+ All Categories
Home > Education > Trento june2015 slides

Trento june2015 slides

Date post: 05-Aug-2015
Category:
Upload: cafe-geoframe
View: 782 times
Download: 0 times
Share this document with a friend
50
Observa(ons and modelling of precipita(on and the hydrological cycle: uncertain(es and downscaling Jost von Hardenberg Elisa Palazzi – Silvia Terzago ISACCNR, Torino with: L. Filippi, P. Davini, D. D’Onofrio (ISACCNR)
Transcript

Observa(ons  and  modelling  of  precipita(on  and  the  hydrological  cycle:    

uncertain(es  and  downscaling  

Jost  von  Hardenberg    -­‐    Elisa  Palazzi  –  Silvia  Terzago  ISAC-­‐CNR,  Torino  

with:  L.  Filippi,  P.  Davini,  D.  D’Onofrio  (ISAC-­‐CNR)  

From  large  to  small  scales  (and  back)  

•  Climate  projecOons  from  global  climate  models  are  available  at  coarse  resoluOons  (~100  km)  

   •  Climate  change  impacts  act  mostly  at  local  

scales  (impacts  on  ecosystems,  hydrology,  risks,  surface  processes)  

à   Scale  mismatch  and  need  for  downscaling    

•  Local  surface  processes  may  feed  back  on  large  scales    

à   need  for  upscaling  

+%#$,%)-%.',/&)'#0&%) 1&2.#3,%)-%.',/&)'#0&%)

*/,454-,%65/#-7,54-)0#835-,%.32)

)

9':,-/)#3))&-#;7<0"#%#2.-,%):"#-&55&5)

A:/!<#$%&'()*%+L*9.('1!':(*%!The  downscaling  modeling  chain  

+%#$,%)-%.',/&)'#0&%) 1&2.#3,%)-%.',/&)'#0&%)

*/,454-,%65/#-7,54-)0#835-,%.32)

)

9':,-/)#3))&-#;7<0"#%#2.-,%):"#-&55&5)

A:/!<#$%&'()*%+L*9.('1!':(*%!The  downscaling  modeling  chain  

•  All  elements  in  this  chain  are  characterized  by  sources  of  uncertainty  

 

+%#$,%)-%.',/&)'#0&%) 1&2.#3,%)-%.',/&)'#0&%)

*/,454-,%65/#-7,54-)0#835-,%.32)

)

9':,-/)#3))&-#;7<0"#%#2.-,%):"#-&55&5)

A:/!<#$%&'()*%+L*9.('1!':(*%!The  downscaling  modeling  chain  

Global  Climate  Models  

 -­‐  Examples  of  applicaOons  to  precipitaOon  and  snow  

depth  in  the  mountains  (Karakoram-­‐Himalaya  and  the  Alps)  

 using  the  CMIP5  Global  Climate  Models  and    

the  EC-­‐Earth  GCM  

Winter  Westerlies  

Indian  summer  Monsoon  

ITCZ  (NH  SUMMER)  

L

L

HKK  

Himalaya  

Hindu-­‐Kush  Karakoram  Himalaya:  example  

*  Palazzi,  E.,  J.  von  Hardenberg,  and  A.  Provenzale.  2013.  Precipita<on  in  the  Hindu-­‐Kush  Karakoram  Himalaya:  Observa<ons  and  future  scenarios,  J.  Geophys.  Res.  Atmos.,  118,  85–100  *  Filippi,  L.,  Palazzi,  E.,  von  Hardenberg,  J.  &  Provenzale,  A.  2014.  Mul<decadal  Varia<ons  in  the  Rela<onship  between  the  NAO  and  Winter  Precipita<on  in  the  Hindu-­‐Kush  Karakoram.  Journal  of  Climate  (2014).  doi:10.1175/JCLI-­‐D-­‐14-­‐00286.1,  

SpaOal  averages  over  the  two  boxes  of  ² Gridded  precipitaOon  data  +  reanalyses  ² Data  from  GCMs  

 Annual  cycle  climatology,  long-­‐term  trends,  PrecipitaOon  changes  

70˚

70˚

75˚

75˚

80˚

80˚

85˚

85˚

90˚

90˚

95˚

95˚

25˚ 25˚

30˚ 30˚

35˚ 35˚

70˚

70˚

75˚

75˚

80˚

80˚

85˚

85˚

90˚

90˚

95˚

95˚

25˚ 25˚

30˚ 30˚

35˚ 35˚

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1000 2000 3000 4000 5000 6000

m

We  consider  only  the  data  and  model  outputs  from  pixels/grid  points  with  mean  elevaOon  higher  than  1000  m  above  

mean  sea  level.  

