+ All Categories
Home > Documents > Transthyretin

Transthyretin

Date post: 02-Nov-2015
Category:
Upload: prabaningrum-dwidjoasmoro
View: 218 times
Download: 0 times
Share this document with a friend
Description:
journal reading
15
 !"#$%# '()# )*#%# +#, -$.#% $/# -$/) (0 $' $%%1.'2#') 0(/ $ ./$34$)# 5(4/%# 1' 637$'5#3 81(5*#21%)/9 $'3 :("#54"$/ 81("(.9 8;:8<=>= $) )*# ?'17#/%1)9 (0 @#(/.1$A B4#%)1('% %*(4"3 ,# 31/#5)#3 )( C$%(' :(5D >  $)  "#$%&'()*+,-*./+ 0(-12345(.361  7823(-$3 0(-12345(.361 62 - 2.(+" 9(#3.61: $46.;<5 25134.26=./ 61 34. <6>.(: ?4#2. ;+1$36#1 62 #; >63-< 6"9#(3-1$. 3# ".3-8#<62": $.<<+<-( /6;;.(.136-36#1: -1/ /.>.<#9".13* 0(-12345(.361 9(6"-(6<5 2.(>.2 -2 - 3(-129#(3 9(#3.61 ;#( 34. 345(#6/ 4#("#1. 345(#)61.: 34. "#23 -8+1/-13 #; -<< #; 34. 345(#6/ 4#("#1.2 9(#/ +$./ 61 34. 8#/5* @#?.>.(: 3(-12345(.361 $-1 -<2# ;#(" - $#"9<.) ?634 (.361#< 861/61, 9(#3.61 3# -22623 61 34. 3(-129#(3 #; (.361#<* 045(#)61. 62 - 9(#4#("#1.: ".-161, 34-3: -<34#+,4 63 62 -$36>. 3# 2#". .)3.13: 63 62 - 9(.$+(2#( 3# - "#(. -$36>. 4#("#1. $-<<./ 3(66#/#34 5(#161.* A#34 4#("#1.2 -(. -$36>. 61 34.6( ;(.. ;#("2: ?46$4 62 9 (.$62.<5 ?45 3(-12345(.361 62 2# 6"9#(3-13* B.22 34-1 CD #; -<< #; 34. 345(#)61. 2.$(.3./ 613# 34. 8<##/ 23(.-" 62 ;(..: ?46<. 34. (.23 62 8#+1/ 85 #1. #; 34(.. 3(-129#(3 9(#3.612E 3(-12345(.361: 345(#)61.F861/61, ,<#8+<61: #( 2.(+" -<8+"61* 0462 36,43 (.,+<-36#1 #; 34. 345(#6/ 4#("#1.2 %..92 ".3-8#<62" -1/ $.<<+<-( /.>.<#9".13 ;+1$36#161, 9(#9.(<5* G3(+$3+(-<<5: 3(-12 345(.361 62 26"9<.: 5.3 8.-+36;+<* H3 62 - 4#"#3.3(-".( 34 -3 62 "-/. +9 #; ;#+( "#1#".(2 34 -3 -(. CIJ (.26/+.2 .-$4* K-$4 "#1#".( $ #126232 9(6"-(6<5 #; ! 24..32: 8+3 .-$4 #1. -<2# $#13-612 - 261,<. " 4.<6)* @5/(#94#86$ 613.(-$36#12 8.3?..1 34. ! 24..32 <.1/ #1. "#1#".( 3# ;#(" - 23(+$3+(-< "#36; ?634 -1#34.( "#1#".( "  #$%&'(& )'*$% +$(, -.' /0'.12 0$(,3456789'7/:8  $5 &5':.&.$%'1 0'.12 ;/<'5&0/%& $= >?'50'(/8&.('1 '%: @.$0/:.('1 A(./%(/* B%.-/5*.&C $= D/$59.' EFG H/*& D5//% A&5//& I&?/%*J D/$59.' KGLGEMEKFE
Transcript
  • Pleasenotethesewebpagesarepartofanassignmentfora

    graduatecourseinAdvancedBiochemistryandMolecularBiology

    BCMB8010attheUniversityofGeorgia.Questionsshouldbe

    [email protected]

    Transthyretin Abstract

    Transthyretinisaserumprotein,chieflysynthesizedintheliver,whosefunctionisofvitalimportancetometabolism,cellulardifferentiation,anddevelopment.Transthyretinprimarilyservesasatransportproteinforthethyroidhormonethyroxine,themostabundantofallofthethyroidhormonesproducedinthebody.However,transthyretincanalsoformacomplexwithretinolbindingproteintoassistinthetransportofretinol.

