+ All Categories
Home > Documents > Truss 40 m Span

Truss 40 m Span

Date post: 21-Apr-2015
Category:
Upload: m7j7a7
View: 609 times
Download: 69 times
Share this document with a friend
51
STRUCTURAL CALCULATIONS PROJECT NAME: OWNER: DESIGN CONSULTANT: PROJECT CONSULTANT: MAIN CONTRACTOR: STRUCTURAL ENGINEERS AL - WADI STEEL ST. 17, GATE 98 INDUSTRIAL AREA DOHA, QATAR Tel: (+974) 4600982 Fax: (+974) 4505194 PROJECT NO:
Transcript
Page 1: Truss 40 m Span

SSTTRRUUCCTTUURRAALL CCAALLCCUULLAATTIIOONNSS

PPRROOJJEECCTT NNAAMMEE::

OOWWNNEERR::

DDEESSIIGGNN CCOONNSSUULLTTAANNTT::

PPRROOJJEECCTT CCOONNSSUULLTTAANNTT::

MMAAIINN CCOONNTTRRAACCTTOORR::

SSTTRRUUCCTTUURRAALL EENNGGIINNEEEERRSS

AALL -- WWAADDII SSTTEEEELL ST. 17, GATE 98

INDUSTRIAL AREA

DOHA, QATAR

Tel: (+974) 4600982 Fax: (+974) 4505194

PPRROOJJEECCTT NNOO::

Page 2: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 2

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

A. GOVERNING CODES, STANDARDS & SPECIFICATIONS The design of structural members for this project is in compliance with the laws and regulations in the State of Qatar, City ordinances, and industry standards. The current issue or edition of the documents at the time of filing this report will apply, unless otherwise noted. In cases where conflicts between the cited documents exist, requirements of the more conservative document will be used. The following codes and standards have been identified as applicable, in whole or in part, to structural engineering design and construction of buildings:

• British Standards (BS) � BS 5950-1-2000 � BS 6399 Part 1, 2 & 3 � BS 7419 � BS 3692 � BS 4190

• American Standards (AISI) � AISI 2007-ASD

• NCCI: Practical deflection limits for single storey buildings.

• MBMA: Metal Building System Manual

B. MATERIALS

• Structural steel Hot rolled sections will generally conform to S275. • Structural steel Cold Formed sections will generally conform to S355. • High strength structural bolts, including nuts and washers, shall conform to BS 3692 Grade 8.8. • Bolts other than high strength bolts shall conform to BS 4190 Grade 4.6. • Anchor bolts shall conform to BS 3692 Grade 8.8. • Welding electrodes with minimum yield strength of 460 MPa (E7018) shall be use.

C. SOFT WARES:- • MASTER SERIES 2011. • PROFIS. • LIMCON. • CFS V06.

D. DESIGN CRITERIA:

• Live Load on Roof Slab = 60 Kg/m2. • Purlin weight = 10Kg/m – Spacing 1.50 m. • Ceiling Support weight not more than = 10 Kg/m. • Own weight of steel members calculate automatic. • Super Dead Load (Collateral Loads) = 50 Kg/m2. • Wind Speed 45 m/Sec (3Second) = 27 m/Sec (Mean Hourly) • Roof Slop 5 degree. • Bottom Chord of Truss Member is connecting together with Ceiling Support Spacing not more

2.05 m.

Page 3: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 3

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

E. Wind Analysis

WIND LOADING TO BS 6399 - PART 2

Results for User Defined Site - Altitude 20 m

Wind Reference 1

Using the Standard Method

Site Basic Data Location and Base wind speed BREVe3 site data for SD320379 - Base wind speed, Vb 27 m/s Altitude and Obstructions Site altitude 20 m - Shelter effect from obstructions is not included Seasonal factor, Ss Season length is All year - Seasonal factor, Ss 1.000 Annual risk and probability factor Design annual risk 0.02 - Probability factor, Sp 1.000 Topographic Increments Site altitude only - Topography not significant - assumed to be flat Heights (m) Heights above ground 6.5; 7; 8.5 and 10, Diagonals 5 and 50

Direction Factors - Using unity direction Factors Direction (°N) 0 30 60 90 120 150 180 210 240 270 300 33 Direction factor, Sd 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Standard Method Site description Site is in country, nearest distance to sea = 1.00km.

Height Above Ground = 6.5 m - Ve 46.9 m/s - q 1345.8 N/m² He 6.500 a 5.0 50.0 Sa 1.020, Sb 1.701 Ca 1.000 0.857

Height Above Ground = 7.0 m - Ve 47.2 m/s - q 1367.3 N/m² He 7.000 a 5.0 50.0

Page 4: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 4

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Sa 1.020, Sb 1.715 Ca 1.000 0.857

Height Above Ground = 8.5 m - Ve 48.2 m/s - q 1424.3 N/m² He 8.500 a 5.0 50.0 Sa 1.020, Sb 1.750 Ca 1.000 0.857

Height Above Ground = 10.0 m - Ve 49.0 m/s - q 1472.2 N/m² He 10.000 a 5.0 50.0 Sa 1.020, Sb 1.779 Ca 1.000 0.857

