+ All Categories
Home > Documents > Trig Cheat Sheet Formulas and Identities - WordPress.com · 2014-06-23 · ©2005 Paul Dawkins Unit...

Trig Cheat Sheet Formulas and Identities - WordPress.com · 2014-06-23 · ©2005 Paul Dawkins Unit...

Date post: 09-Jul-2018
Category:
Upload: duongdiep
View: 238 times
Download: 0 times
Share this document with a friend
7
Trig Cheat Sheet Definition of the Trig Functions Right triangle definition For this definition we assume that 0 2 p q < < or 0 90 q °< < ° . opposite sin hypotenuse q = hypotenuse csc opposite q = adjacent cos hypotenuse q = hypotenuse sec adjacent q = opposite tan adjacent q = adjacent cot opposite q = Unit circle definition For this definition q is any angle. sin 1 y y q = = 1 csc y q = cos 1 x x q = = 1 sec x q = tan y x q = cot x y q = Facts and Properties Domain The domain is all the values of q that can be plugged into the function. sin q , q can be any angle cos q , q can be any angle tan q , 1 , 0, 1, 2, 2 n n q p Ê ˆ π + = ± ± Á ˜ Ë ¯ cscq , , 0, 1, 2, n n q p π = ± ± secq , 1 , 0, 1, 2, 2 n n q p Ê ˆ π + = ± ± Á ˜ Ë ¯ cot q , , 0, 1, 2, n n q p π = ± ± Range The range is all possible values to get out of the function. 1 sin 1 q £ csc 1 and csc 1 q q £- 1 cos 1 q £ sec 1 and sec 1 q q £- tan q -• < < cot q -• < < Period The period of a function is the number, T, such that ( ) ( ) f T f q q + = . So, if w is a fixed number and q is any angle we have the following periods. ( ) sin wq Æ 2 T p w = ( ) cos wq Æ 2 T p w = ( ) tan wq Æ T p w = ( ) csc wq Æ 2 T p w = ( ) sec wq Æ 2 T p w = ( ) cot wq Æ T p w = q adjacent opposite hypotenuse x y ( ) , xy q x y 1 Formulas and Identities Tangent and Cotangent Identities sin cos tan cot cos sin q q q q q q = = Reciprocal Identities 1 1 csc sin sin csc 1 1 sec cos cos sec 1 1 cot tan tan cot q q q q q q q q q q q q = = = = = = Pythagorean Identities 2 2 2 2 2 2 sin cos 1 tan 1 sec 1 cot csc q q q q q q + = + = + = Even/Odd Formulas ( ) ( ) ( ) ( ) ( ) ( ) sin sin csc csc cos cos sec sec tan tan cot cot q q q q q q q q q q q q - = - - = - - = - = - = - - = - Periodic Formulas If n is an integer. ( ) ( ) ( ) ( ) ( ) ( ) sin 2 sin csc 2 csc cos 2 cos sec 2 sec tan tan cot cot n n n n n n q p q q p q q p q q p q q p q q p q + = + = + = + = + = + = Double Angle Formulas ( ) ( ) ( ) 2 2 2 2 2 sin 2 2sin cos cos 2 cos sin 2 cos 1 1 2sin 2 tan tan 2 1 tan q q q q q q q q q q q = = - = - = - = - Degrees to Radians Formulas If x is an angle in degrees and t is an angle in radians then 180 and 180 180 t x t t x x p p p = = = Half Angle Formulas ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 1 sin 1 cos 2 2 1 cos 1 cos 2 2 1 cos 2 tan 1 cos 2 q q q q q q q = - = + - = + Sum and Difference Formulas ( ) ( ) ( ) sin sin cos cos sin cos cos cos sin sin tan tan tan 1 tan tan a b a b a b a b a b a b a b a b a b ± = ± ± = ± ± = m m Product to Sum Formulas ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 sin sin cos cos 2 1 cos cos cos cos 2 1 sin cos sin sin 2 1 cos sin sin sin 2 a b a b a b a b a b a b a b a b a b a b a b a b = - - + È ˘ Î ˚ = - + + È ˘ Î ˚ = + + - È ˘ Î ˚ = + - - È ˘ Î ˚ Sum to Product Formulas sin sin 2sin cos 2 2 sin sin 2 cos sin 2 2 cos cos 2 cos cos 2 2 cos cos 2sin sin 2 2 a b a b a b a b a b a b a b a b a b a b a b a b + - Ê ˆ Ê ˆ + = Á ˜ Á ˜ Ë ¯ Ë ¯ + - Ê ˆ Ê ˆ - = Á ˜ Á ˜ Ë ¯ Ë ¯ + - Ê ˆ Ê ˆ + = Á ˜ Á ˜ Ë ¯ Ë ¯ + - Ê ˆ Ê ˆ - = - Á ˜ Á ˜ Ë ¯ Ë ¯ Cofunction Formulas sin cos cos sin 2 2 csc sec sec csc 2 2 tan cot cot tan 2 2 p p q q q q p p q q q q p p q q q q Ê ˆ Ê ˆ - = - = Á ˜ Á ˜ Ë ¯ Ë ¯ Ê ˆ Ê ˆ - = - = Á ˜ Á ˜ Ë ¯ Ë ¯ Ê ˆ Ê ˆ - = - = Á ˜ Á ˜ Ë ¯ Ë ¯
Transcript
Page 1: Trig Cheat Sheet Formulas and Identities - WordPress.com · 2014-06-23 · ©2005 Paul Dawkins Unit Circle = t For any ordered pair on the unit circle (xy,): cosq=x and sinq=y 2 Example

