+ All Categories
Home > Documents > Trends in Genetics Feb

Trends in Genetics Feb

Date post: 03-Jun-2018
Category:
Upload: lehel-beni
View: 218 times
Download: 0 times
Share this document with a friend

of 46

Transcript
  • 8/12/2019 Trends in Genetics Feb

    1/46

  • 8/12/2019 Trends in Genetics Feb

    2/46

    Editor

    Rhiannon Macrae

    Portfolio Manager

    Milka Kostic

    Journal Manager

    Basil Nyaku

    Journal Administrators

    Ria Otten and Patrick Scheffmann

    Advisory Editorial Board

    K.V. Anderson, New York, USA

    A. Clark, Ithaca, USA

    G. Fink, Cambridge, USA

    S. Gasser,Geneva, Switzerland

    D. Goldstein, Durham, USAL. Guarente, Cambridge, USA

    Y. Hayashizaki, Yokohama, Japan

    S. Henikoff, Seattle, USA

    H.R. Horvitz, Cambridge, USA

    L. Hurst, Bath, UK

    E. Koonin, Bethesda, USA

    E. Meyerowitz, Pasadena, USA

    S. Moreno, Salamanca, Spain

    A. Nieto, Alicante,Spain

    C. Ponting, Oxford, UK

    C. Scazzocchio, Orsay, France

    and London, UK

    D. Tautz, Pln, Germany

    O. Voinnet, Strasburg, France

    J. Wysocka,Stanford,California

    Editorial EnquiriesTrends in Genetics

    Cell Press

    600 Technology Square, 5th floorCambridge MA 02139, USATel: +1 617 397 2818Fax: +1 617 397 2810E-mail: [email protected]

    Cover:The apple is one of the most famous cultural symbols, from the Bible to iPhones. It is also one of the most important

    fruit crops in the world. The origin of the apple as we know it today, however, is not entirely clear, and the genetic makeup

    of the apples we eat is only just now beginning to be understood. On pages 5765 of this issue of Trends in Genetics,

    Amandine Cornille and colleagues discuss genomic data that has illuminated the domestication of the apple and discuss

    the genetic history of this common fruit. Cover image from iStock/Sieboldianus.

    February 2014 Volume 30, Number 2 pp. 4184

    Reviews

    Amandine Cornille, Tatiana Giraud,

    Marinus J.M. Smulders,

    Isabel Roldn-Ruiz, and Pierre Gladieux

    Kristin C. Scott and Beth A. Sullivan

    Clare Stirzaker, Phillippa C. Taberlay,

    Aaron L. Statham, and Susan J. Clark

    57 The domestication and evolutionary ecology

    of apples

    66 Neocentromeres: a place for everything and

    everything in its place

    75 Mining cancer methylomes: prospects and

    challenges

    41 Canalization: what the flux?

    49 Particle genetics: treating every cell as

    unique

    Tom Bennett, Genevive Hines, and

    Ottoline Leyser

    Gal Yvert

    Opinions

  • 8/12/2019 Trends in Genetics Feb

    3/46

    Canalization: what the flux?Tom Bennett, Genevie`ve Hines, and Ottoline Leyser

    Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK

    Polarized transport of the hormone auxin plays crucial

    roles in many processes in plant development. A self-

    organizing pattern of auxin transport canalization is

    thought to be responsible for vascular patterning and

    shoot branching regulation in flowering plants. Mathe-

    matical modeling has demonstrated that membrane

    localization of PIN-FORMED (PIN)-family auxin efflux

    carriers in proportion to net auxin flux can plausibly

    explain canalization and possibly other auxin transport

    phenomena. Other plausible models have also been

    proposed, and there has recently been much interest

    in producing a unified model of all auxin transport phe-nomena. However, it is our opinion that lacunae in our

    understanding of auxin transport biology are now limit-

    ing progress in developing the next generation of mod-

    els. Here we examine several key areas where significant

    experimental advances are necessary to address both

    biological and theoretical aspects of auxin transport,

    including the possibility of a unified transport model.

    Auxin and self-organization in plant development

    The hormone auxin (see Glossary) regulates almost every

    aspect of plantdevelopment, and thedirectionalmovement

    of auxin by a specialized transport system (polar auxin

    transport, PAT) is crucial for many of these processes (Box

    1, Figure 1A) [1]. In simple cases, fine-scale redistribution

    of auxin allows for differential responses in different cells,

    driving patterning and specification events. However, in

    many cases patterns are generated not simply by auxin

    redistribution but emerge as a property of the system of

    feedback between the tissue, auxin, and auxin transport. It

    is widely supposed that these developmental systems, and

    the auxin transport patterns that drive them, are self-

    organizing that is, little or no pre-pattern is needed

    [2]. Understanding these apparently self-organising phe-

    nomenahas long been an area of interest, as exemplified by

    research on phyllotaxis the pattern of leaf initiation at

    the shoot meristem (Figure1B) and thevascularpatterns

    of leaves (Figure 1C).Because of their self-organizing properties, intuitive

    understanding of these systems is difficult and there has

    therefore been considerable interest in mathematically

    modeling these phenomena [3]. Vascular patterning and

    phyllotaxis have primarily been simulated using two fun-

    damentally different (but non-exclusive) auxin transport

    heuristics, often respectively referred to as with-the-flux

    (WTF) and up-the-gradient (UTG) (Box 2). Although these

    models have been immensely useful in demonstrating the

    plausibility of self-organizing transport as a developmen-

    tal mechanism, neither type of model is explicit about their

    biological basis, and they include parameters that are not

    based in current mechanistic understanding, such as as-

    sessment of auxin concentration in neighboring cells. Fur-

    thermore, it is probable that neither heuristic is inherently

    capable of capturing the full range of self-organizing auxintransport [3]. To understand better the role of self-orga-

    nizing auxin transport in plant development, a new gener-

    ation of models that are more deeply rooted in a

    mechanistic understanding of auxin biology is needed.

    However, our understanding of the biology of canalization

    and related phenomena has been somewhat outstripped by

    theoretical work on these problems, and now represents a

    limiting factor for modeling. The purpose of this article is

    thusnot topropose anext-generationmodel but to examine

    the areas in which we need to improve our understanding

    of auxin transport and discuss how current models can be

    used to prioritize these experiments. We primarily discuss

    WTF

    models,

    particularly

    in

    the

    context

    of

    the

    canalizationhypothesis, vascular patterning, and shoot branching.

    There has recently been considerable interest in attempt-

    ing to unify models of auxin transport, and we also assess

    prospects for achieving this goal.