    Thyroxineisaprohormone,meaningthat,althoughitisactivetosomeextent,itisaprecursortoamoreactivehormonecalledtriiodothyronine.Bothhormonesareactiveintheirfreeforms,whichispreciselywhytransthyretinissoimportant.Lessthan1%ofallofthethyroxinesecretedintothebloodstreamisfree,whiletherestisboundbyoneofthreetransportproteins:transthyretin,thyroxinebindingglobulin,orserumalbumin.Thistightregulationofthethyroidhormoneskeepsmetabolismandcellulardevelopmentfunctioningproperly.

    Structurally,transthyretinissimple,yetbeautiful.Itisahomotetramerthatismadeupoffourmonomersthatare127residueseach.Eachmonomerconsistsprimarilyofsheets,buteachonealsocontainsasinglehelix.Hydrophobicinteractionsbetweenthesheetslendonemonomertoformastructuralmotifwithanothermonomer1ContactJasonMockviaemail:[email protected]:DepartmentofPharmaceuticalandBiomedicalSciencesUniversityofGeorgia250WestGreenStreetAthens,Georgia306022352

  • knownasabetasandwich.Twoofthesedimerscanthenassociateinopposingorientationstoformthetetramericcomplex,whichhastwoactivebindingsitesbetweenthetwohomodimers.

    Whilenormalfunctioningofthisproteinhelpsthebodytooperateproperly,abnormalactivitycanhavedireconsequences.Transthyretinisoneoftwentyknownsolubleproteinsthatcanforminsolublefibrilscalledamyloids,whichcanthendepositinanorgan,causingdysfunctionandaconditionknownasamyloidosis.

    Transthyretinamyloidosiscanresultfromthenormalsequenceoftheproteinorasaresultofamutationthatcausesavariantformoftheprotein.Wildtypetransthyretinamyloidosishasalateonsetandgenerallyaffectstheheart,althoughsomeotherorgansmaybeinvolved.Whiletheexactstimulithatresultinfibrilformationarenotknown,thereisaclearcorrelationwithonsetandaging.

    Therearemanydifferentvariantsequenceformsoftransthyretinamyloidosis.Nearly80variantformsoftheprotein,resultingfrompointmutationsinthegene,havebeenassociatedwithsomeformofamyloidosis.Variantsequencetransthyretinamyloidosiscanaffectorgansotherthantheheart,liketheGItractorthecarpalligaments,buttheheartandthenervesarecommonlyinvolved.Lastly,inspiteofitsseeminglysimplestructure,transthyretinisactuallyveryunique.Notonlydoitstwobindingsitesexhibitnegativecooperativity,arareoccurrenceasfarasproteinsgo,theyarealsoextremelyversatileintermsofthetypesofligandstheycanbindasidefromthyroxine.Furthermore,theproteincomplexformedbytransthyretinandretinolbindingproteinisanimmensestructure,withmanynoteworthyaspects. BackgroundandHistory

    Transthyretinisaserumtransportproteinthatplaysaroleinthetransportofthyroxine,athyroidprohormone,andretinol,viaacomplexwithretinolbindingprotein[1].Thoughtheprimarypurposeofthispaperistoaddressthestructuralintricaciesofthisprotein,aproperunderstandingofthehistory,function,andclinicalrelevanceoftransthyretinisvitalinordertoappreciatethesignificanceitsstructure.TheevolutionofanameThecurrentunderstandingoftheproperties,structure,andfunctionoftransthyretin,shownbelowinFigure1,istheproductofmorethanfiftyyearsofresearch.Initiallycalledprealbuminwhenitwasdiscoveredbecauseitseparated

  • aheadofalbuminonserumproteinelectrophoresisgels,thenametransthyretinwassettleduponasinsightintoitsrolesinthebodywereelucidated.