© 2005 Paul Dawkins

Trig Cheat Sheet

Definition of the Trig Functions Right triangle definition For this definition we assume that

02p

q< < or 0 90q° < < ° .

oppositesin

hypotenuseq = hypotenusecsc

oppositeq =

adjacentcoshypotenuse

q = hypotenusesecadjacent

q =

oppositetanadjacent

q = adjacentcotopposite

q =

Unit circle definition For this definition q is any angle.

sin

1y yq = = 1csc

yq =

cos1x xq = = 1sec

xq =

tan yx

q = cot xy

q =

Facts and Properties Domain The domain is all the values of q that can be plugged into the function. sinq , q can be any angle cosq , q can be any angle

tanq , 1 , 0, 1, 2,2

n nq pÊ ˆπ + = ± ±Á ˜Ë ¯

cscq , , 0, 1, 2,n nq pπ = ± ± …

secq , 1 , 0, 1, 2,2

n nq pÊ ˆπ + = ± ±Á ˜Ë ¯

cotq , , 0, 1, 2,n nq pπ = ± ± … Range The range is all possible values to get out of the function.

1 sin 1q- £ £ csc 1 and csc 1q q≥ £ - 1 cos 1q- £ £ sec 1 andsec 1q q≥ £ -

tanq-• < < • cotq-• < < •

Period The period of a function is the number, T, such that ( ) ( )f T fq q+ = . So, if w is a fixed number and q is any angle we have the following periods.

( )sin wq Æ 2T pw

=

( )cos wq Æ 2T pw

=

( )tan wq Æ T pw

=

( )csc wq Æ 2T pw

=

( )sec wq Æ 2T pw

=

( )cot wq Æ T pw

=

q adjacent

opposite hypotenuse

x

y

( ),x y

q

x

y 1

© 2005 Paul Dawkins

Formulas and Identities Tangent and Cotangent Identities

sin costan cotcos sin

q qq q

q q= =

Reciprocal Identities 1 1csc sin

sin csc1 1sec cos

cos sec1 1cot tan

tan cot

q qq q

q qq q

q qq q

= =

= =

= =

Pythagorean Identities 2 2

2 2

2 2

sin cos 1tan 1 sec1 cot csc

q q

q q

q q

+ =

+ =

+ =

Even/Odd Formulas ( ) ( )( ) ( )( ) ( )

sin sin csc csc

cos cos sec sec

tan tan cot cot

q q q q

q q q q

q q q q

- = - - = -

- = - =

- = - - = -

Periodic Formulas If n is an integer.

( ) ( )( ) ( )( ) ( )

sin 2 sin csc 2 csc

cos 2 cos sec 2 sec

tan tan cot cot

n n

n n

n n

q p q q p q

q p q q p q

q p q q p q

+ = + =

+ = + =

+ = + =Double Angle Formulas

( )( )

( )

2 2

2

2

2

sin 2 2sin cos

cos 2 cos sin

2cos 11 2sin

2 tantan 21 tan

q q q

q q q

q

qq

qq

=

= -

= -

= -

=-

Degrees to Radians Formulas If x is an angle in degrees and t is an angle in radians then

180and 180 180

t x tt xx

p pp

= fi = =

Half Angle Formulas

( )( )

( )( )( )( )

2

2

2

1sin 1 cos 221cos 1 cos 221 cos 2

tan1 cos 2

q q

q q

qq

q

= -

= +

-=

+

Sum and Difference Formulas ( )( )