HKK

Himalaya

Approach  

HKKH  precipitaOon  

–  In-­‐situ  sta(ons  •  CharacterizaOon  of  the  local  condiOons  •  Long  temporal  coverage    •  Unevenly  distributed,  mainly  in  the  valleys  and  lowland  areas,  leading  to  a  bias  toward  the  lower  elevaOons    

•  UnderesOmaOon  of  total  precipitaOon  (snow) –  Interpolated  (gridded)  datasets  

•  Gridding:  reduces  biases  arising  from  the  irregular  staOon  distribuOon  and  is  essenOal  for  the  analysis  of  regional  precipitaOon  trends    

•  Poor  spaOal  coverage  and  high  sparseness  of  the  underlying  staOons  à  source  of  uncertainty  when  interpolaOng  grid  point  values.    

•  For  short  averaging  Ome  scales  the  spaOal  intermi^ency  of  precipitaOon  represents  a  major  source  of  uncertainty  for  these  approaches  

PrecipitaOon  datasets  &  issues  GPCC  raw  

GPCC  interpolated  

Maximum Number of Gauges/grid over time − CRU

70˚

70˚

75˚

75˚

80˚

80˚

85˚

85˚

90˚

90˚

95˚

95˚

25˚ 25˚

30˚ 30˚

35˚ 35˚

0 1 2 3 4 5 6 7 8

gauges/grid70˚

70˚

75˚

75˚

80˚

80˚

85˚

85˚

90˚

90˚

95˚

95˚

25˚ 25˚

30˚ 30˚

35˚ 35˚

Maximum Number of Gauges/grid over time − GPCC

70˚

70˚

75˚

75˚

80˚

80˚

85˚

85˚

90˚

90˚

95˚

95˚

25˚ 25˚

30˚ 30˚

35˚ 35˚

0 1 2 3 4 5 6 7 8

gauges/grid70˚

70˚

75˚

75˚

80˚

80˚

85˚

85˚

90˚

90˚

95˚

95˚

25˚ 25˚

30˚ 30˚

35˚ 35˚

Maximum Number of Gauges/grid over time − CRU

70˚

70˚

75˚

75˚

80˚

80˚

85˚

85˚

90˚

90˚

95˚

95˚

25˚ 25˚

30˚ 30˚

35˚ 35˚

0 1 2 3 4 5 6 7 8

gauges/grid70˚

70˚

75˚

75˚

80˚

80˚

85˚

85˚

90˚

90˚

95˚

95˚

25˚ 25˚

30˚ 30˚

35˚ 35˚

Maximum Number of Gauges/grid over time − GPCC

70˚

70˚

75˚

75˚

80˚

80˚

85˚

85˚

90˚

90˚

95˚

95˚

25˚ 25˚

30˚ 30˚

35˚ 35˚

0 1 2 3 4 5 6 7 8

gauges/grid70˚

70˚

75˚

75˚

80˚

80˚

85˚

85˚

90˚

90˚

95˚

95˚

25˚ 25˚

30˚ 30˚

35˚ 35˚

Maximum  number  of  gauges/pixel  

(1901-­‐2013).  ElevaOon  >  1000  m  a.s.l.  

Maximum  number  of  gauges/pixel  (1901-­‐2013).    

Time  series  of  the  total  number  of  gauges  in  the  HKK  and  Himalaya  

GPCC  raw  

GPCC  interpolated  

GPC

C  Grid

ded  da

taset  

PrecipitaOon  datasets  &  issues  

–  Satellite  Data  •  SpaOally-­‐complete  coverage  of  precipitaOon  esOmates  •  They  do  not  extend  back  beyond  the  1970s  à  not  yet  suitable  for  assessing  long-­‐term  trends  and  for  climatological  studies.  

•  Problems  in  measuring  snow  accurately  

PrecipitaOon  datasets  &  issues  

–  Merged  in-­‐situ  and  satellite  Datasets  (e.g.,  GPCP)  

–  Reanalyses  (use  data  assimila(on  techniques  to  keep  the  output  of  a  numerical  model  close  to  observa(ons)  

•  Reanalysis  data  do  account  for  total  precipitaOon  (rainfall  plus  snow).    •  Global  &  conOnuos  data  •  Climate  trends  obtained  from  reanalyses  should  be  regarded  with  cauOon,  since  conOnuous  changes  in  the  observing  systems  and  biases  in  both  observaOons  and  models  can  introduce  spurious  variability  and  trends  into  reanalysis  output    

DATASET Spatial domain

Temporal domain

Spatial resolution

Temporal resolution

TRMM 3B42 50°S-50°N 1998-2010 0.25°x0.25° 3-hr

GPCP Global 1979-2010 2.5°x2.5° Monthly

APHRODITE APHRO_V1003R1

60°E-150°E 15°S-55°S 1951-2007 0.25°x0.25°

Daily

GPCC V5 Land 1901-2009 0.5°x0.5°

Monthly

CRU

TS3.01.01 Land 1901-2009 0.5°x0.5°

Monthly

ERA-Interim Global 1979-2011 0.75°x0.75° Daily

EC-Earth GCM Global 1850-2005 + scenarios 1.125°x1.125° Daily

HKKH  precipitaOon  datasets  

*  Palazzi,  E.,  J.  von  Hardenberg,  and  A.  Provenzale.  2013.  Precipita<on  in  the  Hindu-­‐Kush  Karakoram  Himalaya:  Observa<ons  and  future  scenarios,  J.  Geophys.  Res.  Atmos.,  118,  85–100  