MASTERFRAME WIND PRESSURE VALUES Dynamic Pressure Values, q (N/m²) for a = 5 Wind Direction to X Axis 0 90 q (N/m²) for H = 6.5 1345.8 1345.8 q (N/m²) for H = 7 1367.3 1367.3 q (N/m²) for H = 8.5 1424.3 1424.3 q (N/m²) for H = 10 1472.2 1472.2

Dynamic Pressure Values, q (N/m²) for a = 50 Wind Direction to X Axis 0 90 q (N/m²) for H = 6.5 1152.8 1152.8 q (N/m²) for H = 7 1171.2 1171.2 q (N/m²) for H = 8.5 1220.0 1220.0 q (N/m²) for H = 10 1261.1 1261.1

F. Frame Geometry

Frame Geometry - (Full Frame) - X+032 Y+037 Z+000

Page 5: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 5

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Frame Geometry - (Grid Line: C - C) - Front View

Section Size - (Grid Line: C - C) - Front View

Page 6: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 6

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Section Size - (Grid Line: E - E) - Front View

G. Wind Load Diagram

Page 7: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 7

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

W1 -Wind Load - (Full Frame) - 0 Direction

W2 -Wind Load - (Full Frame) - 90 Direction

Page 8: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 8

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

W1 -Wind Load On Wall - (Full Frame) - 0 Direction

Page 9: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 9

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

W1 -Wind Load On Wall - (Full Frame) - 0 Direction

Page 10: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 10

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

W1 -Wind Load on Roof - (Full Frame) - 0 Direction

Page 11: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 11

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

W2 -Wind Load on Wall - (Full Frame) - 90 Direction

Page 12: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 12

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

W2 -Wind Load on Wall - (Full Frame) - 90 Direction

W2 -Wind Load on Roof - (Full Frame) - 90 Direction

Page 13: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 13

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

H. Dead and Live Load Diagram

Page 14: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 14

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Dead Load on Ceiling Support - (Full Frame) - 3D Front View

I. Loading Cases and Load Combination

Load Group Labels Load Group UT Unity Load Factor (All Cases) Load Group D1 Dead Load Load Group L1 Live Load Load Group W1 Wind Direction 0 Degrees from X Axis (Fetches 225 to 315 Degrees) Load Group W2 Wind Direction 90 Degrees from X Axis (Fetches 135 to 225 Degrees) Load Group P1 Wind Direction 0 Degrees from X Axis with Internal Pressure Cpi = 0.2 Load Group P2 Wind Direction 90 Degrees from X Axis with Internal Pressure Cpi = 0.2 Load Group S1 Wind Direction 0 Degrees from X Axis with Internal Suction Csi = 0.2 Load Group S2 Wind Direction 90 Degrees from X Axis with Internal Suction Csi = 0.2

Load Case 001 : Dead plus Live (Ultimate) Load Combination + 1.00 UT + 1.40 D1 + 1.60 L1

Load Case 002 : Live Only (Serviceability) Load Combination + 1.00 UT + 1.00 L1

Load Case 003 : Dead plus Wind (1.0 D1 + 1.4 W1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.40 W1

Load Case 004 : Dead plus Wind (1.4 D1 + 1.4 W1) (a=5) Load Combination + 1.00 UT + 1.40 D1 + 1.40 W1

Load Case 005 : Dead plus Live plus Wind (1.20D1+1.2 L1+1.2 W1) (a=5) Load Combination + 1.00 UT + 1.20 D1 + 1.20 L1 + 1.20 W1

Load Case 006 : Dead plus Wind (1.0 D1 + 1.0 W1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.00 W1

Load Case 007 : Dead plus Live plus Wind (1.00D1+0.8 L1+0.8 W1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 0.80 L1 + 0.80 W1

Page 15: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 15

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Load Case 008 : Dead plus Wind (1.0 D1 + 1.4 P1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.40 P1

Load Case 009 : Dead plus Wind (1.4 D1 + 1.4 P1) (a=5) Load Combination + 1.00 UT + 1.40 D1 + 1.40 P1

Load Case 010 : Dead plus Live plus Wind (1.20D1+1.2 L1+1.2 P1) (a=5) Load Combination + 1.00 UT + 1.20 D1 + 1.20 L1 + 1.20 P1

Load Case 011 : Dead plus Wind (1.0 D1 + 1.0 P1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.00 P1

Load Case 012 : Dead plus Live plus Wind (1.00D1+0.8 L1+0.8 P1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 0.80 L1 + 0.80 P1

Load Case 013 : Dead plus Wind (1.0 D1 + 1.4 S1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.40 S1

Load Case 014 : Dead plus Wind (1.4 D1 + 1.4 S1) (a=5) Load Combination + 1.00 UT + 1.40 D1 + 1.40 S1

Load Case 015 : Dead plus Live plus Wind (1.20D1+1.2 L1+1.2 S1) (a=5) Load Combination + 1.00 UT + 1.20 D1 + 1.20 L1 + 1.20 S1

Load Case 016 : Dead plus Wind (1.0 D1 + 1.0 S1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.00 S1

Load Case 017 : Dead plus Live plus Wind (1.00D1+0.8 L1+0.8 S1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 0.80 L1 + 0.80 S1

Load Case 018 : Dead plus Wind (1.0 D1 + 1.4 W2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.40 W2