    AfterDewittGoodmanandcolleagues,whowereresearchingtheinteractionbetweentransthyretinandretinolbindingprotein,sequencedtransthyretinin1974,theyattemptedtohavethenameoftheproteinchangedfromprealbumintotransretin[2].However,othersbelievedthatitsroleinthetransportofthyroxinewasmoreimportant,andtherefore,shouldprovideabasisforthename.Thus,inordertoappeasebothfactions,thenomenclaturecommitteeoftheInternationalUnionofBiochemistryandMolecularBiologyeventuallydecidedonthenametransthyretinin1981[1].BodilydistributionWhilemosttransthyretinisproducedintheliveritisalsosynthesizedinseveralothertissuesincludingthekidney[3]andthechoroidplexus[4].Ofcourse,transthyretincanbefoundcirculatinginserum,whereitwasfirstisolated,butsubsequentstudieshavealsofounditpresentintheretinalpigmentepithelium,thepinealgland,andpancreaticisletcells[5,6].Butperhapsmoreimportantly,transthyretinmakesupasmuchas25%oftheproteincontentfoundinthecerebrospinalfluid[4].Withoutthehelpoftransport,transthyretinwouldhavedifficultycrossingthebloodcerebrospinalfluidbarrier;thus,theproductionofthis

  • proteinbythechoroidplexus,whichmainlyfunctionsintheproductionofthecerebrospinalfluid,isextremelyimportant.Experimentationhasvalidatedthistheory,byshowingthatmostofthetransthyretinsynthesizedinthechoroidplexusissecreteddirectlyintothecerebrospinalfluidratherthantheblood,establishingthechoroidplexusasthepredominatesourceofthisproteininthecentralnervoussystem[7].FunctionoftransthyretinNotsurprisingly,thedistributionoftransthyretininthebodyisassociatedwithitsfunction.Transthyretinhastwoprimaryduties:totransportthyroxine,themostabundanthormoneproducedinthethyroid,andtohelptransportretinolbycomplexingwithretinolbindingprotein[1].Transthyretinisoneofthreethyroxinetransportproteinsintheserum,theothersbeingalbuminandthyroxinebingingglobulin.Intheserum,transthyretinisresponsibleforbindingandtransportinganywherefrom1520%ofthethyroxinepresent,butintheCNS,itbindsandtransportsupto80%ofthyroxine,makingittheprimarythyroidhormonetransportproteinfoundinthecerebrospinalfluid[8].Thebindingofthyroxineiscrucialtomaintainingappropriatelevelsofthishormoneintheplasmaandwithincells.Unboundthyroxineismetabolicallyactive,andinitsactiveform,thyroxinecanhaveprofoundimpactsonacell,helpingtofacilitatecellulardifferentiation,development,andmetabolism.Thus,itisimportanttonotethattransthyretinandtheotherthyroidtransportproteinskeepnearly99%ofthyroxineinitsbound,inactivestate.Thissurplusofthyroxineinthebodyallowsforsensitivesignaling,astransthyretincantransportthyroxinetotissueswhereitisneededandquicklybindthehormonewhenitisnot[9].Furtherexemplifyingthecorrelationbetweenlocationandfunction,transthyretinisalsoresponsibleforassistinginthetransportofretinol.Asitwaspreviouslynoted,mostserumtransthyretinissynthesizedintheliver,whichalsohappenstobetheprimarystoragesiteofretinol.Retinolistransportedtothemembraneoftargetcellsbyassociatingwithretinolbindingprotein.However,retinolbindingproteinisarelativelysmall,withamolecularweightof21,000Da,allowingittobereadilyfilteredoutofthebloodbythekidneysandpreventingpropertransport[10].Complexingwithtransthyretin,whichhasamolecularweightof~55kDa[11],preventsglomerularfiltrationandincreasestheaffinityofretinolbindingproteinforretinol,allowingtransporttotargetcellsmorespecifically[10].BiologicalandGeneticAspectsofInterest

    Whiletransthyretindoesnotfunctionenzymaticallyorundergoanyexcitingconformationalchanges,itsfunctionwithinthebodyiscrucial.Asthenextsectionwilldescribe,transthyretinisinvolvedinthedevelopmentofseveraldiseases,andthebiologicalandgeneticvariabilityoftransthyretinthathasbeenimplicatedintheformationofthesediseaseswillbecoveredindetail.

