+ All Categories
Home > Documents > Towards an energy efficient and climate compatible future ......0. 5. 10. 15. 20. 25. 1990. 1995....

Towards an energy efficient and climate compatible future ......0. 5. 10. 15. 20. 25. 1990. 1995....

Date post: 20-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
30
| | 1 Towards an energy efficient and climate compatible future Swiss transportation system SCCER School 2017 October 20, 2017 - Engelberg Presentation: Lukas Küng, PhD Candidate of LAV Energy Systems Research Group Material: L. Küng, G. Georges, K. Boulouchos, SCCER Mobility Lukas Küng 20.10.17
Transcript
  • || 1

    Towards an energy efficient and climate compatible future Swiss transportation systemSCCER School 2017October 20, 2017 - Engelberg

    Presentation: Lukas Küng, PhD Candidate of LAV Energy Systems Research GroupMaterial: L. Küng, G. Georges, K. Boulouchos, SCCER Mobility

    Lukas Küng 20.10.17

  • The current Situation

  • ||

    Why focus on Mobility? large impact

    Transportation Sector (relative to other sectors): highest CO2 emissions

    2015 (BAFU): 45.6% of national emissions (incl. int. aviation)

    0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

    other sectorsothers

    Source: BAFU CO2-Statistik, April 2017 & BFS Gesamtenergiestatistik der Schweiz 3Lukas Küng 20.10.17

  • ||

    0

    5

    10

    15

    20

    25

    1990 1995 2000 2005 2010 2015

    Ann

    ual C

    O2

    emis

    sion

    (dire

    ct) [

    Mt/y

    r]

    Source: BAFU, Entwicklung der Treibhausgasemissionen der Schweiz 1990-2015, https://www.bafu.admin.ch/dam/bafu/de/dokumente/klima/fachinfo-daten/entwicklung_der_emissionenvontreibhausgasenseit1990april2016.xlsx.download.xlsx/entwicklung_der_emissionenvontreibhausgasenseit1990.xlsx

    Service and businesses

    Industrie

    Households

    + +Mobility (incl. int. aviation)

    4Lukas Küng 20.10.17

    Why focus on Mobility? large impact

    https://www.bafu.admin.ch/dam/bafu/de/dokumente/klima/fachinfo-daten/entwicklung_der_emissionenvontreibhausgasenseit1990april2016.xlsx.download.xlsx/entwicklung_der_emissionenvontreibhausgasenseit1990.xlsx

  • ||

    Why focus on Mobility? large impact

    Transportation Sector (relative to other sectors): highest CO2 emissions

    2015 (BAFU): 45.6% of national emissions (incl. int. aviation)

    highest demand in final energy2015 (BFS): 36% of national energy demand (households: 27.7%)

    extreme dependency on fossil products2015 (BFS): 95.1% of energy demand based on oil

    0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

    other sectorsothers

    0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

    diesel gasoline kerosene

    electricity

    gas + other renewables

    Source: BAFU CO2-Statistik, April 2017 & BFS Gesamtenergiestatistik der Schweiz 5Lukas Küng 20.10.17

  • ||

    0

    10

    20

    30

    40

    50

    60

    70

    80

    Hydrogen Gasoline Diesel LPG Ethanol CNG Li-ion Battery

    Ener

    gy c

    arrie

    r vol

    ume

    and

    mas

    s

    kg L

    energycarriermass and volumefor travelling 100 km

    ~5 h

    ~1.3 h

    ~15 s

    Liquid fuels have both excellent

    specific and volum. energy densities

    Liquid fuels are easy to handle and

    contain

    Refueling is > 1000 times faster than

    recharging

    6

    Liquid hydrocarbon fuels a perfect match for mobile applications

    Lukas Küng 20.10.17

  • Trends / Evolution business as usual

  • ||Source: A. Schäfer, D.G. Victor, The future mobility of the world population, Transp. Res. Part A Policy Pract. 34 (2000) 171–205.