Summer  precipitaOon  (JJAS),  MulOannual  average  1998-­‐2007  Aphrodite JJAS

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 2 4 6 8 10 12 14 16 18 20mm/day

CRU JJAS

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 2 4 6 8 10 12 14 16 18 20mm/day

GPCC JJAS

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 2 4 6 8 10 12 14 16 18 20mm/day

TRMM JJAS

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 2 4 6 8 10 12 14 16 18 20mm/day

GPCP JJAS

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 2 4 6 8 10 12 14 16 18 20mm/day

ERA−Interim JJAS

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 2 4 6 8 10 12 14 16 18 20mm/day

EC−Earth JJAS

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 2 4 6 8 10 12 14 16 18 20mm/day

UncertainOes  in  observaOonal  data  

*  Palazzi,  E.,  J.  von  Hardenberg,  and  A.  Provenzale.  2013.  Precipita<on  in  the  Hindu-­‐Kush  Karakoram  Himalaya:  Observa<ons  and  future  scenarios,  J.  Geophys.  Res.  Atmos.,  118,  85–100  

Aphrodite DJFMA

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1 2 3 4 5mm/day

CRU DJFMA

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1 2 3 4 5mm/day

GPCC DJFMA

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1 2 3 4 5mm/day

TRMM DJFMA

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1 2 3 4 5mm/day

GPCP DJFMA

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1 2 3 4 5mm/day

ERA−Interim DJFMA

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1 2 3 4 5mm/day

EC−Earth DJFMA

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1 2 3 4 5mm/day

Winter  precipitaOon  (DJFMA),  MulOannual  average  1998-­‐2007  

*  Palazzi,  E.,  J.  von  Hardenberg,  and  A.  Provenzale.  2013.  Precipita<on  in  the  Hindu-­‐Kush  Karakoram  Himalaya:  Observa<ons  and  future  scenarios,  J.  Geophys.  Res.  Atmos.,  118,  85–100  

UncertainOes  in  observaOonal  data  

Bimodal distribution: similar amplitudes in the observations → two different large-scale mechanisms: WWP in the N-NW; summer monsoon in the S-E part of the

HKK “box”

ERA-Interim and EC-Earth overestimate total precipitation with respect to the

observations (snow)

Unimodal distribution peaking in July APHRODITE, TRMM: ~ 5 mm/day

CRU, GPCC: ~ 6.5 mm/day GPCP: ~ 6 mm/day

ERA-Interim overestimates

precipitation; EC-Earth is in better agreement with observations

HKK  Himalaya  

Annual  cycle  climatology  of  PrecipitaOon  

PrecipitaOon  Ome  series:  1901-­‐2009  

http

://c

mip-p

cmdi

.llnl.go

v/cm

ip5/

 

CMIP5 GCMs Precipitation in the Karakoram-Himalaya: A CMIP5 view 35

Table 1 The CMIP5 models used in this study. Starred entries indicate models with a fully-interactive aerosol module.

Model ID Resolution Institution ID First/second KeyLon⇥Lat� Lev indirect aerosol e↵ect reference

bcc-csm1-1-m 1.125⇥1.125L26 (T106) BCC No Wu et al (2013)bcc-csm1-1 2.8125⇥2.8125L26 (T42) BCC No Wu et al (2013)CCSM4 1.25⇥0.9L27 (T63) NCAR No Meehl et al (2012)

CESM1-BGC 1.25⇥0.9L27 NSF-DOE-NCAR No Hurrell et al (2013)*CESM1-CAM5 1.25⇥0.9L27 NSF-DOE-NCAR No Hurrell et al (2013)

EC-Earth 1.125⇥1.125L62 (T159) EC-EARTH No Hazeleger et al (2012)FIO-ESM 2.8125⇥2.8125L26 (T42) FIO No Song et al (2012)

GFDL-ESM2G 2.5⇥2L24 (M45) GFDL No Delworth et al (2006)GFDL-ESM2M 2.5⇥2L24 (M45) GFDL No Delworth et al (2006)MPI-ESM-LR 1.875⇥1.875L47 (T63) MPI-M No Giorgetta et al (2013)MPI-ESM-MR 1.875⇥1.875L95 (T63) MPI-M No Giorgetta et al (2013)

*CanESM2 2.8125⇥2.8125L35 (T63) CCCMA Yes / No Arora et al (2011)CMCC-CMS 1.875⇥1.875L95 (T63) CMCC Yes / No Davini et al (2013)CNRM-CM5 1.40625⇥1.40625L31 (T127) CNRM- Yes / No Voldoire et al (2013)

CERFACS*CSIRO-Mk3-6-0 1.875⇥1.875L18 (T63) CSIRO- Yes / No Rotstayn et al (2012)