  • DiseasestatesrelatedtotransthyretinAmyloidosisisadiseasestatecharacterizedbydepositsofinsolubleproteinfibrilsthatcanaccumulateinvarioustissuesthroughoutthebodyandinterferewiththenormalfunction[1].Therearearoundtwentyproteinsandpolypeptides,ofwhichtransthyretinisone,thatareknowntobeassociatedwiththistypeoffibrilformation,andwhiletheexactmechanismoffibrilformationremainsamystery,allfibrils,regardlessoftheirparentprotein,sharethreetraits:fibrilsstronglybindtothedyeCongored,theyarelong,unbranched,andgenerallyhaveadiameterofapproximately100,andtheyconsistofsheetsthatcrossparalleltotheaxisofthefibril[12].Ofthevariousamyloiddiseases,includingprionandAlzheimersdisease,transthyretinisspecificallylinkedtofamilialamyloidpolyneuropathy,familialamyloidcardiomyopathy,andsenilesystematicamyloidosis.Infamilialamyloidpolyneuropathy,mostamyloiddepositsformintheheartandperipheralnerves[13],andalthoughthisdiseaseisusuallyaresultoftransthyretinfibrilaccumulation,geneticvariantsofapolipoproteinA1havealsobeenknowntoresultinthiscondition[1].Bothfamilialamyloidcardiomyopathyandsenilesystematicamyloidosisusuallycauseamyloidbuildupintheheart,andmaybeoneofthecausesofunexplainedcardiomyopathyandarrhythmia[14]Thediscoveryoftransthyretinsroleinamyloiddiseasewasmadein1978whenCostaetal.showedthatamyloidmaterialtakenfromcertainpatientsreactedwithantiserumofplasmatransthyretin[15].Thisfindingacceleratedresearchassociatedwithtransthyretinandhowamyloiddiseasesdevelopfromendogenousproteins.Recentresearchhasexpandedourunderstandingofhowthesefibrilsform.Inthecaseoftransthyretin,thehomotetramermustdissociateintomonomers,whichcanthenassembleintoamyloidfibrils[14].Itislikelythatthesefibrilsassembleheirchially,withindividualpolypeptidesformingprotofilaments,whicharethoughttobecomposedofsheetsthattwistaroundoneanotheroracore,whichmayormaynotbehollow.Jaroniecetal.usedmagicanglespinningNMRtodeterminehowanamyloidfibrilmightformfromapolypeptideregionoftransthyretin.MagicanglespinningNMRisuniqueinthatitallowedtheresearcherstocircumventtheproblemofalackofroutinestructurethathadpreventedelucidationviaxraycrystallographyandnormal,liquidstateNMR.Theyshowedthatan11residuefragmentoftransthyretin,whichisshowninFigure2,wascapableofselfassemblingintoanamyloidfibril[12].Theseresultsprovidevaluableinsightintohowthisdiseasemayprogress.

  • NaturallyoccurringvariantsoftransthyretinandamyloidosisWhilemostamyloiddiseasesareconsideredtobeproductsofregularaging,inwhichthewildtypeproteinbeginstoformfibrilsthatwillthenaccumulateasanindividualgetsolder,thereareapproximately80knownpointmutationsoftransthyretinthatareassociatedwithinheritedamyloidosis[1].Ofthesevariants,roughly70areknowntocontributetothedevelopmentoffamilialamyloidpolyneuropathy,whileonlyafewareassociatedwithfamilialamyloidcardiomyopathyandsenilesystematicamyloidosis[14].Thediscoverythatvariantsoftransthyretinarecloselyrelatedtoamyloidosisinitiatednewdirectionsinresearch,bothmolecularlyandgenetically.Someresearchersbeganlookingatthyroxinebindinganditsinvolvementindiseaseprogression,whileothershuntedforthesequenceofthegenebehindtheproblematicprotein.Ingeneral,thesevariantmutationsareautosomaldominant,meaningthatanindividualcanhaveonewildtypeandonemutantalleleandstillexhibitaphenotype.Mostcarriersareheterozygous,andinterestingly,theyusuallyexhibitmostlynormalproteinintheplasma,eventhoughitisassumedthatbothallelesaretranscribedequally[16].Attemptsweremadetodefine3Dstructuresofthesevariantsinordertoextrapolatewhytheymaybemorepredisposedtoformingamyloidfibrils;however,thisundertakingwascomplicatedbythefactthatmostindividualswithamutationareheterozygous,andtransthyretinhasauniqueability

