+ All Categories
Home > Documents > TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and...

TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and...

Date post: 08-Apr-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
39
TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER BY IRRIGATION PREPARED BY SCIENCE AND EDUCATION ADMINISTRATION CONSERVATION RESEARCH REPORT NUMBER 22 UNITED STATES 1=) DEPARTMENT OF AGRICULTURE CRR 22/5/78
Transcript
Page 1: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

TREATMENTAND DISPOSALOF POTATOPROCESSINGWASTE WATERBY IRRIGATION

PREPARED BYSCIENCE ANDEDUCATIONADMINISTRATION

CONSERVATIONRESEARCH REPORTNUMBER 22

UNITED STATES1=) DEPARTMENT OF

AGRICULTURE

CRR 22/5/78

Page 2: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

ABSTRACT

J. H. Smith, C. W. Robbins, J. A. Bondurant, and C. W. Hayden. Treatment andDisposal of Potato Processing Waste Water by Irrigation. U.S. Department ofAgriculture Conservation Research Report 22, 37 pp., 1978.

Irrigation with potato processing waste waterwas studied for 3 years at five locations in southernIdaho. Three of the potato processors surface irri-gated and two sprinkled land planted to perennialgrasses. The processing season began in Octoberand continued into the following summer. Samplesof 24-hour composited waste water and soil water,extracted from depths of 15 to 150 cm, were ob-tained monthly throughout the year. Analyses weremade on all water samples of sufficient volume forchemical oxygen demand (COD), NO 3, total N, totalP, ortho P, hydrolyzable P, K, Na, Ca, Mg, Cl,HCO3, SO4 , electrical conductivity, and pH. Waterapplications ranged from 160 to 490 cm per year,total N from 1,000 to 2,200 kg, P from 150 to 630 kg,and K from 2,250 to 6,700 kg K/hectare year. CODdecreased 95 to 100 percent after passage of the

water through 150 cm of soil because of biologicalactivity and filtration. Nitrates were low in onefield with a shallow water table because of denitrifi-cation that resulted from low redox potentials.Phosphorus concentrations increased 50 to 100parts per million in the surface 30 cm of soil but notmeasurably below that depth. K, Na, Ca, and Mgchanged in proportion to the amounts applied in thewaste water. Irrigation with potato processingwaste water provides a means of utilizing part ofthe nutrients that. would otherwise be wasted andsolves a difficult environmental pollution problem.

KEYWORDS: Chemical oxygen demand, nitrate,phosphorus, potassium, calcium, magnesium,sodium, electrical conductivity, pH, pollutioncontrol, irrigation, waste water.

CONTENTS

IntroductionMethods and materials Results and discussion

Waste effluent analyses and application--- -Chemical oxygen demand applications-- -Chemical oxygen demand in waste water and in

water extracted from the treatment fields Nitrogen in waste and extracted water samples-Phosphorus and potassium in waste water and

extracted soil water- Calcium, magnesium, sodium, electrical

conductivity, and pH Chloride, sulfate, and bicarbonate in

water samples Composition of harvested grass hay

Summary Literature cited Glossary Appendix

Page12446

77

8

8

999

111214

Washington, D.C. Issued May 1978

For sale by the Superintendent of Documents, U.S. Government Printing Officewashing ton, D.C. 20402

Stock No. 001-000-03780-3

Page 3: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTEWATER BY IRRIGATION

By J. H. SMITH, C. W. ROBBINS, J. A. BONDURANT, and C. W. HAYDEN'

INTRODUCTIONIrrigating agricultural land with waste water and

growing various crops on the land has become aviable alternative to discharging the waste water tostreams or treating it in conventional primary andsecondary waste treatment systems (4, 5, 9, 11, 12,14, 17, 19, 27). 2 Food processing waste water can beused to irrigate agricultural land for treatment anddisposal of the water because it seldom containstoxic constituents. Crops grown on land irrigatedwith these waste waters can be used for livestockfeed. These crops also remove part of the nutrientsapplied in the waste water (1).

Potato processors discharge large volumes ofwaste water that contain relatively low concentra-tions of organic matter, suspended solids, and vari-ous inorganic constituents, including nitrogen,phosphorus, and potassium. However, because ofthe large volumes of water, heavy concentrations offertilizer nutrients frequently build up in the soil asa result of irrigating with this water. Nitrogen,phosphorus, and potassium in the waste water haveamounted to 350 to 2,500, 70 to 600, and 700 to 7,700kilograms per hectare (kg,/ha) annually (23).

Recently published research results have pro-vided information on potato processing wastewater. Loehr (11) cited data on water requirementsfor processing and waste loading per ton ofpotatoes. Smith and associates published nutrientcontents of potato processing waste water (23, 25),water loading, organic loading, reduction of chemi-cal oxygen demand (COD) and nitrates in soil (22),denitrification in potato processing waste treat-

'Soil scientists, agricultural engineer, and biological technician(soils), respectively, Snake River Conservation ResearchCenter, Kimberly, Idaho 83341.

'Italic numbers in parentheses refer to Literature Cited,p. 11. •

ment fields (24), decomposition of oils associatedwith cooking potatoes during processing (20), and aguide for irrigating with potato processing wastewater (21).

De Haan and associates (6, 7) reported researchresults from the Netherlands on land disposal ofpotato starch waste water. They concluded that thesystems worked well, that oxygen demand andother constituents, except potassium, were satis-factorily removed at moderate applications, aswaste water passed through the soil, and that usingthe waste water for irrigation could economicallybenefit farmers.

Robbins and Smith (18) investigated phosphorusmovement under fields irrigated with potato pro-cessing waste water and found that most of thephosphorus is retained in the top of the soil profilewith some movement in the organiclorm that stopswith the conversion to inorganic phosphorus forms.They developed an empirical formula for predictingphosphorus movement in relation to the clay-sizefraction of the soil.

Sprinkler irrigation with food processing wastewater was first tried in the United States in 1947,and since that time its use has greatly increased (3,4, 13). Several potato processors, formerly usingother systems such as secondary treatment, haverecently converted to land disposal by sprinkling orflooding. Many newer potato processing plants areusing some form of land disposal for their wastewaters. Because of the widespread use of sprinklersfor spreading wastes, concern has developed aboutpossible spread of infectious micro-organisms bysprinkler irrigation with contaminated wastewater.

Parker et al. (16) conducted tests, using a potato.processing waste sprinkler system, where there

1

Page 4: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

2 CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

was little or no possibility of spreading infectiousorganisms, to determine movement of micro-organisms from the waste water that wereaerosolized by sprinkling. They determined thatmicro-organisms can move up to several kilome-ters, under favorable atmospheric conditions, andthat a green belt or other safety border will beineffective in screening people from spray areaswhere infectious micro-organisms may be sprayed.Nevertheless, spraying noninfected or disinfectedwaste water should be relatively safe.

Irrigating with potato processing waste water isa long-season operation. Irrigating begins in the fallwith effluent from freshly harvested processedpotatoes and continues throughout the winter

months and part of the next summer as potatoes areprocessed from storage. Irrigating with the wastewater has been as successful with flooding ofgraded fields as with sprinkling, when usingequipment designed to operate at temperaturesbelow freezing.

The objectives of this paper are to summarizedata for (1) sprinkler and flood irrigation withpotato processing waste water (2), loading withnutrients and organic matter (3), water cleanupthrough soil filtration and microbiological activity(4), some aspects of nutrient utilization (5), someconsiderations of salinity and specific ions, and (6)to discuss the feasibility of continued irrigation withthese waste waters.

METHODS AND MATERIALS

This study was conducted at five potato proces-sing plants in southern Idaho where the wastewater is used to irrigate cropped fields. Three fieldsthat border nearly level land are irrigated by flood-ing, and two fields are irrigated by sprinkling.Orchardgrass (Dactylis glomerata), tall fescue(Festuca arundinacea), reed canarygrass (Phatarisarundiawcea), and bromegrass (Bromus inermis)or mixtures of these species are grown on the fieldsand harvested for hay or grazed by livestock.Waste water was sampled at each potato processingplant at monthly intervals during most of threeprocessing seasons. An automatic sampler, acti-vated at 20-minute intervals for 24 hours, deliveredwater into a freezer where it was frozen in a plasticcontainer for storage until it could be analyzed inthe laboratory (8).

Soil water was sampled monthly, using3.8-cm-diameter, polyvinyl-chloride sampling tubeswith porous ceramic cups cemented to one end. Thesampling tubes were inserted vertically into the soilto depths of 15, 30, 60, 90, 120, and 150 cm at eachsampling site. When taking samples, approximately0.7 bar suction was applied to the tubes for about 48hours. The extracted water was pumped into asuction flask, transferred to a plastic bottle, andtaken to the laboratory for refrigerated storageuntil it could be analyzed. Not every tube yielded awater sample at every sampling.

The water samples were analyzed for COD ac-cording to "Standard Methods for the Examinationof Water and Wastewater" (2). Nitrate-nitrogenwas determined with a nitrate-specific ion elec-

trode. Total nitrogen was determined by a Kjeldahlprocedure, modified by substitution of copper forthe mercury catalyst (2). Total phosphorus wasdetermined using persulfate oxidation (26) andpotassium, by flame photometry. Water applica-tions to the fields were measured by the treatmentfield operators using meters or other devices. Pro-cessing plant waste effluents, water samples ex-tracted with extraction tubes, and saturated soilextracts were also analyzed for sodium by flamephotometry; calcium and magnesium, by atomicabsorption spectrometry; chloride, by silver titra-tion; bicarbonate, by sulfuric acid titration; sulfate,by precipitation as barium sulfate and read on aspectrophotometer; total dissolved salts, by electri-cal conductivity, and pH. Soils sampled annuallywere analyzed for the above constituents; total or-ganic matter, by wet digestion. The first sampleswere analyzed for cation exchange capacity (CE C)and particle-size distribution from each samplingdepth (table 1).

The processing plants with the flood-irrigatedfields are referred to as 1-F, 2-F, and 5-F; and thesprinkler-irrigated fields, as 3-S and 4-S. Proces-sing plants 2-F, 4-S, and 5-F use steam peeling andproduce dehydrated potato products. Processingplant 1-F uses dry lye peeling and produces frozenfrench fried potatoes and other products. Proces-sing plant 3-S used wet lye peeling the first seasonof the study, then converted to dry lye peeling. Theplant produces dehydrated potato products andstarch.

Page 5: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER 3

TABLE 1.-Particle-size distribution and soil types at potato processing waste water treatment sites

Treatmentfield

Soildepth Clay Sand Silt Soil type

Cm Percent

1-F, site 1 0-15 19.4 35.4 45.2 Loam.15-30 18.4 36.4 45.2 Do.30-60 33.2 12.4 54.4 Silty day loam.60-90 16.4 43.4 40.2 Loam.90-120 13.6 54.9 31.5 Sandy loam.

120-150 8.6 73.7 17.7 Sandy loam, loamy sand.

1-F, site 2 0-15 162 49.8 34.0 Loam.15-30 20.2 45.8 34.0 Do.30.60 14.2 53.8 32.0 Sandy loam.60-90 4.0 86.7 9.3 Sand, loamy sand.90-120 2.9 89.8 9.3 Sand.

120-150 2.9 89.8 9.3 Do.

2-F, site 1 0-15 17.8 45.8 36.4 Gravelly loam.30-60 5.7 84.8 9.5 Gravelly loamy sand.60-90 1.8 96.5 1.7 Gravelly sand.90-120 1.8 97.0 1.2 Do.

120-150 1.8 96.9 1.3 Do.2-F, site 2 0-15 16.2 57.2 26.6 Sandy loam.

15-30 18.2 50.0 31.8 Loam, sandy loam.30-60 9.0 66.3 24.7 Sandy loam.60-90 5.5 71.8 22.7 Do.

120-150 5.5 57.8 36.7 Do.150-175 6.0 69.8 24.2 Do,

3-8, site 1 0-30 20.6 42.4 37.0 Loam.30-60 15.4 53.6 31.0 Sandy loam.60-90 6.7 82.3 11.0 Loamy sand.90-120 13.7 56.8 29.5 Sandy loam.

120-142 7.1 78.4 14.2 Loamy sand.

3-S, site 2 0-30 15.2 61.8 23.0 Sandy loam.30-00 15.2 45.8 39.0 Loam.60-90 10.1 67.4 22.5 Sandy loam.90-120 10.1 67.4 22.5 Do.

120-150 5.6 65.8 28.6 Do.

4-8, site 1 0-30 18.4 50.4 31.2 Loam, sandy loam.30-60 19.4 42.4 38.2 Loam.60-90 9.1 68.6 22.3 Sandy loam.90.120 6.1 83.7 10.2 Loamy sand.

120-150 3.9 90.0 6.1 Sand.

4-5,' site 2 0-15 25.6 41.0 33.4 Loam.15-30 26.6 37.0 36.4 Do.30.60 13.7 24.0 62.3 Silt loam.60-90 9.2 17.0 73.8 Do.90-120 6.1 11.7 82.2 Silt.

120-150 5.6 8.6 85.8 Do.

4-8,' site 2A 0-15 18.4 62.4 24.2 Sandy loam.15-30 15.8 59.6 24.6 Do.30-60 18.8 48.8 32.4 Loam.60-90 18.8 43.8 37.4 Do.90-120 12.4 70.8 16.8 Sandy loam.

120-150 9.4 73.4 17.2 Do.

See footnote at end of table.

Page 6: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

4 CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

TABLE 1.--Particte-size distribution and soil types at potato processing waste water treatment sites-Continued

Treatmentfield

Soildepth Clay Sand Silt Soil type

Cm Percent

5-F, site 1 0-30 12.1 66.1 21.8 Sandy loam.30-60 1•.4 49.2 33.4 Loam.60-90 14.4 47.2 28.4 Loamy sand, sandy loam.90-120 16.8 52.8 30.4 Sandy loam.

120-150 15.8 51.0 33.2 Loam, sandy loam.150-175 25.0 23.8 50.2 Silt loam, loam.

5-F, site 2 0-30 17.8 38.0 44.2 Loam.30-60 13.3 63.8 22.9 Sandy loam.60-90 22.8 25.8 51.4 Silt loam.90-120 18.8 81.8 49.4 Silt loam, loam.

120-150 21.0 24.8 54.2 Silt loam.150-240 8.9 75.8 15.3 Sandy loam.

'Site destroyed by livestock, October 1973. Moved to new location, November 1973. Later samplings were at site 2A.

RESULTS AND DISCUSSION

Waste Effluent Analyses andApplication

The nitrogen, phosphorus, and potassium con-centrations in the waste water and annual applica-tions are reported in table 2 as averages by years ofall the samples obtained from each processing plantduring 1973, 1974, and 1975. The nitrogen isprimarily organic with mean nitrate-nitrogen con-centrations of less than 2 milligrams per liter.Phosphorus in the waste water averaged 32 percentortho, 22 percent acid hydrolyzable, and 46 percentorganic. Total nitrogen in the waste water rangedfrom 32 to 133 me; total phosphorus, from 6 to 21me; and total potassium, from 75 to 158 mg/l.

Annual waste water applications ranged from 27to 546 cm (table 2). The waste water at most of thepotato processing plants was screened to removepotato pieces, passed through a clarifier, and thesettled solids were removed by vacuum filtration.The filter cake, containing 10 to 15 percent solidmaterial, was ensiled for livestock feed.

Nitrogen applied to the land in the waste waterranged from 350 to 2,550 kg/ha annually. The low-est nitrogen application can probably be utilized bya good grass crop in this climatic area, but higher

rates exceed crop requirements. De Haan et al. (7)developed an efficiency index for nitrogen, phos-phorus, and potassium fertilizer value from potatostarch waste. On potatoes and beets, the nitrogenvalue was 0.5; on cereals, 0.2; and on grass, 0.8. Thephosphorus value was 0.5 on the four crops, and thepotassium value was 0.8 on three crops and 0.4 oncereals. Similar fertilizer efficiency values need tobe developed for nutrients in our processingwastes.

Phosphorus applied to the land in the wastewater ranged from 70 to 630 kg/ha. These applica-tions exceeded the phosphorus requirements formost crops, and phosphorus increased in the soil asa result of irrigation with potato processing wastewater. During 3 years of irrigation with the wastewaters studied, the bicarbonate extractable soilphosphorus increased approximately 40 parts permillion (p/m) in the top 30 cm of soil, with smallerincreases below that depth (table 3). Total phos-phorus in the top 60 cm of soil increased 100 to 130pim during 3 years irrigation with potato proces-sing waste water. (For a more detailed discussion ofphosphorus considerations in this study, see/8.)

The potassium applied to the soil in the wastewater exceeded the potassium requirements ofgrass (table 2). Potassium concentration in the soil

Page 7: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER 5

TABLE 2.-Annual waste water and chemical oxygen demand (COD) applications; mean nitrogen,phosphorus and potassium concentrations; and annual applications in waste water from 5 potatoprocessing plants'

Treatment fieldsand year Water Applied COD Nitrogen Phosphorus Potassium

1-F:

Cm Tonstha Mg11 !Whit Mgfi Kglita Mgfi Kglha

1973 546 58.6 52 2,550 10 630 114 5,7501974 460 85.1 47 2,130 13 630 162 7,7301975 260 29.9 50 1,500 12 300 130 3,180

2-F:1973 125 9.5 32 400 6 8o 75 9301974 209 15.6 33 610 6 110 94 1,8801975 174 15.6 35 640 6 120 88 1,840

3-S:1974 119 35.2 91 1,500 21 150 180 2,6701975 161 34.8 133 1,720 16 220 250 3,540

4-S:1973 246 20.2 52 760 9 120 132 2,4901974 78 15.4 52 670 8 110 111 1,9101975 27 12.1 43 350 8 70 77 680

5-F:1973 266 40.9 59 980 9 160 150 2,5401974 201 27.0 44 950 8 170 158 2,6701975 278 35.9 51 1,420 10 280 104 2,830

'Monthly applications and concentrations were used for calculating annual values.

TABLE 3.-Bicarbonate extractable orthophosphate and total phosphorus from 2 waste disposal sites'

Soil depth(meters)

Bicarbonate extractableorthosphosphate Total phosphorus

1972 1973 1974 1975 1972 1973 1974 1975

Plant 5F - Site 2--,-------------------- Parts per million ---------------------------

0.0 - 0.3 11.0 25.7 51.3 47.0 720 759 816 825.3 - .6 4.2 17.6 15.7 18.0 642 687 684 820.6 - .9 18.2 17.5 18.1 638 654 804 795.9 - 1.2 3.6 16.9 15.4 15.0 726 732 724 710

1.2 - 1.5 3.5 15.1 14.7 13.8 708 735 708 730

Plant IF - Site 1

.0 - .3 40.6 52.5 62.0 531 405 611

.3 - .6 20.0 - 31.6 42.1 439 525 575

.6 - .9 9,4 - 13.8 21.8 419 342 450

.9 - 1.2 11.3 - 16.5 19.0 392 475 4681.2 - 1.5 6.6 10.0 17.7 401 454 396

'Dashes in columns indicate no data.