Load Case 019 : Dead plus Wind (1.4 D1 + 1.4 W2) (a=5) Load Combination + 1.00 UT + 1.40 D1 + 1.40 W2

Load Case 020 : Dead plus Live plus Wind (1.20D1+1.2 L1+1.2 W2) (a=5) Load Combination + 1.00 UT + 1.20 D1 + 1.20 L1 + 1.20 W2

Load Case 021 : Dead plus Wind (1.0 D1 + 1.0 W2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.00 W2

Load Case 022 : Dead plus Live plus Wind (1.00D1+0.8 L1+0.8 W2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 0.80 L1 + 0.80 W2

Load Case 023 : Dead plus Wind (1.0 D1 + 1.4 P2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.40 P2

Load Case 024 : Dead plus Wind (1.4 D1 + 1.4 P2) (a=5) Load Combination + 1.00 UT + 1.40 D1 + 1.40 P2

Load Case 025 : Dead plus Live plus Wind (1.20D1+1.2 L1+1.2 P2) (a=5) Load Combination + 1.00 UT + 1.20 D1 + 1.20 L1 + 1.20 P2

Load Case 026 : Dead plus Wind (1.0 D1 + 1.0 P2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.00 P2

Load Case 027 : Dead plus Live plus Wind (1.00D1+0.8 L1+0.8 P2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 0.80 L1 + 0.80 P2

Load Case 028 : Dead plus Wind (1.0 D1 + 1.4 S2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.40 S2

Load Case 029 : Dead plus Wind (1.4 D1 + 1.4 S2) (a=5) Load Combination + 1.00 UT + 1.40 D1 + 1.40 S2

Load Case 030 : Dead plus Live plus Wind (1.20D1+1.2 L1+1.2 S2) (a=5) Load Combination + 1.00 UT + 1.20 D1 + 1.20 L1 + 1.20 S2

Load Case 031 : Dead plus Wind (1.0 D1 + 1.0 S2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.00 S2

Load Case 032 : Dead plus Live plus Wind (1.00D1+0.8 L1+0.8 S2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 0.80 L1 + 0.80 S2

Load Case 033 : Dead plus Wind (1.0 D1 + 1.4 W1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.40 W1

Load Case 034 : Dead plus Wind (1.4 D1 + 1.4 W1) (a=5) Load Combination + 1.00 UT + 1.40 D1 + 1.40 W1

Page 16: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 16

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Load Case 035 : Dead plus Live plus Wind (1.20D1+1.2 L1+1.2 W1) (a=5) Load Combination + 1.00 UT + 1.20 D1 + 1.20 L1 + 1.20 W1

Load Case 036 : Dead plus Wind (1.0 D1 + 1.0 W1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.00 W1

Load Case 037 : Dead plus Live plus Wind (1.00D1+0.8 L1+0.8 W1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 0.80 L1 + 0.80 W1

Load Case 038 : Dead plus Wind (1.0 D1 + 1.4 P1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.40 P1

Load Case 039 : Dead plus Wind (1.4 D1 + 1.4 P1) (a=5) Load Combination + 1.00 UT + 1.40 D1 + 1.40 P1

Load Case 040 : Dead plus Live plus Wind (1.20D1+1.2 L1+1.2 P1) (a=5) Load Combination + 1.00 UT + 1.20 D1 + 1.20 L1 + 1.20 P1

Load Case 041 : Dead plus Wind (1.0 D1 + 1.0 P1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.00 P1

Load Case 042 : Dead plus Live plus Wind (1.00D1+0.8 L1+0.8 P1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 0.80 L1 + 0.80 P1

Load Case 043 : Dead plus Wind (1.0 D1 + 1.4 S1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.40 S1

Load Case 044 : Dead plus Wind (1.4 D1 + 1.4 S1) (a=5) Load Combination + 1.00 UT + 1.40 D1 + 1.40 S1

Load Case 045 : Dead plus Live plus Wind (1.20D1+1.2 L1+1.2 S1) (a=5) Load Combination + 1.00 UT + 1.20 D1 + 1.20 L1 + 1.20 S1

Load Case 046 : Dead plus Wind (1.0 D1 + 1.0 S1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.00 S1

Load Case 047 : Dead plus Live plus Wind (1.00D1+0.8 L1+0.8 S1) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 0.80 L1 + 0.80 S1

Load Case 048 : Dead plus Wind (1.0 D1 + 1.4 W2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.40 W2

Load Case 049 : Dead plus Wind (1.4 D1 + 1.4 W2) (a=5) Load Combination + 1.00 UT + 1.40 D1 + 1.40 W2

Load Case 050 : Dead plus Live plus Wind (1.20D1+1.2 L1+1.2 W2) (a=5) Load Combination + 1.00 UT + 1.20 D1 + 1.20 L1 + 1.20 W2

Load Case 051 : Dead plus Wind (1.0 D1 + 1.0 W2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.00 W2

Load Case 052 : Dead plus Live plus Wind (1.00D1+0.8 L1+0.8 W2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 0.80 L1 + 0.80 W2

Load Case 053 : Dead plus Wind (1.0 D1 + 1.4 P2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.40 P2

Load Case 054 : Dead plus Wind (1.4 D1 + 1.4 P2) (a=5) Load Combination + 1.00 UT + 1.40 D1 + 1.40 P2