    8Lukas Küng 20.10.17

    Evolution of mobility demand? average travel budget +/- global constant

  • ||Source: A. Schäfer, D.G. Victor, The future mobility of the world population, Transp. Res. Part A Policy Pract. 34 (2000) 171–205.

    9Lukas Küng 20.10.17

    Time is BIP independent, Distance is not wealth leads to increasing mobility demand

  • ||Source: ARE, Perspektiven des Schweizerischn Personen und Gütervverkehrs bis 2040 10Lukas Küng 20.10.17

    Switzerland national transport perspectives

  • KlimapolitikClimate policy Road to sustainability

  • ||

    Time horizon for decarbonizing: CO2 Budget

    IPCC 2°C (66%) world carbon budget in 2010: 1000 Gt CO2

    «per-capita» distribution results in 1.14 Gt CO2 for Switzerland

    Assuming linear reduction: Budget will last until 2060

    Road-based mobility sector must contribute with same rate

    12Lukas Küng 20.10.17

  • ||

    The 3 levers for CO2 reduction in mobility sector

    13Lukas Küng 20.10.17

    «Mobility-pricing»Spatial planningTeleworking/shopping«Sharing»Improved Components«Light weighting»Smaller vehiclesHybridization

    Natural GasSynthetic fuelsHydrogenElectricity

    year

    ~15 years

    decades

  • KlimapolitikIs it really so easy?

  • || 15Lukas Küng 20.10.17

  • KlimapolitikWe need strategic planningWhat are potential impacts?

  • ||

    Mobility system consisting of demand and supply Bottom-up representation

    Focus on: Passenger cars Isolated Interventions: change of “status-quo”, apply to the maximum No rebound effects, technology acceptance or costs are considered Cost function: Additional electricity consumption of mobility sector

    What are maximum reduction potentials?

    useful energy end energyvkm CO2

    PE

    17Lukas Küng 20.10.17

  • ||

    Demand: Mikrozensus Mobilität und Verkehr 2010National survey on Mobility Demand: profiles, weighting factors and vehicle information

    Observed demand(daily mobility) 62’000 people

    Aggregate on National Level(annual, population)

    MassFuel typeDisplacement volume….

    18Lukas Küng 20.10.17

  • ||

    From vkm to final energy Vehicle Energy Demand Simulation

    Aim: fast but based on physical concepts Propulsive vehicle force:

    Require Driving Cycle (NEDC, WLTP) Conversion Efficiency based on mean

    Willans-Approach dynamometer measurements of Empa

    𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣, �̇�𝑣 = 𝒎𝒎𝑽𝑽 ⋅ �̇�𝒗 +12⋅ 𝜌𝜌𝑎𝑎𝑎𝑎𝑚𝑚 ⋅ 𝒄𝒄𝒅𝒅 ⋅ 𝑨𝑨𝒇𝒇 ⋅ 𝒗𝒗2 + 𝒄𝒄𝒓𝒓 ⋅ 𝒎𝒎𝑽𝑽 ⋅ 𝑔𝑔

    Rolling resistance (𝐹𝐹𝑚𝑚𝑚𝑚𝑎𝑎𝑟𝑟 )

    Aerodynamic drag (𝐹𝐹𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 )

    Acceleration (𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎)

    Rb_3 Rb_2

    Rb_1

    EUDC

    CADC_3BAB

    Ra_1

    Ra_2

    CADC_2Ra_3

    FTP_3CADC_1

    FTP_2

    y = 2.9215x + 6.3174R2 = 0.9971

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0 5 10 15 20 25 30

    Mean pos. wheel-power in kWM

    ean

    chem

    . pow

    er in

    kW

    45%

    35%30%25%20%15%

    19Lukas Küng 20.10.17Source: C. Bach, P. Soltic, CO2 Reduction and Cost Efficiency Potential of Natural Gas Hybrid Passenger Cars, SAE International (2011) 1-10.

