+ All Categories
Home > Documents > Tools To Tame Tensors - Colorado State University

Tools To Tame Tensors - Colorado State University

Date post: 14-Apr-2022
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
75
Tools To Tame Tensors James B. Wilson Department of Mathematics This work was partially supported by NSF grant DMS-1620454. joint with Uriyah First, Joshua Malgione http://www.math.colostate.edu/jwilson
Transcript
Page 1: Tools To Tame Tensors - Colorado State University

Tools To Tame Tensors

James B. WilsonDepartment of Mathematics

This work was partially supported by NSF grant DMS-1620454.

joint with Uriyah First, Joshua Malgione http://www.math.colostate.edu/∼jwilson

Page 2: Tools To Tame Tensors - Colorado State University

Meet the rest of the team

Uriyah FirstU. British ColumbiaCategories and Schemes

Joshua MaglioneColorado State UniversityCalculations and Software

Page 3: Tools To Tame Tensors - Colorado State University

Tensors are very general objects

{abc} = (Ua+c − Ua − Uc)(b)

[x, y] = xy − yx

A⊗B

K∗(F ) = T ∗F/(a⊗ (1− a))

Whitney interpretation

tensor = multilinear

hom(A,B) (matrices) a space oftensors, i.e. its elements aretensors.

A⊗B space of cotensors, i.e.its quotients are tensors.

iterated these become interesting,e.g hom(A⊗B,C) ∼=hom(A,hom(B,C)), T ∗F , ∧nV ,& K∗(F ).

dx1 ∧ · · · ∧ dxs

Rj1...jti1...is

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w

Gauss–Ricci interpretation

dxi ∧ · · · ∧ dxs bases for algebragenerated by directionalderivatives.

Christoffel symbols Γkij and Ricci

tensors Rj1···jti1···is are coefficients of

linear combinations.

Invariants, e.g. curvature, is theevaluation tensors such as theRicci tensor R. Levi-Civitaconnection ∇ smoothly movesone tangent algebra to the next.

(Big) Data interpretation

Many data are collected throughtime (video) or space (MRI), orcoded by value vectors(PageRank).

Modeling data as “volumes”allows comparison along time,space, and coding entries.

This makes data into naturaltensors.

But in practice we sacrificevolumes for sparserepresentations.

[1 11 −1

]⊗[0 11 0

]r c v

1 5 0.7101 12 −1.18 50 −9...

......

1 0 1 4 3 0

9 0 8 2 3 1

2 0 7 2 3 0

4 0 2 0 3 4

0 0 5 2 3 0

1 8 8 7 3 6

7 3 7 0 9 7

8 0 1 9 9 2

7 0 5 4 3 5

2 6 1 2 8 7

. . . 7 3 6

. . . 0 9 7

. . . 9 9 2

. . . 4 3 5

2 6 1 2 8 7

Hamilton & Copenhageninterpretation

Kinematics driven by multipleinput vectors, e.g. the stresstensor on an object, i.e.[σx τxyτxy σy

].

Quantum k-state particlemodeled by Ck it’s states{〈i| : i ∈ {1, . . . , k}} a basis.

Entanglment of states 〈ψ| ∈ Ca

with 〈τ | ∈ Cb is non-pure tensorin Ca ⊗ Cb, simplest example theBell pair 1√

2〈00|+ 〈11| Hamilton invented the word “tensor” to mean

the real part of a quaternion. Translation of

3-dimensional mechanics to quaternions lead to

adopting the term universally.

1√2〈00|+ 〈11|

σy

τxy

σx

Page 4: Tools To Tame Tensors - Colorado State University

Tensors are very general objects

{abc} = (Ua+c − Ua − Uc)(b)

[x, y] = xy − yx

A⊗B

K∗(F ) = T ∗F/(a⊗ (1− a))

Whitney interpretation

tensor = multilinear

hom(A,B) (matrices) a space oftensors, i.e. its elements aretensors.

A⊗B space of cotensors, i.e.its quotients are tensors.

iterated these become interesting,e.g hom(A⊗B,C) ∼=hom(A,hom(B,C)), T ∗F , ∧nV ,& K∗(F ).

dx1 ∧ · · · ∧ dxs

Rj1...jti1...is

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w

Gauss–Ricci interpretation

dxi ∧ · · · ∧ dxs bases for algebragenerated by directionalderivatives.

Christoffel symbols Γkij and Ricci

tensors Rj1···jti1···is are coefficients of

linear combinations.

Invariants, e.g. curvature, is theevaluation tensors such as theRicci tensor R. Levi-Civitaconnection ∇ smoothly movesone tangent algebra to the next.

(Big) Data interpretation

Many data are collected throughtime (video) or space (MRI), orcoded by value vectors(PageRank).

Modeling data as “volumes”allows comparison along time,space, and coding entries.

This makes data into naturaltensors.

But in practice we sacrificevolumes for sparserepresentations.

[1 11 −1

]⊗[0 11 0

]r c v

1 5 0.7101 12 −1.18 50 −9...

......

1 0 1 4 3 0

9 0 8 2 3 1

2 0 7 2 3 0

4 0 2 0 3 4

0 0 5 2 3 0

1 8 8 7 3 6

7 3 7 0 9 7

8 0 1 9 9 2

7 0 5 4 3 5

2 6 1 2 8 7

. . . 7 3 6

. . . 0 9 7

. . . 9 9 2

. . . 4 3 5

2 6 1 2 8 7

Hamilton & Copenhageninterpretation

Kinematics driven by multipleinput vectors, e.g. the stresstensor on an object, i.e.[σx τxyτxy σy

].

Quantum k-state particlemodeled by Ck it’s states{〈i| : i ∈ {1, . . . , k}} a basis.

Entanglment of states 〈ψ| ∈ Ca

with 〈τ | ∈ Cb is non-pure tensorin Ca ⊗ Cb, simplest example theBell pair 1√

2〈00|+ 〈11| Hamilton invented the word “tensor” to mean

the real part of a quaternion. Translation of

3-dimensional mechanics to quaternions lead to

adopting the term universally.

1√2〈00|+ 〈11|

σy

τxy

σx

Page 5: Tools To Tame Tensors - Colorado State University

Tensors are very general objects

{abc} = (Ua+c − Ua − Uc)(b)

[x, y] = xy − yx

A⊗B

K∗(F ) = T ∗F/(a⊗ (1− a))

Whitney interpretation

tensor = multilinear

hom(A,B) (matrices) a space oftensors, i.e. its elements aretensors.