    The canalization hypothesis of vascular patterning

    Vascular patterning in plants is complex but orderly [4]

    it is not hardwired but clearly proceeds according to firm

    principles such that the same general vascular topology is

    reproduced in almost every individual in a species

    (Figure 1C). Local auxin application induces vascular dif-

    ferentiation in plant tissue, but in narrow strands running

    away from the application site, rather than in wide fields of

    cells [5]. These observations led to the singular and pio-

    neering contributions of Tsvi Sachs, whose elegant experi-

    ments are still central to the field [4,68]. Sachs proposed

    that as auxin flows through tissues it upregulates and

    polarizes its own transport,which gradually becomes chan-

    neled or canalized into files of cells with very high

    auxin flux away from auxin sources (Figure 1D); these cell

    files can then differentiate to form vasculature (Figure 2)

    [7,8]. Sachs also demonstrated that new vasculature usu-

    ally develops towards and unites with existingvasculature

    strands, leading to a connectedvascularnetwork (Figure 2)

    [4,7,8]. However, he also demonstrated that existing vas-

    culature could be hyper-canalized by the addition of

    Opinion

    0168-9525/$ see front matter

    2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tig.2013.11.001

    Corresponding author: Leyser, O. ([email protected]).

    Keywords: auxin; auxin transport; self-organization; canalization; mathematical

    modeling.

    Trends in Genetics, February 2014, Vol. 30, No. 2 41

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://dx.doi.org/10.1016/j.tig.2013.11.001mailto:[email protected]:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.tig.2013.11.001&domain=pdfhttp://crossmark.crossref.org/dialog/?doi=10.1016/j.tig.2013.11.001&domain=pdfhttp://dx.doi.org/10.1016/j.tig.2013.11.001http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/12/2019 Trends in Genetics Feb

    4/46

    auxin, in which case developingvasculature could not find

    and unite with it (Figure 2) [7].

    The work of Sachs pre-dated the advent of molecular

    genetics, and he therefore needed to infer upstream events

    based largely on terminal vascular differentiation patterns.

    Remarkably, recent investigations have supported his hy-

    potheses at a molecular level including the central canali-

    zation concept that, from an initially broad domain of cells

    with low auxin flux, a subset of cells become progressively

    morepolarizedandcompetent to transport auxinandhave

    shown that canalization is an important component ofvas-

    cular patterning [911]. It should be emphasized that,

    although some

    auxin

    flows

    do

    undoubtedly

    canalize, notall auxin transport phenomena involve canalization. For

    instance, initiation of leaf primordia in angiosperm shoot

    meristems(Figure 1C) requiresformation ofan auxin maxi-

    mum by a focused pattern of transport (maximization)

    (Figure 1D) [12]. Canalization has generally been explored

    throughWTFmodels (Box 2) which canaccurately simulate

    patterns of auxin transport in a number of developmental

    processes, includingvascular formation in stems and leaves

    [1315]. Canalization of auxin transport has also been

    recently modeled as an explanation for the inhibition of

    bud outgrowth by actively growing shoots, a scenario in

    which thedevelopment ofvasculature isnot directly consid-

    ered, although it is an important additional outcome of the

    bud activation process [16]. Auxin transport canalizationthus has the potential to explain multiple developmental

    phenomena in plants.

    What is the flux?

    All current models of canalization are based on a large

    corpus of research into polar auxin transport, and in

    particular the behavior of PIN-family auxin efflux carriers

    (Box 1). Examination of phyllotaxis andvein formation has

    shownvery distinctive patterns of PIN protein localization

    consistent with canalization and maximization [9,12,17].

    Almost all modern models of auxin transport therefore

    explicitly simulate membrane-localized PIN proteins that

    directly

    influence

    the

    amount

    and

    direction

    of

    auxin

    trans-port. The main difference between the WTF and UTG

    models, based on the experimental observations of PIN

    protein localization in different scenarios, relates to the

    rules for allocating PIN proteins to membranes (Box 2). In

    WTF models PIN proteins are allocated to each membrane

    in a cell inproportion to flux, thenetquantity of auxin that

    exits the cell across that membrane. Net flux efficiently

    couples cells together (because high net flux from cell i!jtends to prevent high flux from j!i), allowing cells tocouple to larger-scale patterns of flux and speeding the

    emergence of global WTF patterns in the overall direction

    i!j (Box 2). Although mathematically this is a very neatsolution, as a concept it is likely to be unrealistic because it

    requires a cell to calculate the net exchange of auxin across

    its membranes (including passive uptake). There is no

    known biological mechanism that achieves this, which is

    a common criticism of flux-based models [18]. Neverthe-

    less, it is clear that cells in real systems do canalize auxin

    transport, and do so by allocating PIN proteins apparently

    in proportion to net auxin flux. It is thus the absolute crux

    of canalization research to establish how cells are able to

    localize PIN proteins in relation to larger-scale patterns in

    a self-organizing manner.

    The most plausible explanation for the apparent ability

    of cells to calculate net flux is that cells measure one or

    more other variables, the combined effect of which is

    Glossary

    Angiosperms: floweringplants.By farthe largest major groupingof plants and

    also the most recently evolved. Includes almost all crop species and model

    species such as Arabidopsis thaliana.

    Apoplast: the space between plant cells, occupied by thick cellulosic walls

    (Figure 1A). There is a significant pH difference between the apoplast (pH 5.5)

    and cytoplasm (pH 7), and this directly affects auxin transport in accordance

    with the chemiosmotic hypothesis.

    Arabidopsis thaliana: a principal plantmodel species,particularly formolecular

    genetic studies, due to its small size, small genome, andshort life-cycle. Its smallsize, however, means that it is not ideally suited to canalization research.

    Auxin, auxin transport: auxin (indole-3-acetic acid, IAA) is a low molecular

    weight, long-distance signal with many functions in plant development.

    Specific, polar auxin transport (PAT) through tissues seems to be an ancient

    characteristic of land plants.

    Canalization: an apparently self-organizing pattern of auxin transport in which

    an initially broaddomain ofauxin-transporting cells is reduced to a narrow canal.

    This is thought to occur by auxin upregulating and polarizing its own transport.

    Charophyte algae: a group of green algae that constitute the sister taxon of

    land plants.

    Chemiosmotic hypothesis: see Box 1.

    Gymnosperms: a diverse group of plants, including conifers, that produce

    seeds butnot flowers. Togetherwith angiosperms theymake up the seed-plant

    (spermatophyte) clade.

    Lycophytes: an ancient group of vascular plants; sister taxon to the clade

    containing ferns and seed plants.

    Maximization: an apparently self-organizing pattern of auxin transport in

    which auxin is transported towards cells containing higher concentrations ofauxin, leading to the formation of an auxin maximum.

    Meristem: a specialized region of cell division in plants. Shoot meristems in

    angiospermsandgymnosperms combinecelldivisionwiththe productionofnew

    organs, either leaves or reproductive structures. Shootmeristems in otherplants

    are generally simpler in structure and contain far fewer cells. Rootmeristemsare

    only present in vascular plants and do not directly produce new lateral organs.