Page 8: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

6 CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

solution is expected to increase until it reachesequilibrium with the soil, after which the excesswill be leached.

The waste water treatment fields at each of thefive potato processing plants were chemicallycharacterized and reported in Appendix table 1.CEC ranges from 5 to 11 milliequivalents per literin the surface 30 cm of soil and from 2 to 15 meq/Q inthe bottom-sampled layer of the profile. The soil pHat each location was neutral to slightly alkaline,with little change taking place because of wastewater irrigation. Electrical conductivity (EC)measured at the conclusion of the experimentshowed all of the surface 30 cm samples to be below1 i.anhos, which indicates no salinity problems.Chlorides and bicarbonates in the soils were similarto those found in the applied waste water. Organicmatter in the soil appears to be increasing in the top30 cm of most of the soils after 3 or 4 years ofirrigating with waste water and growing perennialgrass crops.

Exchangeable sodium, potassium, calcium, andmagnesium in the soils were within acceptablelimits in the soils. The only area of concern might bethe sodium concentrations in the soil at treatmentfield 1-F site 1 where sodium was higher than in theother fields because of initial soil salinity. Ex-changeable sodium percentages (ESP) in the soilsare decreasing except in the sprinkler irrigatedfields. Total Kj eldahl nitrogen (TIN) in the soilswas determined and is reported for 1976 at theconclusion of the field soil sampling.

Wintertime irrigation poses some special prob-lems in cold climates. Waste water at 15° C infil-trated at each flood irrigation in the winter evenwhen the air temperature was below minus 40.With sprinkler irrigation, ice, which accumulated inmounds around the sprinklers, remained until airtemperatures were above freezing. ice accumula-tion occurs because water leaving the sprinklernozzle approaches dewpoint temperature before thedroplet reaches the ground, regardless of the watertemperature in the sprinkler nozzle (15). Meltingwas usually slow enough to allow infiltration of theice melt water, and no major problems were ob-served. Nevertheless, field design must includeretaining structures to prevent runoff from thetreatment fields.

Organic matter removal was similar for bothirrigation methods, but higher nitrates were foundin the soils under sprinklers than under flood irriga-

tion. The nitrate difference in the fields probablydid not result from different irrigation methods.Less water was applied on the sprinkled fields thanon the flooded fields, so less leaching would beexpected under sprinklers. The sprinkled fieldsyielded less grass than the flooded fields because ofinadequate summertime irrigation.

Chemical Oxygen DemandApplications

Mean COD concentrations in the waste waterranged from 765 to 3,080 mg/k. This range resultedfrom different peeling and handling processes. Thehigh COD concentrations in the waste water atplant 3-S resulted from not using vacuum filtration.COD concentrations in the waste water vary fromtime to time, depending upon the quality ofpotatoes and the amount of water being used in theprocess. Organic matter, reported as COD, appliedto the waste treatment fields in the waste watervaried from approximately 10 to 85 tonsiha.

At processing plant 1-F, the high applicationrates in 1973 and 1974 were decreased as more landwas irrigated with waste water. The lower amountswere applied at plant 2-F because the disposalsystem was designed to utilize the total plant ef-fluent at conservative rates. After constructionwork was completed and a grass cover was estab-lished, irrigation with waste water was begun. Thesystem has worked exceptionally well from thebeginning.

Potato processing plant 5-F had the first wastewater irrigation system for potato wastes in Idaho.Settling of recently leveled land caused ponding inlow areas where anaerobic conditions developed,which killed the grass. Long stretches of openditch, carrying water in the field, became anaerobicand created highly objectionable odors. The odorproblem was corrected by installing undergrounddistribution pipe in the field and eliminating theopen ditches. Low spots in the field were filled withsoil and reseeded with grass. The grass in eachwaste water treatment field was either grazed bylivestock or harvested for hay. Harvesting hayremoved more plant nutrients from the field and isa better practice than grazing with livestock.Livestock are inefficient in removing nutrients, andmost of the plant nutrients are redeposited in thefield where fertility is already very high from waste

Page 9: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER 7

water fertilization. Livestock trampling the soilalso decrease water infiltration and create someproblems.

Chemical Oxygen Demand in Waste Waterand

in Water Extracted from theTreatment Fields

Obtaining water from the sprinkled fields wasdifficult. In the winter, soil and sampling sites werecovered much of the time with ice. Even when thesites were not covered with ice, water extractionwas difficult. In the summer, when the processingplants were not operating, the fields were insuffi-ciently irrigated for normal grass growth, and thesoil was often too dry to yield water samples.Under these conditions, ground water pollution wasnot a problem because little water passed throughthe soil.

In the surface-irrigated fields, we consistentlyextracted water samples from the soil during theentire year. At most of the sampling sites, a largenumber of water samples were extracted during 2or 3 years of sampling. Appendix table 2 showsCOD in waste water samples and from samplesextracted from the soil at depths of 15 to 150 cmduring 2 or 3 years of sampling at five potatoprocessing waste water treatment fields. At loca-tions 1-F through 5-F, the mean COD removalranged from 95 to 98 percent at the 150-cm depth.Some organic matter is always present in soil solu-tion, and the COD values observed at the 150-cmdepth in the soil probably represent almost com-plete cleanup of the organic matter in the wastewater applied to these waste treatment fields.

Cleanup of the organic and inorganic constituentsof the waste water is accomplished by severalmechanisms. Particulate matter is filtered from thewater as it passes through the soil. Much of theorganic matter in the water is relatively low inmolecular weight and is easily degraded by micro-organisms. Therefore, the soil micro-organismsutilize the organic wastes for energy and nutrients.Some electrically charged components are attractedto soil particles and are removed by these physicalforces. In total, biological,. physical, and chemicalforces in the soil remove nearly all of the objection-able waste materials from the waste water as itpasses through the soil.

Nitrogen in Waste and Extracted WaterSamples

TIN in the waste water samples and in the watersamples extracted from the waste water treatmentfields for the total time of the experiment arepresented in Appendix table 3. TIN in the wastewater samples ranged from 30 to 130 mgI and didnot include nitrates. Most TKN concentrations inthe soil water were 2 mg/2 or less at the 150-cmdepth. TIN in the soil water samples followed thesame trends as COD, decreasing with depth in soil.Most of the waste water samples had a COD: ni-trogen ratio of 20 or 25 to 1, indicating that nitrogenwas not a limiting factor in organic matter decom-position. The 4 to 5 percent nitrogen representedby these ratios will furnish more nitrogen thanneeded for rapid organic matter decompositionwhen other factors, such as soil temperatures, arefavorable.

Nitrate-nitrogen concentration in the wastewater was low. The average for all locations andsamplings was only 1.2 mg/2 (Appendix table 4).Nitrate-nitrogen in the soil water samples corre-lates more closely with TKN than with nitrate-nitrogen in the waste water. Most of the nitrogen inthe waste water is organic. Decomposition of thewaste water organic fraction yields nitrate as one ofthe end products and thereby makes a good correla-tion between nitrate production and waste waterTKN. Low nitrate concentrations were observed inthe flood fields most of the time. At plants 1-F and5-F, the low concentration resulted from denitrifi-cation brought about by a water table in the 1- to3-m depths in the soil. At field 5-F, a site wasinstrumented with platinum electrodes from thesurface to 150-cm depth, and redox potentials weremeasured.

The very low redox potentials (below minus 400millivolts), measured below 60 cm in the soil, con-firmed conditions favorable for denitrification (23).Redox measurements at processing plant 2-F,without a shallow water table, showed low poten-tials after irrigation with waste water in warmweather, which would promote some denitrificationduring irrigation cycles. At other times, redox po-tentials were not low enough to cause denitrifica-tion. Nitrate concentrations in the soil water sam-ples were highest in fields 3-S and 4-S. Equipmentmaintenance shutdowns, during the early summermonths at both locations, prevented irrigation for

Page 10: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

8 CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

TABLE 4.—Total phosphorus concentration in potato processing plant waste water and phosphorusfractions in waste water and soil water extracted from the 1.5-m depth in treatment fields'

Processingplant

Total phosphorusin effluent

Phosphorus fraction in soil waterPhosphorus fraction in effluent from the 1.5-in depth

Ortho Hydrolyzable Organic Ortho Hydrolyzable Organic Parts per million Pereent--------

1-F 12.8 ± 4.02 43 19 38 64 20 162-F 5.9 ± 2.3 28 23 49 67 17 163-S 21.8 ± 16.9 29 19 524-S 8.0 ± 1.8 31 23 465-F 9.5 ± 2.7 30 25 45 61 21 18

'Dashes in columns indicate no data.2Mean concentration ± standard deviation_

maximum grass production. Consequently, nitratesaccumulated to greater concentrations than theywould have if the grass had grown for maximumyield.

Phosphorus and Potassium in Waste Waterand Extracted Soil Water

Total phosphorus concentrations in the wastewater from the potato processing plants rangedfrom 4 to 39 mg/Q (Appendix table 5). The phos-phorus fractions in the waste water and in the soilextracts from the 1.5-m depth are given in table 4.The percentage of orthophosphate increased withpassage through soil, while hydrolyzable phos-phorus did not change, and organic phosphorusdecreased. Some data indicate organic movementwith microbial conversion to orthophosphate atsome depths in the soil (18). The total phosphorusconcentrations in all the waste water samples and inthe soil water extracts are given in Appendix table5. Phosphorus concentrations in the soil were verylow at three sites at 1.5 m in the soil. Two sites hadhigher phosphorus concentrations, indicating phos-phorus movement. An explanation for this waspresented earlier in this paper.

Potassium concentrations in the waste watersamples ranged from 1 to 8 meq/Q with most of thesamples in the range of 2 to 5 meq/Q. (Appendixtable 6). Potassium concentrations in the soil waterat the 1.5-rn depth were 55 to 95 percent lower thanin the waste water, indicating a large accumulationof potassium in the soils of the waste treatmentfields. This accumulation is expected to continueuntil the soils become saturated and an equilibriumis reached; afterward, the leaching concentrationwill be similar to that in the waste water. Potas-

slum may contribute to a salinity problem, if oneexists, but there has been no evidence of this occur-ring except where salinity was a problem beforewaste water irrigation was started.

Calcium, Magnesium, Sodium,Electrical Conductivity, and pH

Calcium concentrations in the waste water andsoil water extracted from several depths are re-ported in Appendix table 7. The waste water cal-cium concentrations ranged from 1 to 6 meq/1 1 andwere similar at all of the processing plants. Duringthe first year of water sampling at plant 1-F, cal-cium concentrations in the soil extracts reached 40meqk. These soils were historically saline becauseof a high water table. When the processing plantstarted pumping water for its operation, the watertable was lowered, the soil surface dried out enoughfor cultivation, and the salinity problem could becorrected. After one year of irrigating with wastewater, the calcium concentrations were generallyless than 5 meg& At plant 3-5, calcium concentra-tions were fairly high for a few samplings and thendecreased. A fairly large amount of calcium wasleached from all the treatment fields during the 3 ormore years of observations. The calcium and otherelements were part of the salts leaching from thefields.

The waste water magnesium concentrationsranged from 0.4 to 2.7 meq/Q (Appendix table 8).Following the first year of sampling at plant 1-F,where the magnesium concentrations reached 20meq/Q, the soil water magnesium concentrationswere mostly between 1 and 5 meq/Q. More mag-nesium appears to be leaching from the waste

Page 11: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER

9

treatment fields than is being applied in the wastewater.

Sodium concentrations in the waste water varied,depending upon the type of potato peeling systemused (Appendix table 9). At plant 1-F, dry lyepeeling was used, and losses of sodium hydroxidevaried, causing the sodium in the waste water tofluctuate from 1.8 to 16.7 meq/2, with most of thevalues being around 5 or 6 meq/R. At processingplant 3-5, wet lye peeling was used the first yearthe waste irrigation field was operated, and sodiumconcentrations reached 27 meq/Q. After changing todry lye peeling, the sodium concentrations de-creased, but a high concentration was occasionallyobserved. The other three plants used steam peel-ing, and sodium concentrations were generally low,with most samples in the 1- to 4-meq/Q range.

Large quantities of sodium were leached from thefields at plant 1-F, but concentrations in the fieldwere still higher than in the waste water after 3years of waste water irrigation. The sodium con-centration in the field was a carryover from thepreviously saline field conditions. Leaching of ex-cess sodium can be expected to continue until anequilibrium is reached with the processing wastewater.

EC on waste water and on soil extracts is re-ported in Appendix table 10. The high initial ECvalues in the top 90 cm of soil at plant 1-F and theincrease and then decrease in values at deeperdepths illustrate again that salt leaching resultedfrom waste water irrigation of previously salinesoils. During 3 years of irrigation, EC values in thesurface soils decreased greatly. The total soil pro-file salinity also decreased.

The waste water and soil water samples pH arereported in Appendix table 11. The waste waterreaction was generally slightly acidic, but becauseof the organic content of the waste water, the pHwas subject to rapid change. We froze the wastewater samples and retained them frozen untilanalyses were started. In frozen water samples, pHwas stable, but warm waste water in storage,transit, or the field, could very rapidly become

more acid. The pH of the soil solution samplesranged from 6.5 to 8.3 with a few samples slightlyhigher.

Chloride, Sulfate, and Bicarbonate inWater Samples

Appendix tables 12, 13, and 14 contain data onchloride, sulfate, and bicarbonate concentrations inthe waste water samples and the soil water extractsfrom the waste treatment fields. In the water sam-ples from treatment field 1-F, the sulfate, chloride,and bicarbonate ions were initially high but de-creased to much lower concentrations after a fewmonths of waste water irrigation. These anion con-centrations were relatively low in all of the wastewater samples. The soil water samples after thefirst few months were slightly higher in concentra-tions of the three anions than were the waste watersamples. Bicarbonate was the predominant anion inthe waste water and the soil solution samples.

Composition of Harvested Grass Hay

The TKN, nitrate, phosphorus, and potassiumconcentrations in the grass hay grown on the wastewater treatment fields at five locations are reportedin table 5. The TKN measurements include nitratesand, in most cases, are fairly high, ranging from1.44 to 4.89 percent nitrogen. Nitrate concentra-tions in most grass samples were below the con-centrations that would cause poisoning in livestock.Some nutritionists think that values below 2,000Wm nitrate-nitrogen are safe for livestock feeding(10). With proper conditioning, the livestock can befed higher nitrate feeds, but caution should beexercised to mix high nitrate feeds with low nitratefeeds and to increase the high nitrate portion in therations gradually. Phosphorus concentrations in thegrass hay samples range from adequate (0.14 per-cent) to high (0.56 percent). Potassium concentra-tions are also high.

SUMMARY1. Nitrogen, phosphorus, and potassium con-

centrations in potato processing waste water varywidely. The amount of waste water being applied in

the irrigation systems discussed in this report pro-vides large amounts of nutrients for field-growncrops. In some cases, the applications are exces-

Page 12: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

.39

.50

.32

.35

.28

.50

.52

.56

2.96

4.253.492.812.523.283.353.86

4.194.333.473.783.823.512.113.024.54

Phos-phorus

Potas-sium

0.39.S5“44..35.43

.39

.28

.35

.27

.42

.31

.20

.29

.14

.35

.33

.33

.27

.40

.39

.33

3:762.773.59• .634062.933.572.812.:053:633.63328

2.711.621.40&55&182.57

.783.513.163.103.45

Treatmentfield and

siteHarvest

date TKNNitrate-nitrogen

1-F:Percent Phn

Site 1 4-25-73 2.53 712i IA 2 5-31-73 2.00 250

Site 1 9-13-73 2.45 <452Site 2 9-13-73 3.13 950Site 1 10-4-73 2.94 I„300Site 2 10-4-73 3.18 520Site I 6-5-74 2.14 1,425Site 2 6-5-74 2.46 1,825Site 1 9-30-74 2.00 2,740Site 2 9-30-74 2.23 1,770Site 1 7-23-75 2.93 200Site 2 7-Z3-75 2.79 200

2-F:Site 1 6-27-73 L79 400Site 2 6-27-73 L99 740Site 2 10-5-73 1.44 400Site 1 6-5-74 2.53 1,100Site 2 6-5-74 2.09 675Site 1 8-30-74 2.10 600Site 2 829-74 1.39 105Site 1 6-13-75 4.06 820Site 2 6-13-75 3.61 1,200Site 1 8-13-75 3.32 2,950Site 2 8-13-75 3.29 4,200Site 1 5-31-76 3.66 2,280Site 2 5-31-76 2.57 1,500Composite 8-76 2.50 400

3-S:Site 2 6-5-74 3.28 1,425

4-8:Site 1 5-31-73 3.25 2,500Site 2 6-29-73 2.80 1,900Site 1 11-2-73 2.55 700Site 2 9-12-73 3.11 1,550Site 1 6-5-74 2.73 2,250Site 2 6-5-74 3.22 1,100Site 1 6-5-75 4.44 670

5-F:Site I 5-30-73 3.22 2,500Site 2 5-31-73 2.87 2,200Site 1 8-1-73 2.39 1,900Site 2 8-3-73 2.32 1,600Site 1 6-5-74 2.43 550Site 2 6-5-74 2.31Site 1 9-6-74 2.37 540Site 2 9-6-74 2.87 1,030Site 1 6-5-75 4.89 1,550

Percent Percent

10 CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

TABLE 5.-Total Kjeldahl nitrogen (MN), nitrate nitrogen, phosphorus, andpotassium in grass harvested from potato processing waste water treatmentfields'

'Dashes in columns indicate no data.

Page 13: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER 11

sive, and much more efficient use could be made ofthe nutrients by irrigating larger land areas.

2. The amount of waste water applied rangedfrom approximately 25 to 550 cm/year. With properland preparation to avoid ponding and with dryingperiods between irrigations to avoid developmentof anaerobic field conditions, water from these ir-rigations infiltrates the fields without causingwater logging problems.

3. The annual organic loading of 10 to 85 tonsCOD/ha was assimilated by the soils withoutanaerobiosis developing near the surface; there-fore, organic loading is not a limiting factor inoperating waste water treatment and disposalfields like those studied.