  • toformhybridtetramers,inwhichanyofthemonomersubunitscanbeavariantorwildtypeformoftheprotein[1].Thisinterestingaspectoftheproteinmadetheelucidationofitsgenesequencethatmuchmorecrucial,asrecombinantDNAtechnologiescouldprovideamorefeasibleapproachtostudyingtheoveralleffectsofthesemutationsontheproteinstructure.SequencingofthetransthyretingeneanditsuseinresearchAlthoughothergroupshadreportedthesequenceofthecDNAofhumantransthyretin[1],thecompletegenesequencewasnotelucidateduntil1985byTsuzukietal.Therearethreeintronsseparatingthefourexonsofits6,945bpsequence,andoddly,therearetwoopenreadingframeswithinthefirstandthirdintrons(oneineach,respectively),butitisnotknownwhetherornottheseORFs2areactuallyexpressed[17].Thegeneislocatedonthelongarmofchromosome18[18],anditsaccessionnumberisNC_000018.Ofcourse,aftersequencingthehumantransthyretingene,theputativenextstepindeterminingtheprocessoffibrillogenesisandamyloidosiswastocreatearecombinantanimalmodel.Thegenewasalsosequencedinmice,anditwasextremelysimilartothehumangene:containingthesameconservedsequences,hepatocytespecificbindingsites,andchangesinonly25outofthe127residues.Yet,fibrilscontainingtransthyretinhaveneverbeenobservedinmurineamyloidosis[19].Researchershopedtoovercomethisbygeneratingrecombinantmicethatwouldexpressvariantformsofhumantransthyretin,andwhilemanyhavetried,therehavebeenvaryingamountsofsuccess.Althoughresearcherswereabletocauseamyloidformationsintheirmousemodels,therewasneveranyaccumulationintheperipheralnervoustissue,whichisoneofthehallmarksoftransthyretinrelatedamyloidosis.So,althoughthereasonwhyaccumulationneveroccurredintheperipheralnervoustissueisnotcompletelyunderstood,itisclearthatamousemodelwillnotsufficeasamodelsystemforstudyinghumantransthyretinamyloidosis[1].StructuralBiology

    Asmentionedabove,transthyretinisanextremelyimportantproteinintermsofregularbodilyfunctionanddiseasestates.Althoughtransthyretiniscomposedoffouridenticalmonomers,unlessanindividualisexpressingoneoftheaforementionedvariantformsoftheprotein,itsstructuralfunctionsaresurprisinglydiverse.Inthenextsections,thestructuralbiologyoftransthyretinandhowitbindsthyroxine,exogenoussubstrates,andretinolbindingproteinwillbecovered.2ORF=OpenReadingFrame

  • StructureAspreviouslystated,transthyretinisahomotetramer;however,itsstructureisanythingbutlackluster.Transthyretinmonomersarecomposedprimarilyofsheetsinasandwichorientations,withoneshorthelix,consistingofonlynineresidues.Around45%oftheremainingaminoacidsmakeupthemonomerseightstrands.Asaresultofsevenaromaticresiduesonthesideoftheproteinoppositethehelix,thesheetsaremorespreadoutatthatend,asopposedtothesectionsofthesheetsthatareclosertothehelix,whicharetightlypacked[1].Themonomersformdimersviaextensivehydrogenbondingatapseudotwofoldaxisofsymmetry.Thehydrogenbondsoccuralongtwopairsofstrandsinwhichtheresiduesarecloselyjuxtaposed[1].ThesestandsandtheiradjacentresiduescanbeseeninFigure3,coloredmagenta.Thisbroadareaofhydrogenbondingallowstransthyretintoreadilyformdimersthatareextremelystable,whichaccountsforthefactthatthedimeristhebasicunitofthisproteininvivo,ratherthanthemonomer[9].

  • Unlikethetightlyassociateddimers,thetetramericformoftransthyretinisnotquiteasstrong.Thereisonlyasmallcontactregionbetweentheloopsofonedimerwiththesheetsoftheother.Thisbondresultsprimarilyfromhydrophilicandhydrophobicinteractions.TheseimportantloopregionscanbeseenhighlightedaboveinFigure4.Impressively,inspiteofthesmallareaofcontact,transthyretintetramershavebeenshowntobestableinapHrangebetween3.5and12[1].However,themostimportantaspectoftheformationofthistetramericstructurearethebindingsitesthatitcreatesforthyroxine.ThyroxineBindingThyroxineisthenaturalligandfortransthyretin.Therearetwobindingsitesforthishormone,bothofwhicharelocatedinthechannelthatisformedbythetetramericcomplex.Eachsiteisapproximately50longand8wide,andiscapableofbindingonethyroxinemoleculeatatime[1].Ataglance,theaboveinformationwouldmaketransthyretinseemcommonplace,asfarasproteinsgo;however,itisactuallyexceptionallyuniqueinseveralways.First,althoughtherearetwobindingsitespertetramer,transthyretinexhibitsnegativecooperativity,meaningitwillonlybindonemoleculeofthyroxineatatime,andtheotherbindingsitewillremainvacant.Negativecooperativityisrare