QCCCE*GFDL-CM3 2.5⇥2L48 (C48) GFDL Yes / No Delworth et al (2006)INM-CM4 2⇥1.5L21 INM Yes / No Volodin et al (2010)

IPSL-CM5A-LR 3.75⇥1.89L39 IPSL Yes / No Hourdin et al (2013)IPSL-CM5A-MR 2.5⇥1.2587L39 IPSL Yes / No Hourdin et al (2013)IPSL-CM5B-LR 3.75⇥1.9L39 IPSL Yes / No Hourdin et al (2013)*MRI-CGCM3 1.125⇥1.125L48 (T159) MRI Yes / No Yukimoto et al (2012)

CMCC-CM 0.75⇥0.75L31 (T159) CMCC Yes / N/A Scoccimarro et al (2011)FGOALS-g2 2.8125⇥2.8125L26 LASG-CESS Yes / N/A Li et al (2013)

*HadGEM2-AO 1.875⇥1.24L60 MOHC Yes / N/A Martin et al (2011)

*ACCESS1-0 1.875⇥1.25L38 (N96) CSIRO-BOM Yes / Yes Bi et al (2013)*ACCESS1-3 1.875⇥1.25L38 CSIRO-BOM Yes / Yes Bi et al (2013)

*HadGEM2-CC 1.875⇥1.24L60 (N96) MOHC Yes / Yes Martin et al (2011)*HadGEM2-ES 1.875⇥1.24L38 (N96) MOHC Yes / Yes Bellouin et al (2011)

*MIROC5 1.40625⇥1.40625L40 (T85) MIROC Yes / Yes Watanabe et al (2010)*MIROC-ESM 2.8125⇥2.8125L80 (T42) MIROC Yes / Yes Watanabe et al (2011)*NorESM1-M 2.5⇥1.9L26 (F19) NCC Yes / Yes Bentsen et al (2013)*NorESM1-ME 2.5⇥1.9L26 NCC Yes / Yes Bentsen et al (2013)

32 GCMs 0.75°-3.75° lon Aerosols Fully-Interactive chemistry

HKKH  PrecipitaOon:  models  

*  Palazzi  E.,  J.  von  Hardenberg,  S.  Terzago,  A.  Provenzale.  2014.  Precipita<on  in  the  Karakoram-­‐Himalaya:  A  CMIP5  view,  Climate  Dynamics,  doi:  10.1007/s00382-­‐014-­‐2341-­‐z  

CMCC−CM JJAS

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 2 4 6 8 10 12 14 16 18 20

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

CESM1−CAM5 JJAS

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 2 4 6 8 10 12 14 16 18 20

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

MIROC5 JJAS

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 2 4 6 8 10 12 14 16 18 20

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

HadGEM2−ES JJAS

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 2 4 6 8 10 12 14 16 18 20

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

inmcm4 JJAS

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 2 4 6 8 10 12 14 16 18 20

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

NorESM1−ME JJAS

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 2 4 6 8 10 12 14 16 18 20

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

FGOALS−g2 JJAS

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 2 4 6 8 10 12 14 16 18 20

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

IPSL−CM5A−LR JJAS

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 2 4 6 8 10 12 14 16 18 20

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0.75°   1.25°   1.40°  

1.875°   2°   2.5°  

2.8125°   3.75°  

Spread  between  CMIP5  models  

JJAS  precipitaOon  Average  1901-­‐2005  

CMIP5  

*  Palazzi  E.,  J.  von  Hardenberg,  S.  Terzago,  A.  Provenzale.  2014.  Precipita<on  in  the  Karakoram-­‐Himalaya:  A  CMIP5  view,  Climate  Dynamics,  doi:  10.1007/s00382-­‐014-­‐2341-­‐z  

CMCC−CM DJFMA

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1 2 3 4 5 6 7 8

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

CESM1−CAM5 DJFMA

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1 2 3 4 5 6 7 8

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

MIROC5 DJFMA

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1 2 3 4 5 6 7 8

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

HadGEM2−ES DJFMA

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1 2 3 4 5 6 7 8

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

inmcm4 DJFMA

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1 2 3 4 5 6 7 8

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

NorESM1−ME DJFMA

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1 2 3 4 5 6 7 8

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

FGOALS−g2 DJFMA

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1 2 3 4 5 6 7 8

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

IPSL−CM5A−LR DJFMA

70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0 1 2 3 4 5 6 7 8

mm/day70˚

70˚

80˚

80˚

90˚

90˚

30˚ 30˚

0.75°   1.25°   1.40°  

1.875°   2°   2.5°  

2.8125°   3.75°   DJFMA  precipitaOon  Average  1901-­‐2005  

CMIP5  

Spread  between  CMIP5  models  

*  Palazzi  E.,  J.  von  Hardenberg,  S.  Terzago,  A.  Provenzale.  2014.  Precipita<on  in  the  Karakoram-­‐Himalaya:  A  CMIP5  view,  Climate  Dynamics,  doi:  10.1007/s00382-­‐014-­‐2341-­‐z  

