-based Statistical Machine Translation 15

R. Sennrich MT – 2018 – 12 18 / 27

Decoding

Decoding via (S)CFG derivationSCFG Derivations1 | s1

⇒ s2 x3 | s2 x3

⇒ s2 x4 und x5 | s2 x4 and x5

⇒ s2 unzutreffend und x5 | s2 unfounded and x5

⇒ s2 unzutreffend und irrefuhrend | s2 unfounded and misleading

• x→ irrefuhrend | misleading

Syntax-based Statistical Machine Translation 16

R. Sennrich MT – 2018 – 12 18 / 27

Page 9: Today's Lecture Machine Translation - University of Edinburghhomepages.inf.ed.ac.uk/rsennric/mt18/12_4up.pdf · 2018. 3. 5. · University of Edinburgh R. Sennrich MT 2018 12 1/27

Decoding

Decoding via (S)CFG derivationSCFG Derivations1 | s1

⇒ s2 x3 | s2 x3

⇒ s2 x4 und x5 | s2 x4 and x5

⇒ s2 unzutreffend und x5 | s2 unfounded and x5

⇒ s2 unzutreffend und irrefuhrend | s2 unfounded and misleading

⇒ x6 unzutreffend und irrefuhrend | x6 unfounded and misleading

• s→ x1 | x1 (glue rule)

Syntax-based Statistical Machine Translation 17

R. Sennrich MT – 2018 – 12 18 / 27

Decoding

Decoding via (S)CFG derivationSCFG Derivations1 | s1

⇒ s2 x3 | s2 x3

⇒ s2 x4 und x5 | s2 x4 and x5

⇒ s2 unzutreffend und x5 | s2 unfounded and x5

⇒ s2 unzutreffend und irrefuhrend | s2 unfounded and misleading

⇒ x6 unzutreffend und irrefuhrend | x6 unfounded and misleading

⇒ deshalb x7 die x8 unzutreffend und irrefuhrend

| therefore the x8 x7 unfounded and misleading

• x→ deshalb x1 die x2 | therefore the x2 x1 (non-terminal reordering)

Syntax-based Statistical Machine Translation 18

R. Sennrich MT – 2018 – 12 18 / 27

Decoding

Decoding via (S)CFG derivationSCFG Derivations1 | s1

⇒ s2 x3 | s2 x3

⇒ s2 x4 und x5 | s2 x4 and x5

⇒ s2 unzutreffend und x5 | s2 unfounded and x5

⇒ s2 unzutreffend und irrefuhrend | s2 unfounded and misleading

⇒ x6 unzutreffend und irrefuhrend | x6 unfounded and misleading

⇒ deshalb x7 die x8 unzutreffend und irrefuhrend

| therefore the x8 x7 unfounded and misleading

⇒ deshalb sei die x8 unzutreffend und irrefuhrend

| therefore the x8 was unfounded and misleading

• x→ sei | was

Syntax-based Statistical Machine Translation 19

R. Sennrich MT – 2018 – 12 18 / 27

Decoding

Decoding via (S)CFG derivationSCFG Derivations1 | s1

⇒ s2 x3 | s2 x3

⇒ s2 x4 und x5 | s2 x4 and x5

⇒ s2 unzutreffend und x5 | s2 unfounded and x5

⇒ s2 unzutreffend und irrefuhrend | s2 unfounded and misleading

⇒ x6 unzutreffend und irrefuhrend | x6 unfounded and misleading

⇒ deshalb x7 die x8 unzutreffend und irrefuhrend

| therefore the x8 x7 unfounded and misleading

⇒ deshalb sei die x8 unzutreffend und irrefuhrend

| therefore the x8 was unfounded and misleading

⇒ deshalb sei die Werbung unzutreffend und irrefuhrend

| therefore the advertisement was unfounded and misleading

• x→Werbung | advertisement

Syntax-based Statistical Machine Translation 20

R. Sennrich MT – 2018 – 12 18 / 27

Page 10: Today's Lecture Machine Translation - University of Edinburghhomepages.inf.ed.ac.uk/rsennric/mt18/12_4up.pdf · 2018. 3. 5. · University of Edinburgh R. Sennrich MT 2018 12 1/27

MT – 2018 – 12

1 Statistical Machine TranslationBasicsPhrase-based SMTHierarchical SMTSyntax-based SMT

R. Sennrich MT – 2018 – 12 19 / 27

Syntax-based SMT

core ideause syntax on source, target, or both

rule extraction constrained by syntax

potentially use syntactic structures for scoring (syntax-based LMs)

consequencesdepend on exact flavor of syntax used; here: string-to-tree SMT

+ less overgeneralisation

- sparsity in grammar requires relaxation of extraction constraints

- label matching constraints increase search space during decoding

Herr Steiger

NN

S

NNNP

VAFIN

leiderADV APPR

Köln

NE

ist nach gefahren

VVPP

PPVP

Herr SteigerNNP

S

NNP

NP

,

unfortunatelyADV VBZ

Cologne

NP

, has goneVBN

VPVP

NNP

toTO

PP

R. Sennrich MT – 2018 – 12 20 / 27

Syntax-based Phrase Extraction

Learning Syntactic Translation Rules

PRP IMD shall

VB beVBG passing

DT some

RP onTO to

PRP you

NNS comments

Ich

PPE

R

werd

e V

AFIN

Ihne

n P

PER

die

ART

ents

pr.

ADJ

Anm

. N

N

aush

änd.