A⊗B space of cotensors, i.e.its quotients are tensors.

iterated these become interesting,e.g hom(A⊗B,C) ∼=hom(A,hom(B,C)), T ∗F , ∧nV ,& K∗(F ).

dx1 ∧ · · · ∧ dxs

Rj1...jti1...is

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w

Gauss–Ricci interpretation

dxi ∧ · · · ∧ dxs bases for algebragenerated by directionalderivatives.

Christoffel symbols Γkij and Ricci

tensors Rj1···jti1···is are coefficients of

linear combinations.

Invariants, e.g. curvature, is theevaluation tensors such as theRicci tensor R. Levi-Civitaconnection ∇ smoothly movesone tangent algebra to the next.

(Big) Data interpretation

Many data are collected throughtime (video) or space (MRI), orcoded by value vectors(PageRank).

Modeling data as “volumes”allows comparison along time,space, and coding entries.

This makes data into naturaltensors.

But in practice we sacrificevolumes for sparserepresentations.

[1 11 −1

]⊗[0 11 0

]r c v

1 5 0.7101 12 −1.18 50 −9...

......

1 0 1 4 3 0

9 0 8 2 3 1

2 0 7 2 3 0

4 0 2 0 3 4

0 0 5 2 3 0

1 8 8 7 3 6

7 3 7 0 9 7

8 0 1 9 9 2

7 0 5 4 3 5

2 6 1 2 8 7

. . . 7 3 6

. . . 0 9 7

. . . 9 9 2

. . . 4 3 5

2 6 1 2 8 7

Hamilton & Copenhageninterpretation

Kinematics driven by multipleinput vectors, e.g. the stresstensor on an object, i.e.[σx τxyτxy σy

].

Quantum k-state particlemodeled by Ck it’s states{〈i| : i ∈ {1, . . . , k}} a basis.

Entanglment of states 〈ψ| ∈ Ca

with 〈τ | ∈ Cb is non-pure tensorin Ca ⊗ Cb, simplest example theBell pair 1√

2〈00|+ 〈11| Hamilton invented the word “tensor” to mean

the real part of a quaternion. Translation of

3-dimensional mechanics to quaternions lead to

adopting the term universally.

1√2〈00|+ 〈11|

σy

τxy

σx

Page 6: Tools To Tame Tensors - Colorado State University

Tensors are very general objects

{abc} = (Ua+c − Ua − Uc)(b)

[x, y] = xy − yx

A⊗B

K∗(F ) = T ∗F/(a⊗ (1− a))

Whitney interpretation

tensor = multilinear

hom(A,B) (matrices) a space oftensors, i.e. its elements aretensors.

A⊗B space of cotensors, i.e.its quotients are tensors.

iterated these become interesting,e.g hom(A⊗B,C) ∼=hom(A,hom(B,C)), T ∗F , ∧nV ,& K∗(F ).

dx1 ∧ · · · ∧ dxs

Rj1...jti1...is

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w

Gauss–Ricci interpretation

dxi ∧ · · · ∧ dxs bases for algebragenerated by directionalderivatives.

Christoffel symbols Γkij and Ricci

tensors Rj1···jti1···is are coefficients of

linear combinations.

Invariants, e.g. curvature, is theevaluation tensors such as theRicci tensor R. Levi-Civitaconnection ∇ smoothly movesone tangent algebra to the next.

(Big) Data interpretation

Many data are collected throughtime (video) or space (MRI), orcoded by value vectors(PageRank).

Modeling data as “volumes”allows comparison along time,space, and coding entries.

This makes data into naturaltensors.

But in practice we sacrificevolumes for sparserepresentations.

[1 11 −1

]⊗[0 11 0

]r c v

1 5 0.7101 12 −1.18 50 −9...

......

1 0 1 4 3 0

9 0 8 2 3 1

2 0 7 2 3 0

4 0 2 0 3 4

0 0 5 2 3 0

1 8 8 7 3 6

7 3 7 0 9 7

8 0 1 9 9 2

7 0 5 4 3 5

2 6 1 2 8 7

. . . 7 3 6

. . . 0 9 7

. . . 9 9 2

. . . 4 3 5

2 6 1 2 8 7

Hamilton & Copenhageninterpretation

Kinematics driven by multipleinput vectors, e.g. the stresstensor on an object, i.e.[σx τxyτxy σy

].

Quantum k-state particlemodeled by Ck it’s states{〈i| : i ∈ {1, . . . , k}} a basis.

Entanglment of states 〈ψ| ∈ Ca

with 〈τ | ∈ Cb is non-pure tensorin Ca ⊗ Cb, simplest example theBell pair 1√

2〈00|+ 〈11| Hamilton invented the word “tensor” to mean

the real part of a quaternion. Translation of

3-dimensional mechanics to quaternions lead to

adopting the term universally.

1√2〈00|+ 〈11|

σy

τxy

σx

Page 7: Tools To Tame Tensors - Colorado State University

Tensors are very general objects

{abc} = (Ua+c − Ua − Uc)(b)

[x, y] = xy − yx

A⊗B

K∗(F ) = T ∗F/(a⊗ (1− a))

Whitney interpretation

tensor = multilinear

hom(A,B) (matrices) a space oftensors, i.e. its elements aretensors.

A⊗B space of cotensors, i.e.its quotients are tensors.

iterated these become interesting,e.g hom(A⊗B,C) ∼=hom(A,hom(B,C)), T ∗F , ∧nV ,& K∗(F ).

dx1 ∧ · · · ∧ dxs

Rj1...jti1...is

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w

Gauss–Ricci interpretation

dxi ∧ · · · ∧ dxs bases for algebragenerated by directionalderivatives.

Christoffel symbols Γkij and Ricci

tensors Rj1···jti1···is are coefficients of

linear combinations.

Invariants, e.g. curvature, is theevaluation tensors such as theRicci tensor R. Levi-Civitaconnection ∇ smoothly movesone tangent algebra to the next.

(Big) Data interpretation

Many data are collected throughtime (video) or space (MRI), orcoded by value vectors(PageRank).

Modeling data as “volumes”allows comparison along time,space, and coding entries.

This makes data into naturaltensors.

But in practice we sacrificevolumes for sparserepresentations.

[1 11 −1

]⊗[0 11 0

]r c v

1 5 0.7101 12 −1.18 50 −9...

......