( )

sin sin cos cos sin

cos cos cos sin sintan tantan

1 tan tan

a b a b a b

a b a b a b

a ba b

a b

± = ±

± =

±± =

m

m

Product to Sum Formulas

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1sin sin cos cos21cos cos cos cos21sin cos sin sin21cos sin sin sin2

a b a b a b

a b a b a b

a b a b a b

a b a b a b

= - - +È ˘Î ˚

= - + +È ˘Î ˚

= + + -È ˘Î ˚

= + - -È ˘Î ˚

Sum to Product Formulas

sin sin 2sin cos2 2

sin sin 2cos sin2 2

cos cos 2cos cos2 2

cos cos 2sin sin2 2

a b a ba b

a b a ba b

a b a ba b

a b a ba b

+ -Ê ˆ Ê ˆ+ = Á ˜ Á ˜Ë ¯ Ë ¯

+ -Ê ˆ Ê ˆ- = Á ˜ Á ˜Ë ¯ Ë ¯

+ -Ê ˆ Ê ˆ+ = Á ˜ Á ˜Ë ¯ Ë ¯

+ -Ê ˆ Ê ˆ- = - Á ˜ Á ˜Ë ¯ Ë ¯

Cofunction Formulas

sin cos cos sin2 2

csc sec sec csc2 2

tan cot cot tan2 2

p pq q q q

p pq q q q

p pq q q q

Ê ˆ Ê ˆ- = - =Á ˜ Á ˜Ë ¯ Ë ¯Ê ˆ Ê ˆ- = - =Á ˜ Á ˜Ë ¯ Ë ¯Ê ˆ Ê ˆ- = - =Á ˜ Á ˜Ë ¯ Ë ¯

Page 2: Trig Cheat Sheet Formulas and Identities - WordPress.com · 2014-06-23 · ©2005 Paul Dawkins Unit Circle = t For any ordered pair on the unit circle (xy,): cosq=x and sinq=y 2 Example

© 2005 Paul Dawkins

Unit Circle

For any ordered pair on the unit circle ( ),x y : cos xq = and sin yq = Example

5 1 5 3cos sin3 2 3 2p pÊ ˆ Ê ˆ= = -Á ˜ Á ˜

Ë ¯ Ë ¯

3p

4p

6p

2 2,2 2

Ê ˆÁ ˜Á ˜Ë ¯

3 1,2 2

Ê ˆÁ ˜Á ˜Ë ¯

1 3,2 2

Ê ˆÁ ˜Á ˜Ë ¯

60°

45°

30°

23p

34p

56p

76p

54p

43p

116p

74p

53p

2p

p

32p

0 2p

1 3,2 2

Ê ˆ-Á ˜

Ë ¯

2 2,2 2

Ê ˆ-Á ˜

Ë ¯

3 1,2 2

Ê ˆ-Á ˜

Ë ¯

3 1,2 2

Ê ˆ- -Á ˜

Ë ¯

2 2,2 2

Ê ˆ- -Á ˜

Ë ¯

1 3,2 2

Ê ˆ- -Á ˜

Ë ¯

3 1,2 2

Ê ˆ-Á ˜

Ë ¯

2 2,2 2

Ê ˆ-Á ˜

Ë ¯

1 3,2 2

Ê ˆ-Á ˜

Ë ¯

( )0,1

( )0, 1-

( )1,0-

90° 120°

135°

150°

180°

210°

225°

240° 270°

300° 315°

330°

360°

0° x

( )1,0

y

© 2005 Paul Dawkins

Inverse Trig Functions Definition

1

1

1

sin is equivalent to sincos is equivalent to costan is equivalent to tan

y x x yy x x yy x x y

-

-

-

= =

= =

= =

Domain and Range

Function Domain Range 1siny x-= 1 1x- £ £

2 2yp p

- £ £

1cosy x-= 1 1x- £ £ 0 y p£ £

1tany x-= x-• < < • 2 2

yp p- < <

Inverse Properties ( )( ) ( )( )( )( ) ( )( )( )( ) ( )( )

1 1

1 1

1 1

cos cos cos cos

sin sin sin sin

tan tan tan tan

x x

x x

x x

q q

q q

q q

- -

- -

- -

= =

= =

= =

Alternate Notation

1

1

1

sin arcsincos arccostan arctan

x xx xx x

-

-

-

=

=

=

Law of Sines, Cosines and Tangents

Law of Sines sin sin sin

a b ca b g

= =

Law of Cosines 2 2 2

2 2 2

2 2 2

2 cos2 cos2 cos

a b c bcb a c acc a b ab

a

b

g

= + -

= + -

= + -

Mollweide’s Formula ( )1

212

cossin

a bc

a bg-+

=

Law of Tangents ( )( )( )( )( )( )

1212

1212

1212

tantan

tantan

tantan

a ba b

b cb c

a ca c

a ba b

b gb g

a ga g

--=

+ +

--=

+ +

--=

+ +

c a

b

a

b

g

Page 3: Trig Cheat Sheet Formulas and Identities - WordPress.com · 2014-06-23 · ©2005 Paul Dawkins Unit Circle = t For any ordered pair on the unit circle (xy,): cosq=x and sinq=y 2 Example

Common Derivatives and Integrals

Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins

Derivatives Basic Properties/Formulas/Rules

( )( ) ( )dcf x cf x

dx

¢= , c is any constant. ( ) ( )( ) ( ) ( )f x g x f x g x¢ ¢ ¢± = ±

( ) 1n ndx nx

dx

-= , n is any number. ( ) 0dc

dx= , c is any constant.