36 Elisa Palazzi et al.

Table 2 Multi-annual mean monthly (Jan to Dec) and seasonal (DJFMA and JJAS) valuesof the coe�cient of variation (CV, the ratio of the multi-model standard deviation to themulti-model mean expressed as a percentage [%] of the multi-model mean) in the Himalayaand HKK sub-regions. The time averages are performed over the period 1901-2005 (historicalperiod) and over the years 2006-2100 for the future scenarios. Please note that the monthlyCV values are obtained from the multiannual mean of montly precipitation from each CMIP5model shown in Figs. 2a and 2b, while the DJFMA and JJAS CV values are obtained byaveraging in time the seasonal precipitation time series from each model shown in Fig. 3.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (l) (m) (n) (o) (p)Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec DJFMA JJAS

HistoricalHimalaya 49 39 30 34 38 43 37 32 39 36 47 47 40 37HKK 38 32 27 26 38 53 59 53 43 30 30 35 36 52

RCP 4.5Himalaya 51 40 30 37 39 42 37 31 39 35 50 56 41 36HKK 36 32 30 30 39 53 58 53 42 33 32 34 36 51

RCP 8.5Himalaya 51 39 29 39 40 41 37 31 37 37 48 55 40 35HKK 36 30 29 31 40 52 57 52 44 33 29 35 37 51

STD  DEV  

SPREAD

MMM  

Himalaya  vs  HKK    

No  GCM  feature  has  clearly  emerged  as  one  playing  a  key  role  in  providing  the  best  results  in  terms  of  precipita(on  annual  cycle  in  the  two  regions.    

Figure 4:

Spread  between  CMIP5  models  

HKKH  precipita(on:  example  

Figure 4:HIMALAYA   HKK  

Palazzi  E.,  J.  von  Hardenberg,  S.  Terzago,  A.  Provenzale.  2014.  Precipita<on  in  the  Karakoram-­‐Himalaya:  A  CMIP5  view,  Climate  Dynamics,  doi:  10.1007/s00382-­‐014-­‐2341-­‐z  

Is  there  one  model,  or  group  of  models,  that  provides  the  best  results  in  terms  of  precipita(on  annual  cycle  in  one  or  both  

regions?  

Annual  Cycle  

HKKH  precipita(on:  example  

Figure 4:

Palazzi  E.,  J.  von  Hardenberg,  S.  Terzago,  A.  Provenzale.  2014.  Precipita<on  in  the  Karakoram-­‐Himalaya:  A  CMIP5  view,  Climate  Dynamics,  doi:  10.1007/s00382-­‐014-­‐2341-­‐z  

HIMALAYA   HKK  

Are  there  any  model  features  that  have  emerged  as  those  providing  the  best  results?  

Annual  Cycle  

CMIP5  and  RepresentaOve  concentraOon  pathways  

EC-­‐Earth   CMIP5  

Global  PrecipitaOon  (RCP  4.5)  

RH Moss et al. Nature 463, 747-756 (2010) doi:10.1038/nature08823

HKKH  precipita(on:  example  

Palazzi  E.,  J.  von  Hardenberg,  S.  Terzago,  A.  Provenzale.  2014.  Precipita<on  in  the  Karakoram-­‐Himalaya:  A  CMIP5  view,  Climate  Dynamics,  doi:  10.1007/s00382-­‐014-­‐2341-­‐z  

CMIP5  Mul(-­‐mod

el  ensem

ble  

Long-­‐term  trends  

HKKH  precipita(on:  example  

Palazzi,  E.,  J.  von  Hardenberg,  and  A.  Provenzale.  2013.  Precipita<on  in  the  Hindu-­‐Kush  Karakoram  Himalaya:  Observa<ons  and  future  scenarios,  J.  Geophys.  Res.  Atmos.,  118,  85–100,  doi:  10.1029/2012JD018697      

EC-­‐Earth  m

ul(-­‐mem

ber  e

nsem

ble  

Long-­‐term  trends  

Decreasing  snow  depth  trends    in  the  HKKH  from  CMIP5  models  

*  Terzago,  S.,  J.  von  Hardenberg,  E.  Palazzi,  and  A.  Provenzale  (2014),  Snowpack  changes  in  the  Hindu-­‐Kush  Karakoram  Himalaya  from  CMIP5  Global  Climate  Models,  J.  Hydrometeorol.,  15  (6),  2293-­‐2313  

Snow  depth  in  the  Alps:  example  DJFMA snow depth projections � Alps above 1000 m a.s.l.

Year

Ave

rage

SN

D[m

]

1850 1900 1950 2000 2050 2100

0.0

0.2

0.4

0.6

CMIP5�ENS�HISTCMIP5�ENS�RCP45CMIP5�ENS�RCP85ERAI�LandCFSRMERRA20CRv2

DJFMA snow depth reanalyses � Alps above 1000 m a.s.l.