    Phyllotaxis: an apparently self-organizing developmental pattern describing

    the position of organs (e.g., leaves) along and around the stem. Different

    phyllotactic patterns occur in different species. Phyllotaxis in angiosperms

    results primarily from the positioning of neworgan primordia on the flanks of

    the multicellular shoot meristem, and is established by maximization-like

    patterns of auxin transport in the meristem.

    PIN auxin efflux carriers (PINs): a family of proteins that are general ly

    accepted to be auxin efflux carriers. Canonical PIN proteins have plasma

    membrane localizations, often polarized, and are thought to be the principal

    determinants of the direction of auxin efflux, in line with the chemiosmotic

    hypothesis. Named after a founding member, PIN-FORMED1 (PIN1), in turn

    named for its mutant phenotype involving impaired organ initiation at theshoot meristem a result of aberrantmaximization.

    PINOID-family kinases: a small family of serine/threonine kinases that

    phosphorylate the intracellular loop of canonical PIN proteins, thereby

    controlling their localization. Named after the founding member, PINOID, in

    turn named for the resemblance of its mutant phenotype to pin1.

    Super-linear: a mathematical relationship in which one variable is influenced

    by another with a greater than linear effect; examples include quadratic

    (y = a x 2), cubic (y = ax3), and exponential (y = ax) functions.

    Up-the-gradient (UTG): a modeling heuristic widely used to simulate

    maximization-like patterns of auxin transport (Box 2), in which PIN proteins

    are allocated to the plasma membrane in proportion to the concentration of

    auxin in cells neighboring that membrane.

    Vascular patterning: an apparently self-organizing developmental phenomen-

    on in which the position of future veins is established by canalization-like

    patterns of polar auxin transport through a tissue.

    Vascular plants: the plant clade containing angiosperms,gymnosperms, ferns,

    and lycophytes. Defined by the presence of a differentiated vascular network.

    Non-vascularplantssuchasmosses lackspecialized tissues forwater transportand are limited in their size as a result.

    Vasculature/veins: the vascular network in plants plays analogous roles to the

    vascular system in animals. I t consists of two paral le l systems, xylem

    (primarily water-conducting) and phloem (primarily sugar-conducting), that

    generally develop in association with each other.

    With-the-flux (WTF): a modelingheuristic widely usedto simulate canalization-

    like patterns of auxin transport (Box 2) in which PIN proteins are allocated to

    the plasma membrane in proportion to the net flux of auxin through that

    membrane.

    Opinion Trends in Genetics February 2014, Vol. 30, No. 2

    42

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/12/2019 Trends in Genetics Feb

    5/46

    proportional to net flux. It is not even necessary for these

    measurements to include any component of flux, but an

    attractive hypothesis is that cells canmeasure transport-

    er-mediated efflux of auxin across a givenmembrane, and

    combine this with other information to regulate PIN

    protein allocation. For instance, it is possible that, as

    PIN proteins transport molecules of auxin, they (or a

    protein partner) produce a positive-feedback signal that

    reduces the removal of those PIN proteins from the

    membrane. This alone would be sufficient to maintain

    WTF patterns of PIN protein localization, but not to

    generate them in the first place, because this mechanism

    would not specifically orient PINs on the membrane

    opposite an auxin source. To achieve this aspect of PIN

    localization presumably requires at least some informa-

    tion from outside the cell. It is therefore likely that the

    canalization mechanism has at least two components,

    and these might include measurement of auxin concen-

    trations on either (or both) sides of cell membranes, as for

    instance proposed in a recent model of auxin transport in

    which extracellular auxin concentration is the major

    determinant of PIN allocation [19]. A recently proposed

    framework for cell coupling,unrelated to concentration or

    flux-based models, but operating through bidirectional

    exchange of information across the apoplast, would also

    theoretically be able to generate large-scale patterns of

    PIN localization [20].

    The first step towards testing these ideas must be to

    probe the genetic basis of the canalization feedback mech-

    anism, using the well-established toolkit inArabidopsis, a

    goal distinct from understanding how PIN proteins are

    polarized in general [10] or providing descriptive analyses

    of the

    process

    of

    canalization

    [9,10,21].

    A

    pure

    canaliza-tion system must be established in Arabidopsis, compara-

    ble to the original experiments of Sachs even though its

    diminutive size makes this difficult but with the addition

    of reporter lines such that the early stages of canalization

    can be visualized. By using this system to test the canali-

    zation response in mutants or under pharmacological

    treatments that impair known auxin-sensing, auxin trans-

    port, and PIN polarity-generating mechanisms, the role of

    those factors in the canalization process can be examined,

    helping to narrow down the mechanisms involved. Of

    course, as yet undiscovered factors might be central to

    the canalization mechanism, in which case screening for

    canalization-deficient mutants may be a sensible ap-

    proach. The vascular patterning defects seen in pin1pin6 doublemutants [11] provide a possible reference point

    for screening for developmental phenotypes, but another

    approach to screening may be to look for mutants in which

    initially well-established but broad transport domains

    (visualized by reporter genes) fail to narrow down, the

    hallmark of canalization. Distinguishing potential canali-

    zation mutants from generalized auxin transport mutants

    will be important, and a sensitized genetic background

    might be preferable to help pick out otherwise relatively

    subtle phenotypes.

    This top-down approach to canalization should be ac-

    companied by general research to allow improved param-

    eterization

    of

    auxin

    transport

    models.

    Trying

    to

    quantify,for example, the amounts of auxin and PIN protein in

    different parts of each cell, or the cycling rates for PIN

    proteins, will be fiendishly difficult, but even establishing a

    loose range would be an improvement over the current

    absence of data. Other important questions to address

    include whether the relationship between flux (or equiva-

    lent) and PIN allocation is linear or super-linear, whether

    there is a saturation point for flux-correlated PIN-alloca-

    tion, and whether the pool of PIN proteins is quasi-infinite

    and freely allocated or limited and proportionately (re-

    )allocated according to flux, all aspects that current models

    have shown to be potentially important in pattern emer-

    gence [3,18,22]. Cell culture-based systems may prove

    useful in addressing these questions, as they have been

    in dissecting the action of auxin transporters and mecha-

    nisms of auxin homeostasis [23,24].

    Increased understanding of PIN protein behavior will

    aid modeling of auxin transport,

    The experiments described above would be well-comple-

    mented by bottom-up approaches to improve understand-

    ing of the behavior of PIN proteins. There is a significant

    body of work relating to the localization of PIN proteins,

    and it is known that in some cell types they can cycle

    rapidly between the plasma membrane and endosomal

    compartments [25]. It is this system that presumably

    Box 1. Auxin transport

    Auxin is transported in a polar manner through many tissues, and

    the canalization theory of Sachs [7,8] is framed in the context of

    PAT. Long-distance PAT has often been theorized as connecting

    auxin sources (regions of highauxin concentration or production)

    to sinks (regions of lowauxin concentration or high turnover) [6].