4. On waste water treatment and disposal fields,where a water table lies within 1 to 3 m of thesurface, nitrates are not likely to be a problem evenwhen 2 to 3 tons/ha of nitrogen are applied annuallybecause denitrification removes excess nitrogen. In

fields without a shallow water table, nitrogen appli-cation may hive to be reduced to prevent excessivenitrate leaching and possible ground water pollu-tion.

5. Waste water from wet lye peel potato proces-sing is not suitable for long-term irrigation of ag-ricultural land for growing crops. Waste water fromdry lye peeling systems that keep the sodium hy-droxide separated from the waste water effluentand waste water from steam peel potato processingplants can be used successfully for irrigating crop-ped agricultural land. Irrigating with waste waterutilizes some of the water and nutrients that werewasted when the water was discharged intostreams and rivers.

6. The research and observations made duringseveral years indicate that potato processing wastewater irrigation of cropped agricultural land can besuccessfully used for a long time to come.

LITERATURE CITED

(1) ADRIAN°, D. C., ERicEs0N, A. E., WoLcorT, A. R., andELLIS, B. G.

1974. CERTAIN ENVIRONMENTAL PROBLEMS AS-

SOCIATED WITH LONG-TERM LAND DISPOSAL OF

FOOD PROCESSING WASTES. In Proc. 1974Cornell Agr. Waste Mangt. Conf., N.Y.State Col. Agr. Life Sci., Ithaca, N.Y.:222-233.

AMERICAN PUBLIC HEALTH ASAOCIATION, INC.

1971. STANDARD METHODS FOR THE EXAMINATION

OF WATER AND WASTEWATER. Ed. 13, 874 pp.New York.

ANDERSON, D. J., and WALLACE, A. T.1971. INNOVATIONS IN INDUSTRIAL DISPOSAL OF

STEAM PEEL POTATO WASTE WATER. In Pac.N. W. Ind. Waste Mangt. ConE Proc.,Univ. of Idaho, Moscow: 45-61.

BOLTON, P.1947. CANNERY WASTE DISPOSAL BY FIELD IRRIGA-

Tim. Food Packer 38: 42-43, 46.BUTLER, R. M., WOODING, N. H., and MYERS, E. A.

1974. SPRAY-IRRIGATION DISPOSAL OF WASTE WA-

TER. Pa. State Univ. Spec. Cir. 185: 17 pp.DE HAAN, F. A. M., and ZWERMAN, P. J.

1973. LAND DISPOSAL OF POTATO STARCH PROCES-

SING WASTE WATER IN THE NETHERLANDS. htProc. 1973 Cornell Agr. Waste Mangt.Conf., N.Y. State Col. Agr. Life Sci.,Ithaca, N.Y.: 222-228.

(7)

HOOGEVEEN, G. J., and RIEM VIE, F.1973. ASPECTS OF AGRICULTURAL USE OF POTATO

STARCH WASTE WATER. Neth. Jour. Agr. Sri.21: 85-94.

FISHER, H. D., and Siam, J. H.1975. AN AUTOMATIC SYSTEM FOR SAMPLING PRO-

CESSING WASTE WATER. Soil Sci. Soc. ofAmer. Proc. 39(2): 382-384.

GURNHAM, C. F., and NEDVED, T. K.1974. TREATABILITY STUDIES OF THREE FOOD PRO-

CESSING PLANT WASTEWATERS. Purdue Univ.Engin. Ext. Ser. Bul. 145, part 1: 283-289.

HILL, R. M., OGDEN, R. L., and ACKERSON, C. W.1972. NITRATE TOXICITY IN FORAGE, FACT OR FIC-

TION? Nebr. Farm Ranch and Home Quart.(Fall 1972: 18-20).

LOEHR, R. C.1974. AGRICULTURAL WASTE MANAGEMENT, PROB-

LEMS, PROCESSES. APPROACHES, AcademicPress, Inc. New York: 576 pp.

MEYER, J. L.1974. CANNERY WASTE WATER FOR IRRIGATION AND

GROUND WATER RECHARGING. Cat. Agr.28(8): 12.

NoRum, E. M.1975. LAND APPLICATION OF POTATO PROCESSING

WASTES THROUGH SPRAY IRRIGATION. Amer.Soc. Agr. Engin. Paper No. 75-2514. Pre-sented at winter meeting, Chicago, Ill.,Dec. 15-18, 1975.

OVERMAN, A. R., and HSIAO-CHING, Ku.1976. EFFLUENT IRRIGATION OF RYE AND RYE-

GRASS. Jour. Envir. Engirt. Div., Amer.Soc. Civ. Engin. 102(EE2): 475-483.

PAIR, C. H., WRIGHT, J. L., and JENSEN, M. E.

1969. SPRINKLER IRRIGATION SPRAY TEMPERA-

TURES. Amer. Soc. Agr. Engin. Trans.12(3): 314-315.

Page 14: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

12 CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

(16) PARKER, D.T., SPENDLOVE, J. C., BONDURANT, J. A.,and SMITH J. H.

1977. JOUR. WATER POLLUT. CONTROL FED. 49(12):2359-2365.

(17) PEARSON, G. A., KNIBBE, W. G. J., and WORLEY, H. L.1972. COMPOSITION AND VARIATION OF WASTE

WATER FROM FOOD PROCESSING PLANTS. U.S.Dept. Agr., Agr. Res. Serv. ARS 41-186,10 pp.

(18) ROBBINS, C. W., and `SMITH, J. H.1977. PHOSPHORUS MOVEMENT IN CALCAREOUS

SOILS IRRIGATED WITH POTATO PROCESSING

PLANT WASTE WATER. Jour. Envir. Qual.6(2): 222-225.

(19) SHANNON, S., VITTUM, M. T., and GIBBS, G. H.1968. IRRIGATING WITH WASTE WATER FROM PRO-

CESSING PLANTS. N.Y. State Agr. Expt.Sta., Geneva, Cornell Univ. Res. Cir. 10: 9pp.

(20) SMITH, J. H.1974. DECOMPOSITION IN SOIL OF WASTE COOKING

OILS USED [N POTATO PROCESSING. Jour.Envir. Qual. 3(3): 279-281.

(21)1975. SPRINKLER IRRIGATION OF POTATO PROCES-

SING WASTE WATER FOR TREATMENT AND DIS-

POSAL ON LAND. In Wastewater ResourceManual, Edward Norum, ed., Sprinkler Ir-rigation Assoc., Silver Spring, Md.: pp.2C/21-29.

SMITH, J. H.1976. TREATMENT OF POTATO PROCESSING WASTE

WATER ON AGRICULTURAL LAND. Jour. Envir.Qual. 5(1): 113-116.

ROBBINS, C. W., and HAYDEN, C. W.1975. PLANT NUTRIENTS IN POTATO PROCESSING

WASTE WATER USED FOR IRRIGATION. in Proc.26th Ann. Pac. N. W. Fert. Conf, SaltLake City, Utah, July 15-17,1975: 159-165.

GILBERT, R. G., and MILLER, J. B.1976. REDOE POTENTIALS AND DENITRIFICATION IN

A CROPPED POTATO PROCESSING WASTE WATER

DISPOSAL FIELD. Jour. Envir. Qual. 5(4):397-399.

(25)

ROBBINS, C. W., BONDURANT,%I. A., and HAYDEN,C. W.

1977. TREATMENT OF POTATO PROCESSING WASTE

WATER ON AGRICULTURAL LAND' WATER AND

ORGANIC LOADING, AND THE FATE OF APPLIED

PLANT NUTRIENTS. In Proc. 1976 CornellAgr. Waste Mangt. Conf., April 28-30,1976, Rochester, N.Y.

(26) UNITED STATES ENVIRONMENTAL PROTECTION AGENCY.

1974. METHODS FOR CHEMICAL ANALYSIS OF WATER

AND WASTES. U.S. Envir. ProtectionAgency: 298 pp.

(27) WHITE, J. W., JR.

1973. PROCESSING FRUIT AND VEGETABLE WASTES.In Symposium on Processing Agriculturaland Municipal Wastes, G. E. Inglett, ed.,pp. 129-142.

(22)

(23)

GLOSSARY

Acid hydrolyzable phosphorus . . . Phosphorusthat is hydrolyzed by treatment with a mixture ofsulfuric and nitric acid and autoclaved.

Aerosolized micro-organisms ... Micro-organisms in very small water droplets sus-pended in the air.

Anaerobiosis ... Without air or without oxygen.

Anions . . . Negatively charged ions.Bicarbonate extractable soil phosphorus . . .

That portion of the total soil phosphorus that isextractable with 0.5 molar sodium bicarbonate.This is an index of the phosphorus that plants canextract from calcium carbonate buffered soils.

Cation exchange capacity . The sum total ofexchangeable cations (positively charged ions)that a soil can absorb.

Clay-size fraction . . . A soil separate consisting ofparticles less than 0.002 mm in diameter.

Denitrification . . . The biochemical reduction ofnitrate or nitrite to gaseous nitrogen either asmolecular nitrogen or as an oxide of nitrogen.

Dewpoint ... The temperature at which the watervapor in a given sample of air becomes saturated.

Dry lye peeling . . . Peeling potatoes with a hot lyesolution and removing the peel with brushes anda small volume of rinse water. The peel materialis kept separated from the processing plant wastestream.

Electrical conductivity . . . The measurement of asolution's capacity to conduct electricity. In soilsand water, the electrical conductivity is a meas-urement of the total concentration of solublesalts.

Page 15: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER 13

Exchangeable sodium percentage . . . The per-centage of the cation exchange capacity of a soilthat is occupied by sodium.

Flood irrigation . . . Irrigating soils by means ofsurface application of water in furrows or basins.

Graded fields . . . Fields that have been mechani-cally smoothed to a particular grade or slope.

Green belt . . . An area of vegetation, either trees,grass, or row crops, surrounding a particularlocation, for purposes of isolation.

Infiltration failure . . . Failure of a soil that hashad satisfactory downward entry of water intothe soil to receive water because of sealing of thesoil.

Kilometer . . . 1,000 meters, equivalent to 3,280feet.

Land disposal . . . Disposing of waste materials onland.

Leaching ... The removal of materials in solutionfrom the soil.

Loading . . . The amount of organic matter, water,and nutrients, applied to land in waste water. SeeNutrient loading.

Nutrient loading . . . The amount of plant nu-trients applied to soil in wastes, either solid orliquid.

Organic phosphorus . . . Phosphorus that is chem-ically bound to an organic molecule.

Orthophosphate . . . The highest hydrate of phos-phoric acid (P0,--).

Oxygen demand . . . The oxygen required to chem-ically or biologically oxidize a particular material.

Particle size analyses . . . Determination of thevarious amounts of the different separates in asoil sample.

Primary treatment . . . The first treatment ofwaste water, which usually consists of settling orscreening out particulate material.

Processing plant waste effluent ... Waste waterdischarged from a food processing plant.

Redox potential . . . Oxidation reduction potentialin soils or solutions.

Saline . . . A nonsodic (nonsodium) soil containingsufficient soluble salts to impair its productivity.

Secondary treatment ... Additional treatment ofprimary treated waste water to remove dissolved

. organic constituents, usually by biological oxida-tion.

Sprinkler irrigation . . . Irrigating land by meansof a pressurized sprinkling system.

Total Kjeldahl nitrogen (TIEN) . . . The nitrogencontent of a material that is analyzed by a Kiel-dahl method.

Vacuum filtration ... A process by which settledsolids are removed from waste water pumpedfrom the bottom of a primary clarifier (settlingbasin).

Water table ... The upper surface of ground wateror that level below which the soil is saturatedwith water.

Wet lye peeling . . . Peeling potatoes with a hot lyesolution and removing the peel with high pres-sure water jets followed by rinsing with a largevolume of fresh water. The peel and rinse waterare discharged into the processing plant wasteeffluent.

Page 16: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

14

CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

:t1E 0 o 1.4

.? =1 .? 01.-1 -1 0? I ] 1 1 °? ul 1 °I "? eI el ml! elee: el el el "

1gbTr4

4-4 CO 1. 1.-4 N4 4 4. I eo co 4 co uo 6 03 1 / 1 r- 6 4 co 4 oo co oo co co CI 5-4 ci*

'4 4g0.47L+

COE." 6 .4 w ,11111,-; " ' •

VV VVV VVV VVV

C5 7myco 04 4 r4 r4 vA r4 CD r4 Wr4 r4

on't 't ci!4:! el°?ococo 12. en ch c co cl ec :1 c‘i.c° .c74

=,)

In

CO1 op 4 uo co r- W dI cn 10 .4-4 nD LC7 CV to N ,x) co to dl N Lez co 4-1

oo co oo co ul ,4 el co co collilco mr up <oleo 5,0 C15 17 .41 00 no 7-1 05 N.1 v4 ri ,;

.

U es cq 00 CP c3.:rta •d• OD CO 07 0 00 U7 CC ,P C.- OD OD CO4 eo 6 mrilco ,1 co co cornice uo co CA 1,4 el CR 1f5 r4 0 0- 07

eD

,4 r4 • '

trn

yi — CO'rlIIII 11111 1 1 1 1 1 IIIII.'g r. 1, !; 2 'il T g 2 2

N U CC I ,, ,-;

E C40-

ii 0 N ON CD 0- CO CD NN r- co co en GP CD 600 C4 , m0i co coati I ..,r I ca a -! ..n. rl a a a co -.::: co 1 .-; I I 1 I I I 1 I I I

23—::

CDr-I ..-...-r ,-1 .-1.

ti

c". D.t+

-IvA rA r4 Ti 1-4rA OD CD r- r- C, t- 4-1 r- - co i llico co co 4 4 r- uo uo uo uo CO 0 CD CO

N

4 "".•t)4

"

N

IC

CDr4

C.) 0b0 vi N N CD N CO N N rA

upei 4

r4 r4 r4 rA Nr4 rACD C) C4 f I OD m? GI CO C4 r4 C4 AP CD uo r- up and 4 Alco a 00 mr mo 4 4

CO N CD OD CD N ID N C- CC m/. CD COD mi4

eCp OD OD G1 02 in 42 C) 0102 Naoco N N 10 6 6 r:

ZIU"Itt tyU

.71 .;

Nn7CDCDN 02 CD 07CD, , UD CV C4 07 , C4 CI) Ch ,P CI C4 GI CV42,3 vi co uo U5 C) C4 corn. U) I I I I r4 CD 0+ CD I Ch r, r, 00 u7 r,

‹, r- c6 e4 6 4 co ci W 6 4 04 6 6 6 4 pi ri mo ui 06 04 r4 4

a g...

U r- uC

'"" rA r4 C4•

n8 0 0 00 0 0 In ..:i. ID as o o .n 010 0 o 00 o 000 o4e E

coCV CO Af 0 0 CA vA CD

rr- 4 OD I I I 1 CD 0 CID no I CO C4 0 CD op r- uo c'E u. Y- N 0 OD CO mP CO A rA COCI 0 el

,:k mi. 00 rA N- In AV N CO AI. 05 N N 00

Ea 10

UN 00 Np 4-1 mp 1.2 u7 C2 / 05 C4 el 554P 00 mk ,p ,p mk up to oo

N N N N N N r- r- I r- r: N N N N r: N r- N r-

Q., EPo cy.1 co a,

N °R eR m c? 't clr- 6 co co co Inoco ,1 co ao oo 01 co cor- oo r- uo r- r- oo oo op I r: 06 6 o6 r- op oo op Nh op op co

Z.) 13

r=4 1:3

V

NNenr- uo vi CO5 C) 1 OD co co up a) 0 1.4 4-1 00 C5 CI CV Aao GO CD op mp C, 02 OD CO

tri vi oO r: co 06 NNOooOCC 06 06 6 1 6 6NNNC- NNn

Tao %.. N vi U5 6 oo op op CD rA At N 10 cr uo r- aI mi. co co 6 co co C4Q]In IDCD co uo co

CC

-0 0a) a Z t° ;

cz aof ,r on op up co co op 4 r-iriri N mCAIn U5 r1 OD 0-- uP CO CP 00 CO 4Pr4 v4 r4 r4 W ri

CDU5 -0 CD 0 W0 0 05 Le U5 vi , , . , CD CO my C-- C4 mk t, IC UP OD 4-1 4C1 ro co opE CC

co 6 4 r- eo co co el rA C) 0 7411110 ,P 1-4 0 CD I-, vi r4 CO 4-1 00 00 5511 07 00t 4-1 WCD rA vl wl CD 0 0 CD ..4 CD 0 CD CD CD rA co to co co .100 vA CD

0 +1: 4.4 4, .64Q csttu :—

1

_Co O.00 co

15

6 co co 0 0 0 co co co 42 CC CD0 CD 0 Ca OD 0 CD CD co uo co 0 CD CV 0 C) CD el U3 C) co eo C4 U5 co eo co cq uoE 00 ci) CM vi w4 07 0] 117 1-:$ 1-1 QpC17 .V W 07 6 ep ,71 6 6 cp W 71 co 6 co .74

066666 00006 60066 0000lo ooco6o 60600CO OD 44 C4 e COQI N CO 02 CO CA MAD co co CO co GIN COCOON

a) Z..'Ti 4.,

CO

w2co rC

coE -4 0 N Ea C4 tn co Co 0') /Z

Page 17: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

15TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER

N CO CV 4.4 N I0 CO 05 C4 01 CO CD CD .7 co o 414 414 .0 co

1.

J. co to comC Sc) oo 4 to CD oo co co -41 DD ao coC0 ,4 ni ,4 ,4 ,4 ”4 o4 ci ,4 ,4 ,4 ,4 ,40

Cr40 en 0 Le) In OD DO v7 to La oo r co cl 01 co sr r4 r41.4 6 6

VV

0 0 N0 C4 0 CO CO ION IA N 9 04 NQ N UP O. C4 CD 0714 .4 14 0.1 0.1

1 041. OD ca7 .7 r4 CO 0 r4 er CO C-- ..cP OD 0 cn r- 0, 04 t-t -0 a: eR 0 0 0,5 up U7 ...q ...-i 0- 0 00 11 C4 C. v 0 CDr4: ,4 -I .4 o4 ,i - ,-; ,.i ,-..