( )f g f g f g¢ ¢ ¢= + – (Product Rule) 2

f f g f g

g g

¢ ¢ ¢Ê ˆ -=Á ˜

Ë ¯ – (Quotient Rule)

( )( )( ) ( )( ) ( )df g x f g x g x

dx

¢ ¢= (Chain Rule)

( )( ) ( ) ( )g x g xdg x

dx

¢=e e ( )( ) ( )( )

lng xd

g xdx g x

¢=

Common Derivatives Polynomials

( ) 0dc

dx= ( ) 1d

xdx

= ( )dcx c

dx= ( ) 1n nd

x nxdx

-= ( ) 1n ndcx ncx

dx

-=

Trig Functions

( )sin cosdx x

dx= ( )cos sind

x xdx

= - ( ) 2tan secdx x

dx=

( )sec sec tandx x x

dx= ( )csc csc cotd

x x xdx

= - ( ) 2cot cscdx x

dx= -

Inverse Trig Functions

( )1

2

1sin1

dx

dx x

- =-

( )1

2

1cos1

dx

dx x

- = --

( )12

1tan1

dx

dx x

- =+

( )1

2

1sec1

dx

dx x x

- =-

( )1

2

1csc1

dx

dx x x

- = --

( )12

1cot1

dx

dx x

- = -+

Exponential/Logarithm Functions

( ) ( )lnx xda a a

dx= ( )x xd

dx=e e

( )( ) 1ln , 0dx x

dx x= > ( ) 1ln , 0d

x xdx x

= ≠ ( )( ) 1log , 0lna

dx x

dx x a= >

Hyperbolic Trig Functions

( )sinh coshdx x

dx= ( )cosh sinhd

x xdx

= ( ) 2tanh sechdx x

dx=

( )sech sech tanhdx x x

dx= - ( )csch csch cothd

x x xdx

= - ( ) 2coth cschdx x

dx= -

Common Derivatives and Integrals

Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins

Integrals Basic Properties/Formulas/Rules

( ) ( )cf x dx c f x dx=Ú Ú , c is a constant. ( ) ( ) ( ) ( )f x g x dx f x dx g x dx± = ±Ú Ú Ú

( ) ( ) ( ) ( )b b

aaf x dx F x F b F a= = -Ú where ( ) ( )F x f x dx= Ú

( ) ( )b b

a a

cf x dx c f x dx=Ú Ú , c is a constant. ( ) ( ) ( ) ( )b b b

a a a

f x g x dx f x dx g x dx± = ±Ú Ú Ú

( ) 0a

af x dx =Ú ( ) ( )