1 0 1 4 3 0

9 0 8 2 3 1

2 0 7 2 3 0

4 0 2 0 3 4

0 0 5 2 3 0

1 8 8 7 3 6

7 3 7 0 9 7

8 0 1 9 9 2

7 0 5 4 3 5

2 6 1 2 8 7

. . . 7 3 6

. . . 0 9 7

. . . 9 9 2

. . . 4 3 5

2 6 1 2 8 7

Hamilton & Copenhageninterpretation

Kinematics driven by multipleinput vectors, e.g. the stresstensor on an object, i.e.[σx τxyτxy σy

].

Quantum k-state particlemodeled by Ck it’s states{〈i| : i ∈ {1, . . . , k}} a basis.

Entanglment of states 〈ψ| ∈ Ca

with 〈τ | ∈ Cb is non-pure tensorin Ca ⊗ Cb, simplest example theBell pair 1√

2〈00|+ 〈11| Hamilton invented the word “tensor” to mean

the real part of a quaternion. Translation of

3-dimensional mechanics to quaternions lead to

adopting the term universally.

1√2〈00|+ 〈11|

σy

τxy

σx

Page 8: Tools To Tame Tensors - Colorado State University

Geometry

Manifolds

Flows

Physics

Algebra

Products

Iso-morphismtesting

Filters

SimpleObjects

ComputerScience

P v. NP

Big Data

Tensors

Page 9: Tools To Tame Tensors - Colorado State University

Tensors Uncover Algorithms

Page 10: Tools To Tame Tensors - Colorado State University

Geometry

Manifolds

Flows

Physics

Algebra

Products

Iso-morphismtesting

Filters

SimpleObjects

ComputerScience

P v. NP

Big Data

Tensors

Algorithms

Page 11: Tools To Tame Tensors - Colorado State University

Decomposition Algorithms

Page 12: Tools To Tame Tensors - Colorado State University

For decades decomposing groups as G = H ×K took testing everysubgroup, so exp(O(log2 |G|))-steps.

Then non-associative algebra stepped in.

Thm. (W. 2008)

There is an algorithm to construct a direct product decomposition of afinite groups G in time O(log7 |G|).In fact true for much wilder central products as well.

Page 13: Tools To Tame Tensors - Colorado State University

For decades decomposing groups as G = H ×K took testing everysubgroup, so exp(O(log2 |G|))-steps.

Then non-associative algebra stepped in.

Thm. (W. 2008)

There is an algorithm to construct a direct product decomposition of afinite groups G in time O(log7 |G|).In fact true for much wilder central products as well.

Page 14: Tools To Tame Tensors - Colorado State University

E.g. with central products

Pre-Jordan Algebra techniques

Central products had no Krull-Schmidt:, e.g. D8 ◦D8∼= Q8 ◦Q8;

also Tang: ∃T,R centrally indecomposable with R ◦R ◦R ∼= T ◦R.

Almost all theorems required groups with cyclic center.

Post-Jordan Algebra viewpoint

Instead of Krull-Schmidt, Jordan algebra classify all orbits ofcentral product decompositions.

Tang’s becomes natrual: symmetric forms in char 2 are alsoalternating. I.e. group analogue to well-known topologyrules: RP2#RP2#RP2 ∼= T2#RP2.

Page 15: Tools To Tame Tensors - Colorado State University

E.g. with central products

Pre-Jordan Algebra techniques

Central products had no Krull-Schmidt:, e.g. D8 ◦D8∼= Q8 ◦Q8;

also Tang: ∃T,R centrally indecomposable with R ◦R ◦R ∼= T ◦R.

Almost all theorems required groups with cyclic center.

Post-Jordan Algebra viewpoint

Instead of Krull-Schmidt, Jordan algebra classify all orbits ofcentral product decompositions.

Tang’s becomes natrual: symmetric forms in char 2 are alsoalternating. I.e. group analogue to well-known topologyrules: RP2#RP2#RP2 ∼= T2#RP2.

Page 16: Tools To Tame Tensors - Colorado State University

Filter Refinements

Page 17: Tools To Tame Tensors - Colorado State University

Filter

A filter φ : M → 2G from a commutative preordered monoid M intosubgroups of G satisfies

[φs, φt] ≤ φs+t s ≺ t⇒ φs ≥ φt.

Write G = lim←−φs.

Filters give graded algebras

[x, y] in G factors through a grade Lie algebra product on:

L(φ) =⊕s 6=0

φs/∂φs ∂φs = 〈φs+t : t 6= 0〉.

*Ascending version, e.g. upper central series, gives graded module.

Page 18: Tools To Tame Tensors - Colorado State University

Thm W.

Fix a filter φ : M → 2G and X ≤ G such that ∃s, ∂φsX ≤ φs. Then∃φ : M × N→ 2G refining φ to include X. That is:

G = lim←−φs = lim←−s∈M

lim←−t∈N

φ(s,t).

Notice refinement is recursive.

Page 19: Tools To Tame Tensors - Colorado State University

L(γ) = K5 ⊕K4 ⊕K3 ⊕K2 ⊕KL(φ) = K3 ⊕K2 ⊕K2 ⊕K2 ⊕K ⊕K2 ⊕K2 ⊕K

0 1 2 3 4

0

1

2

J. Maglione (2017)

Page 20: Tools To Tame Tensors - Colorado State University

L(γ) = K5 ⊕K4 ⊕K3 ⊕K2 ⊕K

L(φ) = K3 ⊕K2 ⊕K2 ⊕K2 ⊕K ⊕K2 ⊕K2 ⊕K

0 1 2 3 4

0

1

2

J. Maglione (2017)

Page 21: Tools To Tame Tensors - Colorado State University

L(γ) = K5 ⊕K4 ⊕K3 ⊕K2 ⊕K

L(φ) = K3 ⊕K2 ⊕K2 ⊕K2 ⊕K ⊕K2 ⊕K2 ⊕K

0 1 2 3 4

0

1

2

J. Maglione (2017)

Page 22: Tools To Tame Tensors - Colorado State University

L(γ) = K5 ⊕K4 ⊕K3 ⊕K2 ⊕K

L(φ) = K3 ⊕K2 ⊕K2 ⊕K2 ⊕K ⊕K2 ⊕K2 ⊕K

0 1 2 3 4

0

1

2

J. Maglione (2017)

Page 23: Tools To Tame Tensors - Colorado State University

L(γ) = K5 ⊕K4 ⊕K3 ⊕K2 ⊕K

L(φ) = K3 ⊕K2 ⊕K2 ⊕K2 ⊕K ⊕K2 ⊕K2 ⊕K

0 1 2 3 4

0

1

2

J. Maglione (2017)

Page 24: Tools To Tame Tensors - Colorado State University

L(γ) = K5 ⊕K4 ⊕K3 ⊕K2 ⊕KL(φ) = K3 ⊕K2 ⊕K2 ⊕K2 ⊕K ⊕K2 ⊕K2 ⊕K

0 1 2 3 4

0

1

2

J. Maglione (2017)

Page 25: Tools To Tame Tensors - Colorado State University

Application

Thm. (W.)

