+ All Categories
Home > Documents > Towardsdatadrivensimulaonsofwildfirespread( using(ensemble ... · Flame Wind Pyrolysis Slope ......

Towardsdatadrivensimulaonsofwildfirespread( using(ensemble ... · Flame Wind Pyrolysis Slope ......

Date post: 06-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
1
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 x (m) 50 78 106 134 162 190 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0 0.4 0.8 1.2 1.6 2 x (m) 1 2 3 4 5 6 7 8 9 0.1 0.2 0.3 0.4 0.5 0.6 !""#$#%&'#() +,+%- + 0 10 20 30 40 50 60 0.05 0.1 0.15 0.2 0.25 0.3 * 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 0 0.4 0.8 1.2 1.6 2 x (m) y (m) Towards datadriven simula2ons of wildfire spread using ensemblebased data assimila2on M. Rochoux 1,2 , JM. Bart 1 , S. Ricci 1 , B. Cuenot 1 , A. Trouvé 3 1 CERFACS / CNRSURA1875, Toulouse, France. An eye on wildfire spread modeling 2 Ecole Centrale Paris, ChâtenayMalabry, France. 3 Dept. of Fire ProtecNon Engineering, University Rochoux et al., Proc. Combust. Inst., 34, in press Fundings !"#$% '(%) #* +,")(- Γ ./"$% 1. Flamescale CFD (research) Detailed simulaNons of the mechanisms underlying fire spread. MulNphysics mulNscales problem: complex interacNons of pyrolysis, combusNon and flow dynamics, atmospheric dynamics. 2. Regionalscale operaNonal model Fire spread described as a 1D front line spreading. 2 1 contact: [email protected] Objec2ve: Reduce uncertainNes in the rate of fire spread model Coupling of pyrolysis, combusNon and flow dynamics processes. High computaNonal cost. PredicNve capability of the fire spread simulaNons. CompaNbility with operaNonal framework. Issues: Burnt fuel Radiation Flame Wind Pyrolysis Slope Model of rate of spread (Rothermel, 1972): empirical funcNon of a reduced number of parameters wind slope fuel layer depth fuel moisture content fuel parNcle S/A ANR09COSI006 IDEA LEFEASSIM (INSU) Data assimilaNon algorithm Principles: integrate observaNons of fire front locaNons into a fire spread computaNonal model Fire spread model Levelset front tracking technique. Progress variable c as flame marker. c t = Γ|c| account for the effects of both observaNon and modeling errors. esNmate opNmal set of parameters in the rate of spread model (inverse problem). Model feedback Γ !"#$% '#()*#$ c =0 c =1 c fr =0.5 2. StochasNc computaNon of the covariance matrices and (accounNng for non lineariNes in the fire spread model). Ensemble Kalman Filter (EnKF) algorithm !"#$%&'()*# ,)*-%). /'%'0$-$%# 1203.'()*# 42%$ #/%$'5 0)5$. 6*#$0".$ 7'.0'* 42.-$% '.8)%2-90 " y o x x + H (x ) x x 4. ArNficial parameter evoluNon (Moradkhani, 2005). 1. Monte Carlo basedtechnique: predicted fire front posiNons associated with ensemble of prior parameters (members). x + = x + C xy C yy + C y o y o y o + ξ H (x ) C xy C yy Allow for a temporal correcNon of the model parameters 3. CalculaNon of retrospecNve posterior esNmates of the control parameters . x + Results: Datadriven wildfire spread model STEP.1 ValidaNon: syntheNc observaNons generated using specified values of the coefficient P (case in which the true Nmevarying value of P is known) ObservaNon generated each 50 s. 1parameter esNmaNon Fire igniNon as a circular front. Rate of spread > 1 cm/s. true prior posterior true CYCLE 1 prior posterior STEP.2 Controlled grassland fire under moderate wind condiNons (R. Paugam, King’s College of London): fire front observaNons extracted from thermal infrared imaging. 4parameter esNmaNon (1024 members) Rate of spread ~ 1 cm/s. ObservaNon error: 5 cm (camera spaNal resoluNon). 48 members observaNons ASSIMILATION (t = 78 s) prior posterior DATA: arrival Nmes (s) t = 78 s ReducNon of the uncertainty on forecast. Bejer tracking of the observed fronts. Result: Improvement of the forecast fire front posiNon Physical parameters stay within physical range. Polynomial Chaos approach Ongoing research Extension of the control vector to the posiNons of the fire front. Use a surrogate model of the observaNon operator to reduce the computaNonal cost of the EnKF algorithm. ApplicaNon to more realisNc cases of fire spread. ObservaNon error standard deviaNon (m) Mean of the posterior esNmates (1/s) σ o 9 CYCLES 48 members =5m σ o AssimilaNon cycle Mean of the posterior esNmates (1/s) FORECAST (t = 106 s) !"#$%&'() +,-./0&'() 1(/#&% 2"/.3'() OSSE framework VegetaNon layer thickness ~ 1 m σ b = 0.05 s 1 t = 106 s u w Σ M f Γ = P u w , α sl ,M f , Σ δ
Transcript
Page 1: Towardsdatadrivensimulaonsofwildfirespread( using(ensemble ... · Flame Wind Pyrolysis Slope ... ICEMGS12_poster Author: Melanie Rochoux Created Date: 11/5/2012 2:04:31 PM ...

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

x (m)

y (m

)

50

78

106

134

162

190

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.20

0.4

0.8

1.2

1.6

2

x (m)

y (m

)

1 2 3 4 5 6 7 8 9

0.1

0.2

0.3

0.4

0.5

0.6

!""#$#%&'#()*+,+%-*+#

.-&)*(/*'0-*+()'1(%*2&1&$-'-1"*3"4 5

0 10 20 30 40 50 600.05

0.1

0.15

0.2

0.25

0.3

!"#$%&'()*+,$%%*%,#('+-'%-,-$&)'()*+, *,./0

1$'+,*2,(3$,4*#($%)*%,$#()/'($#,.#

5 0

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.20

0.4

0.8

1.2

1.6

2

x (m)

y (m

)

Towards  data-­‐driven  simula2ons  of  wildfire  spread  using  ensemble-­‐based  data  assimila2on

M.  Rochoux1,2,  J-­‐M.  Bart1,  S.  Ricci1,  B.  Cuenot1,  A.  Trouvé31CERFACS  /  CNRS-­‐URA1875,  Toulouse,  France.

An  eye  on  wildfire  spread  modeling

2Ecole  Centrale  Paris,  Châtenay-­‐Malabry,  France.3Dept.  of  Fire  ProtecNon  Engineering,  University  

Rochoux  et  al.,  Proc.  Combust.  Inst.,  34,  

in  press  

➡  Fundings  

!"#$%&'(%)&#*&+,")(-&Γ

./"$%&

0$1/"$%&

1.  Flame-­‐scale  CFD  (research)‣  Detailed  simulaNons  of  the  mechanisms  underlying  fire  spread.

➡  MulN-­‐physics  mulN-­‐scales  problem:  complex  interacNons  of  pyrolysis,  combusNon  and  flow  dynamics,  atmospheric  dynamics.

2.  Regional-­‐scale  operaNonal  model‣  Fire  spread  described  as  a  1-­‐D  front  line  spreading.

21

➡  contact:  [email protected]

➡  Objec2ve:  Reduce  uncertainNes  in  the  rate  of  fire  spread  model

‣  Coupling  of  pyrolysis,  combusNon  and  flow  dynamics  processes.‣  High  computaNonal  cost.

•  PredicNve  capability  of  the  fire  spread  simulaNons.•  CompaNbility  with  operaNonal  framework.

➡  Issues:

Burnt fuel

Radiation

Flame Wind

Pyrolysis

Slope

‣  Model  of  rate  of  spread  (Rothermel,  1972):  empirical  funcNon  of  a  reduced  number  of  parameters

•  wind   •  slope

•  fuel  layer  depth

•  fuel  moisture  content•  fuel  parNcle  S/A

•  ANR-­‐09-­‐COSI-­‐006  IDEA•  LEFE-­‐ASSIM  (INSU)

Data  assimilaNon  algorithm➡  Principles:  integrate  observaNons  of  fire  front  locaNons  into  a  fire  spread  computaNonal  model  

➡  Fire  spread  model‣  Level-­‐set  front  tracking  technique.‣  Progress  variable  c  as  flame  marker.

∂c

∂t= Γ|∇c|

•  account  for  the  effects  of  both  observaNon  and  modeling  errors.•  esNmate  opNmal  set  of  parameters  in  the  rate  of  spread  model  (inverse  problem).

Inverse  problemModel  feedback

ObservaNon  operator  H

Γ

!"#$%&'#()*#$&c =0

c =1

cfr =0.5

2.  StochasNc  computaNon  of  the  covariance  matrices                      and                        (accounNng  for  non-­‐lineariNes  in  the  fire  spread  model).

➡  Ensemble  Kalman  Filter  (EnKF)  algorithm

!"#$%&'()*#+

,)*-%).+/'%'0$-$%#+ 1203.'()*#+42%$+#/%$'5+0)5$.!

6*#$0".$+7'.0'*+42.-$%+'.8)%2-90+

!"!

yo

x−

x+

H(x−)

x−

x−

4.  ArNficial  parameter  evoluNon  (Moradkhani,  2005).  

1.  Monte  Carlo  based-­‐technique:  predicted  fire  front  posiNons  associated  with  ensemble  of  prior  parameters              (members).

x+ = x− +Cxy

�Cyy +Cyoyo

��yo + ξ −H(x−)

Cxy Cyy

➡  Allow  for  a  temporal  correcNon  of  the  model  parameters

3.  CalculaNon  of  retrospecNve  posterior  esNmates  of  the  control  parameters              .x+

Results:  Data-­‐driven  wildfire  spread  model➡  STEP.1  -­‐  ValidaNon:  syntheNc  observaNons  generated  using  specified  values  of  the  coefficient  P  (case  in  which  the  true  Nme-­‐varying  value  of  P  is  known)  

‣  ObservaNon  generated  each  50  s.‣  1-­‐parameter  esNmaNon  

‣  Fire  igniNon  as  a  circular  front.

‣  Rate  of  spread  >  1  cm/s.

true

prior

posterior

trueCYCLE  1

prior

posterior

➡  STEP.2  -­‐  Controlled  grassland  fire  under  moderate  wind  condiNons  (R.  Paugam,  King’s  College  of  London):  fire  front  observaNons  extracted  from  thermal  infrared  imaging.‣  4-­‐parameter  esNmaNon  (1024  members)‣  Rate  of  spread  ~  1  cm/s.‣  ObservaNon  error:  5  cm  (camera  spaNal  resoluNon).

48  members

•  observaNons

ASSIMILATION  (t  =  78  s)-­‐  prior-­‐  posterior

DATA:  arrival  Nmes  (s)

t  =  78  s

•  ReducNon  of  the  uncertainty  on  forecast.•  Bejer  tracking  of  the  observed  fronts.

➡  Result:  Improvement  of  the  forecast  fire  front  posiNon

•  Physical  parameters  stay  within  physical  range.

•  Polynomial  Chaos  approachOngoing  research

•  Extension  of  the  control  vector  to  the  posiNons  of  the  fire  front.

‣  Use  a  surrogate  model  of  the  observaNon  operator  to  reduce  the  computaNonal  cost  of  the  EnKF  algorithm.

•  ApplicaNon  to  more  realisNc  cases  of  fire  spread.

ObservaNon  error  standard  deviaNon              (m)

Mean  of  the  posterior  esNmates  

(1/s)

σo

9  CYCLES48  members

=  5  mσo

AssimilaNon  cycle

Mean  of  the  posterior  esNmates  

(1/s)

FORECAST  (t  =  106  s)

!"#$%&'()*

+,-./0&'()*

1(/#&%*2"/.3'()*

‣  OSSE  framework‣  VegetaNon  layer  thickness  ~  1  m

σb =  0.05  s-­‐1

t  =  106  s

uw

ΣMf

Γ = P�uw,αsl,Mf ,Σ

�δ

Recommended