b a

a bf x dx f x dx= -Ú Ú

( ) ( ) ( )b c b

a a c

f x dx f x dx f x dx= +Ú Ú Ú ( )b

a

c dx c b a= -Ú

If ( ) 0f x ≥ on a x b£ £ then ( ) 0b

af x dx ≥Ú

If ( ) ( )f x g x≥ on a x b£ £ then ( ) ( )b b

a a

f x dx g x dx≥Ú Ú

Common Integrals Polynomials

dx x c= +Ú k dx k x c= +Ú 11 , 11

n nx dx x c n

n

+= + ≠ -+Ú

1 lndx x cx

= +ÛÙı

1 lnx dx x c- = +Ú 11 , 1

1n n

x dx x c nn

- - += + ≠- +Ú

1 1 lndx ax b cax b a

= + ++

ÛÙı

11

1

p p p q

q q q

p

q

qx dx x c x c

p q

++= + = +

+ +Ú

Trig Functions

cos sinu du u c= +Ú sin cosu du u c= - +Ú 2sec tanu du u c= +Ú

sec tan secu u du u c= +Ú csc cot cscu udu u c= - +Ú 2csc cotu du u c= - +Ú

tan ln secu du u c= +Ú cot ln sinu du u c= +Ú

sec ln sec tanu du u u c= + +Ú ( )3 1sec sec tan ln sec tan2

u du u u u u c= + + +Ú

csc ln csc cotu du u u c= - +Ú ( )3 1csc csc cot ln csc cot2

u du u u u u c= - + - +Ú

Exponential/Logarithm Functions

u udu c= +Ú e e

ln

u

u aa du c

a= +Ú ( )ln lnu du u u u c= - +Ú

( ) ( ) ( )( )2 2sin sin cosau

aubu du a bu b bu c

a b= - +

+Úee ( )1u u

u du u c= - +Ú e e

( ) ( ) ( )( )2 2cos cos sinau

aubu du a bu b bu c

a b= + +

+Úee 1 ln ln

lndu u c

u u= +ÛÙ

ı

Page 4: Trig Cheat Sheet Formulas and Identities - WordPress.com · 2014-06-23 · ©2005 Paul Dawkins Unit Circle = t For any ordered pair on the unit circle (xy,): cosq=x and sinq=y 2 Example

Common Derivatives and Integrals

Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins

Inverse Trig Functions 1

2 2

1 sin udu c

aa u

- Ê ˆ= +Á ˜Ë ¯-

ÛÙı

1 1 2sin sin 1u du u u u c- -= + - +Ú

12 2

1 1 tan udu c

a u a a

- Ê ˆ= +Á ˜+ Ë ¯ÛÙı

( )1 1 21tan tan ln 12

u du u u u c- -= - + +Ú

1

2 2

1 1 sec udu c

a au u a

- Ê ˆ= +Á ˜Ë ¯-

ÛÙı

1 1 2cos cos 1u du u u u c- -= - - +Ú

Hyperbolic Trig Functions

sinh coshu du u c= +Ú cosh sinhu du u c= +Ú 2sech tanhu du u c= +Ú

sech tanh sechu du u c= - +Ú csch coth cschu du u c= - +Ú 2csch cothu du u c= - +Ú

( )tanh ln coshu du u c= +Ú 1sech tan sinhu du u c-= +Ú

Miscellaneous

2 21 1 ln

2u a

du ca u a u a

+= +

- -ÛÙı

2 21 1 ln

2u a

du cu a a u a

-= +

- +ÛÙı

22 2 2 2 2 2ln

2 2u a

a u du a u u a u c+ = + + + + +Ú

22 2 2 2 2 2ln

2 2u a

u a du u a u u a c- = - - + - +Ú

22 2 2 2 1sin

2 2u a u

a u du a u ca

- Ê ˆ- = - + +Á ˜Ë ¯Ú

22 2 12 2 cos

2 2u a a a u

au u du au u ca

-- -Ê ˆ- = - + +Á ˜Ë ¯Ú

Standard Integration Techniques Note that all but the first one of these tend to be taught in a Calculus II class. u Substitution

Given ( )( ) ( )b

a

f g x g x dx¢Ú then the substitution ( )u g x= will convert this into the

integral, ( )( ) ( ) ( )( )

( )b g b

a g af g x g x dx f u du¢ =Ú Ú .

Integration by Parts The standard formulas for integration by parts are,

b bb

aa audv uv vdu udv uv vdu= - = -Ú Ú Ú Ú

Choose u and dv and then compute du by differentiating u and compute v by using the fact that v dv= Ú .

Common Derivatives and Integrals

Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins

Trig Substitutions If the integral contains the following root use the given substitution and formula.

2 2 2 2 2sin and cos 1 sinaa b x x

bq q q- fi = = -

2 2 2 2 2sec and tan sec 1ab x a x

bq q q- fi = = -

2 2 2 2 2tan and sec 1 tanaa b x x

bq q q+ fi = = +

Partial Fractions

If integrating ( )( )

P xdx

Q x

ÛÙı

where the degree (largest exponent) of ( )P x is smaller than the

degree of ( )Q x then factor the denominator as completely as possible and find the partial fraction decomposition of the rational expression. Integrate the partial fraction decomposition (P.F.D.). For each factor in the denominator we get term(s) in the decomposition according to the following table.

Factor in ( )Q x Term in P.F.D Factor in ( )Q x Term in P.F.D

ax b+ A

ax b+ ( )k

ax b+ ( ) ( )1 2

2k

k

AA A

ax b ax b ax b

+ + ++ + +

L

2ax bx c+ + 2

Ax B

ax bx c

++ +

( )2 k

ax bx c+ + ( )1 1

2 2

k k

k

A x BA x B

ax bx c ax bx c

+++ +

+ + + +L

Products and (some) Quotients of Trig Functions

sin cosn mx x dxÚ

1. If n is odd. Strip one sine out and convert the remaining sines to cosines using 2 2sin 1 cosx x= - , then use the substitution cosu x=