  • amongstproteins,andinthecaseoftransthyretin,itoccursbecausethediametersofthetwobindingsitesareslightlydifferent[20].Thebindingsiteisdividedintothreepartscalledhalogenbindingpockets3,orHBPs[14].TheprimarybindingsiteiswiderattheouterandinnerHBPsandmorerestrictiveinthemiddlepocket,whiletheoppositeistrueofthesecondarysite.Thus,thyroxinecanmoreeasilyenterandbindintheprimarysite.Oncebound,thyroxinecausesanincreaseinthediameteroftheprimarysite.Thisslightchangeinstructureresultsinachangeinconformationatthesecondarysite.Despitethefactthatthesesitesarenotdirectlyconnected,thechangeinonesitecanbefeltintheotherduetothestronghydrogenbondsconnectingthemonomers[20].Theconformationalchangeinthesecondarysiteresultsintheopeningofthesitesothatthedimensionsaresimilartothatoftheinitialprimarysite.Thus,athyroxinemoleculemayenterthesecondarysite,butifthisoccurs,itwillforceaconformationalshiftintheoppositedirectionastheonethattookplaceafterthefirstligandwasbound.Sincethefirstthyroxinehasalreadyestablishedbindinginteractionswiththeprimarysite,thisbackwardsshiftcannotoccurasreadily,andtheconformationalchangesthatwouldbenecessarytotightlybindthethyroxineinthesecondarysitecannottakeplace.Asaresult,thesecondarysitewillnotbindthyroxineafteramoleculeofthehormoneisboundintheprimarysite,thusexplainingthenegativelycooperativenatureoftheprotein[20].Furthermore,transthyretinisuniqueinitsmodeofbindingthyroxine.Thebindingsitesforthyroxinearelocatedwithinatwofoldaxisofsymmetrybetweenthetwodimersofthetetramericcomplex.Asaresult,thebindingpocketitselfhasatwofoldaxisofsymmetry,whichallowsthethyroxinemoleculetobindintwodifferentmodesororientations.AsshowninFigure5,athyroxinemoleculecanfaceeitherwaywithinthebindingsiteandstillhavethenecessaryinteractionstoremainbound.Ineithermode,thehydrophilictailofthyroxineispositionedattheopeningofthebindingsitetoexposeittotheaqueousenvironmentandthesameactiveresidues,detailedinFigure5,interactwiththerestofmolecule,withtheconformationalchangesdescribedabovemakinghydrogenbondingpossiblewitheitheralignmentofthemolecule[14].TheseactiveresiduesarearrangedintothreeunitscalledHalogenBindingPockets,orHBPs,and,asthenamesuggests,theyinteractwiththeiodineatomsonthyroxine.HBP3istheinnermostpocket,coloredblueinFigure5,anditconsistsofSer117,Thr118and119,Ala108and109,andLeu110.HBP2,coloredcyaninFigure5,sharesLeu110andAla109withHBP3,butalsocontainsLys15,andLeu17.Lastly,HBP1,theoutermostpocket,ismadeupofAla108,Thr106,Met13,andLys15,anditiscoloredmagentainFigure5[14]. 3HBP=HalogenBindingPocket

  • Therelativeversatilityofthebindingsitesoftransthyretinisnotonlysignificantwithrespecttoitsbindingofthyroxine,butalsotonaturalandexogenousanaloguesofthehormonethatmaybeofclinicalimportance.TheimportanceofothersubstrateTodate,theonlyeffectivetreatmentforfamilialamyloidpolyneuropathyislivertransplantation[Original],asmosttransthyretinisproducedwithintheliver,butsincestudieshavesuggestedthatvariantproteinproductioninthechoroidplexusismorelikelytobetheprimarycauseofthiscondition,itisanincompletesolutionatbest[21].However,thereisstillhopeinthefighttoslowtheprogressionofthisdiseaseandtheothertransthyretinassociatedamyloiddiseasesintheformofthyroxineanalogues.Thesemoleculesactasinhibitorsoftransthyretinamyloidosisbybindingintheactivesite,whichstabilizesthetetramericstructureoftheprotein.Sincetransthyretinhastodissociateintomonomersinorderforfibrillogenesistooccur,thestabilizationofthenativetetramericformoftheproteincouldprovideatherapeuticapproachtoslowingtheprogressionofamyloidosiswithouttheneedforinvasivesurgery.Figure6showsthestructureofthyroxine,flufenamicacid,resveratrol,andoFLU,fourmoleculesthatbindtransthyretinandarerepresentativeofdifferentclassesofamyloidosisinhibitors:thenaturalligand,nonsteroidalantiinflammatorydrugs,naturalcompounds,anddesignedamyloidosis

  • inhibitors,respectively[14].Thankstoitsflexiblebindingsites,therearemanyotherexamplesofmoleculesthatcanbindtransthyretinaswell,butthoseshowninFigure6shouldprovidesomeideaofthetypesofclassesandgeneralstructuresofthesepotentialamyloidosisinhibitors.

