+ All Categories
Home > Documents > Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2....

Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2....

Date post: 06-Nov-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
17
Top Quark Pair Production Cross Section Combination Evelyn Thomson University of Pennsylvania CDF Collaboration with Richard Hughes (OSU) & Charles Plager (UCLA) Joint Meeting of the Pacific Region Particle Physics Communities Honolulu, Hawai’i Higgs, Top, W & Z Physics Parallel Session Monday 30 October 2006 15:10
Transcript
Page 1: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

Top Quark Pair ProductionCross SectionCombination

Evelyn ThomsonUniversity of Pennsylvania

CDF Collaborationwith Richard Hughes (OSU) & Charles Plager (UCLA)

Joint Meeting of the Pacific Region Particle Physics CommunitiesHonolulu, Hawai’i

Higgs, Top, W & Z Physics Parallel SessionMonday 30 October 2006 15:10

Page 2: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

Pair production

LHCTevatron

x= fraction of proton’s momentumcarried by parton

uudd

gg

Collide parton constituents of protonand (anti-)proton

If partons have enough energy,strong interaction can produce pairof massive (mtop=175 GeV/c2) top quarksq Tevatron: proton on anti-proton

0.98 TeV beam energy, x>0.1890% uubar or ddbar, 10% gg

q LHC: proton on proton7 TeV beam energy, x>0.02510% uubar or ddbar, 90% gg

uu

Page 3: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

Theoretical predictionCalculate parton-level cross sectionsin perturbative QCD with completenext-to-leading order (NLO) Feynmandiagramsq 5% uncertainty from standard

variation of hard process scalefrom ½ mtop to 2 mtop

Requires proton parton densitiesq 7% uncertainty, driven by gluon

PDF at large x

Assumes value for top quark massq Significant dependence rather

than uncertainty7.46.75.81758.77.86.8170

Predicted σ (pb)Min Central Max

mtop

(GeV/c2)

Leading order Feynman diagrams

Cacciari et al. JHEP 0404:068 (2004)Kidonakis & Vogt PRD 68 114014 (2003)

Tevatron √s=1.96 TeV

Page 4: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

Experimental observationIn standard model, top quark decays to Wb with width 1.4 GeV

Dilepton (11%)Z+jets, WWPRL 93, 142001 (2004)

Lepton+Jets (44%)W+jetsPRD 72, 052003 (2005)PRL 97, 082004 (2006)PRD 72, 032002 (2005)PRL 96, 202002 (2006)

All-hadronic (46%)Multi-jet QCDhep-ex/0607095

l+ν

b

b

ν

l -

t

tW-

W+q2

q1

b

b

νl -

t

t

W-

W+q2

q1

b

b

q4

q3

t

tW-

W+

Signal BR:Background:

Many measurements in different final states (and stages!)Here we present preliminary combination of 6 different measurements

Will discuss 3 measurements in lepton+jets in more detail

Page 5: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

Combination method

ALN

AAAL

NN

bkg

bkgobs

dds

dsds

s

=

=

-=

q Use BLUE Method: best linear unbiased estimateq Lyons, L. et al, NIM A270 (1988) 110-117q Lyons, L. et al, PRD 41, 3 (1990) 982-985q Valassi, A, NIM A500 (2003) 391

q Need to construct covariance matrixq Statistical uncertaintiesq Systematic uncertaintiesq Statistical correlationsq Systematic correlations

q Invert matrix and obtain weights for each measurement

Evaluate acceptance-like uncertaintiesfor all results wrt combined xs value (3 iterations)

Background uncertaintyfor each result does not depend on xs value

Checked combined value really isan unbiased estimate

with toy MC pseudo-experiments

Page 6: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

Lepton+Jets: kinematicsSelection: lepton pT>20 GeV/c, missing ET>20 GeV, ≥3 jets ET>15 GeV

Dominant background from W+jets with 10x rate of Z+jets and realmissing energy, but on average less energeticDiscriminate with 7 input artificial neural network

ttbar model: PYTHIA/HERWIGq 9% uncertainty on fitted signal due to

signal variation with jet energy scaleq 5% systematic on signal selection

efficiency

W+jets model: leading-order matrix elementparton shower ALPGEN+HERWIGq 11% uncertainty on fitted signal due to

background variation with hard scatterscale (Q2) definitionqQ2=MW

2+ΣpT2 different for each event

qQ2=MW2 same for every event

%jets)tBR(tε 7»+®´ l

Page 7: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

≥1 b-tagged jet

Lepton+Jets: b-taggingIdentify b and reduce background as only few % of W+jets

contain jets from b or c quarks

Lepton pT>20 GeV/cMissing ET>20 GeV≥3 jets ET>15 GeVHT>200 GeV

2D displacement of secondary vertex (cm)

Identify muon90% efficient for b→μ+X (BR 11%)10% systematic on b-tag efficiency

10% systematic on backgroundfrom false positives estimated byparameterized tag rate per jet

Muon pT (GeV/c)

%jets)tBR(tε 4»+®´ l %jets)tBR(tε 1»+®´ l

Identify displaced secondary vertex50% efficient for inclusive b decay6% systematic on b-tag efficiency