2. If m is odd. Strip one cosine out and convert the remaining cosines to sines using 2 2cos 1 sinx x= - , then use the substitution sinu x=

3. If n and m are both odd. Use either 1. or 2. 4. If n and m are both even. Use double angle formula for sine and/or half angle

formulas to reduce the integral into a form that can be integrated. tan secn m

x x dxÚ 1. If n is odd. Strip one tangent and one secant out and convert the remaining

tangents to secants using 2 2tan sec 1x x= - , then use the substitution secu x= 2. If m is even. Strip two secants out and convert the remaining secants to tangents

using 2 2sec 1 tanx x= + , then use the substitution tanu x= 3. If n is odd and m is even. Use either 1. or 2. 4. If n is even and m is odd. Each integral will be dealt with differently.

Convert Example : ( ) ( )3 36 2 2cos cos 1 sinx x x= = -

Page 5: Trig Cheat Sheet Formulas and Identities - WordPress.com · 2014-06-23 · ©2005 Paul Dawkins Unit Circle = t For any ordered pair on the unit circle (xy,): cosq=x and sinq=y 2 Example

!

"

#

$!ρ,ϕ,!"

ρϕ

%!

!

"

#

$

ρϕ

ρ"ϕ

"!

ρ"ϕ

&

x = Ω cos ' Ω =

px

2+ y

2

y = Ω ' ' = arctan(y/x)

z = z z = z

= cos 'ux

+ 'uy

u'

= ° 'ux

+ cos 'uy

uz

= uz

r = ΩuΩ

+ zuz

dr = dl

Ω

+ dl

'

u'

+ dl

z

uz

= dΩuΩ

+ Ωd'u'

+ dzuz

dS

Ω

= dl

'

dl

z

= Ωd'dz ; dS

'

= dl

Ω

dl

z

= dΩdz ; dS

z

= dl

Ω

dl

'

= ΩdΩd'

dø = dl

Ω

dl

'

dl

z

= ΩdΩd'dz

!

"

#

$

!"sin θϕ

%!

%θθ

!"cos θ

!

"

#

$

ϕ

θ

!"sin θ #ϕ

!

!"#θ

!"sin θ #ϕ

&

#!

x = r µ cos ' r =

px

2+ y

2+ z

2

y = r µ ' µ = arctan(

px

2+ y

2/z)

z = r cos µ ' = arctan(y/x)

ur

= µ cos 'ux

+ µ 'uy

+ cos µuz

= µ cos 'ux

+ µ 'uy

° µuz

u'

= ° 'ux

+ cos 'uy

r = rur

dr = dl

r

ur

+ dl

µ

+ dl

'

u'

= drur

+ rdµuµ

+ r µd'u'

dS

r

= dl

µ

d

'

= r

2µdµd' ; dS

µ

= dl

r

dl

'

= r µdrd' ; dS

'

= dl

r

dl

µ

= rdrdµ

dø = dl

r

dl

µ

d

'

= r

2µdrdµd'

Page 6: Trig Cheat Sheet Formulas and Identities - WordPress.com · 2014-06-23 · ©2005 Paul Dawkins Unit Circle = t For any ordered pair on the unit circle (xy,): cosq=x and sinq=y 2 Example

f = f(x, y, z) A(x, y, z) = A

x

(x, y, z)ux

+A

y

(x, y, z)uy

+

A

z

(x, y, z)uz

rf =

@f

@x

ux

+

@f

@y

uy

+

@f

@z

uz

r · A =

@A

x

@x

+

@A

y

@y

+

@A

z

@z

r£A =

√@A

z

@y

° @A

y

@z

!

ux

+

√@A

x

@z

° @A

z

@x

!

uy

+

√@A

y

@x

° @A

x

@y

!

uz

r · (rf) ¥ r2f =

@

2f

@x

2+

@

2f

@y

2+

@

2f

@z

2

f = f(Ω, ', z) A(Ω,', z) = A

Ω

(Ω,', z)uΩ

+A

'

(Ω,', z)u'

+

A

z

(Ω,', z)uz

rf =

@f

+

1

Ω

@f

@'

u'

+

@f

@z

uz

r · A =

1

Ω

@(ΩA

Ω

)

+

1

Ω

@A

'

@'

+

@A

z

@z

r£A =

√1

Ω

@A

z

@'

° @A

'

@z

!

+

√@A

Ω

@z

° @A

z

!

u'

+

1

Ω

√@(ΩA

'

)

° @A

Ω

@'

!

uz

r2f =

1

Ω

@

Ω

@f

!

