+ All Categories
Home > Documents > Transparent Conducting Oxide Electro-Optic Modulators: A...

Transparent Conducting Oxide Electro-Optic Modulators: A...

Date post: 17-Mar-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
62
http://photonics.ee.auth.gr G. Sinatkas 1 , D. C. Zografopoulos 2 , A. Pitilakis 1 , R. Beccherelli 2 , E. E. Kriezis 1 1 Dept. of Electrical & Computer Engineering, Aristotle University of Thessaloniki, Greece 2 Istituto per la Microelettronica e Microsistemi, Consiglio Nazionalle delle Ricerche (CNR-IMM), Rome, Italy 18 th European Conference on Integrated Optics 18 20 May, 2016 Warsaw, Poland SESSION #6 - ACTIVE DEVICES Transparent Conducting Oxide Electro-Optic Modulators: A Comprehensive Study based on the Drift-Diffusion Semiconductor Model
Transcript

http://photonics.ee.auth.gr

G. Sinatkas1, D. C. Zografopoulos2, A. Pitilakis1, R. Beccherelli2, E. E. Kriezis1

1Dept. of Electrical & Computer Engineering, Aristotle University of Thessaloniki, Greece

2Istituto per la Microelettronica e Microsistemi, Consiglio Nazionalle delle Ricerche (CNR-IMM), Rome, Italy

18th European Conference on Integrated Optics 18 – 20 May, 2016 – Warsaw, Poland

SESSION #6 - ACTIVE DEVICES

Transparent Conducting Oxide Electro-Optic Modulators:

A Comprehensive Study based on the Drift-Diffusion Semiconductor Model

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Presentation Outline

2

Introduction

Transparent Conducting Oxides (TCOs)

TCO-based Electro-Optic Modulation

Motivation & Main Objectives

Multiphysics Modeling Framework

Solid-State Physics

Electromagnetic Modeling

SOI-based TCO Modulators

Silicon Rib Platform

Silicon Slot Platform

Summary & Conclusions

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Introduction

Transparent Conducting Oxide Electro-Optic Modulation

3

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Transparent Conducting Oxides

Introduction

4

Material n (cm-3) λp (μm)

Ag 5.86x1022 0.14

ITO 6.17x1020 1.55

n-InSb 4.00x1018 14.0

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Transparent Conducting Oxides

Introduction

5

Material n (cm-3) λp (μm)

Ag 5.86x1022 0.14

ITO 6.17x1020 1.55

n-InSb 4.00x1018 14.0

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

ITO @ 1.55 μm

TCO-based Electro-Optic Modulation

Introduction

6

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Principle of TCO-based Electro-Optic Modulation

Switch between states of low and high mode loss by modulating the free-carrier concentration in the TCO

ENZ Effect: The guided modes polarized normally to the TCO layer suffer from increased losses (discontinuity of the electric field normal component)

ITO @ 1.55 μm

TCO-based Electro-Optic Modulation

Introduction

7

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Principle of TCO-based Electro-Optic Modulation

Switch between states of low and high mode loss by modulating the free-carrier concentration in the TCO

ENZ Effect: The guided modes polarized normally to the TCO layer suffer from increased losses (discontinuity of the electric field normal component) Low loss (ON state) Dielectric region, non = 1019 cm-3

ITO @ 1.55 μm

TCO-based Electro-Optic Modulation

Introduction

8

ON

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Principle of TCO-based Electro-Optic Modulation

Switch between states of low and high mode loss by modulating the free-carrier concentration in the TCO

ENZ Effect: The guided modes polarized normally to the TCO layer suffer from increased losses (discontinuity of the electric field normal component) Low loss (ON state) Dielectric region, non = 1019 cm-3 High Loss (OFF state) ENZ region, noff ~ 6x1020 cm-3

ITO @ 1.55 μm

TCO-based Electro-Optic Modulation

Introduction

9

ON

OFF

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Principle of TCO-based Electro-Optic Modulation

Switch between states of low and high mode loss by modulating the free-carrier concentration in the TCO