On a log-scale a positive proportion of all nilpotent groups admits aproper characteristic refinement of the lower exponent p central series.

Maglione-W.

A survey of 500,000,000 random class 2 groups found 97% refined, 92%to maximal class!

Already applied to improve isomorphism testing exponentially atrandom.

Page 26: Tools To Tame Tensors - Colorado State University

A Category for Tensor Spaces

Page 27: Tools To Tame Tensors - Colorado State University

Va+1 �· · · �V0 = hom(Va+1, hom(. . . ,hom(V1, V0) · · · ).

Def.

A tensor space is a K-module T and a monomorphism

|·〉 : T ↪→ Vו �· · · �V0.

Elements of T are tensors, {Vו , . . . , V0} is the frame, ו +1 valence.

Fix 〈v| = 〈v1| · · · 〈vו | ∈ V1 × · · · × Vו

〈v|t〉 = 〈v1| · · · 〈vו |t〉 ∈ V0.

So |t〉 : V1 × · · · × Vו � V0 is K-multilinear; yet, t is anything.

Page 28: Tools To Tame Tensors - Colorado State University

Tensor categories

Pretend tensors are nonassociative algebras...

A Bφ

A×A

B×B

A B

φ

φ

· ◦φ

(a2 · a1)φ = a2φ ◦ a1φ

A1

×A2

B1

×B2

A0 B0

φ1

φ2

∗ ◦φ0

(a2 · a1)φ = a2φ ◦ a1φ

A1

×...×Aו

B1

×...×Bו

A0 B0

φ1

φו

[··· ] 〈··· 〉φ0

〈av, . . . , a1〉φ0 = [avφv, . . . , a1φ1]

A∗ B∗φ∗

Page 29: Tools To Tame Tensors - Colorado State University

Tensor categories

Pretend tensors are nonassociative algebras...

A Bφ

A×A

B×B

A B

φ

φ

· ◦φ

(a2 · a1)φ = a2φ ◦ a1φ

A1

×A2

B1

×B2

A0 B0

φ1

φ2

∗ ◦φ0

(a2 · a1)φ = a2φ ◦ a1φ

A1

×...×Aו

B1

×...×Bו

A0 B0

φ1

φו

[··· ] 〈··· 〉φ0

〈av, . . . , a1〉φ0 = [avφv, . . . , a1φ1]

A∗ B∗φ∗

Page 30: Tools To Tame Tensors - Colorado State University

Tensor categories

Pretend tensors are nonassociative algebras...

A Bφ

A×A

B×B

A B

φ

φ

· ◦φ

(a2 · a1)φ = a2φ ◦ a1φ

A1

×A2

B1

×B2

A0 B0

φ1

φ2

∗ ◦φ0

(a2 · a1)φ = a2φ ◦ a1φ

A1

×...×Aו

B1

×...×Bו

A0 B0

φ1

φו

[··· ] 〈··· 〉φ0

〈av, . . . , a1〉φ0 = [avφv, . . . , a1φ1]

A∗ B∗φ∗

Page 31: Tools To Tame Tensors - Colorado State University

Tensor categories

Pretend tensors are nonassociative algebras...

A Bφ

A×A

B×B

A B

φ

φ

· ◦φ

(a2 · a1)φ = a2φ ◦ a1φ

A1

×A2

B1

×B2

A0 B0

φ1

φ2

∗ ◦φ0

(a2 · a1)φ = a2φ ◦ a1φ

A1

×...×Aו

B1

×...×Bו

A0 B0

φ1

φו

[··· ] 〈··· 〉φ0

〈av, . . . , a1〉φ0 = [avφv, . . . , a1φ1]

A∗ B∗φ∗

Page 32: Tools To Tame Tensors - Colorado State University

Tensor categories

Pretend tensors are nonassociative algebras...

A Bφ

A×A

B×B

A B

φ

φ

· ◦φ

(a2 · a1)φ = a2φ ◦ a1φ

A1

×A2

B1

×B2

A0 B0

φ1

φ2

∗ ◦φ0

(a2 · a1)φ = a2φ ◦ a1φ

A1

×...×Aו

B1

×...×Bו

A0 B0

φ1

φו

[··· ] 〈··· 〉φ0

〈av, . . . , a1〉φ0 = [avφv, . . . , a1φ1]

A∗ B∗φ∗

Page 33: Tools To Tame Tensors - Colorado State University

Composition

A1

×...×Aו

B1

×...×Bו

C1

×...×Cו

A0 B0 C0

φ1

φו

τ1

τו

φ0 τ0

A∗ B∗ C∗φ∗ τ∗

A1

×...×Aו

C1

×...×Cו

A0 C0

φ1τ1

φו τו

φ0τ0

A∗ C∗φ∗τ∗

Page 34: Tools To Tame Tensors - Colorado State University

Need even more morphisms

Can’t remove triviality

A1

×A2

A1/A⊥2

×A2/A

⊥1

A0 A1 ∗A2

∗ ◦

Obvious abelian category

(a1 ∗ a2)φ0 = a1φ1 ◦ a2

A1

×A2

B1

×B2

A0 B

φ1

∗ ◦φ0

Non-abelian category!

(a1 ∗ a2) = a1φ1 ◦ a2φ2

A1

×A2

B1

×B2

A0 B0

φ2

φ1

∗ ◦

Now re-abelianized!

(b1φ2 ∗ a2) = b1 ◦ φ2a2

A1

×A2

B1

×B2

A0 B

φ2

φ1

Page 35: Tools To Tame Tensors - Colorado State University

Need even more morphisms

Can’t remove triviality

A1

×A2

A1/A⊥2

×A2/A

⊥1

A0 A1 ∗A2

∗ ◦

Obvious abelian category

(a1 ∗ a2)φ0 = a1φ1 ◦ a2

A1

×A2

B1

×B2

A0 B

φ1

∗ ◦φ0

Non-abelian category!

(a1 ∗ a2) = a1φ1 ◦ a2φ2

A1

×A2

B1

×B2

A0 B0

φ2

φ1

∗ ◦

Now re-abelianized!