+

1

Ω

2

@

2f

@'

2+

@

2f

@z

2

f = f(r, µ, ') A(r, µ, ') = A

r

(r, µ, ')ur

+ A

µ

(r, µ, ')uµ

+

A

'

(r, µ,')u'

rf =

@f

@r

ur

+

1

r

@f

+

1

r µ

@f

@'

u'

r · A =

1

r

2

@(r

2A

r

)

@r

+

1

r µ

@( µA

µ

)

+

1

r µ

@A

'

@'

r£A =

1

r µ

√@( µA

'

)

° @A

µ

@'

!

ur

+

1

r

√1

µ

@A

r

@'

° @(rA

'

)

@r

!

+

1

r

√@(rA

µ

)

@r

° @A

r

!

u'

r2f =

1

r

2

@

@r

r

2@f

@r

!

+

1

r

@

µ

@f

!

+

1

r

2 2µ

@

2f

@'

2

A B C

A · (B£C) = B · (C£A) = (A£B) · CA£ (B£C) = B(A · C)°C(A · B)

f = f(r) g = g(r) A = A(r) B = B(r)

r(f + g) = rf +rg

r(fg) = f(rg) + g(rf)

r · (A + B) = r · A +r · Br · (fA) = f(r · A) + A · (rf)

r · (A£B) = B · (r£A)°A£ (r£B)

r£ (A + B) = r£A +r£B

r£ (fA) = f(r£A)°A£ (rf)

r · (r£A) = 0

r£ (rf) = 0

r£ (r£A) = r(r · A)°r2A

Page 7: Trig Cheat Sheet Formulas and Identities - WordPress.com · 2014-06-23 · ©2005 Paul Dawkins Unit Circle = t For any ordered pair on the unit circle (xy,): cosq=x and sinq=y 2 Example

Di↵erential Equations Study Guide1

First Order Equations

General Form of ODE:dy

dx

= f(x, y)(1)

Initial Value Problem: y0 = f(x, y), y(x

0

) = y

0

(2)

Linear Equations

General Form: y0 + p(x)y = f(x)(3)

Integrating Factor: µ(x) = e

Rp(x)dx

(4)

=) d

dx

(µ(x)y) = µ(x)f(x)(5)

General Solution: y =

1

µ(x)

✓Zµ(x)f(x)dx+ C

◆(6)

Homeogeneous Equations

General Form: y0 = f(y/x)(7)

Substitution: y = zx(8)

=) y

0= z + xz

0(9)

The result is always separable in z:

(10)

dz

f(z)� z

=

dx

x

Bernoulli Equations

General Form: y0 + p(x)y = q(x)y

n(11)

Substitution: z = y

1�n(12)

The result is always linear in z:

(13) z

0+ (1� n)p(x)z = (1� n)q(x)

Exact Equations

General Form: M(x, y)dx+N(x, y)dy = 0(14)

Text for Exactness:@M

@y

=

@N

@x

(15)

Solution: � = C where(16)

M =

@�

@x

and N =

@�

@y

(17)

Method for Solving Exact Equations:

1. Let � =

RM(x, y)dx+ h(y)

2. Set

@�

@y

= N(x, y)

3. Simplify and solve for h(y).

4. Substitute the result for h(y) in the expression for � from step

1 and then set � = 0. This is the solution.

Alternatively:

1. Let � =

RN(x, y)dy + g(x)

2. Set

@�

@x

= M(x, y)

3. Simplify and solve for g(x).

4. Substitute the result for g(x) in the expression for � from step

1 and then set � = 0. This is the solution.

Integrating Factors

Case 1: If P (x, y) depends only on x, where

(18) P (x, y) =

My �Nx

N

=) µ(y) = e

RP (x)dx

then

(19) µ(x)M(x, y)dx+ µ(x)N(x, y)dy = 0

is exact.

Case 2: If Q(x, y) depends only on y, where

(20) Q(x, y) =

Nx �My

M

=) µ(y) = e

RQ(y)dy

Then

(21) µ(y)M(x, y)dx+ µ(y)N(x, y)dy = 0

is exact.

12013 http://integral-table.com. This work is licensed under the Creative Commons Attribution – Noncommercial – No Derivative Works 3.0 United States

License. To view a copy of this license, visit: http://creativecommons.org/licenses/by-nc-nd/3.0/us/. This document is provided in the hope that it will be useful

but without any warranty, without even the implied warranty of merchantability or fitness for a particular purpose, is provided on an “as is” basis, and the author

has no obligations to provide corrections or modifications. The author makes no claims as to the accuracy of this document, and it may contain errors. In no event

shall the author be liable to any party for direct, indirect, special, incidental, or consequential damages, including lost profits, unsatisfactory class performance, poor

grades, confusion, misunderstanding, emotional disturbance or other general malaise arising out of the use of this document, even if the author has been advised of

the possibility of such damage. This document is provided free of charge and you should not have a paid to obtain an unlocked PDF file. Revised: July 22, 2013.