!! 01 C4 uP .0 .0 ep C) 0- 00 WID t+ 07 0 C4 rA up O. r- 07 oo.!, ..- C4 CD C74 r4 1 OD wV CD sp Cb CO 1.4 C4 0 OD r4 0 t.-

• ....7 '4 ,4 .3 .4owc-.

a: OD 07 r4 OD O+ NV OD 10 0 411 0 vA cO c- CD C4 ,4 t. cc. rAi r4 rl CD CD r4 ED MD .w.rCID VI 0 m co 4 oa m G7 411

,..i r4

1

r4 02 1.4

1 00 .4. OD OD .0 OD 0 CD oo! e! "7 °I c? '4 "1. °? "1 .1111t1 1 1 1 1 1...-1 ,4

rytr 0 .9 OD 00 r4 e1 NI/D m ON ca co 0 0 N0003 N U) uP p7 ID DO 0 N COCON N oa N ,1 co N oR aP 0 co

6

Cr C4 r4 C- OD OP ON 41 1 CO CD47 C> co r- c7 r4 CO CA 04• mNM 07 Co CO C4 0- oo N t- V) 001 4-4 C4 - ap

411 r101 ui oi 06 4 06 CV 06 ei a6 dI of M m

E 52 0, E2 41 0 u1 co uo 0 0 G7 CO 0 C7 in up cp op 00E g irz

CO3 gi

04oo

141 C40 co so

C4G7 9-4 r4 04 C7 co

C4 CD q1 or op .0o.

r4 CO 41 . 10 O 05 10 41. 02 07 411 107 t+ on el 04 C4 NCO

co 417 N LO 'a C4 41' 07 sr o7 141 C4 CD 09 07 CO CO CO CO

tt li oo oo CD C410011111 11144 Cl

• .! .1 el 10,010 07 CO 141 07 417 07 OD +1 +111 Lc. Cp mN N N N N t4 N N N N N N N N N N N N N N

N U) 01 01 [-0 CO C7 OD CO N 00 117 00 CD opr-t4t4 oi 06 o:oi 06r4 I06 NNNO6OC r4 r4 t4 V:

CD CO 0700 CO C10 07 . OD 10 ED OD OD VD t+ OD CO ODNN N 0606 r4 ol

CO CO CA C4 CO r- c0 W oo cp1, vo r- r- r- co ap co ax CO

c: oi cci t4 r4 r4 NNNN N.., tmtroDm 0 CC CO CO CO 0 0 GA 0 .0 r4 CD CD 1 0 .7 '4 0 Cl

?., 1.1 r4 1.4 4-4 rA COvA v4 v4

;v CD C4 r4 1.4 +I1 r4 sk C7 co OD OD 4... OD ..•1 -cit en a. co r. MD

21 2. 8 8 8 2. g g g 8 7.1 g ;:-.I 8 g g g .3' 8 g,14 6 • • • • " " • " • • • • • '

0 0 0 0 G7 0 G7 C7C7 C7 C7 C4 UD 0 0 0 C4 07 <7 0 0 C4 to 0 0 c7 co m7

E oo 6 6 ,., ,., e, 417 CD r4 r4 00 uD CA r4 r4 00 CO Co ,4 . Ic..) 6 6 6 6 6 6 6) 6 6 6 6 CS 6 6 6066 CS

0 O 01 . 0 co 0. 01 Cc) (1, en 04 CO 00 co co

r4 rA 1.4 1.4

• r4

11? A.1. co

c-ce.c?

co

CO

Or4

CO

z.rw-4

11,4

0-4CO4-1

CC

4-4

4-4 0-cto

n•••••

0 if)8DI '4

0 10 q 40 q 0 0v. CO LO OD CO 40 0003050 .04-44.

co

0 40 0 0 0 0O CO 02 N CO 0 00

•-n U) 41. 0)

1 .0 10 0 0I 0. 4 I I 01 10 CON 4-1

Cl LO 0 Cl Cl 0 1010 CA 10 q V- 0

CO 0 4.44-▪ 4

w0 4445 0

C- I 4.4 .441. 10 C.O 4-1 I 0 444

IC 0 40 0000U) 4-4 4-i co 4-1 1-1

CO q 0 q 10 101-1

0 4:0 0 0 0co co ...I CO .40Ie•I

.0 0c0 I 0 I04 05 co 0400040 IC IC 0

04 00 4-I •-n

1 0 0 0 0 0' .14 03 CO 4-4

C. 0 0 0 0 0414 0 0 N 04 40N 444 co 4-4 co4-4

0 10 0 0 0• 41. 0 m 440 W co0 4.4 Cl 4-4 414 4-14-4

IC 0 0 0 0 0C 1-441• 00 C11O 4-4 C9 0 4-nCl

L.cic%"4 I

o 0 q 0 q 0

I 41. N -. 0

4-i • .0 41. 05 441404

k .0 0 0

co CO N co 0- as.14

a 0 0 0 0 0 0 .0CD 0 Cl.„ „c0 "4-4 "0 07

I rq

ItO 10 0 0 q LOU) 01.0 0.

m

1 0 • 0 04 4-4 4-4

0 0 0 40I. N V-

4P 44 44

I C2 40 q q 0

00 0 00 co 4-4 40I ,02. 41. N 04 4-4

E o 0 0 O.••••1 CO CO CO 0 10

•-I

G.ti

CO0 LID 4 0 10 0 Cl4 0 N 0 rA 4.4

CDrA0 0 0 0 10 0 40

10 q 40 ID03 03 03 4-4 03

4-4

Clq ND 0 q011-1.4 03

-n

0 10 0 0 0 40 .440 N 4 c0N 4-4 04 0 -.

▪ Cl .1 .7 IC ICED r4 04 co 4o 1co .4

0 LO ut, q o. qCO

0 0 10 0 0 002

C1▪ 7

0 0 0 0 Cl 0L-4 L-4 04

° 0 0 0, 0 oCq N 4-1

4-1

10 10 Cl 10 N IC 0CO01 10 01

•121

44 0 0 0 0 0 0 0•-• 4-4 co 0 T Cl 04-n

od4-4

op

N

op

I

co

010

.41

ti4-1

'4

' 1CA

01

ID

02

a)

coN

CA

'71Oo

ICuA

0 0 0 10I I

010

1-V1-1

11.4-4

4-1

ro

'71

N

r./0

44 2C7/

C9 A..,.

Page 18: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

4-1

1-4

cc

0 00[0001 40N+-1

0 0 0 in 0Cp 00 N N d in in1-1

0 02 0 0 0CO N N V- .1• I N1-4

1111

0 0 0CP V CO

cc

co

I I

cc

cc

1l

.vr

1A

cccc0c

+41. 0 -0

NO 0 0 0

co7

0 04Gk "

cc 0 0 in01 01 in

'TS

0

ld

0

ui

s.

tsa

rA

01

is ,'

004

0V 0 inCO r-P

1-t

.0 0 0 001 N N

ci 0I 0 CP

cepI 1'

0000040CO de la 01 03 CO V04 N

01,-1 .17.-100202

o 0 0 0 o02 c1 02 +0 co

10 O.re 0cc

0cc

0

cc

0 CO0 O C0

0 0 0LO LO 0LO C9.vc

in 0 0+++1, ceI- -0

0 0PI CO I4) et)

0 0 0 0 0 0CO 0 I +-I +-1 +-1 +-1cc

LO LO 0 in 10N cc +-1 4-1 02cc

in CS 0 0 in o0 04 0 en in en Cl0 1, 01 01

N

000 000a0 N 0 t-o1-n

in 10 0 in 0 in LOCl CO CO CO in CO

er •-•

0 4 0,DEL- I I I 0'4 cc4-1

LO 00000 0 1 10 cnao

Pi CP

.0 0 0 0 000 0c9 w.iNm c1-1. 01 v-0 +-+

001000400Cl0 W in ID CO 0

00 0 0 011-n

0 0 0 0 0 v 0..-1 er 1-1 1-1cc

0 0 40 0 0 0 00 01 Cl Cl 0

CO

0 in 0 0 in toco in in +-1 ic+N +-1N

0 0 0 0 0 0 0N N 4-+ 4-+ch

cc

0 40 0 0+CONN-0,i

0 0 0 0 0 0 0Pi Cl CO in w N Cp

CO .00 0 0 0

11,O I 0 CO 0

Cl011

in 0 40 0 0 C. C.OIN0020c0

04+-1

O 0000an-•4

c. 00 0000+-n m c0 4:14 04 111

16 CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

0 in w 0 VI 0 0V 0CO 1,

in V V cc 0ornag.-c0 ,L0.00lama

0 0 0 0 in 40

cc

4-1

4-4.-n

0 0 O 1n on) N +-1 I I

0 0 0 0CO in 0+ 0+ 01 I c0co

7 9SHIII.491 1

0°111 . 111

0 a 0 0 0a" I I "

.neD In in aC00,10.--1 I v.in

0 0

4

cq

1-1

1-1

0

2,9°R85Ea c

0 CO in in Cb 00 in 0 Cq c,0

in in in in 10 in 0CO 0 0 -0 40 1-10 a 1-11-1

0 0 0 .0 412ot I un N

LO .73CO I I Cl.0

0 0 02 0 in 40 022 -0 05 -0 00

ccai 01E0 11

1-1 ,VC.' 11111 Pi Pi0 aks2cO o pg0 0 di. co o in 0N c-

abN

112 4 in 0 40 in 412cOONNOCOCO

0 0N 02 0N I 0 0-0 +-I 04-4

ccCO 0 0 C)

I PI 0

c'I I ri

• 0 PiPi CP I LOI C•-• •cr

a

0I -0

0in

in+41.

in 0O7 +-1

0 .5.

a.n o 000 0 0 0 0 0 in

aiW 0 I VI Co .12.4-+

Ico

1010140 40 -0 +-I 0 0 0 0" Cq0 CO CO 0401 4-i

cc0 0 0 LO 0

co0LO

0I-I4-1

in inco +cc 0Tr C

mc,I I I I

0 0 in 0 02 0 0 0 0N 0 0) in Cl I

cc

t- I 01I-I

-0CO

cc NN 4.-1 Iw1 CO g0n

E4, I-I 1-I I I

t- 0 0 .0 0 in 0 0 ‘0. 0 0 0 Ic201-02+-0 IN I N 0 in W cc 0) 1^1

CV

o in01-n

wmer

0t-

0 001 Pi1-10co N 1

1 2 0 0 0 0

0 I CO I "2 4-1

co inCO CO

4 0 LO 4 incOV010104 in in 0 n10 0 4c)

Cl t 0 - in1-t LO

rc.04-11 -V

CO

in-0

0-21

00CL I 11;

4-1

"

r • 0 0 in 0 0 0Cl 0- N 01 0 4-14-+

rt..' 0 0 0 C7 0cc 22 a, 04 0 p;-.. in 00

0CP

00

4-1cc 0 0.CO d

ro a0000 ‘0 a aR-1

„g A

Page 19: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

cc

ci

en 0. 0cc

Cs COV CO N

O

01

aeI• "

CVILr1-1

33-•Cl

TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER

30 0 enI I 1-43.4 1 CO

C00.4000CO V V as 04cc

17

0

cc

e. 0 0 0 0 Cs 0CO 00 01 r..04 H s0

Ct

en 004 1 I .0 V. Cacc•-n

o o 03 0 9 004 3.313,43 0 314 4, I

0000000-00Venc00 ICOV

0 0 en 0 enI al Ca VI C-- I

0 0 0I I I " I

0 0 cc o 0 0C-00001010 1. 1.-1•nn

en 0 en 0 0V- v. 0 4 0 .30 IgH

H

V-

cc

0 0 0 06° 1 WVaq 1 .4.I-

en 0 03 0 q 0coOVC0-4.I VCO 1

to

CO 0 .0000 o0v0100 CO-1.

0,0000000 33.13 04NVC3.1.

0 0 0 0000 0 0 0 0 0 0 LC 0 umV4 0O ry iO0 V ID

cc

04c0 oe V 11 0to

000000V

0 0 0 0 0 000.00.002 I

0 0 4 0 en enCO V .-n en -4. I •:1.

00 000 en enco CO CO N cc N "c?32.1 61 I-I 1-I CO CO

.n4 ccCe H ,i.I. cc

CO

O

CO

O 111 i=1. to 0cc I OS V CO V Iae

a

t-

e9

L.0 00 I 0 DI 0.cc

Cs en to 0 0 0 0to 01 I Co4" `D 0 Di 0 H v co

ccC4

ti en.1n1 e.,1 1 1 1 1 1 1

CV CV

0 co 0 0 0cc1 CO Ce '507-1

frt'•e30

0 en 0 0 0 0 04 en 0 0 0 0 0 0 .0 0 0 4: 4-;Ole CO V 0- 0- 40cc7.1 ca

-4. cc - I Vr4

CO 0 0 Di O

0ko

CO 0W N0.0 0 00HM

CO0 Cs 0 0 qC+ V V. 33.13 cc 1 0 O to p cO to lqC4 0 0 0 ‘.11 v Ee

0 0 0 0cr- 000000 0 0 10 0 0 0el0 Om CO 0 0 to 04 0 as 04 en Do 0 cc 0 0

1-1 4-1 HH

cc

.6 to ca 0n I 0 I. mw-.co en

wO• 11111,4

. 000000[J'-'Himommo

3-104

0

.0

03VI 0•u

31. to

'g 4

O▪ 1111111cc

,°111111

CO " CO CO 1 CO 0-0 114 1 ON CO

COI 1 1 v.

1 0.1 1 IN ci °q1.11"a!'"'

47.I-11-1

0 3.31. 0- 01 000 0 0-. 00

cior:1 1 N NCC cc 0000103-..clcc

4cc

E-- 100-VC009CO 44 INIIMI 4olcmiHimemHH HHH

A

cc

•-n

N

0

CO CO10M

1:.-!t-DO0000MIOW0Mr-V

ommomI mHom4mm4

1.17.,"11100611vQH

0- .0MIciIIIctea

10040-. 000cc cc

I I I d

'4?

COCO

ci

O

0H

ccO

4-4

0C4C40 .4. 01.]k4c44.66MOHHHH

NIMHH00cl4 C4476t170044 pir ai.4 3-4H CclHH

mN V-. 0 0. 0 COcc 6-,,,Jk4MAOV v. 01 3-1

C- V 16 61

HQ:kr:414v:

to 0 0 Cl 0 CO0 0 on o

If a) l•-•O o o -

0- co en 0 .a.) 0 tl •-n

'71cc

O I Lti cccc

0 0

01 0 tO ca 0-3 Lg Caa

0

eSeS

1:1c0 spC V CO

cc

trS

9 0. cet:. 11

OHMH(0034

cr+MI66M4HCO 3-I

NN Ca tO 01I I r: I I 04 V0001 HH

cc

0004

.14

CO N

oi I I I I I

cc

mill 1 mill4

I. 1,

Page 20: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

cot-

I

cot"

r- C- PI61111

p3 n l•-• 0 PI6 1 ,4 ,1

1-- mcat-owI A A No; A A

1 1 ot 161'1'1111 6 a

to co

I A I 1 1

t- to acNW co 1

0I co I 6 I

1 1 1 1 1 1To co in 6 C) 0

r4 ci AAAA0 -0

CaCI 11111

co 6a 6o1oioi0.aI

III

r- t oo Co PI1-1 Cf4i. I

co611111,1Eq

c-1

13 I

„ coI of I

I I 1 6 r▪ i

oo 7-n6 1 1 6 1 cc; 6co

+900 co ca coV oo co o. co co▪ 4-1

S

1•4

0

t- C co ao: 1 1 1 6 6.

co

lbEq

oz,ca co co

11 E

a

• oo co .tt6. 1 1co

CO 0 4 N CO co6 6 6 1 4 t-L.'"to

c- co 07 co cc)oi o:co co 1

056111

6 T- Ol 1-r 30of

u? 6 1 1 Hco

Ca CI

o to 0 0 0▪ A co CO co co 6.

r.dl

W

C

a

co. to1 6 ci 1 1

ot,

C9

W CP 0I .27 I I I

CO

I I

oz. 1111 c1 t7.1 1111`1:11C- V-

a

T 111111.-1 ' I

0 .ttr-oc 6 1 1 1No a-

co Eq1); • • 7-1 1 ICl

CO

ai Ia

I

r- e- co6 6 1 1 wo:. 1

1:A A I

to 1 ei 1 to.70

N 1776 I 6 I I I I

oa

did

IDto 1 11111 1 1 1 1 1 1

Eq

toCO

4..csa

co 07 cogi.41.411

co° N, co co r-coco a 07 V ea

AIN4 va;ca I m7 .4 7,4 o;i I 1 .11 I1F.2

CO o7 CO e7 6 110 C4 4 •# 66

a) A .4 .4 NO ' 001 1 1 1 1 1 1 0 03 C9

kO 0 CO CO .7-7 Eq OR CO P-; N CO

430 A 1 .7) ...I n4 ...I I [

"O.a ori 1

cl Eq CP Eq

°rW7' oi 611111

to1 I 1

•7; goa

CO6111'11Eq coic'

.2

0

CO co6111611urc

01cio

CO C4co 1

tO

co ENlliiiEq to

7-•7 1

1- N6 co 1 1 1

coco

C7 .7 COr

Eq CO

r- Eq coEq 6111111 Cd d1 AO KN

CO co 0)co milli!!! Ca

roEq6111111 CO

6 7-1 0CO •-I I-I

Lb

Tck CO C- [0co

g

06111/111 Eq

6C9 Of co

6 1 oi 1 1 1 tCO747 i 1 1•-1

pi cg to 0 0 0 C) C7C-) 0) CO Ca Co to6 .0 0 C. 0 0co to co) Cl 6

0, 6 0•nI co

6 CD r.ID

611.11.4.4

.cr .4,61'111'co

0 0

L.-L.160o!

CO 0. co.tr6,- 6 .4

6 6 76 6 w' '4 "

CO P-• • r • •

7-7 COo ci 6

0 9 00CO om co in

6 6

I

6C- Cl

1 6 ..-i

1.0 C9 6

1-1

7-4 .cp COI 7-1 I

t":

CO C.- cO CO

CO t- 07 07• oi •

.to

6 0 CO c0 el)

A A o: 6 1 co1n1

6

I I 1 .4 1 130

co .C;111111co

ODI I •-;

CO

CO

t-t-t 1

01 .to. coti 6 1 to go °Pr- 1 1 1 1 1

I.- .0 CO .0 0 ol timi c- CO om 111111

r- 0 6• .-411051.4 Wri ". I I I I I

to C-

CO co .7-1.0 to 1 1 co co

co▪ 111111•n-n

Cl o00 CO Ca CI -4:6 ao

"1 °I °I '7

Eqeq

Eq6111111

co'1' 6 1 1co

1.-630

0

CC N

1-4

C9

CO

••••1.-i 1

011108

.:6111111

co6 1 1 1 1 1 1

od• o6/ IN4 1 I

34

t-:6I 1111o.