(b1φ2 ∗ a2) = b1 ◦ φ2a2

A1

×A2

B1

×B2

A0 B

φ2

φ1

Page 36: Tools To Tame Tensors - Colorado State University

Need even more morphisms

Can’t remove triviality

A1

×A2

A1/A⊥2

×A2/A

⊥1

A0 A1 ∗A2

∗ ◦

Obvious abelian category

(a1 ∗ a2)φ0 = a1φ1 ◦ a2

A1

×A2

B1

×B2

A0 B

φ1

∗ ◦φ0

Non-abelian category!

(a1 ∗ a2) = a1φ1 ◦ a2φ2

A1

×A2

B1

×B2

A0 B0

φ2

φ1

∗ ◦

Now re-abelianized!

(b1φ2 ∗ a2) = b1 ◦ φ2a2

A1

×A2

B1

×B2

A0 B

φ2

φ1

Page 37: Tools To Tame Tensors - Colorado State University

Need even more morphisms

Can’t remove triviality

A1

×A2

A1/A⊥2

×A2/A

⊥1

A0 A1 ∗A2

∗ ◦

Obvious abelian category

(a1 ∗ a2)φ0 = a1φ1 ◦ a2

A1

×A2

B1

×B2

A0 B

φ1

∗ ◦φ0

Non-abelian category!

(a1 ∗ a2) = a1φ1 ◦ a2φ2

A1

×A2

B1

×B2

A0 B0

φ2

φ1

∗ ◦

Now re-abelianized!

(b1φ2 ∗ a2) = b1 ◦ φ2a2

A1

×A2

B1

×B2

A0 B

φ2

φ1

Page 38: Tools To Tame Tensors - Colorado State University

More Morphisms ⇒ Composition Issues

A1

×...×Aו

B1

×...×Bו

C1

×...×Cו

A0 B0 C0

φ1

φו τו

τ1

φ0 τ0

A∗ B∗ C∗φ1···1 τ01···1

Page 39: Tools To Tame Tensors - Colorado State University

More Morphisms ⇒ Composition Issues

A1

×...×Aו

B1

×...×Bו

C1

×...×Cו

A0 B0 C0

φ1

φו τו

τ1

φ0 τ0

A∗ B∗ C∗φ1···1 τ01···1

Compose as relations.

φ1 = {(a, aφ1) : a ∈ A1}τ1 = {(cτ1, c) : c ∈ C1}

Define

φ1τ1 = {(a, c) : ∃b,(a, b) ∈ φ1, (b, c) ∈ τ1}

Works the same no matterdirection of arrows.

Page 40: Tools To Tame Tensors - Colorado State University

Frame Braiding

A1

×...×Aו

A1

×...×A◦0

B1

×...×B◦0

B1

×...×B0

A0 A◦ו B◦ו B0

φ1

φ◦0

φ◦ו

A∗ Aσ∗ Bσ∗ B∗

σ φ∗ σ−1

In Ricci calculus: “raising”and “lowering” indices.

In algebra: Knuth-Lieblertransposes.

In our model: permuta-tions σ of the frame give 2-morphisms

A∗ B∗

φ

φσ

σ

Page 41: Tools To Tame Tensors - Colorado State University

The 2-category of tensor spaces

Category= Objects + hom-sets (with some rules)2-Category= Objects + hom-categories (with more rules)

ו -Tensor space 2-cateogry

Objects Tensor spaces |·〉 : T ↪→ Vו �· · · �V0 of valence ו +1.

1-Morphisms Linear relations (Fו , . . . , F0) where

2-Morphisms Frame Braiding

We now have: subtensors, ideals, quotients, kernels, image, Noether’sisomorphism theorems, products, coproducts, simples, projectives,representations, modules, ....

Page 42: Tools To Tame Tensors - Colorado State University

Tensor’s can have modules

Page 43: Tools To Tame Tensors - Colorado State University

E.g.: Representations and modules of tensors

A End(M)ρ

A×A

End(M)×

End(M)

A End(M)

ρ

ρ

· ◦ρ

(a2 · a1)ρ = a2ρ ◦ a1ρ

A2

×A1

End(M2)×

End(M1)

A0 End(M0)

ρ2

ρ1

∗ ◦ρ0

A2

×A1

hom(M2,M1)M2 �M1

×

hom(M1,M0)M1 �M0

A0

hom(M2,M0)M2 �M0

ρ2

ρ1

∗ ◦ρ0

(a2 ∗ a1)ρ0 = a2ρ2 ◦ a1ρ1

A∗

hom(M∗)�(M∗)

ρ∗

Right

Representation

M2 ×A2 M1

M1 ×A1 M0

M2 ×A0 M0

(m2 � a2) � a1 = m2 � (a2 ∗ a1)

M∗ ×A∗ M∗

Right Triptych

Page 44: Tools To Tame Tensors - Colorado State University

E.g.: Representations and modules of tensors

A End(M)ρ

A×A

End(M)×

End(M)

A End(M)

ρ

ρ

· ◦ρ

(a2 · a1)ρ = a2ρ ◦ a1ρ

A2

×A1

End(M2)×

End(M1)

A0 End(M0)

ρ2

ρ1

∗ ◦ρ0

A2

×A1

hom(M2,M1)M2 �M1

×

hom(M1,M0)M1 �M0

A0

hom(M2,M0)M2 �M0

ρ2

ρ1

∗ ◦ρ0

(a2 ∗ a1)ρ0 = a2ρ2 ◦ a1ρ1

A∗

hom(M∗)�(M∗)

ρ∗

Right

Representation

M2 ×A2 M1

M1 ×A1 M0

M2 ×A0 M0

(m2 � a2) � a1 = m2 � (a2 ∗ a1)

M∗ ×A∗ M∗

Right Triptych

Page 45: Tools To Tame Tensors - Colorado State University

E.g.: Representations and modules of tensors

A End(M)ρ

A×A

End(M)×

End(M)

A End(M)

ρ

ρ

· ◦ρ

(a2 · a1)ρ = a2ρ ◦ a1ρ

A2

×A1

End(M2)×

End(M1)

A0 End(M0)

ρ2

ρ1

∗ ◦ρ0

A2

×A1

hom(M2,M1)M2 �M1

×

hom(M1,M0)M1 �M0

A0

hom(M2,M0)M2 �M0

ρ2

ρ1

∗ ◦ρ0

(a2 ∗ a1)ρ0 = a2ρ2 ◦ a1ρ1

A∗

hom(M∗)�(M∗)

ρ∗

Right

Representation

M2 ×A2 M1

M1 ×A1 M0

M2 ×A0 M0

(m2 � a2) � a1 = m2 � (a2 ∗ a1)