Second Order Linear Equations

General Form of the Equation

General Form: a(t)y

00+ b(t)y

0+ c(t)y = g(t)(22)

Homogeneous: a(t)y

00+ b(t)y

0+ c(t) = 0(23)

Standard Form: y

00+ p(t)y

0+ q(t)y = f(t)(24)

The general solution of (22) or (24) is

(25) y = C

1

y

1

(t) + C

2

y

2

(t) + yp(t)

where y

1

(t) and y

2

(t) are linearly independent solutions of (23).

Linear Independence and The Wronskian

Two functions f(x) and g(x) are linearly dependent if there

exist numbers a and b, not both zero, such that af(x)+ bg(x) = 0

for all x. If no such numbers exist then they are linearly inde-pendent.

If y

1

and y

2

are two solutions of (23) then

Wronskian: W (t) = y

1

(t)y

02

(t)� y

01

(t)y

2

(t)(26)

Abel’s Formula: W (t) = Ce

�Rp(t)dt

(27)

and the following are all equivalent:

1. {y1

, y

2

} are linearly independent.

2. {y1

, y

2

} are a fundamental set of solutions.

3. W (y

1

, y

2

)(t

0

) 6= 0 at some point t

0

.

4. W (y

1

, y

2

)(t) 6= 0 for all t.

Initial Value Problem

(28)

8<

:

y

00+ p(t)y

0+ q(t)y = 0

y(t

0

) = y

0

y

0(t

0

) = y

1

Linear Equation: Constant Coe�cients

Homogeneous: ay

00+ by

0+ cy = 0(29)

Non-homogeneous: ay

00+ by

0+ cy = g(t)(30)

Characteristic Equation: ar

2

+ br + c = 0(31)

Quadratic Roots: r =

�b±pb

2 � 4ac

2a

(32)

The solution of (29) is given by:

Real Roots(r1

6= r

2

) : yH = C

1

e

r1t+ C

2

e

r2t(33)

Repeated(r1

= r

2

) : yH = (C

1

+ C

2

t)e

r1t(34)

Complex(r = ↵± i�) : yH = e

↵t(C

1

cos�t+ C

2

sin�t)(35)

The solution of (30) is y = yP + hH where yh is given by (33)

through (35) and yP is found by undetermined coe�cients or

reduction of order.

Heuristics for Undetermined Coe�cients(Trial and Error)

If f(t) = then guess that yP =

Pn(t) ts(A0 +A1t+ · · ·+Antn)

Pn(t)eat ts(A0 +A1t+ · · ·+Ant

n)eat

Pn(t)eatsin bt tseat[(A0 +A1t+ · · ·+Ant

n) cos bt

or Pn(t)eatcos bt +(A0 +A1t+ · · ·+Ant

n) sin bt]

Method of Reduction of Order

When solving (23), given y

1

, then y

2

can be found by solving

(36) y

1

y

02

� y

01

y

2

= Ce

�Rp(t)dt

The solution is given by

(37) y

2

= y

1

Ze

�Rp(x)dx

dx

y

1

(x)

2

Method of Variation of Parameters

If y

1

(t) and y

2

(t) are a fundamental set of solutions to (23) then

a particular solution to (24) is

(38) yP (t) = �y

1

(t)

Zy

2

(t)f(t)

W (t)

dt+ y

2

(t)

Zy

1

(t)f(t)

W (t)

dt

Cauchy-Euler Equation

ODE: ax2

y

00+ bxy

0+ cy = 0(39)

Auxilliary Equation: ar(r � 1) + br + c = 0(40)

The solutions of (39) depend on the roots of (40):

Real Roots: y = C

1

x

r1+ C

2

x

r2(41)

Repeated Root: y = C

1

x

r+ C

2

x

rlnx(42)

Complex: y = x

↵[C

1

cos(� lnx) + C

2

sin(� lnx)](43)

Series Solutions

(44) (x� x

0

)

2

y

00+ (x� x

0

)p(x)y

0+ q(x)y = 0

If x

0

is a regular point of (44) then

(45) y

1

(t) = (x� x

0

)

n1X

k=0

ak(x� xk)k

At a Regular Singular Point x

0

:

Indicial Equation: r2 + (p(0)� 1)r + q(0) = 0(46)

First Solution: y

1

= (x� x

0

)

r1

1X

k=0

ak(x� xk)k

(47)

Where r

1

is the larger real root if both roots of (46) are real or

either root if the solutions are complex.


Recommended