25% systematic on W+HF backgroundMCHFW

tagbMCjetsW

MCHFWdatajetsWdataHFW

tag-b+

-+

+++ ´´= e

NNNN

Page 8: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

Lepton+Jets: statistical correlationEstimate statistical correlation between 3 results due to overlap inselected events by construction of toy MC experiments with sameintegrated luminosity as data sampleq For each experiment, generate number of signal (background)

events in base sample from Poisson with mean equal to expectednumber of events for signal (background)

q Apply efficiency of b-tag requirements for signal (background) toconstruct subsets for b-tag samples

q Also track correlation between neural network output, secondaryvertex b-tag, muon b-tag, and HT requirement

q Estimate cross-section for each result

Find statistical correlation ofq 41% between kinematics and secondary vertex b-tagq 18% between kinematics and muon b-tagq 21% between secondary vertex and muon b-tag

Stable to 5% to reasonable changes in make-up of toy MC experiments

Page 9: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

Summary of 6 measurements

4.21.83.41.11.11.9Stat & Syst (pb)

+0.511

9.6-

5.8-

7.4

1.58.3

750

Dilepton Lepton+Jets

311311194695760Integratedluminosity (pb-1)

-1.132

10.99.25.8-

4.5

0.66.0

Kinematics

-26250Weight (%)+0.2-0.6-0.6+0.9Pull

5.85.85.85.8Luminosity (%)

42.0-

7.822.4

1.78.0

All-hadronic

6.15.38.2Result (pb)1.23.30.6Statistical (pb)

10.013.03.4Background (%)---Signal model (%)

5.88.7

MissingET +jets

9.56.3b-tag (%)6.35.5Acceptance (%)

Muonb-tag

Secondaryvertexb-tag

Syst

emat

icU

ncer

tain

ties

100% correlated

statistically correlated

Page 10: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

Combination resultCombine all six measurements

7.32±0.86 pbBreaking out statistical, systematicand luminosity uncertaintiesaccording to BLUE prescription inValassi et al.NIM A 500 (2003) 391-405

7.32±0.47(stat) ±0.57(syst)±0.43(lumi)pb

χ2 is 4.9 for 5 degrees of freedom.Probability is 42% to have lessconsistent set of measurements

1.00All-hadronic

0.150.170.080.401.00Kinematics

0.270.330.091.00Secondary vertex b-tag

0.060.071.00Muon b-tag

0.181.00Missing ET+jets

0.22

SVXb-tag

0.07

Muonb-tag

0.17

Kin

0.15

MET

0.14Dilepton

HADTotal Correlation

Page 11: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

Answers to likely questionsBreakdown of 0.57 pb systematic uncertaintyq Acceptance 0.39 pbq Secondary vertex b-tag 0.25 pbq Background estimate 0.32 pbqKinematics signal model 0.18 pbqKinematics W+jets model 0.20 pb

What is consistency of two best lepton+jets measurements, with b-tagging (secondary vertex) and without b-tagging (kinematics)?q Statistical correlation estimated to be 41%q Acceptance uncertainty (5%) correlatedq Secondary vertex b-tag efficiency (6%) uncorrelatedq Background estimates (3% and 14%) uncorrelated

From combination, find 7% probability for less consistentmeasurements than those observed

Page 12: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

Dependence on top quark mass

Note that experimental selection efficiency (A) decreasesas value assumed for top quark mass decreases

ALNN bkgobs -

=s

Page 13: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

Summary & OutlookPreliminary combination of 6 measurements in dilepton, lepton+jets,and all-hadronic channels leads to 12% uncertainty

When compared to single best measurementq 20% improvement in uncertaintyq 10% improvement in relative uncertainty

Excellent agreement with theoretical predictionq Equivalent precision between theory and experiment!

Paper in preparation on combination of published measurements

CDF measurements with higher integrated luminosity and reducedsystematic uncertainties in preparationq Muon b-tag and all-hadronic recently updated (not included here)q Other measurements will be updated soon

7.3 ± 0.5(stat) ± 0.6(syst) ± 0.4(lumi) pb

Page 14: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

Back-up

Page 15: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

Dilepton

e+

e-

ET = 72 GeV

ET = 56 GeV

ET = 35 GeVJet 1

Jet 2ET = 34 GeV

MET = 40 GeV

Dilepton Candidate

Mee = 118 GeV/c2 and HT = 255 GeV

e+

e-

ET = 72 GeV

ET = 56 GeV

ET = 35 GeVJet 1

Jet 2ET = 34 GeV

MET = 40 GeV

Dilepton Candidate

Mee = 118 GeV/c2 and HT = 255 GeV

q 64 candidates in 750/pbq 10% uncertainty on

background estimateq 7% uncertainty on signal

selection efficiency

%dilepton)tBR(tε 7.0»®´

Page 16: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

Neutrino+Jets All-hadronicMulti-jet trigger

Secondary vertex b-tagBackground estimate from b-tag rate per jet

4jets 5jets 6jets 7jets 8jets

B-ta

gged

jets

B-ta

gged

jets

%jets)tBR(tε 4»+®´ n %)tBR(tε 3hadronicall »-®´

Significant missing ET≥4 jets and no electron/muon

Kinematic selection≥6 jets

Page 17: Top Quark Pair Production Cross Section Combinationthomsone/2006_1030_dpf_v5-1.pdf · 2007. 2. 14. · 10% uubar or ddbar, 90% gg u. Theoretical prediction Calculate parton-level

W+HF fractionq Tevatron: MCFM study of W/Z+HF fractionqStable between LO and NLOqAlmost independent of scale

MCFM (Tevatron) hep-ph/0202176 (LHC) hep-ph/0308195


Recommended