    RetinolBindingProteinComplexAsidefromtransportingthyroxine,transthyretinisalsophysiologicallyimportantforitsroleintransportingretinol,orvitaminA.Retinolisstoredintheliver,andinordertobesecretedtoothertissuesitmustbindretinolbindingprotein4,orRBP,inahandinglovemanner,inwhichtheretinolmoleculefitssnuglyintotheeightstrandbarrelthatmakesupthemajorityoftheRBPstructure[11].However,asinglemoleculeofRBPisonly21kDa,anditcanreadilybefilteredoutofthebloodstreambytheglomerulusinthekidneys,preventingRBPfromdeliveringretinoltothetissuesthatneedit.Luckily,thisproblemcanbeovercomewhenRBPformsacomplexwithtransthyretin[1]ThistransportcomplexconsistsofonetetramerictransthyretinmoleculeandtwoRBPs.EachRBPbindstransthyretinataninterfacebetweentwomonomersinatwofoldaxisofsymmetryonoppositedimers.Eachtransthyretinmonomer4RBP=RetinolBindingProtein

  • contributesfouraminoacidresiduestothebindingsite:Arg21,Val20,Leu82,andIle84.TheseeightresiduesfromtransthyretinprovideaninterfaceforinteractionwithfourresiduesfromRBP:Trp67,Phe96,andLeu97and63.Furthermore,extensivehydrophobicinteractionbetweentheCterminusofRBP,whichhasanhelicalsecondarystructure,andtransthyretinensurethattheproteinsstaytightlyboundwhileincirculation[11].ThesecontactpointsarehighlightedbelowinFigure7.

    ThetransthyretinRBPcomplexisextremelyimportantforretinoltransportnotonlybecauseitwouldscarcelytakeplacewhereitnotforcomplexion,butalsobecausethebindingofRBPtotransthyretinincreasestheproteinsaffinityforretinol,whichhelpspreventnonspecificdeliveryofretinoltounintendedtargettissues[10].Additionally,itmaybeofinteresttonotethatpointmutationscausinggeneticvariantsoftransthyretincanhaveaprofoundimpactonretinoltransportanddistribution.Asingleaminoacidsubstitutionatposition84canproducedramaticeffects,emphasizingthisresiduesimportancetothebindingprocess.Specifically,individualsthathaveapointmutationthatsubstitutesthewildtypeisoleucineatthispositionwithserineorasparaginehadsignificantlydecreasedamountsofRBPincirculation,asitwasunabletoformthetransportcomplexwithtransthyretin[22].

  • ConclusionInsummary,transthyretinisanextremelyuniqueserumtransportprotein.Itfacilitatesthetransportofthethyroidhormonethyroxineandretinolviaaversatile,negativelycooperativebindingsitesandamultiproteintransportcomplex.Furthermore,asidefromitsnormalrolesinthebody,itcanalsoplayaroleindiseaseformationthroughaprocessknownasfibrillogenensisthatresultsinamyloidformationsinvarioustissues.Thus,athoroughunderstandingofthisproteinanditsstructureisnotonlyrelevantinaphysiologicalsense,butalsointermsofclinicalapplication.