    In most canalizing systems, developing tissue (leaves, buds, etc.)

    acts as an auxin source and established vasculature acts as a sink

    (Figure 2). More recent work

    has shown that vasculature generallyhas high auxin concentrations [45], and therefore sink strength in

    this system is probably determined by auxin flux rapidly carrying

    auxin away from the source. Subsequent to Sachs initial canaliza-

    tion work, a mechanistic basis for PAT was proposed in the

    chemiosmotic hypothesis. Central to this is the weakly-acidic

    nature of auxin (pKa 4.75), which means that a significant fraction

    of auxin molecules in the apoplast (pH 5.5) are protonated and

    neutrally charged, and can passively enter cells through the lipid

    membrane; however, the largely deprotonated auxin in the

    cytoplasm (pH 7) cannot passively exit cells (Figure 1A). Specific

    efflux carriers are therefore required to mobilize auxin from cells,

    and it wasproposed that polar localization of these proteinswould

    explain theoverall polarityof auxin transport [46,47]. Thediscovery

    of PIN-family auxin efflux carriers, transmembrane proteins which

    often have polar localization [44,48], confirmed the validity of the

    chemiosmotic

    hypothesis, and it

    is generally

    accepted that PINproteins are the major determinants of the directionality of local

    auxin flux (Figure 1A) [28]. Members of the large ABC family of

    auxin transporters seem to act as non-polar auxin efflux carriers

    [49], andthere arealsoauxin influxcarriers of theAUX1/LAXfamily

    [50] (Figure 1A). Auxin regulates its own transport, andin particular

    PIN protein abundance and localization, at multiple levels, both

    transcriptional and post-transcriptional [1,51]. For instance, intra-

    cellular auxin levels can regulate transcription of PIN genes

    through canonical auxin signaling [52], whereas apoplastic auxin

    can inhibit PIN endocytosis though the ABP1 receptor [53]. Work in

    thi s area has been greatly a facil itated by l ive imaging of

    transporters fused to fluorescent proteins [54], and by proxy live-

    imaging of intracellularauxin based on fluorescent reporters of the

    activity of various components of the transcriptional auxin signal-

    ing pathway [55,56].

    Opinion Trends in Genetics February 2014, Vol. 30, No. 2

    43

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/12/2019 Trends in Genetics Feb

    6/46

    allows for the dynamic changes in PIN protein localization

    necessary for both WTF and UTG patterns to emerge.

    However, the mechanisms that determine how PIN pro-

    teins are allocated to different membranes in different

    situations are poorly understood, despite observations of

    the resultant patterns. PIN protein localization can be

    influenced by regulatory proteins such as PINOID-family

    protein kinases,which phosphorylate the long intracellular

    (A) (B)

    (C)

    (D)

    I1

    P1

    P8

    P3

    P6

    P1

    P9P4P7

    P2

    P10

    P5 I1

    I2

    P11

    IAA

    IAA

    IAA

    Cytoplasmp

    H7

    ApoplastpH5.5

    TRENDS in Genetics

    Figure 1. Auxin transport, plant development, and self-organization. (A) Schematic illustrating the chemiosmotic mechanism of polar auxin transport. Protonated auxin

    (indole-3-acetic acid, IAA) inthe cell wall space theapoplast (green) canmovepassivelyinto cells throughplasmamembranes(black arrows). Influxmayalsobe assisted

    by influxcarriers (yellow circles). Deprotonated auxin(IAA) inthecytoplasm canonlymove out ofcells bytheactionof efflux carriers (redcircles), andpolarlocalization of these

    carriers (such as PINproteins) generatesoverall polarity in auxin transport. (B) Schematic showing the phyllotactic pattern of organ initiation atArabidopsisshootmeristems

    (top-down view).New organsareproduced in a stable spiral pattern, withapproximately 1378 separating eachnew organ. I1 and I2mark theposition of the next twoinitiating

    organ primordia to form. P1 (youngest)P11 (oldest) are existing organ primordia. Phyllotaxis is an apparently self-organizing developmental process that involves auxin

    maximization, and has primarily been modeled using an up-the-gradient (UTG) heuristic. (C) Schematic showing vascular patterning in an Arabidopsis leaf. The midvein

    (purple) forms first and joins the leaf to the main vascular bundles in the stem. First-order veins (dark blue) directly connect to themidvein andareassociatedwithlocal auxin

    maximaat theedgeof theleaf. Themajorauxinmaxima associatedwith lobes/serrations areshown in red, others areomitted forclarity. Lower-order veins (light blue) connect

    first-orderveinstogetherto form ahighlyconnective reticulatenetworkthatveryefficientlyservesthewholeorgan.Thevascularnetwork is specified byauxintransportthrough

    the leafblade, towards themidvein andultimately the stem. Vascular patterning is an apparently self-organizing developmental process that involves auxin canalization, and

    has primarily been modeled using a with-the-flux (WTF) heuristic. (D) Schematic cross-section through an Arabidopsisshoot meristem showing organ initiation events at I1

    andP1. Auxin in themeristem is transported (blue arrows) towards thesite of I1 by PINproteins (greenbars),resultingin the formationof an auxinmaximum (redshading). At

    P1 thepatternof auxin transport is partially reversed,withauxinbeing transported away from themaximum in a down-the-gradient pattern. Only a thin fileof cells transports

    auxin,thus showing a canalizedpattern of transport;thesecellswill become themidveinof theneworgan.Organinitiation thus involvesauxin canalizationandmaximizationin

    tight spatiotemporal cooperation. Neither WTF nor UTGmodels of auxin transport have yet convincingly captured this complete range of behavior.

    Opinion Trends in Genetics February 2014, Vol. 30, No. 2

    44

  • 8/12/2019 Trends in Genetics Feb

    7/46

    loop domain of particular PIN proteins [26,27]. This loop

    domain shows extensive variation in structure between

    different types of PIN protein (Bennettet al., unpublished),

    meaning that each type of PIN protein could have an

    inherently different potential for localization; for instance,

    disruption of specific loop domains can result in different

    localizations within the same cell type [28]. Ultimately,

    canalization-like patterns are mediated through specific

    regulation of a subset of PIN proteins. A deep structure

    function analysis of PIN proteins would therefore delineate

    howeachpartof theloopcontributes toPIN localization, and

    how each PIN protein behaves under different circum-

    stances. Indeed, it is possible that part of the loop in some

    PIN proteins is a specific regulatory element for flux-based

    feedback, mediating canalization-like behavior of the pro-

    tein in effect, a canalization motif. In Arabidopsis PIN1

    plays major roles inbothcanalizationand maximization, but

    in other species including grasses these two processes may

    bemediatedby structurally-distinctPINproteins(OConnor

    et al., unpublished). Investigating the possible evolution of

    PIN protein structures specialized for canalization may

    therefore also provide an entry point for dissecting how

    canalization is regulated at a molecular level. Cell type-

    specific factors [29], external stimuli including light [30]

    and long-distance signals such as cytokinins and strigolac-

    tones [31,32] can all influence the localization of PIN pro-

    teins, and it is thereforealso important tocontinueassessing

    how different combinations of these proximal factors might

    contribute in large-scale self-organizing PIN behavior.

    The role of the apoplast in auxin transport

    A frequent simplifying assumption in modeling auxin

    transport is to ignore the apoplast and assume that auxin

    is transported directly from one cell to the next. Given the

    chemiosmotic basis of auxin transport (Box 1) thismay be a

    dangerous omission because apoplastic conditions are

    interconnected with auxin transport in multiple ways

    [33].For instance, low extracellular pH results in increased

    passive movement of auxin into cells (Figure 1A), and

    auxin ion export through PIN proteins is likely to be

    energized by the proton motive force across the plasma

    membrane. Furthermore, a long-established activity of

    Box 2. Auxin transport models

    Most mathematical models so far published have generally taken a

    major experimental observation regarding auxin transport (e.g., PIN

    localization towards an auxin maximum), and abstracted it into a

    singlemathematical concept (basicmodeling terminology is summar-

    ized in Figure I). These observation-based models can be broadly

    allocated to two classes flux-based or concentration-based

    depending on the primary source of information they use to allocate

    PIN proteins to plasma-membranes. In practice all flux-based modelsare explicitly of a WTF subset, and almost all concentration-based

    models are UTG. Within each broad class, the exact set of parameters

    and level of abstraction varies between models. These models are not

    mutually exclusive (mathematically they could be combined), but so

    far have been considered separately. A small number of mechan-

    istically more explicit models have been proposed, for example one

    that proposes that auxin concentration in neighboring cells is

    measured via its effects on cell wall stress(alsobased on experimental

    observation) [57], although purely theoretical models, for example

    based on apoplastic transcriptional auxin gradients, have also been

    proposed [19].

    WTF PIN allocation

    In WTF models a positive feedback loop increases PIN insertion rate

    (or decreases PIN removal) in a given cell membrane when there is

    increased flux f the net quantity of auxin exported through thatmembrane, per unit time and per unit area.

    Mathematically, a general formulation for the dynamics of PIN

    concentration ( p) in the membrane section of a cell i facing

    neighboring cell j (ij) includes PIN insertion, both at a basal rate (r0)

    and at an increased rate given by the auxin flux feedback [f(fij)] and

    PIN removal (m).

    d pi j

    dt

    f fij r0 mpi j; x>0r0 mpi j; x 0

    The exact feedback relationship between flux and PIN allocation has

    important ramifications for model function. Several different and

    purely theoretical relationships have been explored in models,

    including a simple linear relationship, f(f)= af [40], quadratic,

    f(f)= af2 [15], or a Hil l function ff afn/Kfn[16].

    UTG PIN allocation

    In UTG models, PIN insertion rate is increased in membrane sectionsaccording to the auxin concentrations in cells neighboring those

    membranes. PIN proteins in cell i are preferentially inserted in the

    section of membrane that faces the neighboring cell jwith the highest

    auxin concentration, at the expense of other membranes. This

    increases the auxin concentration in j, thus driving positive feedback

    of PIN allocation.

    Although some models [39,41] explicitly include PIN cycling

    between an intracellular pool of non-allocated PINs ( pi) and mem-

    brane-bound PINs (pij), the more streamlined model proposed in [38]

    assumes that all PINs (pi) are instantly and competitively allocated

    between the different membrane sections proportionally to concen-

    tration. The sets of equations below describe the two situations; inboth cases, ai is the auxin concentration in cell i and aj is the auxin

    concentration in cell jwhich is adjacent to cell ialong the membrane

    section ij. The set of cells kadjacent to cell iis the set of neighbors N(i).

    d pi j

    dt aaj; pi pi v pi j

    d pidt

    gai; pi m piX

    k 2 Ni

    aaj; pi pi v pij

    8>>>:

    39;41

    pij aajP

    k 2 Niaakpi

    d pidt

    gai; pi mpi

    8>>>:

    38

    Cell i Cell j

    ajai

    pij

    0

    ij

    TRENDS in Genetics

    Figure I. Basic modeling terminology. Schematic illustrating some of the major

    terms used in mathematical modeling of auxin transport, and their interrelation.

    The cell i faces its neighborjat themembrane ij. The basal concentration of PIN

    protein (pij) in the membrane ij (indicated by a green bar) is determined by the

    relative rates of insertion (r0) from an intracellular pool (indicated by a greencircle) and recycl ing from the membrane to the intracellular pool (m). PIN

    allocation to the membrane can be increased by positive feedback relating the

    either fluxthroughfij (indicated by a blue arrow)or theauxin concentration in cell

    j (aj).

    Opinion Trends in Genetics February 2014, Vol. 30, No. 2

    45

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/12/2019 Trends in Genetics Feb

    8/46

    intracellular auxin is to stimulate proton-pumping

    ATPases, thereby further acidifying the cell wall [34]. This

    gives rise to a potential positive feedback loop in which

    increased intracellular auxin in one cell, acting through

    apoplastic acidification, drives increased auxin uptake in

    neighboring cells and increased activity of its in situ PIN

    proteins. This mechanism can therefore contribute to the

    generation

    of

    net

    flux

    between

    cells,

    particularly

    at

    highauxin concentrations, and might have important ramifica-

    tions in the switching behavior seen during organ initia-

    tion (Figure 1D) where auxin accumulation in the

    epidermis is associated with internalization and canaliza-

    tion of auxin flow. The apoplast is the central focus of a

    recently proposed model [19] which invokes a polarity-

    generating mechanism that is neither WTF nor UTG,

    but instead relies on gradients of auxin across the cell wall

    partitioning an extracellular receptor to generate PIN

    polarization in the adjoining cells.The apoplast is certainly

    a potential source of information for polarization mecha-

    nisms but there is little biological evidence to support this

    model, which requires steep gradients of auxin in the tiny

    apoplastic space to make it work [3,19]. It will certainly be

    interesting to test the effect of apoplastic auxin and pH

    dynamics in both WTF and UTG models. However, al-

    though there are now a range of approaches for assessing

    intracellular auxin concentrations (albeit indirectly), there

    is currently no way to quantify apoplastic auxin, and tools

    to do so should be a priority for the field.

    Unification of auxin transport models

    The integration of modeling and molecular genetics has

    demonstrated that auxin transport dynamics provide a

    plausible explanation for vascular patterning and shoot

    branching regulation via canalization [9,15,16,18] and for

    phyllotaxis via maximization [35,36]. Subsequently, there

    has been considerable interest in producing a unifying

    model of auxin transport that is capable of reproducing

    both canalization and maximization patterns with a single

    heuristic and set of parameters. Published models of this

    type have mostly been extensions of previous models with

    either purely WTF mechanisms [37] or purely UTG mech-

    anisms

    [38], but

    cannot

    straightforwardly

    reproduce

    bothbehaviors because they require significantly altering

    parameters in different parts of the simulation, making

    biologically improbable assumptions, or ignoring wet lab

    data [3]. It is fair to say that the consensus in the field,

    supported by reanalysis of current models [3], is that no

    satisfactory unifying model has been developed yet per-

    haps not surprisingly given the current gaps in our under-

    standing. From a biological perspective, an interesting

    question is not whether the models can be mathematically

    unified after all, with enough parameters one could

    model anything [39,40] but whether they should be

    unified. Are canalization and maximization really flip-

    sides of the same coin or are they fundamentally different

    processes using different mechanisms in different tissues?