Year

Ave

rage

SN

D [m

]

1980 1985 1990 1995 2000 2005

0.0

0.2

0.4

0.6

ERAI�LandCFSRMERRA20CRv2CMIP5�ENS�HIST

The  EC-­‐Earth  Global  Climate  Model  

Ref.:      Hazeleger,  W.  et  al.,  2009.  EC-­‐Earth:  A  Seamless  Earth  System  PredicOon  Approach  in  AcOon.    Bull.  Amer.  Meteor.    

ECMWF  IFS  atmosphere  (36r4  –  T255L91/N128)+  H-­‐Tessel  Land/veg  module    +  NEMO  3.3.1  ocean  (ORCA1  L46)  (will  be  3.6)  +  LIM  3  sea  ice    

Integrated  Forecast  System    ECMWF  

Louvain  La  Neuve  Ice  Model  (LIM2  (ECE  v2)  LIM3  (ECE  v3)  )    

H-­‐Tessel  Land-­‐surface  model  

The  EC-­‐Earth  Global  Earth-­‐System  Model  

Ref.:      Hazeleger,  W.  et  al.,  2009.  EC-­‐Earth:  A  Seamless  Earth  System  PredicOon  Approach  in  AcOon.    Bull.  Amer.  Meteor.  Soc.  

ECMWF  IFS  atmosphere  (36r4  –  T255L91/N128)+  H-­‐Tessel  Land/veg  module    +  NEMO  3.3.1  ocean  (ORCA1  L46)  (will  be  3.6)  +  LIM  3  sea  ice  

+  TM5  chemistry/aerosols  (6°x4°  /  3°x2°)  

TM5  atmospheric  chemistry  and  transport  model    

Integrated  Forecast  System    ECMWF  

Louvain  La  Neuve  Ice  Model  (LIM2  (ECE  v2)  LIM3  (ECE  v3)  )    

H-­‐Tessel  Land-­‐surface  model  

LPJ-­‐Guess  dynamic  vegetaOon  

28  Research  insOtuOons  from  12  different  European  countries.    Technical  support  by  ECMWF.                  

+%#$,%)-%.',/&)'#0&%) 1&2.#3,%)-%.',/&)'#0&%)

*/,454-,%65/#-7,54-)0#835-,%.32)

)

9':,-/)#3))&-#;7<0"#%#2.-,%):"#-&55&5)

A:/!<#$%&'()*%+L*9.('1!':(*%!The  downscaling-­‐impact  chain  

Dynamical  downscaling  of  global  climate  model  outputs  

•  High  resoluOon  Regional  Climate  Models  nested  into  Global  Climate  Model  outputs  as  part  of  a  downscaling  change  

•  One-­‐way  nesOng  strategy  (the  RCM  does  not  feed  back  on  the  GCM)  

•  Advantages  over  stochasOc  and  staOsOcal  downscaling:  realisOc  representaOon  of    –  topography  –  land  surface  properOes  –  Dynamical  and  physical  processes  –  Based  on  the  same  equaOons  and  similar  parameterizaOons  as  the  GCMs  

•  Technique  originally  developed  for  numerical  weather  predicOon,  first  used  for  climate  runs  e.g  by  Giorgi  1990  

 

   

Dynamical  downscaling  with  the  WRF  model    (0.04°  and  0.11°)  

Advanced  Research  Weather  and  Forecas(ng  Model  (ARW-­‐WRF),  a  non-­‐hydrostaOc,  compressible  and  scalar  conserving  state-­‐of-­‐the-­‐art  atmospheric  model  “Perfect  boundary”  experiments:  •  Period:  1979-­‐1998  (some  up  to  2008)    •  Large  scale  driver:  ERA-­‐Interim  

reanalysis  (0.75°  resoluOon).  Provides  BCs  and  iniOal  condiOons  Model  resolu(ons:  0.11°  and  0.37°  

•  Different  microphysical  schemes:  Thompson,  Morrison,  WSMS6  

•  Convec(ve  schemes:  Kain-­‐Fritsch,  Be^s-­‐  Miller-­‐Janjic  ,  explicit  

•  ResoluOon:  901x805,                                              56  verOcal  levels  

   

SimulaOons    @  LRZ/SuperMUC,  Munich  

ObservaOonal  climatologies  1979-­‐1998  

WRF  PrecipitaOon  climatology  1979-­‐1998  Kain-­‐Fritsch  -­‐  Thompson   Kain-­‐Fritsch  -­‐  Morrison   Kain-­‐Fritsch  –  WSM6  

Be^s-­‐Miller-­‐Janjic    -­‐  Th.   Explicit  0.04°-­‐  Th.   E-­‐OBS.  

Kain-­‐Fritsch  -­‐  Thompson   Kain-­‐Fritsch  -­‐  Morrison   Kain-­‐Fritsch  –  WSM6  

Be^s-­‐Miller-­‐Janjic    -­‐  Th.   Explicit  0.04°-­‐  Th.   E-­‐OBS.  