Load Case 055 : Dead plus Live plus Wind (1.20D1+1.2 L1+1.2 P2) (a=5) Load Combination + 1.00 UT + 1.20 D1 + 1.20 L1 + 1.20 P2

Load Case 056 : Dead plus Wind (1.0 D1 + 1.0 P2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.00 P2

Load Case 057 : Dead plus Live plus Wind (1.00D1+0.8 L1+0.8 P2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 0.80 L1 + 0.80 P2

Load Case 058 : Dead plus Wind (1.0 D1 + 1.4 S2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.40 S2

Load Case 059 : Dead plus Wind (1.4 D1 + 1.4 S2) (a=5) Load Combination + 1.00 UT + 1.40 D1 + 1.40 S2

Load Case 060 : Dead plus Live plus Wind (1.20D1+1.2 L1+1.2 S2) (a=5) Load Combination + 1.00 UT + 1.20 D1 + 1.20 L1 + 1.20 S2

Load Case 061 : Dead plus Wind (1.0 D1 + 1.0 S2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 1.00 S2

Page 17: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 17

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Load Case 062 : Dead plus Live plus Wind (1.00D1+0.8 L1+0.8 S2) (a=5) Load Combination + 1.00 UT + 1.00 D1 + 0.80 L1 + 0.80 S2

Load Case 063 : Dead Plus Live (Serviceability) Load Combination + 1.00 UT + 1.00 D1 + 1.00 L1

J. Design of Members

Members Numbers - (Grid Line: C - C) - Front View

Members Numbers - (Grid Line: C - C) - Front View

Page 18: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 18

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Maximum Stress Ratio - (Grid Line: C - C) - Front View

Load Case 063 : Dead Plus Live (Serviceability)

Deflected Shape - (Grid Line : C - C) - Front View

Page 19: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 19

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Bottom Chord

AXIAL WITH MOMENTS (MEMBER)

Initial Design for 37 Loading Cases

Members 29, 34, 65, 68, 76, 90, 136, 142, 152 and 175 (C1-C4) @ Level 2

Between 18.450 and 20.500 m, in Load Case 1

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

Member Forces in Load Case 1 and Maximum Deflection from Load Case 32

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

78 62.41T 0.00 38.96 -1.46 -62.65 0.10 24.03 -2.89 26.81

256 1212.21T 0.00 -17.35 0.63 -16.28 0.74 @ 12.300 @ 2.050 @ 11.398

Classification and Properties (BS 5950: 2000) Section (73.08 kg/m) 254x254 UC 73 [Grade 43] Class = Fn(b/T,d/t,py,F,Mx,My) 8.96, 23.29, 275, 0, 62.65, 2.89 (Axial: Non-Slender) Plastic Auto Design Load Cases 1 & (Wind 3-5, 8-10, 13-15, 18-20, 23-25, 28-30, 33-35, 38-40, 43-45, 48-50, 53-55 and 58-60)

Local Capacity Check Fvx/Pvx 17.35 / 360.568 = 0.048 Low Shear Mcx = py.Sxx≤1.2 py.Zxx 275 x 992.1≤1.2 x 275 x 898.4 = 272.828 kN.m

Fvy/Pvy 0.633 / 1073.75 = 0.001 Low Shear Mcy = py.Syy≤1.2 py.Zyy 275 x 465.4≤1.2 x 275 x 307.52 = 101.482 kN.m

Ae = Fn(Ag,A.net,py,Us) 93.1,93.1,275,410 93.1 cm² Pz = Ae.py 93.1x275 2560.25 kN n = F/Pz -1244.453 / 2560.25 = 0.486 OK Srx = Fn(Sxx, n) 992.1, 0.486 585.42 cm³ Mrx = Srx.py 585.42 x 275 160.99 kN.m Sry = Fn(Syy, n) 465.4, 0.486 407.57 cm³ Mry = Sry.py 407.57 x 275 101.482 kN.m (Mx/Mrx)Z1+(My/Mry)Z2 (1.5/160.99)²+(0.091/101.482)1= 0.486 OK

Equivalent Uniform Moment Factors mLT, mx, my and myx mLT=0.2+(.15M2+.5M3+.15M4)/Mmax 0.2+(.15x10+.5x2+.15x7)/19 ≥ 0.44 0.44 Table 18

my=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x0+.6x0+.1x0)/1 ≥ .8x0/1 0.451 Table 26

mx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x18+.6x20+.1x23)/63 ≥ .8x24/63 0.459 Table 26

myx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x1+.6x-1+.1x0)/3 ≥ .8x1/3 0.349 Table 26

Lateral Buckling Check Mb Le = 1.00 L 1 x 2.05 = 2.05 m λ = Le/ryy 2.05 / 6.48 31.64 OK v = Fn (x,Le,ryy,λ) 17.317, 2.05, 6.48, 31.64 0.962 Table 19 λLT= u.v.λ.?βW 0.849 x 0.962 x 31.64 ? 1 25.84 pb = Fn (py,λLT) 275, 25.84 275 N/mm² Table 16 Mb = Sxx.pb ≤ Mc 992.1 x 275 ≤ 272.828 = 272.828 kN.m

Simplified Approach py.Zx 275x898.4 247.06 kN.m py.Zy 275x307.52 84.568 kN.m F/Pc+mx.Mx/py.Zx+my.My/py.Zy 0+0.459x62.7/247.1+0.451x-0.6/84.6 0.119 OK