Nb

6 1 1 1 1 1 1co

7-7

W

t- O• i I 1 1 I

1g:

.4 1 1 1 1 • 1ro

I

• .7 0 0 0 0cl CO CO 604 .7-I

tVco

1-1

ODID

ic4.1111111

tow6111411

Eq

1-1

18

CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

Page 21: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER 19

A a I

ea CAg I I

CA el:°) w .r41111ma

Zo

oil;IIIIgr

tiaf 1111i

I I 'It.0

10o4 e-

Nm1II '111

•-n ami 1 1 • eiTI

aa9P a ' I

a•

W

CA 6 magi I I I 1 o4

CID om co1. to I CA 1 1.4em

CO 0) co OAmi oi 1 id I

ee 10

10 91 0ell IN

CO 00 tor-r 6 I ..s1 ' I I '

Ma md.07I ' I.410

11)

-C7Dcq

0co

rz%

od

s._

-cs4.

Ql

eo

a

isO

O

0

cc

04

10

ticm

ID

C0

.0

0

0

CO

th

C

a

I.- Oa CO 019 .0In1 W I I I CA I .4 I .1?

•-• a".

07 a. CO 0 0- 6C. 5 ir.5

1-, OI I-•

I I ' I 3A

OD CO 007.9: y4 t

•I s'? I ' Ia. In .. ;

A S .4 I

Cl

10

6 eV 49

.6 O a

/ 4 CD wl CD CD Cl Ca• 4 ••

6 74

0 ea ta cm -4 o-1 ca 1 -4

N cm o: oa

P10 93 1.4 .1.v C4

Cb CO .1.v 91 C4

6 "I,

0 NCVCV .0

w oo d1 ""11 10 a

00 C. 6 0 ID 61 c5 o 0 4 4

1

I 1

1P0 I 66I

I CA

I OQwco6.61 I r4 6

04 6

CA V 6 Ma 6 et; E. 0 ..1n r:04 ,-,

1-1

1 .4 11111,4.

N6 C4 9I to

.11: CO Oe 9 CO co

.snr<00010ID0► 00 ry rr ei Ca

CD CS 91. C- OD C.. 906 CO eV 'V4

1.9

Ca N..0 0• 04 m5.

• o 0 o CD 6.4 4

co 6 01Ai

GO• - I

CI 6 ND I.- 0 0 CC

m5 os o

74 iCV

• 0) OD OD CD y eaNi 4

01 0 07 0

CD 0I I 1 I ci

to co

CD 04 Ca 0 Co 1.4 0Ci m6 cm C

.04 r. 07mi 4 • '

A a a a I

•6 0 10 10

T 4 1 m5 1 ci oi Ima ma

ca I--Ri 6 6 Oi I ellel. 19 CV

111 11 1

Ca 0. la 074 oi oi 15 o5 1

19 I

6 6 6 0 00 OayV

0 CC CO 6 0,-i f.4 0516 I miA 0. DI

7' I 1 I I I I

6 ca 0 el.I I CA. 6 6 I esi

.1-1

93 Cl CD Ca CDcoma) ••I I01

4k-.c.°)"?ct,

4 91 I C4Cl CO CM 1.4

ma111111

.-1004006 0.4 a .4 0 I c44.4 19

0• o 6 0 0 .0A .4 .6 r: 1 of

Cl

C. CO Oa 6 046 6 6 ..;

• ei CO CaI I oi I

w

o Ca o.%a 1001A to al

4 om6 oi OD 1 1.0 co CO 14

019 ..910 oil If

co V- 1000.4 CA 6 a O I I4 oa ea cm

cc. .4'I I I I I

CO

..-• i III111

Az

10

10

ap

alp

CoCl

oa

Na

4.

1-1 or Cql co CA' 1 cm • 4 ' 05

CD 0 6 CA0 1 C; Car- CV

a I

cm 6▪ 1 74 1 1 1 15

C

1000000 ti 600000 e. 60.0000 .4 6000000 co 05 0 0 ,-P CA 6 CA ea IA •-• +-I AD CA CA 1 •••• "v-r 05 6 0 01 ma 0•-n

9 60000Q ce 6000001101010 a ,, ,etect7474D.

11 r1 9-1 OACC

10Ii

Page 22: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

r- CO 04 04 C4 -0 N co Cl N c4 (C

C. W C.)0 c;

2

Cs1

as

a)

.raeq

0

00

c)

T.-

a6

•-nN

eo

4

an

0

Le 1-1

1 elol.1 11

iI

1 " , "i ' Cy

1" t cR w l'0. 01

eivaco ..4000

V. ea ca ted. A 4_

MN Ca e00 6 a.

• • CV ,r

ca r- 0 0.../ I " •

04 Ca I--• I 1 • •I

0 0 01C . -cr 0 0

-. 4-1 0 CO Yr 0 0of • I

4.7

0010404 ,00•2. • 11 01 •

FL-

00 07 010I 1 tim - •

L.4.7

°.°0@ N 0 0 0 0

(a)

g

2ayS

1.1:14-4 0 .0

I I I

N cy 0 0

0).. 000,4 N14. I

000 0 CO 0 0 0 0

a, 0 C0 4-4 0 CO 4-1,-n

4-4CY 0 444 CO 0 C0 V

L ea .7000 0.- co co co to 6

A Al

4.-.1 as A.. 0 ti I

u7 ,r 04I 1 •-n .-n

1

C+e4

eg

E

fa

4

as y•

m

w10.-41-1 4-140 .C, C4 00000

1-n

0 ce CD 0ui r4

07 Cc 0 0 ti:1 .440

4-4 NCO NN r, o4-1 c; k

Ci CV

004 04 0CV g I I

0 re. re CD re C,op 041 I

CV CD ta 0] C10 V- CZ 0 0 Yr

4-4

e44-1WC00111,

O cD NN 10 c0O N

Om OAM 00 D.7Co Cl .4 CO N N

.14 0400V-0 .1-4.•

t-

eC

aJ

O

tv 0 Cl CV C4C, CD C, C, C) to

eP

0 1O eO ..11.

0 crc N N..1CO 44-4 0

1.. 11111

"? C! °?0 1 0 CD 0

N d'4 00mil .4. 0

.4.4 0 0 0

y?

Ch4-, 0 0 4-1 4-4 4-1

co 111111 2

CO 4-4 01 0 C 00 nn d C0 0 0 0 CD 44,p l• vi en CD 0" Pr'? r-

N I 4 I .4 I m“a'°1'4N 1

C7 •cr1c i 04. cD 0 4 o d'0 00 CP 41 t- vv, 1 .4. 00 04-400d 11 1) 111 td *4 c4

CDcei0 I. 0

,4 vt 6 c) vre 14 C4 I 14

• cc

00 010I

.1 01 0 N 0 CO•0 01 11 vD uP

N C4 4-,OW-VC-0 G.

A44,,i6406M -0

4-1 0 CY 4-4

* ";C.: 11'dkb 4-4 4-4

Amam N6Gf) 4 co

0010 .11

d 1 1 a '" 1en 01 Ca cc

mo. CL- •-d •-•0D ,r 6 VD e9 r. CY 4-1 02.

•.1.0 40 ,e_ka i AD 0m 0 a)

ad co A A A

p-1 0=01- 01 CO 00 t •-• o 01 CD A 0 0 0 011 4.-1 00 10-' I

d I 1 "4 1

.4 0 ciC0

t- 4-1 0 0t- .4,14 CY • N

N 11111

111111

Nv6 .6 LIS

Tl•

0 0 41

4-I I e./2, 4.-4 0 14 4-4tq

u, 0 C4 1.-4 VD 01• 0

ell 0 Y1,. .40 C9 C) ea 47 47 N co cc: Cl 07 NCO 0 O 4404-1

CV 45 4-4 '4 111111N

r'1 .41 t-11 .4-, 0 4-/ 4-1cc

04 N

cc6 4

00/01044-,40 4-4

N CA r-

N GD N n0 a0r-CV l• .10 CO I

•01 000 0 CO •0cS 07 0 6. C1 I CiC4 r4 cq

cc C') o 0

CO cO .1 0 07 01LV • 07cc

N 0 CD N eQ .1 CD 4•-• OW ACV *4 .41 .•-n uj 6 COea 1O N

.-nra

' 6 r: 04 u5 607 0

Lti Ai AN O

4-4 1-1w

N C, vr6 I I I

-o• 6 co01 Ca 0 cc 07 0 CD

07 r-- 0 .7 r:c-1

t.?" 4--, 00 14

I V: I

-vn 0 0 0CO i 06 6 v4n aa 'C

aqN

r-i4 0

E4-1 4-1

E07 CO 0

I D

.-10 000N •V-; 6 ad A A

A A

00001 Ong.4 4 4

I g0 0 m4. 000 0

,..i 6 od 6 ofeD N Co 04 .4. SF .f]

CD 0 VD I--

aro

E, 000000 (4 0700000 000000 . 0 00000 . 000000`-'• 4-4 0 01 0 01 s--• •-n M cD CD 01.7 co 0. 00 01 o •-•• cLc Cc N o 07 CO 0 'aASM g

4-4 4-1 4-4 .4-I 4-4 03

20 CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

Page 23: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

oooc

[

Cl0) .0 004""WN

0006000•.n

TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER 21

ID0

10

0coCO C.0 LC

C2 Ch CO 10Cn t-- coIc; I • • I

gn 1D go 91. a? orao

""

O Ca CO CO .-IcoCO c.) N6 I .4 I

I I I I I I

CO N co CO 00 00.0 OR 01 00 " 74[1:1

cq ca 10 cm CO 0 nP01 C4.-4 YP r4 SR 00.4

op N co cm 10 1001 01• C4 CO C4 00 CR 1700

16

10

CO

In

•-•

0

ID

0r4

10

CC

10

CO

°P 6 6 Ioo 4.4

co 0DI CI'

IOpt•. q)

0 0▪ .•.6

CO cc) CO▪ ci tro111c4 •

10 01010C-• to1 0 04

. I I

la r- ca 6 mo0004 CO UR 10D I')

V. 01 CO 10 tn 070 1.. -I C1

I 04

N •

nr OD nt C0 oama co aa co. cm.moi4 N I

co

111111

.707 m 0.0 02 OR V- .0N

cO 0 co al No COCO [1:i CO 0 co 0

I

•-•

CO COCO CA 04.4 .6 .411/11

N 0,1 07 07 co co• ,4 tn 0 " CO06.4

ma m

• M 4 4 Cleh

LV rY C4 NaVDW Cn ce CO C0

"7' .4 ' • • • 1

gre

04 0 0 0▪ C4 CO 01pi • .4 I • I I

4

ID

CO

0)

COa CO 0 0

I 'D.- 1 I -

'eS•

CO 05 10 0)10.7 .7NaD 0 NCO C)• I c--n

011010 omnnmo oq oa.6 • I - • •

cO

COr. e-:

000"0001"00010

Cl

10

O10 CO on 0 co gn,-n ro 0 ci •ci.

ei

U0 10 0 0 COCn CO Cc C- 11.4 C507 0l • • • '9 •-n

CO O N 07 C4 CO oot"..1! qc! c!RR

CO CO CO 0 01 0ea ca co ca ri c!

10 0 oo cm .0 1,2,4 C0 rn

1.1 oom.,0 0

nn-n• I I • •

0 ICN W...110 on COCO CO 0 0 0 CO .•-•. . .

10010 ICON0020",t-004.

04 C4 04 4 9 040 CR SR nt: CR CD

CO 1-• CO OD c0••-•00.-10 00

I ' ' '10

00 10 CC 47 N Yr CON01 Y4 0.4 S7SD. • . •

Cp1Od0 c- N . 0 01N CO ff.. S7 d0el •

10

co

0 CC

▪ f I '1 I I I

IO C1 10 10070. CO 00CO CO ao 0 v., 0 C100Cl"

▪ 10 16 01 a a 07In. 10 0 CR OR 0 rlT 00

07 CD 05 ao C40 0 0 07 rn C1

t-Oo

co cl• occOcou)o)COri

r on 0 c• Co 0•-•,•-• co CO Co 04

OD 0 m.70) CO oo00 07 m01 or •cmoS .4

DNa mr uoC1 Co 10 C4 O r-ed .4 Cl .4 01 Cl ,1

I")

0 10 01 .7 Yr V- 07C4 02 07 14 .4 00Oi r4 .4 046 .4

600 .orm

6 .2, r4 ui oi r4

010 " 0 0010 CDCO 00 C. CO yr CO 41ni; .40605""

O C4 tn .0 " CnI C- SO co 026 1 .:104N601

coo)c). 0.-107.1•co a) •-n .-1 co cooi - .4 ,• "

cOPIC9c0cOO-CO.009 U7 t- c-- C.4

4-1

10 10 0101 V. co co't .1 '1 "1 C'V-

COV-00001040O 01 000 0 C2 "

•-n

CO 0 01 ni• 0 0

c! '1 CI 't

10 nr 04 CD .4 000 C1 01 Q SP 0 0Ill

ama amrea0 al ID 0 LO

00 CO V- 10 Ch V-W UR Cl CO CD 0) 0)

4-1

01

04N61.40

0) ,10.0• PII

O •1.1

4-1

C4I P; I 1 I

1'"

N CO 0N t-.4 01040 0 0001 CC CA

NN N00 N

1 -1

co

• 1040 -V,4 I /

ooa ua e-+4 .4

eq

6 I

1

N

171 1

1P22 0 ,614

ce 0 0 02" C2.d 6m 6 '

CO m• °_ 1 I 1

Iv: -4;

N

Page 24: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

22 CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

.cn d 74 00 SP 44As um cr m mma. 1m

0.101400000011MCOHCOVW.v001 VI

0H01 44. 0VH0Cr'C.c4 c4 74 c4 I

M111 070

o• n 11,..;1

41. HOWC. C4CPO4000 0

I I 0

Lit 1/7 04 C4 44. CD 410.494

E • . .4 C4

fwasotor-mmlanaimoomm.a, t- .4 .4 .4 .4 .4

0 0 V OD CO U,• .3 C)

.4.4

t+ ..I C4 42 CO CPt- .5 01 CI 00M1 M1

HOC4C-OCIM0H00t-.4

000040 V0700011-4 V C4 C. 0 CV C4 qlmD .4 04 00 .ca CDc4 .4 .4 .4 Pi I .4 cd a ad e4 cd el td .4 ci

osom,..0w.casss-s-mcqq .1 CD:; I I I 1

CO C4I

Vt.:11

l0

.3WON

70 7. .50 m7 Cc! -. CDe4 ad

CO .4 .4 OD 40 4701 03 01 170.0 m

ad I oe e4 r.

V6 111111

3 C4 CO

O 1 - 1 ,4 11

C) 44 0 CO .0 C4Cl OP 44. CO .7 C7of • I74

• a msso6 11 01.-1 • I40040CO VOW 0

45 1 0404 04 -I,-1

co0

S

ea 0 as .s t- 0 op 55 C5Ca aoom .-1 eq z I

ai6a.

Em

W cleo .f 2 .,`" .7.`" oc° 'c'. -57-a

E;..-- ....

Cjr..000000 ..00da000 ....a.óc..2 ,pooppo

.4 .4 . 1-. 1-n ..-.1,1•-• 1-1 03 03 01 "1, 02 g

,-. .-Ivcc.MVW ,-. .-.07M00710 .-, .-.050004

mm 00 DD .7 V 44 C-CD .4 r. um Dm cD• • • •

00000 09700C-, 0 006 .4 [ c4

t-• a CI m A. V41. 41 W 0 0ati oi '

: co : '16,..1 - ---

f1 lTs757s11"6. ..1;

41. 0000MI nC.. "1 CI

.-n

co

ca

C.0

A

eae-

E

E`',o CD 4) a CD 0C.).-'1.4 07 Qs di C4 01

4S HH

,,,1%”dc=

m11 0,1-

141. 04H 014

CV

.0 9704VMH04 I oi .4 • '

HP4WW007.4Ioi •-n '

1c0a!olel°1e1

/.--mwowwo

E`',o CD 4) a CD 0C.).-'1.4 07 Qs di C4 014S HH

0 I i l ,-;

co46'1. .1 I I

.0 1 .497 ca cc ooCs i ai Cl ad ,4

c. m X04:3 I Ic.

OCOOCO

i0044P0000i0044P0000

q"4°:

.4.-mmar-omeem

eo

1 idrI,v......!obob

t-0- • i

WO t-0- • i

C41 I M a4 .4 .4 ' ' .4

1 I o f 01 C!..

C.

IV 1 I of 01 C!..I 0 CV

71.

r-

g-n

F.;

04

a

ss CO A. 0 .4r- C4.7 CO C) ell

41 0 WC4 CD C)O 11,41 'I

0-

cOM a,6 -I k -I

C1 .1o• 1 .4 1

4

SPnI11111

0.1om 6mcom1 ad .4 ' Ico-

04 0I I cl i I r:O

CO 40 4004 04 .5 41e4 CO .4 C7 04 .4a1 74 .4 .4 .4

400740 40.440 ..4

00

.0 0 4.-n CO0 .0. mOM• I el .4 1

COtO

CO 001▪ 10

05 I M .4 ' I

C4 U,0 07400 0407 W 04W .4 .4ta.4.4 1

04 OD 4.4 n 41.0 CD P- qD n i C.M cd od

4PWOH ,r• c- C4 41▪ 44 .4 I I •

co

C-

.7)

1-5

.-1

CO

0 ea to• cq6 •I

C- co...;1111 • I I

.00E+ WC7 m m 4 0 I I0 04 '

tO el m d, 0,O 040 400 C.'

.-1

a

n.amciaasm

i '4

O3 4.03 000 cei

to to to cm um op OD0. C4 4V V. m 4t .4_z • • • .4r

m5 0D 0D CO CD 40 c-01 CD .1 C4 C4

Page 25: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

010444=00 N

op 0 0 V V 6 OaCmID CI Cn 0 W f cq'07004 O u) u) y, CO CV en

Z7cl 't

u) ",d6wWv6,6666,-1

M•I'MCV1̀3 614,66,,

eta

9 9•-∎ m'1' .0CV 6 6 .4 -4

0? raccoon.]

4:7 6 CO 4.4 r/ 4.4 4.4

WWN4U7WW1414, ti

F,

6 0043, V,,

Cq

TREATMENT

CQ c0 c9

0000

I • •

11,1-1

'1 I

I I I '1 m!

vc:; '1

WI I ' -

11740 d-n 1

C) cn r- ulci ' I

co

•-n 111111

1-1

[-. .-q W WV. • I • • Iti

00760000.7

11513. qrn

AND

40O•-•

F,

th

n-n

cn

A

0

0

Co

DISPOSAL

4. OD C- C) 90 I oG Vim 1

6 [- C CD v?CO '0 u) u) V

ID c- c-6 .1 6 N 45 1 '

cr)IIII611

-.roomI I C Q5 Q5 i 6

C4 tO 00 t-e4 6 .4 1 e4 1 f

9.MM c0

:z1:;1111

-„111/111

ocom6 I .4 6 ' I4-n 4-1 0 0 0 an466 6 r4 I .2

CO 1-4

M W 6., u)6 6 C0

40 CO6 1

R 66theo.4 I • •

OF POTATO

racra ‘ekna,T.646

h? ° ".060

mtl• 45 QS 17,I I • • „: •

1111 '1 `1

NWWCIco 07 N

W 0) CV CV V.C0 I p6

0066e5 .0606 6 C4

.4

9 1-1 u7 CV 66 CV '

ro

O a a .nr: 6 66 6

C. 6 C4 04I ,4 I

O44 0,04 00N.!4 MM

6 .‘cn ul 01 I. C0 CqCI on 1.-1

u) 00,=,445 ei I .