M∗ ×A∗ M∗

Right Triptych

Page 46: Tools To Tame Tensors - Colorado State University

E.g.: Representations and modules of tensors

A End(M)ρ

A×A

End(M)×

End(M)

A End(M)

ρ

ρ

· ◦ρ

(a2 · a1)ρ = a2ρ ◦ a1ρ

A2

×A1

End(M2)×

End(M1)

A0 End(M0)

ρ2

ρ1

∗ ◦ρ0

A2

×A1

hom(M2,M1)

M2 �M1

×hom(M1,M0)

M1 �M0

A0 hom(M2,M0)

M2 �M0

ρ2

ρ1

∗ ◦ρ0

(a2 ∗ a1)ρ0 = a2ρ2 ◦ a1ρ1

A∗

hom(M∗)�(M∗)

ρ∗

Right

Representation

M2 ×A2 M1

M1 ×A1 M0

M2 ×A0 M0

(m2 � a2) � a1 = m2 � (a2 ∗ a1)

M∗ ×A∗ M∗

Right Triptych

Page 47: Tools To Tame Tensors - Colorado State University

E.g.: Representations and modules of tensors

A End(M)ρ

A×A

End(M)×

End(M)

A End(M)

ρ

ρ

· ◦ρ

(a2 · a1)ρ = a2ρ ◦ a1ρ

A2

×A1

End(M2)×

End(M1)

A0 End(M0)

ρ2

ρ1

∗ ◦ρ0

A2

×A1

hom(M2,M1)

M2 �M1

×hom(M1,M0)

M1 �M0

A0 hom(M2,M0)

M2 �M0

ρ2

ρ1

∗ ◦ρ0

(a2 ∗ a1)ρ0 = a2ρ2 ◦ a1ρ1

A∗ hom(M∗)

�(M∗)

ρ∗

Right

Representation

M2 ×A2 M1

M1 ×A1 M0

M2 ×A0 M0

(m2 � a2) � a1 = m2 � (a2 ∗ a1)

M∗ ×A∗ M∗

Right Triptych

Page 48: Tools To Tame Tensors - Colorado State University

E.g.: Representations and modules of tensors

A End(M)ρ

A×A

End(M)×

End(M)

A End(M)

ρ

ρ

· ◦ρ

(a2 · a1)ρ = a2ρ ◦ a1ρ

A2

×A1

End(M2)×

End(M1)

A0 End(M0)

ρ2

ρ1

∗ ◦ρ0

A2

×A1

hom(M2,M1)

M2 �M1

×hom(M1,M0)

M1 �M0

A0 hom(M2,M0)

M2 �M0

ρ2

ρ1

∗ ◦ρ0

(a2 ∗ a1)ρ0 = a2ρ2 ◦ a1ρ1

A∗ hom(M∗)

�(M∗)

ρ∗

Right

Representation

M2 ×A2 M1

M1 ×A1 M0

M2 ×A0 M0

(m2 � a2) � a1 = m2 � (a2 ∗ a1)

M∗ ×A∗ M∗

Right Triptych

Page 49: Tools To Tame Tensors - Colorado State University

E.g.: Representations and modules of tensors

A End(M)ρ

A×A

End(M)×

End(M)

A End(M)

ρ

ρ

· ◦ρ

(a2 · a1)ρ = a2ρ ◦ a1ρ

A2

×A1

End(M2)×

End(M1)

A0 End(M0)

ρ2

ρ1

∗ ◦ρ0

A2

×A1

hom(M2,M1)

M2 �M1

×

hom(M1,M0)

M1 �M0

A0

hom(M2,M0)

M2 �M0

ρ2

ρ1

∗ ◦ρ0

(a2 ∗ a1)ρ0 = a2ρ2 ◦ a1ρ1

A∗

hom(M∗)

�(M∗)ρ∗

Right Representation

M2 ×A2 M1

M1 ×A1 M0

M2 ×A0 M0

(m2 � a2) � a1 = m2 � (a2 ∗ a1)

M∗ ×A∗ M∗

Right Triptych

Page 50: Tools To Tame Tensors - Colorado State University

E.g.: Representations and modules of tensors

A End(M)ρ

A×A

End(M)×

End(M)

A End(M)

ρ

ρ

· ◦ρ

(a2 · a1)ρ = a2ρ ◦ a1ρ

A2

×A1

End(M2)×

End(M1)

A0 End(M0)

ρ2

ρ1

∗ ◦ρ0

A2

×A1

hom(M2,M1)

M2 �M1

×

hom(M1,M0)

M1 �M0

A0

hom(M2,M0)

M2 �M0

ρ2

ρ1

∗ ◦ρ0

(a2 ∗ a1)ρ0 = a2ρ2 ◦ a1ρ1

A∗

hom(M∗)

�(M∗)ρ∗

Right Representation

M2 ×A2 M1

M1 ×A1 M0

M2 ×A0 M0

(m2 � a2) � a1 = m2 � (a2 ∗ a1)

M∗ ×A∗ M∗

Right Triptych

Page 51: Tools To Tame Tensors - Colorado State University

E.g.: Representations and modules of tensors

A End(M)ρ

A×A

End(M)×

End(M)

A End(M)

ρ

ρ

· ◦ρ

(a2 · a1)ρ = a2ρ ◦ a1ρ

A2

×A1

End(M2)×

End(M1)

A0 End(M0)

ρ2

ρ1

∗ ◦ρ0

A2

×A1

hom(M2,M1)

M2 �M1

×

hom(M1,M0)

M1 �M0

A0

hom(M2,M0)

M2 �M0

ρ2

ρ1

∗ ◦ρ0

(a2 ∗ a1)ρ0 = a2ρ2 ◦ a1ρ1

A∗

hom(M∗)

�(M∗)ρ∗

Right Representation

M2 ×A2 M1

M1 ×A1 M0

M2 ×A0 M0

(m2 � a2) � a1 = m2 � (a2 ∗ a1)

M∗ ×A∗ M∗

Right Triptych

Page 52: Tools To Tame Tensors - Colorado State University

Simple Triptychs/Irreducible Representations

Definition

A triptych is visible if Mi 6= 0 and M1 = M2A2, M0 = M2(A2 ∗A1).

Theorem (W.)

The triptych is visible simple if, and only if, every nonzero is a unit:

(∀m2) m2 6= 0⇒ (m2A2)A1 = M2(A2 ∗A1).

Page 53: Tools To Tame Tensors - Colorado State University

Properties of the representations

Further properties

Nakayama’s lemma.

Shur’s lemma.

Induction and restriction.

Morita condensation.

Open problems

Develop characters, blocks, and reciprocity theorems.