VV

FIN

NP

PPVP

VP

VP

S

NP

VPVP

S

pro

Ihnen

= pp

prp

you

to

to

Syntax-based Statistical Machine Translation 43

R. Sennrich MT – 2018 – 12 21 / 27

Decoding

Example

Input jemand mußte Josef K. verleumdet habensomeone must Josef K. slandered have

Grammar

⇒ r1: np → Josef K. | Josef K. 0.90⇒ r2: vbn → verleumdet | slandered 0.40⇒ r3: vbn → verleumdet | defamed 0.20⇒ r4: vp → mußte x1 x2 haben | must have vbn2 np1 0.10⇒ r5: s → jemand x1 | someone vp1 0.60⇒ r6: s → jemand mußte x1 x2 haben | someone must have vbn2 np1 0.80⇒ r7: s → jemand mußte x1 x2 haben | np1 must have been vbn1 by someone 0.05

Derivation 1 jemand

X

someone

S

Source Target

verleumdet

X

Josef

habenX

X

mußte

slandered

have VBNmust

VP

K.

NP

Josef K.

Syntax-based Statistical Machine Translation 72

R. Sennrich MT – 2018 – 12 22 / 27

Page 11: Today's Lecture Machine Translation - University of Edinburghhomepages.inf.ed.ac.uk/rsennric/mt18/12_4up.pdf · 2018. 3. 5. · University of Edinburgh R. Sennrich MT 2018 12 1/27

Why Syntax-based SMT?

many variants (syntax on source/target/both...)syntactic constraints for rule extraction and application prevent someover-generalizationssyntactic structure can be exploited by feature functions:

unification constraints [Williams, 2009]

“eine” →

cat ART

infl

case nomdeclension mixed

agr

[gender fnum sg

]

“Welt” →

cat NN

infl

case nom

agr

[gender fnum sg

]

syntax-based neural language model [Sennrich, 2015]

PSYNTAX(T,D) ≈n∏

i=1

Pl(i)× Pw(i)

Pl(i) =P (li |wa(i), la(i))

Pw(i) =P (wi |li, wa(i), la(i))

Laura hat einen kleinen GartenLaura has a small garden

root obja

attrsubj

det

R. Sennrich MT – 2018 – 12 23 / 27

Edinburgh’s* WMT Results over the Years

2013 2014 2015 2016 20170.0

10.0

20.0

30.0

20.3 20.9 20.8 21.519.4 20.2

22.0 22.1

18.9

24.726.0

BLE

U(n

ewst

est2

013

EN→

DE

)

phrase-based SMTsyntax-based SMTneural MT

*NMT 2015 from U. Montréal: https://sites.google.com/site/acl16nmt/

R. Sennrich MT – 2018 – 12 24 / 27

What Phrase-based SMT (Still) Does Better than NMT

better performance in low-data conditions [Koehn and Knowles, 2017]

clear stopping criterion at decoding time:when all source words have been covered by a phrase pair

good ecosystem of methods for specialized requirements (e.g.inclusion of terminology)ability to inspect translation decisions and models:

alignment between source and outputadd/remove phrase table entries

R. Sennrich MT – 2018 – 12 25 / 27

Software

Moses SMT Toolkitdeveloped in Edinburgh

many features and extensive documentation:http://www.statmt.org/moses

documentation of baseline phrase-based systems:http://www.statmt.org/moses/?n=moses.baseline

http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2017/baseline/

baselineSystemPhrase_kj.html

config files for SOTA (in 2014/5) syntax-based systems:https://github.com/rsennrich/wmt2014-scripts

R. Sennrich MT – 2018 – 12 26 / 27

Page 12: Today's Lecture Machine Translation - University of Edinburghhomepages.inf.ed.ac.uk/rsennric/mt18/12_4up.pdf · 2018. 3. 5. · University of Edinburgh R. Sennrich MT 2018 12 1/27

Further Reading

text booksPhilipp Koehn (2009). Statistical Machine Translation.

Philip Williams; Rico Sennrich; Matt Post; Philipp Koehn (2016).Syntax-based Statistical Machine Translation.

online resourcessyntax-based tutorial by Philip Williams and Philipp Koehn(slide credit to them for some slides shown here):http://homepages.inf.ed.ac.uk/s0898777/syntax-tutorial.pdf

slides on word- and phrase-based SMT by Philipp Koehn:http://www.statmt.org/book/slides/04-word-based-models.pdf

http://www.statmt.org/book/slides/05-phrase-based-models.pdf

http://www.statmt.org/book/slides/06-decoding.pdf

R. Sennrich MT – 2018 – 12 27 / 27

Bibliography I

Brown, P. F., Della Pietra, V. J., Della Pietra, S. A., and Mercer, R. L. (1993).The Mathematics of Statistical Machine Translation: Parameter Estimation.Computational Linguistics, 19(2):263–311.

Koehn, P. and Knowles, R. (2017).Six Challenges for Neural Machine Translation.In Proceedings of the First Workshop on Neural Machine Translation, pages 28–39, Vancouver. Association for ComputationalLinguistics.

Och, F. J. (2003).Minimum Error Rate Training in Statistical Machine Translation.In ACL ’03: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics, pages 160–167, Sapporo,Japan. Association for Computational Linguistics.

Sennrich, R. (2015).Modelling and Optimizing on Syntactic N-Grams for Statistical Machine Translation.Transactions of the Association for Computational Linguistics, 3:169–182.

Williams, P. (2009).Towards Statistical Machine Translation with Unification Grammars.Master’s thesis, University of Edinburgh, Edinburgh, UK.

R. Sennrich MT – 2018 – 12 28 / 27


Recommended