WRF  PrecipitaOon  climatology  1979-­‐1998  

Significant  biases,  parOcularly  over  areas  with  complex  topography  ….but  we  have  also  to  keep  into  account  uncertainiOes  in  the  observaOonal  datasets  Such  as  significant  underesOmaOon  of  rain-­‐gauge  precipitaOon      

Summer  precipitaOon  biases  in  the  Alpine  Region  WRF  0.04°/0.11°  vs.  EURO4M  

Kain-­‐Fritsch,  0.11°   Be^s-­‐  Miller-­‐Janjic,  0.11°    

Explicit  convecOon,  0.04°     KF  Morrison  WSM6  BMJ  0.04°  

PrecipitaOon  seasonal  cycle  European  domain   Greater  Alpine  Region  

Thompson  Morrison  WSM6  BMJ  0.04°  

Thompson  Morrison  WSM6  BMJ  0.04°  

•  The  0.04°  run  with  explicit  convecOon  manages  to  reproduce  JJA  precipitaOon  averages  compaOble  with  observed.  

•  Different  microphysics  à  no  improvement  in  winter,  role  of  humidity  transport  

*  Pieri  A.,  von  Hardenberg  J.,  Parodi  A.,  Provenzale  A.:  Sensi<vity  of  precipita<on  sta<s<cs  to  resolu<on,  microphysics  and  convec<ve  parameteriza<on:  a  case  study  with  the  high-­‐resolu<on  WRF  climate  model  over  Europe,  Journal  of  Hydrometeorology,  sub  judice.        

What  if  we  compare  with  raingauges?  DistribuOon  of  daily  precipitaOon  intensity    

(>  0.1  mm/day)  for  127  staOons  in  TrenOno  1979-­‐1998      

Rain  Gauge  0.04°  run  

+%#$,%)-%.',/&)'#0&%) 1&2.#3,%)-%.',/&)'#0&%)

*/,454-,%65/#-7,54-)0#835-,%.32)

)

9':,-/)#3))&-#;7<0"#%#2.-,%):"#-&55&5)

A:/!<#$%&'()*%+L*9.('1!':(*%!The  modeling  chain  

StochasOc  downscaling:  the  RainFARM  downscaling  procedure  

α  Slope  derived  from  P  and  propagated  to  smaller  scales  

¨    Be l ong s   t o   t he   f am i l y   o f  “Metagaussian  models”,   based  on   the  nonlinear   transformaOon   of   a   linearly  correlated  process  

¨    Uses   simple   staOsOcal   properOes   of  large-­‐scale   meteorological   predicOons  (shape   of   the   power   spectrum)   and  generates   small-­‐scale   rainfall   fields  propagaOng  this  informaOon  to  smaller  scale,   provided   that   the   input   field  shows   a   (approximate)   scal ing  behavior  

SPATIAL  Power  spectrum  of  rainfall  field  

P(X,  Y,  T),  input  field,  reliability  scales  L0,  T0  r(x,y,t),  output  field,  resoluOon  λ,  τ

RAINFarm:  Rainfall  Filtered  Auto  Regressive  Model  

*  N.  Rebora,  L.  Ferraris,  J.  von  Hardenberg,  A.  Provenzale  ,  2006;  RainFARM:  Rainfall          Downscaling  by  a  Filtered  Autoregressive  Model.  J.  Hydrometeorology,  7,  724-­‐738    

RainFARM  downscaling:  example  

30  km   1  km  

PrecipitaOon  field  from  PROTHEUS   StochasOc  realizaOon  of  the  PROTHEUS  downscaled  field,  obtained  with  RainFARM  

Example  SON  1958  

! )=>>)",.3)2,?2&5)! )=@AB;>CC=)! )D,.%<)"&5#%?4#3)) )

!1EFGHI*()JKLMCN'))

4 6 8 10 12

41

42

43

44

45

46

47

48

Longitude [°]

Latit

ude [

°]

1

2

3

4

5

6

7

8

9

10

11

! )O%4/?0&)',K()>A>P)')! )O%4/?0&)'.3()=>Q)')

MM):.K&%5)

DRE3#S".#)&/),%TU))!"#$%&'()*+*('(,(-%.##/0.#1234152.#63/5)

0 50 100 150 200 250 300 350

10−6

10−4

10−2

100

precipitation [mm/day]

pro

babili

ty d

ensi

ty

StationsDownscaled PROTHEUSPROTHEUS

;1#':(&2'!<#$%&'()*%+)C(*%M3CD)V1,.3S,%%)W.%/&"&0)O?/#)1&2"&55.X&)Y#0&%Z)

*  D'Onofrio,  D.;  Palazzi,  E.;  von  Hardenberg,  J.,  Provenzale  A.,  Calman<  S.;  Stochas<c  Rainfall  Downscaling  of  Climate  Models.  J  of  Hydrometeorology  15  (2),  830-­‐843  (2014)  