Page 20: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 20

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

F/Pcy+mLT.MLT/Mb+my.My/py.Zy 0+0.44x19.3/272.8+0.451x-0.6/84.6 0.034 OK

More Exact Approach Max=Mcx/(1+.5F/Pcx) 272.8/(1+.5x0/2547.5) 272.828 kN.m May=Mcy/(1+F/Pcy) 101.5/(1+0/2346.7) 101.482 kN.m F/Pcx+mx.Mx/Max+.5myx.My/Mcy 0/2547.5+0.459x62.7/272.8+.5x0.349x2.9/101.5 0.110 OK F/Pcy+mLT.MLT/Mb+my.My/May 0/2346.7+0.44x19.3/272.8+0.451x-0.6/101.5 0.034 OK Max=Mcx(1-F/Pcx)/(1+.5F/Pcx) 272.8(1-0/2547.5)/(1+.5x0/2547.5) 272.828 kN.m May=Mcy(1-F/Pcy)/(1+F/Pcy) 101.5(1-0/2346.7)/(1+0/2346.7) 101.482 kN.m m.Mx/Max+m.My/May 0.44x19.282/272.828+0.451x0.556/101.482 0.034 OK

Deflection Check - Load Case 32 Deflection Limits (Trusses) δ ≤ 20500/240 = 85.4 mm Live (Case 2) 12.56 mm OK

δ ≤ 20500/200 = 102.5 mm D+W (Case 31) 17.65 mm OK

δ ≤ 20500/200 = 102.5 mm D+L+W (Case 32) 26.81 mm OK

Top Chord

AXIAL WITH MOMENTS (MEMBER)

Initial Design for 38 Loading Cases

Members 32, 38, 66, 72, 82, 102, 138, 146, 166 and 188 (C1-C4) @ Level 3 in Load Case 1

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

Member Forces in Load Case 1 and Maximum Deflection from Load Case 32

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

82 392.79C 0.01 26.66 2.07 -42.02 -0.04 14.83 -5.16 27.80

269 1198.52C -0.01 -16.29 0.43 -18.65 0.11 @ 18.499 @ 6.166 @ 11.346

Classification and Properties (BS 5950: 2000) Section (52.03 kg/m) 203x203 UC 52 [Grade 43] Class = Fn(b/T,d/t,py,F,Mx,My) 8.17, 20.35, 275, 1258.4, 42.02, 5.16 (Axial: Non-Slender) Plastic Auto Design Load Cases 1 & (Wind 3-5, 8-10, 13-15, 18-20, 23-25, 28-30, 33-35, 38-40, 43-45, 48-50, 53-55 and 58-60)

Local Capacity Check Fvx/Pvx 26.656 / 268.782 = 0.099 Low Shear Mcx = py.Sxx≤1.2 py.Zxx 275 x 567.4≤1.2 x 275 x 510.35 = 156.035 kN.m

Fvy/Pvy 2.066 / 758.464 = 0.003 Low Shear Mcy = py.Syy≤1.2 py.Zyy 275 x 264.2≤1.2 x 275 x 174.3 = 57.519 kN.m Pz = Ag.py 66.28 x 275 = 1822.7 kN n = F/Pz 1258.398 / 1822.7 = 0.690 OK Srx = Fn(Sxx, n) 567.4, 0.69 206.41 cm³ Mrx = Srx.py 206.41 x 275 56.763 kN.m Sry = Fn(Syy, n) 264.2, 0.69 167.51 cm³ Mry = Sry.py 167.51 x 275 46.064 kN.m (Mx/Mrx)Z1+(My/Mry)Z2 (42.017/56.763)²+(0.035/46.064)1= 0.549 OK

Compression Resistance Pc λx = Lex/rxx 100x1x2/8.91 = 22.4 OK Pcx = Area.pcx 66.28x269.646/10 = 1787.216 kN Table 24 b

Lateral Buckling Check Mb Mb = Mc Fully Restrained 156.035 kN.m

Page 21: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 21

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Combined Axial Compression and Bending to Annex I rb=mLT.MLT/Mb 0.44x-42/156 0.118 rc=Fc/Pcy 1258.4/1822.7 0.690 λr=(rbλLT+rcλy)/(rb+rc) (0.118•0+0.69•0)/(0.118+0.69) 0.000 λro=17.15 ε (2rb+rc)/(rb+rc) 17.15•1(2•0.118+0.69)/(0.118+0.69) 19.662 Mob= Mb(1-Fc/Pcy) 156.035(1-1258.4/1822.7) 48.308 Mxy= Mcx(1-Fc/ Pcy)

½ 156.035(1-1258.4/1822.7)½ 86.820 Mox= Mcx(1-Fc/Pcx)/(1+0.5Fc/Pcx) 156.035(1-1258.4/1787.2)/(1+0.5•1258.4/1787.2) 34.147 Moy= Mcy(1-Fc/Pcy)/(1+ky(Fc/Pcy)) 57.519(1-1258.4/1822.7)/(1+1.0(1258.4/1822.7)) 10.535 Mab=fn( λr, λro, ε, Mxy, Mob) 0.000, 19.662, 1.000, 86.820, 48.308 56.763 Max=fn( λx, ε, Mrx, Mox) 22.447, 1.000, 56.763, 34.147 55.018 May=fn( λy, ε, Mry, Moy) 0.000, 1.000, 46.064, 10.535 46.064 mx.Mx/Max+.5myx.My/Mcy(1-Fc/Pcx) 0.418x42/55+.5x0.8x5.2/(57.5(1-1258.4/1787.2)) 0.441 OK mLT.MLT/Mab+my.My/May 0.44x-42/56.8+0.8x0/46.1 0.326 OK mx.Mx/Max+my.My/May 0.418x42/55+0.8x0/46.1 0.320 OK Compare with Simplied to 4.8.3.3 0.83, 0.809, 0.823 0.83 Compare with MoreExact to 4.8.3.3 0.893, 0.81, 0.544 0.893

Deflection Check - Load Case 32 Deflection Limits (Trusses) δ ≤ 20555/240 = 85.6 mm Live (Case 2) 13.09 mm OK δ ≤ 20555/200 = 102.8 mm D+W (Case 31) 18.11 mm OK

δ ≤ 20555/200 = 102.8 mm D+L+W (Case 32) 27.8 mm OK

DIAGONAL MEMBERS

AXIAL WITH MOMENTS (MEMBER)

Initial Design for 37 Loading Cases

Member 834 (C1-N.84) @ Level 3 in Load Case 1

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

Member Forces in Load Case 1

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

834 82 398.83T 0.00 0.00 0.00 0.00 0.00 0.00 0.00

84 398.83T 0.00 0.00 0.00 0.00 0.00 @ 0.000 @ 11.346

Classification and Properties (BS 5950: 2000) Section (13.7 kg/m) 2No 75x75x6 ANG 13.7 (0mm) [Grade 43] Class = Fn(b,d,t,py) 75, 75, 6, 275 (Axial: Non-Slender) Plastic Auto Design Load Cases 1 & (Wind 3-5, 8-10, 13-15, 18-20, 23-25, 28-30, 33-35, 38-40, 43-45, 48-50, 53-55 and 58-60)

Local Capacity Check Ae = Fn(Ag,A.net,py,Us) 17.46,17.46,275,410 17.46 cm² Pz = Ae.py 17.46x275 480.15 kN OK F/Ae.py -398.826 / 480.15 = 0.831 OK

Page 22: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 22

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Vertical Members

AXIAL WITH MOMENTS (MEMBER)

Initial Design for 38 Loading Cases

Members 1004 and 1054 (C1) @ Level 2 in Load Case 1

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

Member Forces in Load Case 1 and Maximum Deflection from Load Case 32

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

13 347.08C 0.06 -5.53 -1.10 0.00 0.00 59.89 -0.55 0.29

82 301.62C 0.03 -67.94 0.36 -42.02 -0.01 @ 0.500 @ 0.500 @ 0.785

Additional Nominal Moments MxUp, MyUp -53.473 kN.m, -0.069 kN.m

Classification and Properties (BS 5950: 2000) Section (73.08 kg/m) 254x254 UC 73 [Grade 43] Class = Fn(b/T,d/t,py,F,Mx,My) 8.96, 23.29, 275, 347.08, 95.49, 0.57 (Axial: Non-Slender) Plastic Auto Design Load Cases 1 & (Wind 3-5, 8-10, 13-15, 18-20, 23-25, 28-30, 33-35, 38-40, 43-45, 48-50, 53-55 and 58-60)

Local Capacity Check Fvx/Pvx 5.527 / 360.568 = 0.015 Low Shear Mcx = py.Sxx≤1.2 py.Zxx 275 x 992.1≤1.2 x 275 x 898.4 = 272.828 kN.m

Fvy/Pvy 1.098 / 1073.75 = 0.001 Low Shear Mcy = py.Syy≤1.2 py.Zyy 275 x 465.4≤1.2 x 275 x 307.52 = 101.482 kN.m

Pz = Ag.py 93.1 x 275 = 2560.25 kN n = F/Pz 347.076 / 2560.25 = 0.136 OK Srx = Fn(Sxx, n) 992.1, 0.136 945.8 cm³ Mrx = Srx.py 945.8 x 275 260.094 kN.m Sry = Fn(Syy, n) 465.4, 0.136 463.83 cm³ Mry = Sry.py 463.83 x 275 101.482 kN.m (Mx/Mrx)Z1+(My/Mry)Z2 (2.482/260.094)²+(0.087/101.482)1= 0.136 OK

Compression Resistance Pc λx = Lex/rxx 100x1x2/11.07 = 18.1 OK Pcx = Area.pcx 93.1x274.085/10 = 2551.729 kN Table 24 b λy = Ley/ryy 100x1x2/6.48 = 30.9 OK Pcy = Area.pcy 93.1x253.31/10 = 2358.349 kN Table 24 c

Equivalent Uniform Moment Factors mLT, mx, my and myx mLT=0.2+(.15M2+.5M3+.15M4)/Mmax 0.2+(.15x16+.5x1+.15x48)/95 ≥ 0.44 0.44 Table 18

my=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x-1+.6x0+.1x0)/1 ≥ .8x1/1 0.8 Table 26 mx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x-16+.6x-1+.1x-48)/95 ≥ .8x48/95 0.403 Table 26

myx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x-1+.6x0+.1x0)/1 ≥ .8x1/1 0.8 Table 26

Lateral Buckling Check Mb Le = (1.4L+2D+1.4L+2D)/2 (1.4 x 2 + 2 x 0.254 + 1.4 x 2 + 2 x 0.254)/2 = 3.308 m λ = Le/ryy 3.308 / 6.48 51.05 OK v = Fn (x,Le,ryy,λ) 17.317, 3.308, 6.48, 51.05 0.914 Table 19 λLT= u.v.λ.?βW 0.849 x 0.914 x 51.05 ? 1 39.61

pb = Fn (py,λLT) 275, 39.61 262.76 N/mm² Table 16 Mb = Sxx.pb ≤ Mc 992.1 x 262.76 ≤ 272.828 = 260.686 kN.m

Combined Axial Compression and Bending to Annex I rb=mLT.MLT/Mb 0.44x-95.5/260.7 0.161

Page 23: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 23

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

rc=Fc/Pcy 347.1/2358.3 0.147 λr=(rbλLT+rcλy)/(rb+rc) (0.161•39.6+0.147•30.9)/(0.161+0.147) 35.435 λro=17.15 ε (2rb+rc)/(rb+rc) 17.15•1(2•0.161+0.147)/(0.161+0.147) 26.114 Mob= Mb(1-Fc/Pcy) 260.686(1-347.1/2358.3) 222.321 Mxy= Mcx(1-Fc/ Pcy)

½ 272.828(1-347.1/2358.3)½ 251.953 Mox= Mcx(1-Fc/Pcx)/(1+0.5Fc/Pcx) 272.828(1-347.1/2551.7)/(1+0.5•347.1/2551.7) 220.709 Moy= Mcy(1-Fc/Pcy)/(1+ky(Fc/Pcy)) 101.482(1-347.1/2358.3)/(1+1.0(347.1/2358.3)) 75.444 Mab=fn( λr, λro, ε, Mxy, Mob) 35.435, 26.114, 1.000, 251.953, 222.321 251.953 Max=fn( λx, ε, Mrx, Mox) 18.067, 1.000, 260.094, 220.709 259.568 May=fn( λy, ε, Mry, Moy) 30.864, 1.000, 101.482, 75.444 96.280 mx.Mx/Max+.5myx.My/Mcy(1-Fc/Pcx) 0.403x95.5/259.6+.5x0.8x0.6/(101.5(1-347.1/2551.7)) 0.151 OK mLT.MLT/Mab+my.My/May 0.44x-95.5/252+0.8x-0.1/96.3 0.167 OK mx.Mx/Max+my.My/May 0.403x95.5/259.6+0.8x-0.1/96.3 0.149 OK Compare with Simplied to 4.8.3.3 0.304, 0.309, 0.309 0.309 Compare with MoreExact to 4.8.3.3 0.289, 0.309, 0.191 0.309

Deflection Check - Load Case 62 Deflection Limits (Trusses) δ ≤ 2000/240 = 8.3 mm Live (Case 2) 0.13 mm OK

δ ≤ 2000/200 = 10 mm D+W (Case 31) 0.2 mm OK

δ ≤ 2000/200 = 10 mm D+L+W (Case 32) 0.29 mm OK

Members Numbers - (Grid Line: E - E) - Front View

Page 24: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 24

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Members Numbers - (Grid Line: E - E) - Front View

Maximum Stress Ratio - (Grid Line: E - E) - Front View

Page 25: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 25

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Load Case 063 : Dead Plus Live (Serviceability)

Deflected Shape - (Grid Line : E - E) - Front View

Bottom Chord

AXIAL WITH MOMENTS (MEMBER)

Initial Design for 37 Loading Cases

Members 33, 42, 70, 78, 92, 106, 144, 154, 177 and 203 (E1-E4) @ Level 2

Between 18.450 and 20.500 m, in Load Case 1

Page 26: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 26

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

Member Forces in Load Case 1 and Maximum Deflection from Load Case 32

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

83 38.24T 0.02 42.00 -0.22 -67.82 0.04 23.53 -0.41 26.09

308 1127.60T 0.00 -16.27 0.08 -14.07 0.10 @ 12.300 @ 2.030 @ 11.398

Classification and Properties (BS 5950: 2000) Section (73.08 kg/m) 254x254 UC 73 [Grade 43] Class = Fn(b/T,d/t,py,F,Mx,My) 8.96, 23.29, 275, 0, 67.82, 0.41 (Axial: Non-Slender) Plastic Auto Design Load Cases 1 & (Wind 3-5, 8-10, 13-15, 18-20, 23-25, 28-30, 33-35, 38-40, 43-45, 48-50, 53-55 and 58-60)

Local Capacity Check Fvx/Pvx 16.274 / 360.568 = 0.045 Low Shear Mcx = py.Sxx≤1.2 py.Zxx 275 x 992.1≤1.2 x 275 x 898.4 = 272.828 kN.m Fvy/Pvy 0.082 / 1073.75 = 0 Low Shear Mcy = py.Syy≤1.2 py.Zyy 275 x 465.4≤1.2 x 275 x 307.52 = 101.482 kN.m Ae = Fn(Ag,A.net,py,Us) 93.1,93.1,275,410 93.1 cm² Pz = Ae.py 93.1x275 2560.25 kN n = F/Pz -1156.997 / 2560.25 = 0.452 OK Srx = Fn(Sxx, n) 992.1, 0.452 622.74 cm³ Mrx = Srx.py 622.74 x 275 171.252 kN.m Sry = Fn(Syy, n) 465.4, 0.452 420.37 cm³ Mry = Sry.py 420.37 x 275 101.482 kN.m (Mx/Mrx)Z1+(My/Mry)Z2 (2.526/171.252)²+(0.045/101.482)1= 0.452 OK

Equivalent Uniform Moment Factors mLT, mx, my and myx mLT=0.2+(.15M2+.5M3+.15M4)/Mmax 0.2+(.15x11+.5x3+.15x6)/19 ≥ 0.44 0.44 Table 18

my=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x0+.6x0+.1x0)/0 ≥ .8x0/0 0.482 Table 26 mx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x17+.6x20+.1x23)/68 ≥ .8x24/68 0.436 Table 26

myx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x0+.6x0+.1x0)/0 ≥ .8x0/0 0.315 Table 26

Lateral Buckling Check Mb Le = 1.00 L 1 x 2.05 = 2.05 m λ = Le/ryy 2.05 / 6.48 31.64 OK v = Fn (x,Le,ryy,λ) 17.317, 2.05, 6.48, 31.64 0.962 Table 19 λLT= u.v.λ.?βW 0.849 x 0.962 x 31.64 ? 1 25.84

pb = Fn (py,λLT) 275, 25.84 275 N/mm² Table 16 Mb = Sxx.pb ≤ Mc 992.1 x 275 ≤ 272.828 = 272.828 kN.m

Simplified Approach py.Zx 275x898.4 247.06 kN.m py.Zy 275x307.52 84.568 kN.m F/Pc+mx.Mx/py.Zx+my.My/py.Zy 0+0.436x67.8/247.1+0.482x-0.1/84.6 0.120 OK F/Pcy+mLT.MLT/Mb+my.My/py.Zy 0+0.44x19.3/272.8+0.482x-0.1/84.6 0.031 OK

More Exact Approach Max=Mcx/(1+.5F/Pcx) 272.8/(1+.5x0/2547.5) 272.828 kN.m May=Mcy/(1+F/Pcy) 101.5/(1+0/2346.7) 101.482 kN.m F/Pcx+mx.Mx/Max+.5myx.My/Mcy 0/2547.5+0.436x67.8/272.8+.5x0.315x0.4/101.5 0.109 OK F/Pcy+mLT.MLT/Mb+my.My/May 0/2346.7+0.44x19.3/272.8+0.482x-0.1/101.5 0.031 OK Max=Mcx(1-F/Pcx)/(1+.5F/Pcx) 272.8(1-0/2547.5)/(1+.5x0/2547.5) 272.828 kN.m May=Mcy(1-F/Pcy)/(1+F/Pcy) 101.5(1-0/2346.7)/(1+0/2346.7) 101.482 kN.m m.Mx/Max+m.My/May 0.44x19.286/272.828+0.482x0.063/101.482 0.031 OK

Deflection Check - Load Case 32 Deflection Limits (Trusses) δ ≤ 20500/240 = 85.4 mm Live (Case 2) 12.39 mm OK

δ ≤ 20500/200 = 102.5 mm D+W (Case 31) 16.92 mm OK

δ ≤ 20500/200 = 102.5 mm D+L+W (Case 32) 26.09 mm OK

Page 27: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 27

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Top Chord

AXIAL WITH MOMENTS (MEMBER)

Initial Design for 38 Loading Cases

Members 39, 51, 74, 84, 98, 118, 148, 168, 190 and 242 (E1-E4) @ Level 3 in Load Case 1

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

Member Forces in Load Case 1 and Maximum Deflection from Load Case 32

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

89 354.75C 0.01 21.62 0.25 -34.02 -0.04 12.81 0.83 27.15

318 1117.13C 0.00 -13.60 -0.04 -15.14 -0.05 @ 18.499 @ 4.090 @ 11.305

Classification and Properties (BS 5950: 2000) Section (46.1 kg/m) 203x203 UC 46 [Grade 43] Class = Fn(b/T,d/t,py,F,Mx,My) 9.25, 22.33, 275, 1173.14, 34.02, 0.83 (Axial: Non-Slender) Compact Auto Design Load Cases 1 & (Wind 3-5, 8-10, 13-15, 18-20, 23-25, 28-30, 33-35, 38-40, 43-45, 48-50, 53-55 and 58-60)

Local Capacity Check Fvx/Pvx 21.618 / 241.402 = 0.09 Low Shear Mcx = py.Sxx≤1.2 py.Zxx 275 x 497.4≤1.2 x 275 x 449.87 = 136.785 kN.m Fvy/Pvy 0.249 / 665.161 = 0 Low Shear Mcy = py.Syy≤1.2 py.Zyy 275 x 230.9≤1.2 x 275 x 152.37 = 50.282 kN.m Pz = Ag.py 58.73 x 275 = 1615.075 kN n = F/Pz 1173.143 / 1615.075 = 0.726 OK Srx = Fn(Sxx, n) 497.4, 0.726 160.1 cm³ Mrx = