+ All Categories
Home > Documents > Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang,...

Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang,...

Date post: 23-Dec-2015
Category:
Upload: jessie-webb
View: 222 times
Download: 5 times
Share this document with a friend
Popular Tags:
25
Transistor and Circuit Design Transistor and Circuit Design Optimization for Low-Power CMOS Optimization for Low-Power CMOS By By M.Chang, M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For the Low-Power High-Sped VLSI ELEC 5705Y W-2009
Transcript
Page 1: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

Transistor and Circuit Design Optimization Transistor and Circuit Design Optimization for Low-Power CMOSfor Low-Power CMOS

By By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.DiazC.Diaz

Presented By:

Mozammel Haque

For the Low-Power High-Sped VLSI

ELEC 5705Y

W-2009

Page 2: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

ContentsContents

■ Introduction

■ Low power techniques

■ Procedures/Discussion

• Transistor Scaling

• Circuit Design techniques for static leakage and

active-power management

■ Conclusion

■ References

Page 3: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

IntroductionIntroduction

■ Transistor scaling has been a highly successful method for

Silicon technology

■ CMOS technology scaling has now moved to a power constrained condition.

■ Circuit techniques to reduce chip standby leakage has

become a key enabler

■ Scaling is a trading off performance and leakage

■ Different circuit design techniques to optimize the delay and leakage are discussed in this paper.

■ Along with continued scaling, hybrid materials and new process technologies are also recent research interest to balance leakage and delay.

Page 4: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

Low Power TechniquesLow Power Techniques■ General Good Design PracticesGeneral Good Design Practices

■ Transistor sizingTransistor sizing

■ Process shrinkProcess shrink

■ Voltage scalingVoltage scaling

■ Clock gating/transition reductionClock gating/transition reduction

■ Power down testability blocks when not in the test modePower down testability blocks when not in the test mode

■ Power down the functional blocksPower down the functional blocks

■ Minimize sequential elementsMinimize sequential elements

■ Downsize all non-critical path circuitsDownsize all non-critical path circuits

■ Reduce loading on the clockReduce loading on the clock

■ ParallelismParallelism

■ Adiabatic circuitsAdiabatic circuits

Page 5: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

DiscussionsDiscussions

1 Transistor Scaling

A. Power Supply Voltage & Gate-Oxide Thickness

B. Drive Current and Performance

C. Structural and Material Fundamental Limits and

Implications

2. Circuit Design for Leakage - and Active-Power Management

A. Active-Power management

B. Leakage-Power management

C. Multi-Vt Transistors

D. Power-Supply Voltage Scaling

E. Transistor Stacking and Power-supply Gating

F. Dynamic Body Biasing

G. Non-minimum Channel Length

Page 6: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

1.1. Transistor ScalingTransistor Scaling

A. Power Supply Voltage & Gate-Oxide Thickness:

■ VDD was kept constant at 5V from 2 -um to 0.5- um technology

• Continued geometrical scaling resulted very high electric field, power

dissipation, raised performance concerns.

■ VDD and Vt tend to scale by same factor to limit drive-current degradation

• But Vt scaling results in an exponential increase of the OFF-state leakage

and therefore standby power. As a result,

■ Technology scaling has driven in an increase of the gate-

dielectric nominal operating fields.

■ Exponential increasing of gate tunneling current has prevented any significant gate-dielectric scaling since 90-nm node.

Page 7: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

Transistor Scaling Transistor Scaling Cont…Cont…

Power-supply scaling, operating electric-field,and Current trends as a Power-supply scaling, operating electric-field,and Current trends as a

function of toxfunction of tox::

Page 8: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

B.B. Drive Current and Performance Drive Current and Performance

For digital applications, higher Id and lower CAre the key factors for CMOS circuit performance

Current (Id) factor:■ High performance demand has driven Idsat to

increase in each generation • through Vt scaling • mobility enhancement techniques (channel

orientation, strained –silicon technique)

■ In traditional CMOS inverter delay model, Idsat is overly optimistic which causes the

delay lower. This is not accurate to project circuit performance.

■ Instead of Idsat, an effective current Ideff is proposed which is more appropriate during switching of an inverter . The expected ratio

of Ideff/Idsat is approx. 0.6. Ideff considers the relevance of SCE control as well as Vdd,Vt

scaling

dsat

CV

I

/2( ) (1 )

2n

dsat GS T DS

K WI V V V

L

L

2, (Vgs=Vdd, Vds=Vdd /2)

I Ids, (Vgs=Vdd/2,Vds=Vdd)

H Leff

H ds

I II

I I

=Cl*Vdd(1/Ideff,n+1/Ideff,p)

deff ,I ((3 ) / 4 )oc invC W Vdd Vt

Page 9: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

Current factor Cont…Cont…

■ The approach of Ideff accurately captures the delay behavior of non-traditionally scaled devices, where mobility and Vt/ Vdd are scaled in neither a regular nor uniform manner.■ It reflects well the slow

down on speed scaling of a conventional CMOS.

Fig.2. The inverter gate-delay trend projections in conventional Idst model and new Ideff approach

The inverter gate-delay trend projections in conventional Idsat model and new Ideff approach.

Page 10: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

Capacitance factor:

■ Capacitance is another important factor for CMOS speed.

■ Gate-length scaling will continue reduction on CG but not on Cparasitic.

■ Scaling of Ctotal is not warranted due to non-scaling parasitic capacitance.

■ For the 32-nm node and beyond, breakthroughs will be required to continue capacitance scaling trend to sustain/maximize performance improvement as well as the reduction of the intrinsic active power per unit speed.

2

Total G parasitic

G GC OV

C C C

C C C

Fig. Capacitance scaling trend

Page 11: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

CC. . Structural and Material Fundamental Limits and Structural and Material Fundamental Limits and ImplicationsImplications

■ Scaling for 22-nm and beyond, the control of channel sub-threshold leakage has become a very challenging task.

■ When oxide thickness was scaled down to ~1.5nm, standby and active power increases.

■ The use of high-k/MG dielectric can help to scale the electrical oxide

thickness(EOT) without reduction of physical dielectric thickness.

■ Choice of such materials is the high research interest in CMOS technology

■ To slow down the scaling of EOT and Vdd novel substrates/or stressors used

■ Hybrid –orientation is studied.

■ SiGe,GePMOS,GaAs, InGaAs have been proposed

■ Ultrathin body or multigate devices may be needed

■ High mobility channel material is another option.

Page 12: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

A. Active-Power management

B. Leakage-Power management

C. Multi-Vt Transistors

D. Power-Supply Voltage Scaling

E. Transistor Stacking and Power-supply Gating

F. Dynamic Body Biasing

G. Non-minimum Channel Length

2.2. Circuit Design for Leakage - and Active-Power Circuit Design for Leakage - and Active-Power ManagementManagement

Page 13: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

A.A. Active-Power ManagementActive-Power Management

■ Total power dissipation • Active power ( for switching)

• Direct path/Short circuit ( ramp input)

• Static power • DC power

• Sub-threshold leakage

■ In CMOS ,Active power dissipation is more dominant resulting from charging and discharging capacitances during function evaluation by the circuit blocks.

■ Active-power can be reduced by the following techniques: • Dynamic frequency-scaling(DFS)

Lower performance: lower fHigher performance: higher f

• Dynamic voltage-scaling(DVS)Lower performance: lower VHigher performance: higher V, Circuit functionality must be checked

2activeP CfV

2( ) ( )activeP DFS Cf t V

2( ) ( ) ( )activeP DVS Cf t V t

Page 14: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

Active-Power ManagementActive-Power Management Contd..Contd..

• Circuit-Partitioning:

• Dividing the circuit into smaller blocks

• Exploring the criticality of the block timing

• Raising the power-supply voltage for critical blocks

• Lowering the power-supply voltage for non-critical blocks.

• Due to different power-supply voltage the signal swing would be different as well.So,

• Level shifters should be added between these blocks to ensue that proper signaling is carried out.

Disadvantages:

• The power grid becomes more complicated

• Additional good-resolution voltage regulator is required

• Balancing performance and power is also critical.

2active i i ii

P C fV

Page 15: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

B.B. Leakage-Power ManagementLeakage-Power Management

Leakage power, Pleakage is the static power consumption when circuit is not

switching.

■ Leakage current is a function of Vt, Vds (Vgs=0), input state,input registers

■ It’s dominated by sub-threshold current

■ With a large number of inputs and registers, it is rather difficult to approximate leakage power.

■ Finding the maximum and minimum bounds of the leakage power is non-deterministic polynomial-time.

■ Input Vector Controls (IVC) can be exploited to minimize the leakage current.

■ Given a state with higher probability to occur,circuit can be designed to minimize leakage power. It could be done with proper gate-input-ordering.

, :

: tan

leakage t tP N where N number of transistors

approximation cons t

Page 16: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

C.C. Multi-Vt TransistorsMulti-Vt Transistors

■ Sub-threshold current strongly depends on Vt. So,

■ Different Vt transistors can be used for performance and leakage-power tradeoff.

• For lower leakage current but : Gates with high Vt transistors

lower performance( more delay)

• For higher performance( less delay) : Gates with low Vt transistors

but larger leakage current ,critical path.

■ For dual Vt transistors leakage power reduction can be reformulated as

■ For top critical path, more low Vt transistors should be used but it will contribute to leakage-power

■ For lowering leakage-power high Vt transistors should be used

/

/

, , , ,

( ), (sin )

:

/ ( ) / ( / )( / ) ( / )( / )

/ ( / ( / ) / )

leakage L L H H leakage t

leakage leakage L L H H t L L t H H t

off L off t L t off H off L H t

P N N dual Vt P N gle Vt

Leakage power reduction

P P N N N N N N N

I I N N I I N N

Page 17: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

Multi-Vt Transistors cont…..Multi-Vt Transistors cont…..

■ Placing a medium third Vt transistor between the low-Vt and high-Vt device can enable further leakage - power reduction. For 3- Vt transistors leakage power reduction is

■ Low –Vt transistors NL should be smaller than the dual - Vt transistors approach in order to see a further leakage-power reduction.

■ Its seen that multiple Vt’s can attain

a greater leakage-power reduction

while minimizing the circuit area,

and at the same time meeting the

performance goal.

//, , , ,/ / ( / )( / ) ( / )( / )leakage leakage L t off M off L M t off H off L H tP P N N I I N N I I N N

Page 18: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

D.D. Power-Supply Voltage ScalingPower-Supply Voltage Scaling

■ Power-supply –voltage scaling is effective in reducing both

• Active-power

• Leakage power

■ DVS(dynamic voltage scaling) approach would help to achieve the goals.

■ Supply-voltage lower limit (Vccmin) is dictated by functionality of the circuit.

■ Example Dual power-supply SRAM

• Vdd_bit for bit –cell array

• Vdd_core for peripheral /core logic.

• Vdd_bit is fixed at regular voltage

• Vdd_core can be lower to reduce

dynamic power

• Power reduction by 20%-40%

Page 19: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

EE. Power-supply Gating. Power-supply Gating

■ To reduce standby-leakage, power gating by header/footer is a popular method where all parts of circuit are not functioning all the time, and nonfunctioning parts can be turned off. Footer/header can be controlled by a sleep signal

■ Two types of power gating:

• Coarse-grain: Turning off a footer/header would turn off a block of circuit.

• small area overhead, larger leakage reduction

• Fine-grain : Turning off a footer/header would turn off a single gate

• faster wake-up time

Fig. Fine grainFig. Coarse-grain

Page 20: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

Power-supply Gating cont….Power-supply Gating cont….■ To further reduce the leakage for coarse-grain header/footer

• Source biasing or reduced power –supply voltage in standby mode can be

applied

• During switching, there would be voltage drop across footer transistor which

reduces effective Vds and Ids as well

■ Footer/header should be optimized to balance performance and leakage loss.

■ Optimization is more complicated in coarse-grain approach.

Fig. Source bias and reduced power supply for coarse-grain

Page 21: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

FF. Dynamic Body-Biasing. Dynamic Body-Biasing

Threshold voltage Vt:

■ Vt can be modulated by applying different Vsb:

• Vsb<0, Vt increases, Id decreases

So, less leakage, more delay( lower performance)

• Vsb>0, Vt decreases, Id increases

So, more leakage, less delay( higher performance)

■ Like Dynamic voltage scaling(DVS) circuit can be partitioned as

• Timing critical blocks with Vsb>0

• Other blocks with Vsb<0

■ Transistor body effect, γ is crucial in the effectiveness of this dynamic body- biasing approach.

( | 2 | | 2 |)T TO F SB FV V V

Page 22: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

G.G. Non-minimum Channel Length Non-minimum Channel Length■ Sub-threshold current (Ioff, Ion) reduces with larger channel length( Lg)

■ Longer channel (Lg>Lnominal ) is effective in reducing sub-threshold leakage in trading off small performance and area. But it might increase gate and junction leakage.

■ In deep sub-micron process, gate and junction leakage is dominant in HVT device leakage. So, longer channel is not useful for HVT dominant designs. Its only useful for LVT and SVT dominant designs.

■ This concept can be implemented

in library design level by offering

nominal and super-nominal standard

cells.

■ Transistors in standard cells can be

swapped from nominal Lg to

longer Lg to reduce leakage.

Page 23: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

ConclusionsConclusions

■ Standby leakage and active power have become the key issue of continued CMOS transistor scaling.

■ For low-power design, one needs to consider energy dissipation, speed, area, and design–time.

■ Good design is required in trading off performance and leakage.

■ This paper reviewed circuit design techniques and the corresponding implications on transistor optimization from the leakage and active-power management perspective.

Page 24: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

ConclusionsConclusions

■ Standby leakage and active power have become the key issue of continued CMOS transistor scaling.

■ For low-power design, one needs to consider energy dissipation, speed, and area.

■ Good design is required in trading off performance and leakage.

■ This paper reviewed few key circuit design techniques and the corresponding implications on transistor optimization from the leakage and active-power management perspective.

Page 25: Transistor and Circuit Design Optimization for Low-Power CMOS By M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz Presented By: Mozammel Haque For.

ReferencesReferences

[1] M.Chang, C.Chang,C.Chao,K.Goto,M.Leong,L.Lu,and C.Diaz, “Transistor- and Circuit-Design Optimization for Low-Power CMOS”, IEEE Transactions on Electron Devices, January 2008.

[2] M.Horowitz,E.Alon,D.Patil,S.Naffziger,R.Kumar,and K.Bernstein, “Scaling,power,and the future of CMOS”, in IEDM Tech. Dig.,2005 pp.11-17

[3] A.Khakifirooz and D.A.Antoniadis, “Transistor performane scaling: The role of virtual source velocity and its mobility dependence”, in IEDM Tech. Dig., 2006.pp.667-670

[4] P.Gupta,A.B,Kahang,P.Sharma,and D. Sylvester, “ Gate-length biasing for runtime leakage control”, IEEE Trans. Comput. Aided Design Integr. Circuits Syst., vol.25,no.8,pp.1475-1485,Aug.2006

[5] J.Rabaey,A.Chandrakasan, and B.Nikolic, “ Digital Integrated Circuits A Design Perspective”, 2nd ed, Prentice Hall,2003

[6] Y.Taur, “CMOS design near the limit scaling”, IBM Journal of Research and Dev.,Vol. 46, number 2/3,2002


Recommended