    References

    1. HamiltonJ.A.andBensonM.D.(2001)Transthyretin:areviewfromastructuralperspective.Cell.Mol.LifeSci.58:149115212. KandaY.,GoodmanD.S.,CanfieldR.E.andMorganF.J.(1974)Theaminoacidsequenceofhumanplasmaprealbumin.J.Biol.Chem.249:679668053. WakasugiS.,MaedaS.andShimadaK.(1986)Structureandexpressionofthemouseprealbumingene.J.Biochem.(Tokyo)100:49584. HerbertJ.,Wilcox,J.N.,PhamK.T.C.,FremeauR.T.,ZevianaM.,DworkA.,SopranoD.R.etal.(1986)Transthyretin:achoroidsplexusspecifictransportproteininhumanbrain.Neurology36:9009115. MartoneR.L.,MizunoR.andHerbertJ.(1992)Themammalianpinealisasyntheticsitefortransthyretinandretinalbindingprotein.2ndInternationalSymposiumonFamilialAmyloidoticPolyneuropathyandOtherTransthyretinRelatedDisorders,Skelleftea,Sweden.ProgramandAbstracts,0.3,p.156. KamekoM.,IchikawaM.,KatsuyamaT.,KanaiM.,KatoM.andAkamatsuT.(1986)Immunohisochemicallocalizationofplasmaretinolbindingproteinandprealbumininhumanpancreaticislets.Histochem.J.18:1641687. SchreiberG.,AldredA.R.,JaworowskiA.,NilssonC.,AchenM.G.andSegalM.B.(1990)Thyroxinetransportfrombloodtobrainviatransthyretinsynthesisinchoroidplexus.Am.J.Physiol.258:R338R3458. HagenG.A.andEllliotW.J.(1973)Transportofthyroidhormonesinserumandcerebrospinalfluid.J.Clin.Endocrinol.37:4154229. RobbinsJ.,ChengS.Y.,GershengornM.C.,GlinoerD.,CahnmannH.J.,EdelnochH.(1978)Thyroxinetransportproteinsofplasma:molecularpropertiesandbiosynthesis.RecentProg.Horm.Res.34:47751910. GoodmanD.S.andRazA.(1972)Extractionandrecombinationstudiesoftheinteractionofretinolwithhumanplasmaretinolbindingprotein.J.LipidRes.13:33834711. NaylorH.M.andNewcomerM.E.(1999)Thestructureofhumanretinol

  • bindingprotein(RBP)withitscarrierproteintransthyretinrevealsaninteractionwiththecarboxyterminusofRBP.Biochem.38:2647265312. JaroniecC.P.,MacPheeC.E.,BajajV.S.,McMahonM.T.,DobsonC.M.,GriffinR.G.(2004)HighresolutionmolecularstructureofapeptideinanamyloidfibrildeterminedbymagicanglespinningNMRspectroscopy.ProcNatlAcadSci.USA.101(3):71171613. SackG.H.,DumarsK.W.,GummersonK.S.,LawA.andMcKusickV.A.(1981)Threeformsofdominantamyloidneuropathy.JohnsHopkinsMed.J.149:23924414. KlabundeT.,PetrassiH.M.,OzaV.B.,RamanP.,KellyJ.W.,SacchettiniJ.C.(2000)Rationaldesignofpotenthumantransthyretinamyloiddiseaseinhibitors.Nat.Struct.Biol.7:31232115. CostaP.P.,FigueraA.S.andBravoF.R.(1978)Amyloidfibrilproteinrelatedtoprealbumininfamilialamyloidoticpolyneuropathy.Proc.Natl.Acad.Sci.USA.75:4499450316. DwuletF.E.andBensonM.D.(1986)CharacterizationofaprealbuminvariantassociatedwithfamilialamyloidoticpolyneuropathytypeII(Indiana/Swiss).J.Clin.Invest.78:88088617. TsuzukiT.,MitaS.,MaedaS.,ArakiS.andShimadaK.(1985)Structureofthehumanprealbumingene.J.Biol.Chem.260:122231222718. WallaceM.R.,DwuletF.E.,ConneallyP.M.andBensonM.D.(1986)Biochemicalandmoleculargeneticcharacteristicofanewvariantprealbuminassociatedwithhereditaryamyloidosis.J.Clin.Invest.78:61219. WakasugiS.,MaedaS.,ShimadaK.,NakashimaH.andMigitaS.(1985)Structuralcomparisonsbetweenmouseandhumanprealbumin.J.Biochem.(Tokyo)98:1707171420. NeumannP.,Cody,V.,andWojtczak,A.(2001)Structuralbasisofnegativecooperativityintransthyretin.Acta.Biochim.Pol.48(4):86787521. TakahashiK.,YiS.,KimuraY.andArakiS.(1991)Familialamyloidoticpolyneuropathytype1inKumamoto,Japanaclinicopathologic,histochemical,immunohistochemical,andultrastructuralstudy.Hum.Pathol.22:51952722. WaitsR.P.,YamadaT.,UemichiT.andBensonM.D.(1995)Lowplasmaconcentrationsofretinolbindingproteininindividualswithmutationsaffectingposition84ofthetransthyretinmolecule.Clin.Chem.41:12881291


Recommended