ENZ Effect: The guided modes polarized normally to the TCO layer suffer from increased losses (discontinuity of the electric field normal component) Low loss (ON state) Dielectric region, non = 1019 cm-3 High Loss (OFF state) ENZ region, noff ~ 6x1020 cm-3

ITO @ 1.55 μm

TCO-based Electro-Optic Modulation

Introduction

10

How can we control the TCO free-carrier concentration after fabrication? Using an external electric field attract/repel carriers forming accumulation/depletion regions

ON

OFF

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Motivation

Addressable and versatile TCO properties

Simplifications in describing semiconductor physics employing averaging or approximate techniques

Inaccuracy in bridging the gap between solid-state and wave physics

Understudied silicon-photonic platforms comprising TCOs

Main Objectives

Establish a comprehensive, multiphysics modeling framework for TCO-based devices

Design novel, high-performing, SOI-based TCO modulators comprising ITO

Motivation & Main Objectives

Introduction

11

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Multiphysics Modeling Framework

Solid-State & Wave Physics

12

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

13

Schematic Diagram

Multiphysics Modeling Framework

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

14

Schematic Diagram

Multiphysics Modeling Framework

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

15

Schematic Diagram

Multiphysics Modeling Framework

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

16

Schematic Diagram

Multiphysics Modeling Framework

Finite Element Method (FEM) Platform– COMSOL Multiphysics® Software

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Semiconductor Materials: Drift-Diffusion (DD) Model

Charge Conservation Law (Poisson Equation)

Current Conservation Laws

17

Solid-State Physics

Multiphysics Modeling Framework

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Semiconductor Materials: Drift-Diffusion (DD) Model

Charge Conservation Law (Poisson Equation)

Current Conservation Laws

DD Current Expressions

18

Solid-State Physics

Multiphysics Modeling Framework

Fermi-Dirac Carrier Distributions Essential for degenerately doped semiconductors such as TCOs

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Semiconductor Materials: Drift-Diffusion (DD) Model

Insulating Materials Laplace Equation

Charge Conservation Law (Poisson Equation)

Current Conservation Laws

DD Current Expressions

19

Solid-State Physics

Multiphysics Modeling Framework

Fermi-Dirac Carrier Distributions Essential for degenerately doped semiconductors such as TCOs

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Semiconductor Materials: Drift-Diffusion (DD) Model

Insulating Materials Laplace Equation

Boundary Conditions Semiconductor/Insulator Interfaces

Voltage Source Contacts

Charge Conservation Law (Poisson Equation)

Current Conservation Laws

DD Current Expressions

20

Solid-State Physics

Multiphysics Modeling Framework

Fermi-Dirac Carrier Distributions Essential for degenerately doped semiconductors such as TCOs

Ideal Ohmic

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

21

The n-Si/HfO2/ITO Junction

Multiphysics Modeling Framework

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

22

The n-Si/HfO2/ITO Junction

Multiphysics Modeling Framework

ND, Si = 1018 cm-3 increase

silicon conductivity

ND, ITO = 1019 cm-3 maintain

low wave losses (low loss ITO

dielectric behavior)

Positive bias Accumulation Layers

Negative bias Depletion Layers

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

23

The n-Si/HfO2/ITO Junction

Multiphysics Modeling Framework

ND, Si = 1018 cm-3 increase

silicon conductivity

ND, ITO = 1019 cm-3 maintain

low wave losses (low loss ITO

dielectric behavior)

Positive bias Accumulation Layers

Negative bias Depletion Layers

Va > Vth = 3V ENZ region

EO Modulation: Toggle between 0 & >3V

nEZ = 6.17x1020

Vth = 3V

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

24

Schematic Diagram

Multiphysics Modeling Framework

Finite Element Method (FEM) Platform

Model for ITO Drude-like permittivity expression

[Kulkarni & Knickerbocker, J. Vac. Sci. Technol. A, 1996]

Model for Silicon [Soref & Bennett, IEEE J. Quantum Electron., 1987] [Nedeljkovic et al., IEEE Photon. J., 2011]