MVOw N• • • I •

0007WO. NM.,Cb

4

c9

00

PROCESSING WASTE

mllllll

[

€ .7 111I11

a

w i f1 04III

"*..4c4c4c4c4,4 1

49 6 04 0C0 1 CP] C4 I

WATER

6 r4 C7 C4 tr 0,.., .2, •

actcor4,c7a•-n

00106r,0007 CI 6 C4 CO r4 C4

40

C-W V-0 C.I 1 •

mcl,44•-•

t-- v,! C4 CI Ch u)64-4446.4g,

02 u)O

c) cc. .7 kn. on U7 0

NWCOr.. 04C,C..̀;

oa 6 ol

23

=el el C.FI

r4t- C! VI! i I CI I01

49 I

411 1 11 1

:2 1 4,..;

y'L .

CO C-I mt; I I • I '

r-

CI V 05 05 ra n 9 060 NU7ro .4 • r • • • 01

M11 1 • IL• r4 u7 CV

1-1

co4.4 4-4

470

,4. 07C, WWc4, 4-n I

V0

M WW6 ,17C6 I

199. 1 t7 0..1 m:I 44 6 I. ao0070,04,9V

CV 1-71 N 4-I t`g mv ,1.46

C-44 ,40166,166 t•-•,4

6W,-.10)6604 :2; ;.1 7; Nn OC u) F)6 CV .4 -4 4• I 66 44 I rL4

oo0 c6 I I I

r/ ev .7 ,4 .1.4 C4•Zr; 6 .2, •

r- V u) u) u)mi 6 g f4 ,4

I' 6 co F, 04 h7CO N., n)

cn

comlillli on nic,D,1 1 1 4.4

CSIII

CO 411111/

CS

0 -0 a 6CYJ ,4 . I I

tiO M ea 6 L0 o: 6 .11

F, •-•o-,i1111116

53

ry 6 O r- , el 01 r+C. 44 1000 6 01CI .15

I ``L' ry5

6 .4 14 6 CI 2.1 1 -

a

4444

r -1 f 4 '4 Cl•-n

1 .11 CO3 40 C-0 6.01,06601,d,'

07M .WWWW-0a • " '

•-n ccocor-uom., 0.4 6 c4 '

•-nunooa aaaaaa a .000000 n 000000•-• C0 Q3 40 6 u7 ••-• •r4 py LC 01 6 1:0 ••-•• .-1 6 CO CD 6 ko

..--., ..-.. ..--,% T._.,0 0 0 0 0 0 n kna0000 •. L0000e6 1C,, 1-46WW6127 '--.",07WWOM ,McoM6)17 01-1, ,-I 4-1 4-I .-1

C.1 r., coA 6 6r.9

Page 26: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

CACCie.. 0MMO4o0 11

q?N co N co co co co

1oloo11.441i oi A co A A I

H 1 0OANOP0,

44c64

a 60Ar-AA I ,4

NN

'40040 ON4 A A I

c0 CC CD At CO cy4 A 0 I '

CA C) At r-•-n '

A.

*o C4 rA CAA I A '

NAt C- coCi I „4

At. 00DAVW0NMMN

N

0.t.

C-

E 4-... .......C.) ,. 0 0 0 IP CD 0 . uP 4 CD CP as Ca

.." .-,C0CDCF1N 1.0 ',... A 4000,4 .0AI rl --

CO oL,41.6

ti

go

C-

C4I

om 0 OOCO ON I MNO6MM

•n

N

NN

co

N

O

N

0

u'i°,!, .most- c4coco166E-4

01 0 CO CO 00I 06 cic4c4I4

• 0'` 'C".11CONN004 .0

co▪ N Nd oo up ui

`Z:

i dle-0mMI MMOD0At

CO 00 n••1 CO

I u5 I 0i 4 1T.

r4 C0 N CO 03 p01AT 0a c0 up At ,-

AO CC At ig! 0 ,:,A At N CO CO

0e. 0 ,MWA A A e4 ei oi ei

W V- CI At uP,..;0404N04m04

A! 0 CI 0 CO..i4p,46044

'1'0. t1 tc1 v.1▪ uP CO 0 A? .0

Ca 0 tO ,1oo c- 4 4 uo

'40 LLI N.. CO 01wNy Lc5 oo c4

N 0 03 0r4 I MM I N0

0 0 N r-I e4 ui A ,4 I

c0 N* At CO 0A u6 ui 0 c6

ci u▪ i NLei N CO

CO

N

CO

CO

•cr

CO

CO

N

N

N

O

CC

N

42

q,

I-

4

ICO4041-. *NN1.-4OviAc44m* **

1 0 Ca r- e-oi ei c4 e od LA e4

mc00cocoN0000,401 01

,• 4 10000 n=t N t000000600000••• ••• 0) CO CO 01 kr) .•-n CO 0 ITS LO CO 0 01 o

Al •A

CO

C:1

N

O

N

-4.

N

N

ci

CS

N

N

A

N

CC

F.

A

A

'g m

CAt-00w4

a

[CPWcOM,iu6u606r:6

loo N 0.-,0i A I ni I 4 ,4

1 ..cn AP CON

,4 4 r: oi L6 cc;

" "' I NO

,4 A o6 CO N

4-. 04..01.0I I OP oi cti •-n

CO 4-n

24 CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

Page 27: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

Cr.

A

CD

C)

TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER 25

cmcm0-00m

.4. 4 up, 4:4,co V V- .7 4

1 1 i

0 04 GO

I ci 4 f u•

V^ ma 0 V.06 mm r: 06

muauammm I 4

1 1 1 1

Pl."""1'1.1[04040700 .

NOG M,i c6116/1

1 1 1 :1 1

01 .‘V A CO

11 0° el,-,C4404

N 1p r- C4 mar• • I / CVO ei

1-1

NN t- ccwW04 •.4 I ma CD ma

. " " G°. cl *1• p4 V 4 V Cl- 0

7100 C104m64c60-,

N 0O. w caMN .4 to t-A

4 040 .5044-, • I ' • •00704c104

r-r.-04000G4 ,-;44.m4

NN5-10407N? 0,-; 00 .46 0

M44046,16

e.,1-22,?,2ES

NN

NO1/111I

0 01-07.441 ..01

,C4

' I • • •44 n, cm Cr 0

'Cl-C4 I 44 06 1 10 N 4-1

OCO CO GI CI N ,

040.0imm'm

NM

0 6 07 cq it NOai Civ deli v0

qco t--6 47

O0C-M 40V

1 N u6 ma

cq DO O. CD CI Cl

N04.-.04,.0744

mmo,cru,o

4CD

C

coA

A th

44 coc- C-440DINE-4Cl

1.uriV I 4) .4.1040404m

CC

Ncq

OMui

004c, 44,14

4

V'0

°P0i4416664

04 4 to 0i V 6 V

V 0 G4 V V^ V• gIV

r-CA

C

A4. 440”.-.4C. 01100

e7,4r-o4r-tu;1 1 1 1 6u5.4c66,4 a-

ra

4-1

co

N

r 1 I I

ce.044c1m4pZC4c44.44c4

C

csi 1 i CC ID

61 f co• I I

Oct D OG QDMN I 0.5 c4 u5

444I I 1 - -404

tomoc.7Cl I m‘i c6 06 6 I

1 I f :;1 1 I

6, 6NM I I 4 6 ci I

c04. 4 •00.40aMM I M.-1

,n 4 056] clco 4 u7 4744 07

Cl c4 r7. macl`` N '6 cm na Cl) co 07

NI00-0at-M00CONVOCONN

123

0040N00GP Cl'OaCCNVNAI

.-n C V: GO0i c6 I N e4 I ci

q 1 -1 '"664 4

V•• 4G000ANAV 4 4 4 4 06

CO co,t-:or-mm0 McmN050com

tl vovo6 11 444-;

mo ocom0i N I I 06

0 OMmnDa Cl, I I 6 07 4 4N

4LoommacmcmID 0a064405cimiA

co., 464.7GO 06 06 I 4 M mi

0. 0N004C4 4 .7 4 .e 4

404 40e4 4 .0 I I k4 qi

GO CO G9 CO VD OGr- 06 ' c6 6 07 td. 4

r-L. 4 0044mm 44444

oc-66 6 ." .746m6.7u-34

111'7 "

f CC I I

MN D• 1I I '1to

400• I

N

ot--cq 07 E-CO

4m4,o,07cq .6.6,46,4 /

CO CI GO co e5I VCi 04 r:

.„7 1 1 ;1 1

r- ni,1111N

N

CO :1 1

4-1

N

ir-n-rvr.0- 404 6 ui ma I 0i

M VM ;

mom Va I 1

'0;1111[11

0 LIG GON I ti l

N cl041 ui 1 0 I I

V.104000

Clyi CI 06 N I ma

r•

th4 0 0co cq1 4.-4 / 4ui

, CI 4 CD V.4 1 0,404

A

4.-1007.40a4C444c4 1 044

440N 0447.407141 v64

kO C mA I ui C I vd

0,„6 1,6 ,4 14 4

N r,,c400.9 04 1 4444t--

CO GO 01 04; 1 0.1i4 / 40i S

Cv .4 0 4 4 cr 4

P] 05 N 44m4MC-..44roNC4m040m

4005440N66c4c46.4 1

MC-4.4r-VmiuM4m0a 1 C)

N.-.00M4007.40,4,1m,

RoC II

011111„:0 .44 04 GO i V 0 CA

0 co 04 06 4 4 ‘Y.) mo co r-1 1 c4 1 e4 I "', 1'1 1-tO M r-04 V400044405CIVNNci C O.-E •

511O

400000 c4 400000 n400000 .41400000 n400000C.)'-,-.0060044 ,-, .40760N4

1 gM3

G.)

Page 28: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

1•

1 „1 ;;.;

al• an CO Cl CO CO Clci c4 c4 c4 Cl co

CO CV oo Cr! r-Ca Cl Cl m ,4 CV Ca

CO t- CO car4 c4

c-oto. 6

I Cl I

O

co

0

tD

co

• 11`,7011

3.d. ar •-nV • I I era

CAN IOd 000

I c6 c4 I 4 c6

: at ClW CD 04 ar1moic4c6c4Moi

AO 0 0 0 0 01,11 ca to CI 01

C-M

0

,rs0

26 CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

C4

c)costtlea

a.

co4

Cl

Cl 4 0 CA la On6 ai Cl • e4 ei

CA N 40 1 Cl I oi oi on

1 1 I i

t- CO 0 1-• r. I .6 1 Cl 4 M

ann.-1 .00NC!)4 Cl ui Cl 4 Cl

Ca 0 td]r.107C4c.i..407c6

31 CD r- 6 COc4 c4 i

ey M 0 01Mvimmm

to

4

4 N D r- Ca. 040 I mm

rA

CY Cl 1. Cl 1--NN T1: r: Q5 1 c4

Cl

L1 90 41.4 .1.4 4.4 ri cla

C•• m cd

c- Ca 0I -I • • .

Ca 72)

acq CC! .1 4

1 4 c4 •-• H.0ID 0401 Cl ,a

c4 Q5 Q5 c4 I c4un

I I Cl cdun Ca C,

Cl 6. P .-: 4Cl4

CO c0 CO N a. on 3.0

ou7 r co kr7

Cl

CO

ID

7,7 :13:1

On CO NI I Cl 4 6 Cl 6

1!

Cl III1",..."; II

r- P 4-II 1 m cy

CC

CO Cl co 00c4 c4 c4

Cl1 I I 4 M 4

ti

N NOON*4 04 I C04 00 4

Q) c, Cl at Cl Ql n76 ,4 c4 ,4 N Cl CV a

apc-m

5

eaea

Cl Cl Ao CO 0 at N AC> CC On 0 ca t•7 at 04 d5 d4 CV 6Cl N N Nm 05 M c4 Cl Cl I VI on COMM ea) CI

,Ill 1 0406 u5 4 Q5

4 4 •

CO On c0 CI an C) ,Ng q4C,144 .0C4 co at 9 cc:

CA CA'4: ia. CO 71:: [III N.. M044) 0 1177

co I,4 c4 c4 ci c4 el3

kin 0 0 V 0 .0 c0 CC

CV c4 c4 c4 c4 c4Cl Cl :1111[11 0 OIDCC C!

vi I 4 oi 4a01 ,d7 CO CD

6 I 4 Ci oi ui 4

CP 07 VD W .11• GC.

6 a on 4

t- m 0

I O6 1 4 ci 06 •

404 461 re, 6 16

I1:11127sii r-ot

r. 1 4 co at al 4.C4 - C.1 CI

O0 C) 000N Ca V.

:111111

0 co N Ca

CO 0 cooi I m oi c6 I Cl

cl 6 um

'C Cl cl.41,61 1 44

OC, C7 N

A2

04 Q. CC,CMC-OION.

4 0 .-10 4 0

1

Oa Cl ar V- O to at

. ..

ti

.4 ,4 c.6 1 u4 c4

CO C- 0 CO 07 CO C+1-1 ,4 c4 m m ,4

u)r-W

^,..6,4,41C4cic6 1

dl 3 4-1e•oli,o,,,Cl

t- 03 cc) 1.0 t 1-- CA C7 0 at C-. -4 ci c4 . On .I

CO CO 3.3• ID -4!.•I HHN N N

Cl ta 014).-1.4c4c4r4c4.-4 I I CO AO

jc1 I ,4 1 1 c40

ca CO O. CIA OA . ar 0 Cl_4 ,4 1 4 1,4 1

, UOVI-.471 . 01[-+rr• CC I CAMW

Ca

ClLD

t- Cl Cl Cl ,1-1 Cl

COM VONI

onto

44S

mm 6m-4 -4 05 c4 1

1-1,41 1 e4 c4

CO

CO ar CA co• c4 c4 CACa m

0 CO 0 CA.i r N 11 I q.!'4

C1 unI -4 4.4 .4 4

CO cc 4 4-- 0 CO.4 oi

Cl•

3.333, ar. lr AO CO DCA.Cl4

▪ C, CR MI Ca CI Cl...-404mNON

COCl .4• Cl • 0404

O on o. N O caMuiuioicom4

c.4 an 3.313I ni4444m

Cl On C- CAI CA Vi

,_A000000.00000043-000000 1000000.3 N00000CO 0 CA 0 0 ,1 CO DOChOIN s•-•'r co on at Cl tin .a m ID at C.1 on CD N u•

s. Cl4

oc

Cl

CCJC CC CO t- Clc4 ci 4 •i I oi

co

Ci

Cl

-4

Page 29: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

TREATMENT AND DISPOSAL OF POTATO.PROCESS/NG WASTE WATER

CC

27

n$4 qmea u5 CF

I • • 44 .go

N

44t. U"P. VGC: W.. ,ea

1+*?,

'1 IN CP LC 0 la •o,m4,1

M0q4.04COM1.401C4 04q 041.4

0C100.-q 009oOt-:Oeialaic4

...,..,t n-i• «I

N 0 00 0 •-n 0 coN

C o ,10.50• J *4 ci c4

C

t .01 EL: r1'171

cq .wc.40

Oi N 0 0 c,g N N

N0*[--MOW

N

N

• N

CO CO C- el 0 00col.../.446M0

.1: C4 CV U5 0

0r-r

E.- 0 G4 CO N

'a OE M 4 od si Gd1-1 N CV

f C."'1°"1II20M0

MWNC4

N

3I

og

.0, 0 in'

N vome40ml0cid40150001M

0 0 qr •CO el•

IN 0f0I0I01/

* .-. N00000N

C- 0 0 t-

N

N

N

4-1

CO01-1

14

Y Y

0

a

vi 6 .coli Fa CV CC

er1116.,„;,4,4 .

ul 0 C7 0 0 e. M 00 G0 .0 ••—•• qp 0 •—• ,ti 0 N CD 14 m5 A

4-4 P-I .-1

N

oam00=8106603•

00 0010;04 110C;

C4,1

t••• tC1 0 0 ca S.C.•i N cd -I 00 of of

or 0; I r id a. . ..0 gq .0 ea og alez 04 0 I Ci ,4 g$

0 .--i

Page 30: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

co

CO

ccq

6

cc

CO

N

N

47.N

.5CO

co

NN

r-N04

A

nPN mk of mi A I A

0 koA A 0 I r4 I I

C0.L.-4 CO 1-C N N

N CV Np]N 1 A

m oO 16111i

CO6 11 1 1 1 I

• 05

r- 05 ,o 00 qA 0 c4 c4 *4 I 04

CO '414A e611111

oNmo00,0td mi ti NA NN

• 1-1 0 ODN 41410 I

tO .04 4-1 Co -401 0 I N c0 0

N Nt31 IAA .' I

40 .0 to CI, 1.4NNpiNN I 1

CO 0 41.0 0 I I 0 1 1

414N 1 i .4 .4 I I

co.4111111

Nu].-,f4a5L--t-:•

CC40000C-ea .4 41

6

co

cc

cc

n-n

m o co6141611N

CC1I - lloi 1

I I I 1ea.4 I I

V- 05 moA I e1-14 I I *6 I

0 01 6 CO CD• 6 co 1 mm 1N N

I V: 01. fra NOV ID r- M .1 C) 1

N

CO .t14 N N D

Ic0t r4 r4 0iN

V6111611

r:• 1 1 1 1 1 1

N A. Cl 0- C-I '4 6 ci n 6 11-1 N•-•

C, 1r 6 U) C7c0 0 6 co oS IN rq rA

mtlavo CL- 66,11 6!r-IO,4

28 CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

N

Dd CA 6 CO co M) CO 05 V 4-1 Vovc44.4oIo co7'114o500 cc

11111iN

N0 6 6

1110 c4 ,4 r-e4

44.

N n, t- cc Nc:4 M 1

0 CI 0I I I ,i N 44 I

• 0 cc 0 a0 N O0 N. -4 *6 v$ A -4 .6 4

'3q

N

n! 0 0 CI 0 6o ..141O4,41,

tD

[-. W .44 C0

01 -0 05 .9MOO604,-;

an cc 44 co 0 004O010 g ,i

▪ cO M N, Cel•. 0016 01 g ,1

05 u5 N 061611 - 44

COO 01 0 un .44 0NyN N 4.

7; Cl

4' .„ :,1 :1

mN N CO Cl r• 05 .

N c4 m6 V. 44 4.4 '

cc ccN cck o- f4 0,

C.' C4 • c4 A c4

CO 1.0 OA CO CO CCcc 0 1 NCV gCO

'0C0c00107t--6r-

c? *6 e4

.0 GO 0 M r-

I A c4 A 4.4

0000000301004:1 vi ,4 N .4C4

I. OD tO I.. . .01

N . 6 0 001 0 0le4c4,4-

04 1 au 01 0 00 up .cr.4000

O V CO 6 4.4.4 .4 ' N

Co O0 CO CO4-;

0 I-7 00 c0 O NN

01,40-0660*4 c4 A c4 c4 c4

N N t-

00504. 5050,15

d^QIwN t+ 0:/N Cl N .4 .4

CO m NN r.

▪ 430, u5 t-4N

O 01 LO un Cc E-.,. I^.

.1 ,o a c- c,NI

.76C004,„4,4

cc CO 0 CO CO 05 0

0000 t-t- NNN -NNN

▪ 414. t- up c004.4444,-,04

c0 0 0 00 0

▪ W. O .-1 d;c01.414100i,

sl• cc CD cc CO .0 CO

'414 c.0 05 EL- CN

CO C-• CL+ t- 05

"IL 11) c15 05 05 00

o06 i 105 1 ei

• .n trk 04,e4 *4 I I 06 1

to .4 O 04i I 04 ed I m6 I

E-06111111

N

N

kfl

N

ti

4

CO

N

0cn

c0

N

•-n

C'?co

cc

N

co

N

4-1

N

C.N

ce?N

co

*m1161144

CO41. m00 t-.--16Ir-com46

N 1-1

N Cl ClI I 3:

L- Cl 0 01 0 cDa6 c4 I

05

.44 'V COC-MIC611C66Wr4

^r-1O N O t-D ui e4 et: I c4 01.

N

N

O00 0 0 0 CO00 .tr 6 6 th

N

661111166 O

C c N Oc u5 to cc

oi66 .0.4r4r,N

Cl

CO

N

N

.73

4

N

N

N

n-n

6

.--0500000 000000 CY 15000 0 0C.) C. co 0 Cc N 0 01 0 0 6 0 co 0 C0 N‘O

n••• 11n1

ccN

4

000000 w 000000 n 000000CO CO cc N 05 N 05 50 01 .0 •-• CO 00 07 04 tc5.11n1

N

N

Page 31: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

CO 4 6 0 03g it64410

V01,140 MN6COMMI.

co 0 0, Nr4 ri ci 4 I I11,

" M ''I V1 MMI440707.4

elum! malowcedi m 03 0 NNN

N

N 0 0 C7 V CO[0 000 1 OrIn

114

op

14)

U

VD4.1

eJ

es eua4i e •ti

bi)

N

t"?

=r IO0

I

r-1.5

•tit

CO

N

N

C

N

N

N

0N

O0 0 r: -1 .1!00000010

t:C! 0100m0:1101,-,0 1-1

mm ol mm. a

el)

O30

oil 010000.4 O

4 r-0141411

0.0 I M M. I t". ra.

Ci

0N 0 CO NO WO0g076141411.1 '-'0f064,40W

CO

N N0 00 N 0Ct1 COC9t6.601O,

C- NO CO ONLQ CO I 4 ,r i mu == =

n-•1

sr 000 O. 00ChN4070 4 0En1.En1

010060' 00,iN 0

1.4 N N0

CO 01 ci um. r N

N I mooN

c!'lvm":rorommt.-4.0N

e.7' 000000

cermrir600.4N

0100C4.4

4000004

4-16 a

'5

0 tcle

Uca

1O

1-14

a rt'-'.0700700 '-'.070ChN0•

Fma

AMI

A as

E-n

ter'nr5 -ti

OR 000 000NIN000m. 0NH ...4

0000000000000070N004000N

00000000(tOCON.. 040000• .....N

00000.7000000NONcOm.ChNNNCC

1000 00. 0001.04IMN0 1000 CO

10004000.0000N0000.0n000001.m.0.07.

18S8[,,400 0.0. 00 1004!... 0

1000000000.NtOF1 4000NM

1000000M.000N0N.104000007

10 000 NINFOCOPIO.WIOCOV 0I . 0.0

0 000004 004rWM.000!41.000

1 000 0 012 g .5t[ f 2W.

En1 M

000000N0400.M NO.-I0.Na/4.0

100L0e000W.V223A

nA07c.i.CI42 g 22P4.000NtONNwcoM000.

I 00000010000000070.07m0.070N.

aS'If1111

N

00 toIfl awm 10 cO

O. 0 0 C. 0r II) oO 000 00N 0.1

O N 000101401N 0 ON0 w

00000000.2.-40VMMoo 0000

0000 00000010100000...

a

0N00000000000g0400 .00.0..

00,00000g um ,u N CI

v,

0000000CO ,00000.00N00.07

LO

N

CD

16.

ON

N

N

111/;411N

000I 10

N

000000700041100ANCO0N

co

2111111N

0 6 0 0 0N 1 r4Cla' I M0

N

0 00 0 0 0N40...... 0.1-....

0

0slim!CC

N

0000000074N0007400.40004

0 0 0 0ggiAlgiNO N

72:

00 COW010NilIN 00N N.

to

O 000.100.110 000

og0000NNCO

0 000V A I Tr g 7 114.

000 N0001.11000 CCN0)

GO gm

a cmf I 2 1 INCO

O

4,7s

0 0N 0

0Ert .0 0 0 6 0 et 11, 0 0 0 0 0 ,100000 n

.4 N 40000.0700,00 •-• 00 0 Ol 0)m Ch

II)."."1

00000000040007000 •0400......

O 00000m1 °0000.40000N

0

N

00000N000000007C0070000070

01.-0010000 NO N0 NNMNOPC000700

LA

0000000t000,740MNOW0INNO7

N

00N000IMOWN000N070,710

N

N

0 0 0000001j00000CON NOON

N

ON00000NC-0740000NNNNODNN

N00NOONN00004.0NNOW000MN

000000000004010404000NQ;10

000 000000100.COMO 00wN

00000000001.00520..71, 71, 00

TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER 29

Page 32: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE30

C4

•d•

Nco

Ca

N

N

CO

rn

Cp

W 04

.0 07 4 0co en 1 0CV CO Cp , co

0 MO 00010O . 00 t-

O c5,„cn 1 'g

[[.13115',r-r

00001 I g gN C4 ei

vA

0 MO C.010010101

00005041 01 1 457 1mo46.

00000.,2 00070NOIC4,11,

00014000110'0007' . 0,vn.

c, c,0111 2 11N

tr.; i 1 i 1 1 1CO

Og; 1 1 1 1 1

044 140 CP .7 C,1000 CA CA 40CO Ca 07 vA Tp

01747 47 4040▪ t- 0 OD upN 0 CA t- 10 UMN .4 r4 rA

C. 0 A'C li a. 1 C. 1CV 07

0000 0000001=W0000 . t-07

000001000001. .1400074-r .

'19

000

0)

N

f. 0 0 0 0 0 0.• • C 0 0 01 14

I I I. C2 45 .5Vt 00 050 0.4CO 0. CI .7

Ca.1n1

110

1 14L`

.4.c▪ 9

0C`l

170000 CP 0 CDCn .P 4' 0 a:0 DI CO 10• e4 ev eV

0 0 02 101 4 10

I, I., 11•1

0 0 0 0ta 40 N00J ,y1m11

00 00 er070tOr-rlM0'000 . 0

I. I. F.

Af.211111105 04

0 0

0047 00 0CO 0 CO OD0 I 02N 4 VD .7 SD

11 10 WO 0. 0011.

6 C4 I CO CV .N

0 C. 7700 0 0• g 47 N C7 S7 717 050 el C4 41 NN

77 04444 CP KP C7 C7 0CA CA C. 0 0 .1.an 0 CO yr CD GO

04 .4 0004 04

0 C. 00 0 0a a 01 al 0

1-I 1-I

coCa

N40

04

1E1111 1 1I"

iiIIIII1

04

0=014..0 0414004040010OIDWA40400r-r

C. ul 040000 C7 C7 C70 N OP gr 07 ,tt C7 SO 04 ts

0 C7 ts C. C. N0 0 CA r4 CO Ca0000...10

In1

CP A C) C) SPC) ••n I 0 Cia . C)

aD Ch I *7

416

M0 00000 0 C7 C7eV C1 07 r- S7 0C, CO 05 SP ev C1

monoomoomm000m

CQ C7 .7 =f 42t- CO .0 ca 02 00 CO u40404040 .2 45 V>

00000w040 1 1 N 1 1 ..40NOM

0A00G--.1. 000000H N

CO14

0 C. 0 0CO ca Ca 0 .P CPc0 04 .1 N '1 rA

CP CD CD un An C>.7 VP TV rA a7 -rr A>An An Al An ar 00

CO .4 rA vs .4 CA

co O 00000000I I MM-10v.-40.104 N

C) 0 C7 An cp Cp unun A7 N 04 00 C+000 0 0 un G D up

O C1 07 0 47 47• et 04 W 04 00107C-t-007N

00404 07 07 0 N 041. aD C4 C7 07.v 47 N CO CO Ca t-

Cl

44'1?

So74. 41

0

W I I 1 iCD

0 tO tO S7 N .7C) A 0 N CC OD Yr-404CC N CO A COn4

00.047 A7 r- 0070et .1 N LO 07 A 47• N 05 xr CO .4 rA

1.1

00000000100. t-00040=00000

000000 0• •A OOCD Cl NNer OD NN 000

A

N0

4, 4 C, C, C, unN 0404 0 04 07N 101000040 C7 CA ADet 1,1

000000 SP SP C1I 02 eV CD N .7 40-. 0 an GI Go coN N N CA N CA

C5 17 ty 47017 .1N 00 0 0 0 4 14O N '1 14,4 4004

N

▪ 04 V- NN N0 00.0,00.7004040tY t170

CD Al C, 0 0 cp cp• 277 277 S7 07040007004040044-1044.07.-1010

00 0000OD,PI0f+ .70020't-.00

00 0100W010100000004 00t-0

0 0 0 t- CDI C7 47 OD 000 NCO 07 yr 07 ,r

- 0 0 0 0 0• 0 0 Oa N to

1-1Err. ,0 0 0 0 0. 0

co 0 001

0N I I I 1

0000rA NN CA

N

P4

E O o

CA07

0 4 C5 CD.1, 4 ,e).1 41 41 CZN

00018 00„vty1

1n1.

0 CD C7 0Ca AP 47.4 rA v. N

a) C)g I. I 4 I

C0.4 .1 1 C53t 117 I 47

.7 0 0 0N C5 40 skCO N 'ev N eV

-

02

N

I

Ow

N

00CO CO

N N

0770 At 40 077 unN CC CO 400 4 0 40

4-n Ca N 0 .4 CA vA

C7 C) 41CO 04 A IrA

0 00OAP 07 a7P4 pa0404 w

0000000-00000AWOOMM

z

I107 77 0 Cp 0 C)CP CA UP CO vA NOP r. CA ca

004

."

00 000 .000,0 10707A0'000007

O 0 07CA .7 Ca 0)' S7 0 CO C4

ot-cnoc,184444 g

00 14 COOVA N- I N 0.00 Ca 07 1-1

000000 000004

004

0 0I 40N al

0O 1

4400+700 C7 .7 C7 00040 N cc CO 04 00 04,. au or, 07

C,

C

3a

N

4

a .8

00C-00001-00040

0.rvA01.-44-1.10.P0.....

CD C. CA. I ID 0 DA VAI 0 1-n 0.. 0ry w4 ,4 r,

0V-04000007 fa A 04 t-3t C5 rA N rA N O

0000000000000 0A. WOCOMOM

C) N 407 04000 C7 C7AD .2 C4 C7 Ca COD07 .A ;0 04 rA N

000000000070-047. 00r-,01.1. 04MNO

N4 C1 47 .707 vA on on CA[ O1 07 VO 41 Tr CV

4 4 010774 .7 u7 0I 0) CA a7 un r- cA

1-1 CA eV eV CV

4700040 C7• N 40 CA 01 47

O 4170017,tI CD eV 17 C)O r p4 <7 05 01.....

0 0 00NI1050700 .. 0 110.1

0000Z% g gt I

•-n

c,2 I g g2 I g; :aC4

0 00 00a lg 2144H

O C) 47T I A0 OD I o 04

O 01 00 010 AO I 0, r, C)vA CD eV CD eV1.1 •,1

u7t- 000V

10010 . 00100.-4

0 OWD-0401 ”tr2 8K1r-rr.

0004.0040WOWM .VMM01°”4 .C1M0.-.

0000000WA000.70 4100000..404-1

CP 4 CD C) CD C)004 ep 04 0 CVCD OD CO CV 0r4 r4 N vA

N

N

6

CI04

CQ

41 0 0 0 0 0 0CO 0 Cla O 0

O

6

Page 33: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

ci

31TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER

woow e+Q .4 000000 c. 000000 .000000 cc kb C30000•-• •-•

41 CO 0 110 01 •-• ,.4 CO C0 CO 0 a., •-• op 0 6/ 0 10 ,1 CO CO Oa 04 0 07 0 07 01 04-1 /-c 4-1 4-1 4-4 1-4 4-4 4-1

RrICci

to

f2-

.1)

Lo tp O 0 07I I c-:03051.-:

61 1-1m I .6 I .6 I

40

ci

10 DI 0 T., 5,6.666 1 t-

co 04 07 O7N cami t: 06 I I

+-1

-0• 1 1 1 1

OOD V- n4 4a 1.7 .0 0 C4

MMOSMC: Mt+

OD 0 03 ea CI 0ad r- 6 r- c- t- ad

OO co 0 CO t9OD OD t+ t- n P.. 61

4

ci4

040304

O

CO

4

-I

CD

••-n

co

4-1

a00 0- .4 0 01W

1 0: 04 0741504

00cot-..011

I t+Cl t+ C. C: t+

4-4

C-04

ci

07

14

O 40 11 04 0 0 0a) r: r- t: r-

COen 0 00 c-

cat4t-:t: 1-1c4t-

co+-•

0 CO OP r4 C.i t+C+t+t+ t+ M

0000 e000 Col • od r: r: r: t4 6

CO 4-1 in°)r: I r:r4cdr:t4

C404WrICalt-.71)06400. 0)4-4-

CI aoen 0-- e0 c0

ci 6 ta 6 606 . 66c-6

• at! n "alti11tit4

0 0 CO CO 0 . 1146r-666C-r:

a) U1 01 CO -0 .017 4- 0) a) r: r- r-

01 C4 , 0 C4 67OD OS . V..

• 63 ci O. Cl C4 ODOA tit- t- V- t-

.4 0) a) to 0 64- 1 r: r- c4 r:

41 1/0 CO 00 10 Wm6c-t-t4t4t4r-

4+ OD CI 74 P. C707 co OD OD E- 4+ OD

ct:111111co

c! I I I I I 1

C:1! I I °? I I i6-

• ol el ot C4 I1+ 05t+WCISM

I I I °I c! It-

or. lcomma 1w 64:66

411 1°1 1 I .t- coS

CO CO I 4.4 I CC C4

t+ t+ Dd n 07

al Nr C4 A. 1 OD It+ MMOS W

A! C4 PP C4 I CD CI6666 cdt-

I I 111"4 °1

ci

C

04 0 en 013 co to 0 zt4 14 t: r: 6

15

V. 61 I 1-4 61 0 gM'cdt46

•-•4.4 0

200000 0

U •-••• .-i 07 c17 00 0 0 g4-1 1-4

042

1-4

coco

6

aD

co

4

1-4

1-1

coco

i I I I7! 1

4-1 0 64.11 01106:1 0i

64. 01 4-4 01

00 0 046666t-lr:

CO COOD

04 vi 4-1 67 -0".466r:cdr: 1 6

CO 74 .7 CP a) 1(1A ai cd di r: r: 1 cd41

040 04'24 05 0; 111114-1

O 10 ea . ea 0 0 0 0• oi cd oi 6 6 674

O c00 02 ci'4 ad 6 1 ad 1 CC/ I

O11 ea 00 .-ic° ad cd i tiod 1 1

I 72 :2 1 1

40 0110 CO ,1":OD

4 w co u5 05 ai I t

1-4 0 Cs CO 1-1ad ad 6 6 cd 1 1

VI .04 01 ODD l ad ad r: 1 1

co ,e 1 I .6,

0 61 1-4 m, 1 t466Ir4r: 1

n o CO 03 CO6 oi I t: r: oi

0 °:"="t clt4144t-6(-- 4-

04 0 07i1 1 63 oi I 6

p2 C4 va

1 ad 6 ad co I co

▪ 00 NNc6 CC oi oi 05 of+ oi

▪ ea 4- C0 (0 e00ad od t: ad r4 r-

O CO r- ci o •661t4L.:r:t4.

co ce 07 0 co 011050imiclitz

01 CO O. 0 61 41 0107000C-06:

03 C4 O5 .9 07 OP COmFnN t- t:

t-ea4

V. 0 CO 4-4 0 m0eP 6 CO 6 OD r:

t.:1111

c17 v. 0 Ca Cl 00 CO.666cocar-m

ep C-• Cr 0 C11 O 64▪ t- t- t: r-

0 CO 11 0 0ad I EC1 .6 I

On to 0441

oi 6

O 0 0 6/ 0Of10763 1 W6i

04 Oa en 107 0 .4 07

ad 6 tZ tZ ad ad t4

.0 4-n 4- UD PO O2ad ad 6 od 6 ad td

4..4 0 01 61 0 ,16: 00006565

0407.-o000$6 6644 66

95

W31-1

.474

Oci

.4

ci115

C4OD 6C.

Ca a) 0 ID 115 co a) WD6 t- t- r- t- tz

00 a) ca ca 01adoir:1-66L-

04 N,v .i b 07tit- I tz r: t:

6. 1 CO CO

42 t^ t- r- t-

0 1- 01 on en 00- r- 0- 4-

cc

t- 00 04. 01 0 eaad t- 6 r- 6 c- r4

4

" oi 1 oi ad r4 t4

O0 03 .0-1 0 0 0 0

CD .9 CC CI CP OD11; 4+ 4- E- 4+ tn

03 CO 41. W.-IO Nad 6 6 6 6 6 6

IONCO0C7C4O5r: ad 6 ad ad 6 6

I I m41.e m.tDd3 cd r- 6

dJ

+.1

04

-I

113

6

10

CO

Page 34: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

co

01

aS1-1

1-1

ao

cc

ID

1-1uo in

N co co co on

to

1

N

1-1

1-▪ 1

4-4

04-1

Os

CO 4

1--1 +7 on a) co ao

N N N r:to N

c41111'11177

cc

IcI 419111.91wm o)

1̀),7 I 0

t• 04. t-1 1 i 1 1 1

.04tq

o 91 1 .. 1 9I CO CO I': 7O r-

1 10 04 01 04 1- n..i0,3w.sciice.

4-1

:! :1 ;!: lei1.1 gp CH0-

L.:I IV-

1 ! 't °1 ° 10commr-

1

1

▪ 4:1! t+ 45 1.4 U)N NN NooNc

40 0 74 0 45 co 0.1

CD C4 1 C1 CD CO. CO• CO CO OD t+

41 CD V4 C7 04 CO C0tD 47 CO CO CO CO V-

ci? g? 't VJ ')N e- to co c- r-

tOMM01.10-447C+05C. C. Wt4 t+

W4DE.-. 1.-C000 44C. 0:10)WWW))

N COMM,V-

"9 I R aq tC!t+ OD t+ C. c-

▪ c! CO 44 44 C5t+ CO CO CO 011. CO 00

1040 -. CO 47 41 • .7• N t+ C+ N t+ t-

't r: 10 '3 1.-wcor-t-t-c-r-

04. w CC t- e-

19°° 5. 1 9e.tzt

▪ go 0o r: 0! cl .o!▪ mNNOoN r-

• p! on on co 0,O) op r. r- t-

'T r" cn 'T "1 1 alN N N N N r-oci ai c-

E 44 .7 C7 bo o b er 4100000 C) C) 0 .7 C7 C) C> ry .3470600 45 45 45 45

`+'..4 070707 07 C4 .7 44 CO 03 Ch 04 .7 •-•-• 44 CU 07 C0 C4.7 '.'44 05 47 04K7

44 .4 1-1 • 4-I

00ffi

c c

I 1 9 1 1 9 100

11111 1°4111

9191191W M W

Cl I 1- ° 1 '1N CO 1-- CO

9991191n71 CO CO r-

c4; q? W 4! I41 t+ OD co t- a)

LO 0 7/77 0 I CO.ai o3 N

r4-Cli t.:1111101 0- CO

t▪ .1 r: 1 '? / I

.-1 (`+ V- CO

aD

7

TA0'4?

rr

04

N•-n

41

4-1

0

cc

tO•-n

" 1 a09 °R °R▪ NNaoN

I I Cb.' I I C-

of co oo co 1 .100u, 00 N N r: r:

99911 mmWWWC-

111":19°oar Nod

1 05 .1 47 t+ CD WE+ N C:

11007000mairzcamr:

1 °R el at'c! 71C+ t+ OD t+

1 1 C+ 41. 47 ID 47

ca

to

CO

4-1

017 [C4C4C-0000=ic.444o5,-1

cc C4C-41. -ci I I hai csi

0,0

atcicc

1-1

tD

1.50 07 0-01 406!.-1666466

•-n

OvNsb

C4 C4 .0• co C4 op1.4 I Ci 6 6 1..7 6

th

co 0

It CO 4r 4D C5 t+1.4 4r C4 CO .7 04 44

c0 to 00 r- e,) to 01rn 06 v6 eG.CNaV

! I lli;;11

E ‘170000047 r. tOO 4-1 1-1

1E:

CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

Page 35: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

O

1:6

cr,

UD rN 0 1,4 McC,44N11011

O

.142c

CO

th

CO

t-t

Aunt- W "00r- 1 1 1 .4 .4 .4 / 11116111 1 I .4

'T 1 -0. 'I!`S,

o Om"1 1 C4 1

0

-14 b CI9 C4 C4 C4 I m I

oxa

a, 1 .4 .4 w4

00M COOM 6 ‘44 6o4 1 1

,dovcooN ' 6 04 e4 I 1

CO VMC-.0C-40

MV6 MDi II ' 1

N 4 CO C."L.?

Map MCl/MODC-

MC.. 0"6MMC

M"CD0 VN ' -4 1 - I

o 661.26111F

COI

C MOIC-I 6 •

wc!'"'.'99"-!"?CV

e4/11. 111 6111111aV

E. -44' -4

6voccI .4 ,4 -4 =4

6 or-mvo MONNM M M 6 0111111 -4 .1; 6 6 6 I 6.

0 0 0 0oa 6"0"6"6 MVO Ov

ci •+I ' IM"6"" ".4 0 6 c4 c4 I c4 .L1 ,-;

nn-n

N CO"Omv005 MCD00600!6 .4 .4 .4 .4

co-44N 61[111

0,000M,60

WMCD"cc!OUD

6r7 V. V:

O 0.) " r4 Ci

1n1 1.A I. I. I.,

momocoon,4666666

Q6 1 r: 1 1 I

M ,' C. N CO CD

C-.0m"00I r4

VOMMOI ' g 1

cab] wN 00c4 06 I M M I l'

C..M6v"m0"""

Na, 06,40 co ,6• I 1 Or M 1 1

•-!vMF-Nu:10" 44 g d4.41

o ‘14,mmoP6g-4 .4

4O-MOC-.6 6 Ci c4 c4 1

o mop600.ti 1 ' .4 -,

M"OPCIPC-c4 c4 c4 .4 .4 1 1

C:0"MVMM'44

66111111 00"060. M

6 I I I I 1 1v0 .6 06 0co

.4• 111111

3 C- C,4-4 1 I 6 I I

01-. CONCOCIC..

m mmr-r-I .4 1

Oto

ork

C.4

tkP

CO

as

r1

LE

A

4

A

T,

ob

.44

ao

ca

rg.

t.oe

1n1

TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER 33

Dit- " C> UP V C..

c4111111

6 co

C4 C, " CD"...NN6M1

CD OV"UP,411.466m

CO 06 I 1 n••;

C

lo!CO 64700a0,41.4-1.64

11-1

epNo111,n g Ml

V VMMM:616'..-4c61

.ki I I crl 1 1

C. 1 :1 I cui

10

ob

°Roc

co

NTMN

C4

14 ,10

MOVMNCOmM

..mc1 6-1.6mo

"006I 166 Di Di

N 0 CO 1117

1-4 1 6 6 6

MOv"ei c4 1 N 6 cc cc

..

m""""CIN

6 O. M- co 10• • • • . .

" UPVVO

oommmwm

commocoo6' .4 .4 .4

6m.-4mvoto

c!CIOC-C-cOV. .. 44.4.4.4

VVMVV

MOON"I 6 Di c4 -4 0

1' r • • r

1-1 r411f111

•-7 111111

C4 1111[ I

LI) ay 0,L I

.14C.-00MCD

oo

0 40 0 0,414 g 1 g 1

t-

OC. 06.4 6 1 .4 1

0 kr) up OD tO •MOrd

MOMM

g 1 .11.411co

',4111111

III!NrAmMCD

kg ::1

,4 ,4 11,-1.4 .-4 • ' 1

up ea "160VOMOV 1-60 0V0

1.-16mesimokm 6..,4.461

pc op 6 V V .14 14 AC, 0 61111114 cO 4" 0 11C4161

o 01 ua up o CD MCOMVV nom ,o 4m .0, 0, 00 06 of uS

my cDCD C, co

rn

O

I p6 c4 .4 ' • • ,4a,a

.1.000000 oluD00000 ..700000 m000000L""mmNNO "'"COUDOINO .":"-IM UDODOZO •""MOMNIOEn1 sni ""

CO

oy .‘7

•er 00000 t•t 00000 rt. 000000c.) co co m0 CO •-•• ,ti CO 0 CO 6 .3 '•-• to CO IV 6.0 8••-1

6

Page 36: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE34

i

0

1

-0

0I-

0

1:1144.

t*.13

gc 0__.ts

6ca

QC'

c-ab

1

ei

a 4- t-.h N I I to.4 I 04

0 0 0 ur 0-

41 1

C: 9 SC: 19 C..04 04 c0 CO I 04

061[1111

ea ac410Ofc

el.611

07 COI ai 4 i I

.s to at O al 04 co ca t 4

0.

to

6

co

F W o ca ca .0

ul cc! OD C.. CD C4•

to to L- ata;

to 40 at

at 0 al o 0

w0 01I .4 .4 .4 ' .4

40 at 40 01' 1

CO 03

.41-4

CO 40 C. .9 9.4 .4 •-n

E-1

.1: L-3ailo 1.4

mi I 04 I

1-1

."! ES

v c;A I

s.g4

5.. 00000 0 to O 0 0 0 0 04 t.). a CO 0 LO 0 .0- a '-'ad00 ,030 071

0 0 0 C0 0 C! CO 04 03 0 0C.11.Dit166416 •

°e

1 C79 CD OD 10 0- elC.] 41; CD Ci tr Ni

04 NN 03 CO 0'

co 10.

10

CD

C

3

COb5 mea.. 0.:1 4 .4 04 co 1 r-

co

ca et: c! t-704 at

00

0- 40 0 40 CD

r.

01 00 0eili - 11 A

40 0 40ci .4 .4 .4 1 t

.4 1 - .4

r- to9 03 03 co 44.4 I • • • • •

4- .011111

s"! 1 1 1 1 1 t

tE:

0 to at 04 a.'I

mono 00016.44 01 Wit..

0 4- to

d)st OD OD CO Cu 0:0

WMM.9al al

0

CIOD1F-4.I -;

0099 co .0c4.4 .. .4.4 1

°•I I c',.1

U2t- Da C-.4 • I - - • •

at

•r co

'1dz, mooat

u? `a.• Ito

L0000001 .4 ri ' .4 1

Q6'

; go 000000 n k66600 0 a o 0 0 0 C. 0U •-•.03 .C. C4mo .. .m0044.0 -.00004.4

1414 14 14

.3.

4.

PC1 1 11;: i u:"RR4.0)

.3

N9 01 a C5 CD CA04 .4 .4 .4

40 cr3Qi

I oica r- 6) 000I c4 05 06

ev

00.1ca.m.3CO

03 0 CD 03

0i 1 I

1

i 1 Ccl E.11

10000 10 0 0a;0 1 .4 1

9 1 1 9.- 1 1

;.n

COwiD

to

0 .4. MMOff7a

.4 .4 I

-0N ca o c4 03. . . . .

RR CO 9 co 031.1 a a al

I `I 4: ci?a? '4?

• a••-n l a lA

1.1.01 V- CO

ID MD al CACO .4 .4 1 I .4 .4 1

.+0 0 t-1 .4 • 1 .4 1 c4

CP

04 02 0 0c; I -4 ,4 I

0 enc.4 I .4 I I I

CO

Page 37: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

Co

01

to-•

N

Cb

Cb

• "! 1 I ;

evco •-•' .41 [ ,41 .4

^1I 1I II

Co V-.4 1 . 1

0.41 I

N I 1 1 74'

'7 '7 c? .21

1 ; ;

I I ,y ,4 10

,4

C

I

C0

MN I e4 6 .4

4-,NCOM.4• 1

Co cl 0101 tO C7 .1!Cu N ci

W W 0 W. 4 ,P

I., C4 •4 .4 rA

I I NCO

Cr!ClM

*" .4 6 6 c4 .4 1 '

1. 0104-n NVM.66.4.4666

CO1?

01

e.000000 em000000.-.M0MO0

LiC

1•

CO

N

cy

CS

1-1 WWMC4W.4 .4 ei I Cl

"1 1 "9.7Pr'l

V; .4 6 6 of I .4

LIS

In,14

e

E LL

us

G trnom

TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER

35

Page 38: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

36 CONSERVATION RESEARCH REPORT 22, U.S. DEPARTMENT OF AGRICULTURE

"'cof:1)17'n

0.13

N

01

eh

MN N04-10cd 0 1 4d..l piad

I I 1 :1 1C:1:1 IrA

0 000mr i p400.4 1

eo

06 comcd ri I I 1 t:

NM 47 0 C2 tO N06006e-m

ON1%1 1: 'al I I cd tobi

EAA. 0 100' 1 I 6 „ I0m

I „ ,6 I I .4mA1-11-1

i ,°2, 1 1

N

NO N coai 1 I ui I cdre

E'.!

N

r-CO

r- CA CA CO 0-N0 6 cd cd 1 ai

e" *"."t 41*1c:adadmcdco

MM •11-16 1 66 I t-:cd

4aTy

0 C)6 1 1 4 1 1 1

co .t-come-I ed EL: 06 !TS 1 1 1 1 1 1

rA0 r- C246 I Ci I tZ I

01P1 4? 4? 1 "1ado4-1

r- N 'tGD

V+ "* 041 41 47 41 .1mcat-.000 .Na

CV

'.,;11111101o •csl r.i 14[I

N 0 1-10[-. r5W

.4 4-1.1

N011000.1044.1000W eS

0 C+ At At op 42cliMu61,501.

N u5 0A. 6I .-1,40rZ 6 1

44 AP 4 u50 6 I CV 't 41 01 *1

o CD CD CO 071-1

Trer71R010'1.1p 'D CI '4! c.? N 00201010 00ii1060 0 .4. 4.01-1MV

tii ti ,01 .0. 1.1061001

4 CV t+Z111116

a)

•-n

C6 0A CA 06 015

CC m: CO cy uaNC, CC -a on a) VA

viri g 64640

CAVI 1 rl I :c.6 o ett El)

.-1

MMM.111 W

C-o6 I t 0161 -a es

.r0WWWWC.

01 010 ulN E+ CO 01 CZ cO I.-

107%00571101CDC0

e: g Crtr g !.14_IN 1 4? as *10

1+100 01 a0un ce 6 Cp

01

CA C2 uR O N ul URun

01

I-101.00W.!70 CO CO 1.-7

t2 *CA CED 05 ul v 01070701 Tr. 04 41 rl .At C1

'CSah

1 60.-146 NI 4 4 1 I 4 6 cd 0 ad I t- 06 u5 C+ nr

abI I 6 6 cd cd

7-1 .1.-1

0CO 01

it •

E-00606014 ti04 N N

N•

,C0G11014

AIIIINII N WNW

•N! I 6 6 adA

4 Ca. 1 4? 4? a d.SP uR OD 0 0 ,A4-1 .1 4-1 Cb

01 +A 4) 01 41M et Vi 01 10 40

.441. 0111„.501 4,i74 7D

0,0 ove-e4ei 1 cd 6

.4

A et NVII

.Na I t: Ai

-iN

V 0

' V' VP. aa t-660060

4-1

.717 CO6idI4,41

. .0c?Ia

4" 41 "1 u? 41 ;m0000CO CO C2 C5 C+ 42r- 0 CR a) c; .4

.ar1

co AP V+ 050200U2020 v.t-cm 0 N 0 6 0 co 00 0 0.O N I46 I O E.61. .0 ad oi rZ 00 NM1-11-11. 4 EL: ei cd I 6 I N 0 1 0 6 1 4 .4 1 66060

T'I T'l

/41rA C! CA U2 CA 00Nr-0.AV

MWMW000 et :2111111 RR u11 4?*1 4".cmc0t- WWON 1-1 CO En1

7b.a0

.4 1 4.40 1 .1eh

010e1 100104:0.00000-cn CVN 1 1 1 1 1 Or-Or-

6Cd 1 1.4V.40TT

V WOAL)01004 I 41: ad cd ad cd

01 N CD +V 10 050 I A A ai ad ad .-1 " 41 *1 N m

TO C4 0) [ 0 CO t-C: I 01 1 4 e4

0.0

6 0000 00000,244). gsgag tt., 44) ..g00gs 100 c..' 0 .040000WM ".-1WWMNV `-'4-1MWMMO ".1WWM*40

rtiLrI ti

[14 CO rn4

FO

L-1

Page 39: TREATMENT AND DISPOSAL OF POTATO PROCESSING …Results and discussion Waste effluent analyses and application--- - Chemical oxygen demand applications---Chemical oxygen demand in waste

TREATMENT AND DISPOSAL OF POTATO PROCESSING WASTE WATER 37

Co

Co

A

C-01

01.

C111

`j

i`1?

CC

1:;;;;Z:.1,7;':1

cn1 ,4111111

EL

a

a

l k,1111111

I I I I I

r'd

gCo5;

1-1,1

co co •i• 00 r-r 6 A; 46 Di

•I 'rt., I

r4

C4 CD 0) 0 CO CoMi 444 4 I TiEL

.4 1'4 44 Co V 44 to5: 6 6 6 6 6 pi CO

6 c4 c4 6 6 c4 -4j.5

01C-0100 0'1' 6 6 6 ei 6 I 6

'V 6 6 c4 6 c4Co

I I 6 6 u5 6

CO CV CO COGo co 9 9 6 t4

r-9r4 6 I y6 6 4 4

Co. Co f4 CO Co COr- rz 6 6 6 en4.1

d 01 C0 nai t•-•0 6 =1; k0 14 10 k*44

t4 4P f, CO GMCM Oi 9 9 4 6 6 6

CO GO r4 9 el cot7 -14 .14 9. 6CO

eo l"9 r- r-°? Co Co 4 N Co e: 1nt-

kM0.1.110,70M0.1

' 1? r.; Co Co Co Co t:

,:(11 I I r I I

t-

C-0.1

to44 111 1'0 r

ce.CO

Co I c4 6 I ci-0

Lai Co 1

CG ;;;111111

,R'+? a? G9 t:4-11 4-1 Co CO n11.41 I-I Co I-I

CO Co Co COI I tz. qs

ua -44 o t-I I C 9 r4 4.4 I

7-1 Co

Coii

CO C.• n C 1-1r4 1 4 Co I 4- 6

4-11-1

00 0 01 0 Coa? o Co d cc; I ci I4tl .a

tO CCt.1/ 0 1 0

..41 CD 0 Co1d0t-:1 ,4 1 44

0> 44

CO CO 00 ON .d4

01 CC 04-1 -

.6o

q

.g 44

E I

1.

EoA7

•-• •••-• •-•••n 0 0 0 ,0 COn 000000n n10 0 0 0 0 n 0 00000 44 1000000 81t.) `-',1 00[0 1710140 `4'.4.00000110110 `4" Co CO CO CO Co 10 •-.4-“Oct.01 Co 10 CO CO Co Co 104-1 g-t 4-1 1-1 n•n

.

71

;

11

cv Oms.

*us GOVERNMENT PRINTING OFFICE :1978 0-284-829


Recommended