We use these to seed filter refinements!

Page 54: Tools To Tame Tensors - Colorado State University

Satisfaction

Page 55: Tools To Tame Tensors - Colorado State University

Satisfaction

|t〉 : V1 × · · · × Vו � V0 multilinear.p =

∑e λex

e11 · · ·x

eוו x

e00 polynomial.

ω = (ω1, . . . , ωו , ω0) ∈∏a End(Va) operator.

Def.

|t〉 satisfies p at ω if for every 〈v| = 〈v1| · · · 〈vו |

0 = 〈v| p(ω) |t〉 =∑λe

λe〈v1ωe11 , . . . , vnωeוו |t〉ωe00 .

-8

Page 56: Tools To Tame Tensors - Colorado State University

Examples of satisfaction

Identity Polynoimal Operator

(uλ)f = (uf)λ x1 − x0 Linear

Pf. Put 〈u|t〉 := uf , p = x1 − x0.0 = (uλ)f − (uf)λ

= 〈uλ|t〉 − 〈u|t〉λ= 〈u|p(λ, λ)|t〉. 2

〈uX|v〉 = 〈u|vX∗〉〈uX|v〉 = 〈u|X∗v〉

?x1 − x2x1 − x2

Adjoint

Pf. Put 〈u, v|t〉 := 〈u, v〉, p = x1 − x2.0 = 〈u, v|p(X,X∗)|t〉 = 〈uX, v〉 − 〈u, vX∗〉 2Convenience use xa to denote left action.

〈λu|v〉 = λ〈u|v〉 = 〈u|λv〉 {x1 − x0, x2 − x0} Bilinear

〈uX|vX〉 = 〈u|v〉 {x1x2 − 1, x0 − 1} Isometry

ω(u ∗ v) = ω′(u) ∗ ω′′(v) x1x2 − x0 Homotopism

(u · v)δ = uδ · v + v · vδ? x1 + x2 − x0 Derivation?

-7

Page 57: Tools To Tame Tensors - Colorado State University

Examples of satisfaction

Identity Polynoimal Operator

(uλ)f = (uf)λ x1 − x0 Linear

Pf. Put 〈u|t〉 := uf , p = x1 − x0.0 = (uλ)f − (uf)λ

= 〈uλ|t〉 − 〈u|t〉λ= 〈u|p(λ, λ)|t〉. 2

〈uX|v〉 = 〈u|vX∗〉〈uX|v〉 = 〈u|X∗v〉

?x1 − x2x1 − x2

Adjoint

Pf. Put 〈u, v|t〉 := 〈u, v〉, p = x1 − x2.0 = 〈u, v|p(X,X∗)|t〉 = 〈uX, v〉 − 〈u, vX∗〉 2Convenience use xa to denote left action.

〈λu|v〉 = λ〈u|v〉 = 〈u|λv〉 {x1 − x0, x2 − x0} Bilinear

〈uX|vX〉 = 〈u|v〉 {x1x2 − 1, x0 − 1} Isometry

ω(u ∗ v) = ω′(u) ∗ ω′′(v) x1x2 − x0 Homotopism

(u · v)δ = uδ · v + v · vδ? x1 + x2 − x0 Derivation?

-7

Page 58: Tools To Tame Tensors - Colorado State University

Examples of satisfaction

Identity Polynoimal Operator

(uλ)f = (uf)λ x1 − x0 Linear

Pf. Put 〈u|t〉 := uf , p = x1 − x0.0 = (uλ)f − (uf)λ

= 〈uλ|t〉 − 〈u|t〉λ= 〈u|p(λ, λ)|t〉. 2

〈uX|v〉 = 〈u|vX∗〉〈uX|v〉 = 〈u|X∗v〉

?x1 − x2x1 − x2

Adjoint

Pf. Put 〈u, v|t〉 := 〈u, v〉, p = x1 − x2.0 = 〈u, v|p(X,X∗)|t〉 = 〈uX, v〉 − 〈u, vX∗〉 2Convenience use xa to denote left action.

〈λu|v〉 = λ〈u|v〉 = 〈u|λv〉 {x1 − x0, x2 − x0} Bilinear

〈uX|vX〉 = 〈u|v〉 {x1x2 − 1, x0 − 1} Isometry

ω(u ∗ v) = ω′(u) ∗ ω′′(v) x1x2 − x0 Homotopism

(u · v)δ = uδ · v + v · vδ? x1 + x2 − x0 Derivation?

-7

Page 59: Tools To Tame Tensors - Colorado State University

Examples of satisfaction

Identity Polynoimal Operator

(uλ)f = (uf)λ x1 − x0 Linear

Pf. Put 〈u|t〉 := uf , p = x1 − x0.0 = (uλ)f − (uf)λ

= 〈uλ|t〉 − 〈u|t〉λ= 〈u|p(λ, λ)|t〉. 2

〈uX|v〉 = 〈u|vX∗〉〈uX|v〉 = 〈u|X∗v〉

?x1 − x2x1 − x2

Adjoint

Pf. Put 〈u, v|t〉 := 〈u, v〉, p = x1 − x2.0 = 〈u, v|p(X,X∗)|t〉 = 〈uX, v〉 − 〈u, vX∗〉 2Convenience use xa to denote left action.

〈λu|v〉 = λ〈u|v〉 = 〈u|λv〉 {x1 − x0, x2 − x0} Bilinear

〈uX|vX〉 = 〈u|v〉 {x1x2 − 1, x0 − 1} Isometry

ω(u ∗ v) = ω′(u) ∗ ω′′(v) x1x2 − x0 Homotopism

(u · v)δ = uδ · v + v · vδ? x1 + x2 − x0 Derivation?

-7

Page 60: Tools To Tame Tensors - Colorado State University

Examples of satisfaction

Identity Polynoimal Operator

(uλ)f = (uf)λ x1 − x0 Linear

Pf. Put 〈u|t〉 := uf , p = x1 − x0.0 = (uλ)f − (uf)λ

= 〈uλ|t〉 − 〈u|t〉λ= 〈u|p(λ, λ)|t〉. 2

〈uX|v〉 = 〈u|vX∗〉〈uX|v〉 = 〈u|X∗v〉

?x1 − x2x1 − x2

Adjoint

Pf. Put 〈u, v|t〉 := 〈u, v〉, p = x1 − x2.0 = 〈u, v|p(X,X∗)|t〉 = 〈uX, v〉 − 〈u, vX∗〉 2Convenience use xa to denote left action.