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

25

Schematic Diagram

Multiphysics Modeling Framework

Finite Element Method (FEM) Platform

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

SOI-based TCO Modulators

Si-rib & Si-slot Platforms

26

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

SOI Platforms

27

Silicon Rib (Si-rib)

SOI-based TCO Modulators

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

SOI Platforms

28

Silicon Rib (Si-rib)

SOI-based TCO Modulators

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

SOI Platforms

29

Silicon Rib (Si-rib)

SOI-based TCO Modulators

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

SOI Platforms

30

Silicon Rib (Si-rib)

SOI-based TCO Modulators

Silicon Slot (Si-slot)

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

SOI Platforms – Degrees of Freedom

31

Silicon Rib (Si-rib)

SOI-based TCO Modulators

Silicon Slot (Si-slot)

Electrostatic Study

Rib Silicon access for biasing

5nm HfO2 layer

1018 cm-3 n-Si doping

Wave Study

1019 cm-3 ITO doping

Geometry Effect

Eigenmode Solver

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Guided Modes & Polarization

32

TE

IL 0.02 dB/μm

IL 0.01 dB/μm

TM

SOI-based TCO Modulators

Si-slot Pros & Cons

Confinement Field Enhancement Fabrication

Challenges

ND,ITO=1019 cm-3

Performance

Silicon Rib TM < Silicon Rib TE < Silicon Slot

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Geometric Effect – Primary & Secondary Parameters

33

SOI-based TCO Modulators

Si-Rib TE

Primary w

Secondary h

Si-Rib TM

Primary h

Secondary w

Si-Slot

Primary w, g

Secondary h

w

w

g

h

Only the field components normal to ITO undergo the ENZ effect

TE

TM

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Two-Step Design Algorithm

34

Step 1

1D Cut Line Studies (Parallel to Polarization Vector)

Primary Parameters

Step 2

2D Cross-Sectional Studies (Fixed Primary Parameters) Secondary Parameters

SOI-based TCO Modulators

Modulation Performance Evaluation Criteria

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

TE mode – 1D: Silicon width, w

35

w

Silicon Rib Platform

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

TE mode – 1D: Silicon width, w

36

w

Silicon Rib Platform

Ex Horizontal Cut

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

TE mode – 1D: Silicon width, w

37

1D Electrostatics

w

Silicon Rib Platform

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

TE mode – 1D: Silicon width, w

38

1D Electrostatics

w 1D Eigenmode Solver

Silicon Rib Platform

|Ex|

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

TE mode – 1D: Silicon width, w

39

1D Electrostatics

w 1D Eigenmode Solver

0 V

5 V

Vth

Silicon Rib Platform

|Ex|

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

TE mode – 1D: Silicon width, w

40

1D Electrostatics

w w

1D Eigenmode Solver

ER 0.40 dB/μm

w = 180nm

Silicon Rib Platform

IL 0.03 dB/μm

Same Trend

|Ex|

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

TE mode – 2D: Silicon height, h

41

Silicon Rib Platform

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

TE mode – 2D: Silicon height, h

2D Electrostatics

Silicon Rib Platform

180nm

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

2D Eigenmode Solver

TE mode – 2D: Silicon height, h

43

2D Electrostatics

Silicon Rib Platform

180nm

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

2D Eigenmode Solver

TE mode – 2D: Silicon height, h

44

2D Electrostatics

Silicon Rib Platform

180nm

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

2D Eigenmode Solver

TE mode – 2D: Silicon height, h

45

2D Electrostatics

Silicon Rib Platform

180nm

ER 0.30 dB/μm

IL 0.03 dB/μm

Voff = 4V

h = 220nm

Complies with standard TE Si-photonic

waveguide dimensions (e.g. 400x220nm2)

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

TM mode – 1D: Silicon height, h

46

1D Electrostatics

h

1D Eigenmode Solver

Vth

ER 0.30 dB/μm

h = 200nm

Silicon Rib Platform

IL 0.03 dB/μm

Same Trend

|Ey|

h

200nm

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

2D Eigenmode Solver

TM mode – 2D: Silicon width, w

47

2D Electrostatics

Silicon Rib Platform

w

ER 0.25 dB/μm

IL 0.02 dB/μm

Increasing w values:

Low IL maintenance

Higher ER Shorter device lengths, L

Weak effect on energy consumption

Voff = 4V

w = 400nm

Reduced device length

200nm

w

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Silicon slot – 1D: Silicon width, w

48

Silicon Slot Platform

w

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Silicon slot – 1D: Silicon width, w

Silicon Slot Platform

Ex Horizontal Cut

w

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Silicon slot – 1D: Silicon width, w

50

1D Electrostatics

Silicon Slot Platform

w

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Silicon slot – 1D: Silicon width, w

1D Electrostatics

1D Eigenmode Solver

Silicon Slot Platform

|Ex|

w

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Silicon slot – 1D: Silicon width, w

52

1D Electrostatics

1D Eigenmode Solver

0 V

5 V

Vth

Silicon Slot Platform

|Ex|

w

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Silicon slot – 1D: Silicon width, w

53

1D Electrostatics

1D Eigenmode Solver

w

ER 1.60 dB/μm

w = 180nm

Silicon Slot Platform

IL 0.01 dB/μm

Same Trend

|Ex|

w

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Silicon slot – 1D: Slot width, g

54

1D Electrostatics

1D Eigenmode Solver

ER 1.60 dB/μm

w = 180nm

Silicon Slot Platform

IL 0.01 dB/μm

Opposite Trend!

g

g = 20nm

g

20nm

Vth

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Silicon Slot – 2D: Silicon height, h

55

Silicon Slot Platform

Fix w=180nm & g=20nm 180nm

20nm

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Silicon Slot – 2D: Silicon height, h

56

2D Electrostatics

Silicon Slot Platform

180nm

20nm

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

2D Eigenmode Solver

Silicon Slot – 2D: Silicon height, h

57

2D Electrostatics

Silicon Slot Platform

ER 1.10 dB/μm

IL 0.01 dB/μm

Increasing h values:

No impact on IL

Higher ER Shorter device lengths, L

Weak effect on energy consumption

Voff = 4V

h = 240nm

Minimal energy consumption

180nm

20nm

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Si-rib & Si-slot – Design & Performance Comparison

58

SOI Platforms

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

Transparent Conducting Oxides

Tunable NIR properties by free-carrier concentration changes

Promising for applications in photonics (properties altering from dielectric to metallic)

ENZ effect in the NIR Electro-Optic modulators

Multiphysics Modeling Framework

Rigorous model developed instead of approximate techniques by integrating Solid-State physics and

Wave physics on a unified FEM platform

SOI-based TCO Electro-Optic Modulators

Si-rib Waveguide engineered for weak waveguiding (FoM not applicable)

TE-mode 0.30 (0.40) dB/μm ER & 0.03 dB/μm IL [0.11 & 0.045 dB/μm, Vasudev et al., Opt. Express, 2013]

TM-mode 0.25 (0.30) dB/μm ER & 0.02 dB/μm IL

Si-slot Waveguide engineered for strong waveguiding (FoM applicable)

Slot mode 1.10 (1.60) dB/μm ER & 0.01 dB/μm IL

What about bandwidth?

10% – 90% rise-time estimated around 2ps bandwidth exceeds 100GHz!

59

Summary & Conclusions

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

60

Thank you!

[email protected]

http://photonics.ee.auth.gr

http://photonics.ee.auth.gr

G. Sinatkas1, D. C. Zografopoulos2, A. Pitilakis1, R. Beccherelli2, E. E. Kriezis1

1Dept. of Electrical & Computer Engineering, Aristotle University of Thessaloniki, Greece

2Istituto per la Microelettronica e Microsistemi, Consiglio Nazionalle delle Ricerche (CNR-IMM), Rome, Italy

Transparent Conducting Oxide Electro-Optic Modulators:

A Comprehensive Study based on the Drift-Diffusion Semiconductor Model

Backup Material

ECIO 2016 – Warsaw • Georgios Sinatkas, Dept. of ECE, AUTH – Greece

62

Temporal Response – Silicon Slot

tr ~ 2ps 10%

90%

Backup Material


Recommended