  • KlimapolitikExample:Change in Mobility behavior

  • ||

    Demand: short car trips bicycle

    21Lukas Küng 20.10.17

  • KlimapolitikExample:Change in Mobility supply

  • ||

    Status-Quo:Diesel + Gasoline

    1) Hybridization:Substitute entire fleet

    2) Fuel Switch to CNG

    Intervention: Hybridization and compressed natural gas (CNG)

    23Lukas Küng 20.10.17

  • ||

    Status-Quo:Diesel + Gasoline

    Battery electric vehiclesSubstitute where possible

    Intervention: Battery electric vehicles (BEV)

    24Lukas Küng 20.10.17

  • ||

    Gas hybrid

    Plug-in gas hybrid vehicles:Substitute entire fleet

    Intervention: Plug-in hybrid electric gas vehicles (PHEV CNG)

    25Lukas Küng 20.10.17

  • ||

    Status-Quo:Diesel + Gasoline

    Fuel cell electric vehicles:Substitute entire fleet

    Intervention: Fuel cell electric vehicles (FCEV)

    26Lukas Küng 20.10.17

  • ||

    Alternative technologies exist for passenger cars! Two reduction paths: evolutionary and disruptive

    Main challenges: Costs and speed of transition Infrastructure

    Passenger cars ≈ 15 years Trucks & busses ≈ 10-20 years Ships & airplanes ≈ 20-30 years Electricity generation & power plants ≈ 20-50 years

    Acceptance and availability (policy) Large burden for electricity supply;

    parallel evolution of energy supply and mobility sector required

    Alternative technologies

    27Lukas Küng 20.10.17

  • ||

    Alternative technologies exist for passenger cars! Two reduction paths: evolutionary and disruptive

    Not addressed: effects of vehicle usage, life time and embedded emissions

    Important: passenger cars are one part of the mobility sector Heavy-duty freight trucks transportation occurs globally

    International Aviation Maritime freight transport

    Alternative technologies

    28Lukas Küng 20.10.17

  • ||

    Long-range, heavy-duty global transport modes

    Mode /sector

    2010 share of transport GHG

    emissions

    Growth 2010-2015

    Projected increase 2030(compared to 2010)

    Projected share 2030 (if all other transport sector

    emissions stay constant)

    Passengerair travel 10.6% 37.5% (pkm) 3.57 x 27%

    Maritimefreight 9.3% 23.1% (tkm) 2.3 x 16%

    source: IPCC 2014

    Direct electrification not possible in these two sectors renewable chemical energy carriers (H2, CxHy) will be a MUST

    The global challenge

    Lukas Küng 20.10.17 29

  • ||

    Decarbonization of the transport sector is an absolute necessity, but also a huge challenge (in Switzerland and worldwide)

    Innovation on both the demand and supply side must be pursued in parallel

    Technology will be crucial – evolutionary and disruptive paths must be well orchestrated for optimal CO2 reduction trajectories

    Socio-economic policy must be designed in line with these targets

    Conclusion & Outlook

    30Lukas Küng 20.10.17

    Towards an energy efficient and climate compatible future Swiss transportation systemThe current Situation�Why focus on Mobility?� large impactSlide Number 4Why focus on Mobility?� large impactLiquid hydrocarbon fuels� a perfect match for mobile applicationsTrends / Evolution� business as usualSlide Number 8Slide Number 9Slide Number 10KlimapolitikTime horizon for decarbonizing: CO2 Budget�The 3 levers for CO2 reduction in mobility sector �KlimapolitikSlide Number 15KlimapolitikWhat are maximum reduction potentials?�Demand: Mikrozensus Mobilität und Verkehr 2010�National survey on Mobility Demand: profiles, weighting factors and vehicle informationFrom vkm to final energy� Vehicle Energy Demand SimulationKlimapolitikDemand: short car trips bicycleKlimapolitikIntervention: Hybridization and compressed natural gas (CNG) Intervention: Battery electric vehicles (BEV)�Intervention: Plug-in hybrid electric gas vehicles (PHEV CNG)Intervention: Fuel cell electric vehicles (FCEV)�Alternative technologies�Alternative technologies�Slide Number 29Slide Number 30


Recommended