〈λu|v〉 = λ〈u|v〉 = 〈u|λv〉 {x1 − x0, x2 − x0} Bilinear

〈uX|vX〉 = 〈u|v〉 {x1x2 − 1, x0 − 1} Isometry

ω(u ∗ v) = ω′(u) ∗ ω′′(v) x1x2 − x0 Homotopism

(u · v)δ = uδ · v + v · vδ? x1 + x2 − x0 Derivation?

-7

Page 61: Tools To Tame Tensors - Colorado State University

Examples of satisfaction

Identity Polynoimal Operator

(uλ)f = (uf)λ x1 − x0 Linear

Pf. Put 〈u|t〉 := uf , p = x1 − x0.0 = (uλ)f − (uf)λ

= 〈uλ|t〉 − 〈u|t〉λ= 〈u|p(λ, λ)|t〉. 2

〈uX|v〉 = 〈u|vX∗〉〈uX|v〉 = 〈u|X∗v〉

?x1 − x2x1 − x2

Adjoint

Pf. Put 〈u, v|t〉 := 〈u, v〉, p = x1 − x2.0 = 〈u, v|p(X,X∗)|t〉 = 〈uX, v〉 − 〈u, vX∗〉 2Convenience use xa to denote left action.

〈λu|v〉 = λ〈u|v〉 = 〈u|λv〉 {x1 − x0, x2 − x0} Bilinear

〈uX|vX〉 = 〈u|v〉 {x1x2 − 1, x0 − 1} Isometry

ω(u ∗ v) = ω′(u) ∗ ω′′(v) x1x2 − x0 Homotopism

(u · v)δ = uδ · v + v · vδ? x1 + x2 − x0 Derivation?

-7

Page 62: Tools To Tame Tensors - Colorado State University

S ⊂ T , P ⊂ K[X], ∆ ⊂∏a End(Va).

N(P (∆)) = {t : P (∆) |t〉 = 0}I(∆;S) = {p : p(∆) |S〉 = 0}

Z(P ∗ S) = {ω : p(ω) |S〉 = 0}.

Correspondence Theorem. First-Maglione-W.

N(P (∆)) is a subspace, I(∆;S) is an ideal, Z(P ∗ S) is an affine-zeroset. They satisfy:

S ⊂ N(P (∆)) ⇔ P ⊂ I(∆;S) ⇔ ∆ ⊂ Z(P ∗ S).

-6

Page 63: Tools To Tame Tensors - Colorado State University

Tensor-Ideal-Operator correspondence

Tensors

S

N(P (∆))

Operators

Z(P ∗ S)

Ideals

P

I(∆;S)

-5

Page 64: Tools To Tame Tensors - Colorado State University

Immediate consequences of tensortheory

Page 65: Tools To Tame Tensors - Colorado State University

Densors

Page 66: Tools To Tame Tensors - Colorado State University

Derivations Der(S) and densors ISJ are:

Der(S) =⋂s∈S

{δ : 〈v|s〉δ =

∑a

〈va, vaδ|s〉

}.

ISJ = {t : Der(S) ⊂ Der(t)}.

Densors are the universal linear tensor space (FMW)

Let |K| > n. If P = (p1, . . . , pm), pi =∑

a λiaxa, & ∀a∃i, λai 6= 0, then

Z(P ∗ S) ↪→ Der(S) ISJ ↪→ N(P (Z(P ∗ S))).

Page 67: Tools To Tame Tensors - Colorado State University

Weakly-associative product on End(V ) means ∃(s, t) ∈ P1(K):

ω • τ = sωτ + tτω.

All linear tensor spaces are over Lie algebras (FMW)

If p = λ0x0 + · · ·+ λnxn then

1 Z(p ∗ t) ↪→∏a gl(Va) as a Lie subalgebra.

2 If Z(p ∗ t) admits a weakly-associative product in every componentthen all but at most 2 components are Lie.

3 Z(p ∗ t) admits an associative product if, and only if, n ≤ 1.

Page 68: Tools To Tame Tensors - Colorado State University

Low rank densors are the things we call“simple”

Tensor Dim. Tensor Space Dim. Densor

abc-Matrix multiplication a2b2c2 1Azumaya algebras dim3A 1Irred. sl2-modules 3d2 1Irred. An-modules O(n2d2) 1Irred. Bn-modules O(n2d2) 1Irred. G2-modules 14d2 1

Octonions 512 1Albert Algebras 19683 5

And many more collapse as well.

Page 69: Tools To Tame Tensors - Colorado State University

Singularities

Page 70: Tools To Tame Tensors - Colorado State University

All across finite and infinite geometry products without singularitiesare the building blocks. They are hard to find.

Thm. (FMW)

Fix an infinite field. For every point 〈U | in the product ofGrassmannians

∏aG(Va, ka), let

$(〈U |) = {π : π2 = π, im π = 〈U |}.

Then I($(〈U |); t) is a radical monomial ideal. FurthermoreI($(〈U |); t) = (0) if, and only if, 〈v|t〉 6= 0.

Singularities have structure!

Page 71: Tools To Tame Tensors - Colorado State University

Singularity manifolds for · : R2 × R2 � R

[1 00 1

][

(0) (x1x2)(x1x2) (0)

][

0 1−1 0

][(x1x2) (0)

(0) (x1x2)

][1 00 0

][

(0) (x2)(x1) (x1, x2)

][0 00 0

][(x1, x2) (x1, x2)(x1, x2) (x1, x2)

]

Page 72: Tools To Tame Tensors - Colorado State University

Geometry

Manifolds

Flows

Physics

Algebra

Products

Iso-morphismtesting

Filters

SimpleObjects

ComputerScience

P v. NP

Big Data

Tensors

Singularity

Operators& Densor

Algorithms

Page 73: Tools To Tame Tensors - Colorado State University

Summary

Mathematicians, Computer Scientist, and Data Sciences arestruggling to understand tensors.

New Perspective:

Tensors: a 2-category where nearly all non-associative techniquesapply.Tensor analysis, algebraic geometry, and operator theory are incorrespondence.

Current Applications

Tensors products are universal over Lie algebras.Simple non-associative constructions are small rank densors.Singularity manifolds now explore tensors as geometries.

Page 74: Tools To Tame Tensors - Colorado State University

Open Problems

1 Find a quadratic variation for characteristic 2.

2 Classify rank 1 densor spaces.

3 Develop characters, blocks, and reciprocity theorems.

4 Better understanding of nonsingular tensors.

Page 75: Tools To Tame Tensors - Colorado State University

The affect of singular operators on a the shape of a tensor.

δ2

T

+

δ◦1

T= δ0

T


Recommended