    There are also other auxin transport patterns, particularly

    in the root, that do not resemble either canalization or

    maximization are all these phenomena essentially the

    same process or are they divergent mechanisms that share

    only some basic aspects?

    This question is particularly intriguing from an evolu-

    tionary perspective because PAT is present throughout

    land plants and in at least some charophyte algae [41].

    However, there is currently little evidence for the specific

    phenomena of canalization or maximization outside

    angiosperms. Given its importance in vascular develop-

    ment, it seems a reasonable hypothesis that canalization

    (A) (B) (C) (D) (E)

    TRENDS in Genetics

    Figure2 . Canalization phenomena. Schematics based on the classic experiments of Sachs on excised pea epicotyls (juvenile stems). Green cylinders indicate naive non-

    vascular tissue; gray cylinders indicate vascular bundles. Red semicircles indicate addition of exogenous auxin. Blue lines indicate newly induced vascular strands. (A)

    Simple demonstration of canalization: lateral auxin application induces vascular connection with the main vascular bundle. (B,C) Sourcesink relationships in induced

    vascular strands. Thevascularbundle is surgically removed and two sources of auxin areadded to the apicalend of theepicotyl. If added simultaneously(B) twonew sets

    of vasculature are formed. In both cases canalization occurs towards the site of the former vascular bundle, indicating that it is still a strong sink for auxin. If one auxin

    sourceis added subsequent to theother (C), canalization now occursfrom that sourcetowards thenew vascular tissueformed by thefirstsource, indicating that it is now a

    stronger sink. (D) Sink-finding in canalization. A cut in the epicotyl does not prevent canalization occurring between an exogenous auxin source and the existing vascular

    bundle. (E) Hyper-canalization. Addition of a strong auxin source to the existing vascular bundle now prevents sink-finding by an exogenous auxin source. However,

    canalizationand vascular formation fromthe auxin source can stilloccur in a non-connective fashion.Dotted bluelines indicate the discontinuation of the vascularstrands.

    Opinion Trends in Genetics February 2014, Vol. 30, No. 2

    46

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/12/2019 Trends in Genetics Feb

    9/46

    evolved early in the vascular plant clade and is present

    throughout it. PAT is present in the lycophyte Selaginella

    kraussiana and plays a role in vascular development, but

    whether this is canalization-driven is currently unclear

    [42]. Lycophytes and ferns have meristems with single

    apical cells, and initiate organs in a fundamentally differ-

    ent manner to seed plants. This suggests that auxin max-

    imization

    in

    meristems

    arose

    specifically

    in

    the

    largemeristems of the seed-plant lineage although this does

    not necessarily preclude maximization-type phenomena in

    ferns and lycophytes. If generalized PAT, canalization, and

    maximization did evolve at different points in the evolu-

    tionary history of plants then sequential innovations could

    have generated novel auxin transport phenomena. In turn,

    this would suggest that these phenomena are not equal or

    equivalent, but require process-specific genetic compo-

    nents, which could have included changes in the structure

    of the PIN proteins themselves; however, more work is

    necessary to establish the exact evolutionary history of

    auxin transport. In angiosperms, different PINs are prob-

    ably specialized for, or act preferentially in, particular

    processes; for instance, the primary (but not sole) functionof PIN2 in Arabidopsis is to control a specific shootward

    auxin flux in the root meristem [43,44]. Further investiga-

    tion of auxin transport phenomena and PIN protein sub-

    functionalization outside angiosperms will not only be

    illuminating with regard to the evolution of development

    in land plants but will also help in dissecting the nature of

    auxin transport itself.

    Even though canalization and maximization both in-

    volve PIN1 inArabidopsis, there is some molecular genetic

    evidence to suggest that they might not be identical pro-

    cesses; for instance, PINOID plays a crucial role in maxi-

    mization but is less central to canalization [29]. This has

    led

    to

    suggestions

    that

    there

    is

    tissue-

    or

    context-specificswitching between modes of auxin transport, an approach

    used in another model [17] in which maximization and

    canalization are effectively modeled separately. However,

    as with so much in biology, it is likely that the reality will

    be more nuanced, especially because we do not yet under-

    stand the mechanisms of either canalization or maximiza-

    tion. It is plausible that there is a core machinery for

    allocating PIN proteins to membranes that, given the in-

    herent differences between contexts, is capable of generat-

    ing both canalization and maximization and possibly all

    auxin transport phenomena. For example, if PIN allocation

    is achieved by the combined assessment of two or more

    factors inside and outside cells (as discussed above), then

    perhaps both patterns can be generated depending on the

    weightings given to those different factors in different con-

    texts.This coremachinery couldhave beenelaboratedupon

    during plant evolution to generate new patterns of auxin

    transport, butremainthesame fundamental unifiedmech-

    anism.Ultimately, althoughcomputational work can tellus

    that themodelsareunifiable,wewillonlyfindoutforsureby

    pushing forward our biological understanding of auxin

    transport across the whole plant kingdom.

    Concluding remarks

    The impressive progress of theoretical research into auxin

    transport phenomena has outstripped advances in our

    biological understanding of these processes, particularly

    in the case of canalization, which has only received limited

    experimental attention in the recent molecular genetic era

    ofplantdevelopment [911,21].Further experiments along

    the lines proposed here are now required to gain a deeper

    understanding of the canalization mechanism, and must

    aim to unite physiological and genetic approaches in a

    single

    species.

    These

    will

    not

    only

    be

    relevant

    to

    canaliza-tion itself but also to the auxin transport field more gener-

    ally, allowing construction of a new generation of models to

    examine self-organizing plant development.

    Acknowledgments

    Our research is funded by the Gatsby Foundation and the European

    Research Council (Project 294514 EnCoDe). We would like to thank

    Graeme Mitchison for critical reading of the manuscript.

    References1 Benjamins, R. and Scheres, B. (2008) Auxin: the looping star in plant

    development. Annu. Rev. Plant Biol. 59, 443465

    2 Leyser, O. (2011) Auxin, self-organisation, and the colonial nature of

    plants. Curr. Biol. 21, R331R337

    3 van Berkel, K. et al. (2013) Polar auxin transport: models and

    mechanisms. Development 140, 22532268

    4 Sachs, T. (1968)On the determinationof the pattern of vascular tissue

    in peas. Ann. Bot. 32, 781790

    5 Jacobs, W.P. (1952) The role of auxin in the differentiation of xylem

    around a wound. Am. J. Bot. 39, 301309

    6 Sachs, T. (1968) The role of the root in the induction of xylem

    differentiation in peas. Ann. Bot. 32, 391399

    7 Sachs, T. (1969) Polarity and the induction of organized vascular

    tissues. Ann. Bot. 33, 263275

    8 Sachs, T. (1981)The control of thepatterned differentiationof vascular

    tissues. Adv. Bot. Res. 9, 151162

    9 Scarpella, E. et al. (2006) Control of leaf vascular patterning by polar

    auxin transport. Genes Dev. 20, 10151027

    10 Sauer, M. et al. (2006) Canalization of auxin flow by Aux/IAAARF-

    dependent feedback regulation of PIN polarity. Genes Dev. 20, 2902

    291111 Sawchuk, M.G. et al. (2013) Patterning of leaf vein networks by

    convergent auxin transport pathways. PLoS Genet. 9, e1003294

    12 Reinhardt, D. et al. (2003) Regulation of phyllotaxis by polar auxin

    transport. Nature 426, 255260

    13 Mitchision, G.J. (1980) The dynamics of auxin transport. Proc. R. Soc.

    Lond. B: Biol. Sci. 209, 489511

    14 Mitchison, G.J. et al. (1981) The polar transport of auxin and vein

    patternsin plants.Philos.Trans. R. Soc.Lond.B: Biol.Sci.295,461471

    15 Rolland-Lagan,A.G.andPrusinkiewicz, P. (2005) Reviewingmodels of

    auxin canalization in the context of leaf vein pattern formation in

    Arabidopsis. Plant J. 44, 854865

    16 Prusinkiewicz, P. et al. (2009) Control of bud activation by an auxin

    transport switch. Proc. Natl. Acad. Sci. U.S.A. 106, 1743117436

    17 Bayer, E.M. et al. (2009) Integration of transport-based models for

    phyllotaxis and midvein formation. Genes Dev. 23, 373384

    18 Krupinski, P. and Jonsson, H. (2010) Modeling auxin-regulateddevelopment. Cold Spring Harb. Perspect. Biol. 2, a001560

    19 Wabnik,K. et al. (2010)Emergence oftissuepolarizationfrom synergy

    of intracellular and extracellular auxin signaling.Mol. Syst. Biol. 6,

    447

    20 Abley, K. et al. (2013) An intracellular partitioning-based framework

    for tissue cell polarity in plants and animals.Development 140, 2061

    2074

    21 Balla, J. et al. (2011) Competitive canalization of PIN-dependent

    auxin flow from axillary buds controls pea bud outgrowth. Plant J.

    65, 571577

    22 Feugier, F.G. et al. (2005) Self-organization of the vascular systemin

    plant leaves: inter-dependent dynamics of auxin flux and carrier

    proteins. J. Theor. Biol. 236, 366375

    23 Barbez, E. et al. (2013) Single-cell-based system to monitor carrier

    driven cellular auxin homeostasis. BMC Plant Biol. 13, 20

    Opinion Trends in Genetics February 2014, Vol. 30, No. 2

    47

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0005http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0005http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0005http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0005http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0010http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0010http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0010http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0010http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0015http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0015http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0015http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0015http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0015http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0015http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0020http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0020http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0020http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0020http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0025http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0025http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0025http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0025http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0030http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0030http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0030http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0030http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0035http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0035http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0035http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0035http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0040http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0040http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0040http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0040http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0045http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0045http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0045http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0045http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0045http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0045http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0050http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0050http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0050http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0050http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0050http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0050http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0050http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0055http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0055http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0055http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0055http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0055http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0055http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0060http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0060http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0060http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0060http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0060http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0060http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0065http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0065http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0065http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0065http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0070http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0070http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0070http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0070http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0070http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0070http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0070http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0070http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0070http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0070http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0070http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0075http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0075http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0075http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0075http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0075http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0075http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0080http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0080http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0080http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0080http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0080http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0080http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0085http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0085http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0085http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0085http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0085http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0085http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0090http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0090http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0090http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0090http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0090http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0090http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0090http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0090http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0100http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0100http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0100http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0100http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0100http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0100http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0100http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0105http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0105http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0105http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0105http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0105http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0105http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0105http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0105http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0105http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0105http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0105http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0110http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0110http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0110http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0110http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0110http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0110http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0110http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0115http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0115http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0115http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0115http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0115http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0115http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0115http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0115http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0110http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0110http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0110http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0105http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0105http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0105http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0100http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0100http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0100http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0095http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0090http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0090http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0085http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0085http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0080http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0080http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0075http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0075http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0075http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0070http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0070http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0065http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0065http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0060http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0060http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0055http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0055http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0050http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0050http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0050http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0045http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0045http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0040http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0040http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0035http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0035http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0030http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0030http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0025http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0025http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0020http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0020http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0015http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0015http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0010http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0010http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0005http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0005http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 8/12/2019 Trends in Genetics Feb

    10/46

    24 Petrasek, J.et al. (2006) PINproteins perform a rate-limiting function

    in cellular auxin efflux. Science 312, 914918

    25 Geldner, N.et al. (2001)Auxin transport inhibitors block PIN1 cycling

    and vesicle trafficking. Nature 413, 425428

    26 Huang, F.et al. (2010) Phosphorylation of conservedPINmotifs directs

    ArabidopsisPIN1polarityand auxintransport.PlantCell22,11291142

    27 Dhonukshe, P. et al. (2010) Plasma membrane-bound AGC3 kinases

    phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct

    apical PIN recycling.Development 137, 32453255

    28 Wisniewska, J.et al. (2006) Polar PIN localizationdirects auxin flowinplants. Science 312, 883

    29 Friml, J. et al. (2004) A PINOID-dependent binary switch in apical-

    basal PIN polar targeting directs auxin efflux. Science 306, 862865

    30 Ding, Z. et al. (2011) Light-mediated polarization of the PIN3 auxin

    transporter for the phototropic response inArabidopsis.Nat. Cell Biol.

    13, 447452

    31 Shinohara, N. et al. (2013) Strigolactone can promote or inhibit shoot

    branching by triggering rapid depletion of the auxin efflux protein

    PIN1 from the plasma membrane.PLoS Biol. 11, e1001474

    32 Marhavy , P. et al. (2011) Cytokinin modulates endocytic trafficking of

    PIN1 auxin efflux carrier to control plant organogenesis. Dev. Cell 21,

    796804

    33 Steinacher, A. et al. (2012) A computational model of auxin and pH

    dynamics in a single plant cell. J. Theor. Biol. 296, 8494

    34 Hager, A. (2003) Role of the plasma membrane H+-ATPase in auxin-

    induced elongation growth: historical and new aspects. J. Plant Res.116, 483505

    35 Smith, R.S. et al. (2006) A plausible model of phyllotaxis. Proc. Natl.

    Acad. Sci. U.S.A. 103, 13011306

    36 Jonsson, H.et al. (2006)An auxin-driven polarized transportmodel for

    phyllotaxis. Proc. Natl. Acad. Sci. U.S.A. 103, 16331638

    37 Stoma, S. et al. (2008) Flux-based transport enhancement as a

    plausible unifying mechanism for auxin transport in meristem

    development. PLoS Comput. Biol. 4, e1000207

    38 Merks,R.M.et al. (2007)Canalizationwithout flux sensors: a traveling-

    wave hypothesis. Trends Plant Sci. 12, 384390

    39 Dyson, F. (2004) A meeting with Enrico Fermi. Nature 427, 297

    40 Brown, K.S. andSethna, J.P. (2003) Statisticalmechanicalapproaches

    to models with many poorly known parameters. Phys. Rev. E: Stat.

    Nonlin. Soft Matter Phys. 68, 021904

    41 Boot, K.J. et al. (2012) Polar auxin transport: an early invention. J.

    Exp. Bot. 63, 42134218

    42 Sanders, H.L. and Langdale, J.A. (2013) Conserved transport

    mechanisms but distinct auxin responses govern shoot patterning in

    Selaginella kraussiana. New Phytol. 198, 419428

    43 Luschnig, C.et al. (1998)EIR1,a root-specific protein involved in auxin

    transport, is required for gravitropism in Arabidopsis thaliana. Genes

    Dev. 12, 21752187

    44 Mu ller, A. et al. (1998) AtPIN2 defines a locus ofArabidopsis for root

    gravitropism control. EMBO J. 17, 69036911

    45 Avsian-Kretchmeret al. (2002) Indoleacetic aciddistribution coincides

    withvascular differentiationpattern duringArabidopsis leafontogeny.Plant Physiol 130, 199209

    46 Rubery, P.H. and Sheldrake, A.R. (1974) Carrier-mediated auxin

    transport. Planta 118, 101121

    47 Raven, J.A. (1975) Transport of indoleacetic acid in plant cells in

    relation to pH and electrical potential gradients, and its significance

    for polar IAA transport. New Phytol. 74, 163172

    48 Galweiler, L. et al. (1998) Regulation of polar auxin transport by

    AtPIN1 in Arabidopsis vascular tissue. Science 282, 22262230

    49 Geisler, M. and Murphy, A.S. (2006) The ABC of auxin transport:

    the role of p-glycoproteins in plant development. FEBS Lett. 580,

    10941102

    50 Peret, B. et al. (2012) AUX/LAX genes encode a family of auxin influx

    transporters that perform distinct functions during Arabidopsis

    development. Plant Cell 24, 28742885

    51 Leyser, O. (2010) The power of auxin in plants. Plant Physiol. 154,

    50150552 Vieten, A. et al. (2005) Functional redundancy of PIN proteins is

    accompanied by auxin-dependent cross-regulation of PIN expression.

    Development 132, 45214531

    53 Robert, S. et al. (2010) ABP1 mediates auxin inhibition of clathrin-

    dependent endocytosis in Arabidopsis. Cell 143, 111121

    54 Blilou, I.et al. (2005)ThePINauxin efflux facilitator network controls

    growth and patterning in Arabidopsis roots. Nature 433, 3944

    55 Benkova, E. et al. (2003) Local, efflux-dependent auxin gradients as a

    common module for plant organ formation. Cell 115, 591602

    56 Brunoud, G. et al. (2012) A novel sensor to map auxin response

    and distribution at high spatio-temporal resolution. Nature 482,

    103106

    57 Heisler, M.G. et al. (2010) Alignment between PIN1 polarity and

    microtubule orientation in the shoot apical meristem reveals a tight

    coupling between morphogenesis and auxin transport. PLoS Biol. 8,

    e1000516

    Opinion Trends in Genetics February 2014, Vol. 30, No. 2

    48

    http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0120http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0120http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0120http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0120http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0120http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0120http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0120http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0120http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0125http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0125http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0125http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0125http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0125http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0125http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0130http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0130http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0130http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0130http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0130http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0130http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0130http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0130http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0130http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0130http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0130http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0130http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0130http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0130http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0135http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0135http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0135http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0135http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0135http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0135http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0135http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0140http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0140http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0140http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0140http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0140http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0140http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0145http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0145http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0145http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0145http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0145http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0145http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0150http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0150http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0150http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0150http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0150http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0150http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0150http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0150http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0150http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0155http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0155http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0155http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0155http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0155http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0155http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0155http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0160http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0160http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0160http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0160http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0160http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0160http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0160http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0160http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0160http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0160http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0160http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0165http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0165http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0165http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0165http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0165http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0165http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0170http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0170http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0170http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0170http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0170http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0175http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0175http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0175http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0175http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0175http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0175http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0180http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0180http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0180http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0180http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0180http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0180http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0180http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0180http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0180http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0180http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0185http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0185http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0185http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0185http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0185http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0185http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0185http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0190http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0190http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0190http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0190http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0190http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0190http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0195http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0195http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0195http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0200http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0200http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0200http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0200http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0200http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0205http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0205http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0205http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0205http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0205http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0205http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0210http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0210http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0210http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0210http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0210http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0215http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0215http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0215http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0215http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0215http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0215http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0215http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0215http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0215http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0220http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0220http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0220http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0220http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0220http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0220http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0220http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0220http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0220http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0220http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref9225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref9225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref9225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref9225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0230http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0230http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0230http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0230http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0230http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0235http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0235http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0235http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0235http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0235http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0235http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0235http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0235http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0235http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0235http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0245http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0245http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0245http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0245http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0245http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0245http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0245http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0245http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0245http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0245http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0245http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0245http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0250http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0250http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0250http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0250http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0250http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0250http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0250http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0250http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0250http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0250http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0250http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0255http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0255http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0255http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0255http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0255http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0255http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0260http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0260http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0260http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0260http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0260http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0260http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0260http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0260http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0260http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0265http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0265http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0265http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0265http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0265http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0265http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0265http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0265http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0270http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0270http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0270http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0270http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0270http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0270http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0270http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0270http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0280http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0280http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0280http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0280http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0280http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0280http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0280http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0280http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0280http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0280http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0280http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0280http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0275http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0270http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0270http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0265http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0265http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0260http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0260http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0255http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0255http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0255http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0250http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0250http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0245http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0245http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0245http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0240http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0235http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0235http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0230http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0230http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0230http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref9225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref9225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0225http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0220http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0220http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0215http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0215http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0215http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0210http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0210http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0210http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0205http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0205http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0200http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0200http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0200http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0195http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0190http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0190http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0185http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0185http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0185http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0180http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0180http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0175http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0175http://refhub.elsevier.com/S0168-9525(13)00192-3/sbref0170http://refhub.elsevier.com/S0168-

Recommended