OBSERVATIONS    WRF  RCM  11  km  Downscaled  WRF  1  km  

Precipita(on  PDFs  (2003-­‐2014)  

WRF  Simula(ons      @  LRZ/SuperMUC  Munich  

An  applicaOon  to  the  Upper  Tiber  basin  

Hydrological  impacts  

Observed  vs  modeled  discharges  

Gabellani  S,  Boni  G,  Ferraris  L,  von  Hardenberg  J,  Provenzale  A,  Propaga<on  of  uncertainty  from  rainfall  to  runoff:  A  case  study  with  a  stochas<c  rainfall  generator.  Adv.  Water  Resources,  30,  2061-­‐2071  (2007)  

 Open  quesOons  and  perspecOves  

•  Coupling  of  feedback  at  mul(ple  scales  in  climate  models    (including  local  feedbacks)  is  an  essenOal  step  to  be^er  understand  and  predict  global  climate  changes  

•  Need  for  mul(-­‐scale  models  to  adequately  address  feedbacks  at  disparate  scales  à  modelling  chain  from  GCMs  to  models  represenOng  local-­‐vegetaOon  feedbacks  through  downscaling  

•  Can  we  develop  vegetaOon/land-­‐surface  models  properly  parameterizing  small-­‐scale  processes  such  as  mulOple  steady  states  of  vegetaOon  ?

Rietkerk,  M.  et  al.  (2011)    Ecological  Complexity  8  (3):223-­‐228  

Equivalent  resoluOon  at  50N:  270  km  135  km  90  km  60  km  40  km  25  km  

•  Classic  GCMs  too  dependent  on  physical  parameterisaOon  because  of  unresolved  atmospheric  transports  

•  Role  of  resolved  seaàland  transport  larger  at  high  resoluOon  

•  Hydrological  cycle  more  intense  at  high  resoluOon  

What  changes  with  resoluOon?  The  global  hydrological  cycle  depends  on  model  resolu(on:  

Figure  adapted  from  Trenberth  et  al,  2007,  2011   Demory  et  al.,  Clim.  Dyn.,  2013  

EU’s Horizon 2020 PRIMAVERA: 2015-2020

Overarching objective of PRIMAVERA: Develop a new generation of well-evaluated high-resolution global climate models, capable of simulating and predicting regional climate with unprecedented fidelity. ISAC-CNR will actively contribute to most of the research activities proposed in PRIMAVERA: •  development of a process-based metrics tailored for different

regions and seasons. •  assessment of the benefits of increasing model resolution on Pacific

variability and its teleconnection to Europe. •  investigate novel stochastic approaches to represent sub-grid scale

processes •  investigate the climate variability and predictability in the Extra-

Tropics in order to quantify the respective influence of Interdecadal Pacific Variabiliy, Atlantic Multidecadal Variability and anthropogenic forcing on recent and future changes in European climate.

PRACE project “Climate SPHINX” CLIMATE Stochastic Physics HIgh resolutioN eXperiments

•  20 Mln core hours on SuperMUC (LRZ), 10th PRACE call, March 2015-February 2016. •  Goal: To investigate the impact stochastic

parameterisations and high resolutions on the representation of the main features of climate variability

•  Experiments with EC-Earth 3.1: –  Coupled experiments at (IFS) T255L91+ (NEMO) ORCA1 –  AMIP experiments at T255 (~80 km), T799 (~25 km) and T1279

(~16 km), coupled runs at T255 and T511. –  Sim. period: 1979-2005 (historical) 2040-2070 (RCP 8.5 scenario) –  3 ensemble members each for stochastic physics and standard

simulations (at T255, T511, T799)

* Weisheimer, A., T.N. Palmer and F. Doblas-Reyes, (2011) Geophys. Res. Lett., 38, L16703 * Dawson, A. and T. N. Palmer (2014), Climate Dyn. doi:10.1007/s00382-014-2238-x * Dawson, A., T. N. Palmer, and S. Corti (2012) Geophys. Res. Lett., 39, L21805, doi:10.1029/2012GL053284.

 ISAC-­‐CNR  will  contribute  in  CRESCENDO  to:  •  improvement  of  the  land  surface  component  of  the  EC-­‐

Earth  model,  in  parOcular  the  representaOon  of  ecosystem  mulO-­‐stability,  including  fire  disturbances  and  transiOons  from  forest  to  savannah  in  tropical  and  subtropical  regions.    

•  invesOgate  impacts  of  land  hydrology  on  climate  (including  vegetaOon-­‐mediated  effects)  in  LS3MIP  experiments    

•  using  simple  process  models  nested  in  the  outputs  of  the  ESM  runs  as  diagnosOc  tools  

 

EU’s Horizon 2020 CRESCENDO: 2015-2020

Overarching  objec(ve  of  CRESCENDO:  Improve  the  process  realism  and  future  projecOon  reliability  of  European  Earth-­‐System  Models,  while  evaluaOng  and  documenOng  the  performance  quality  of  these  models  …  


Recommended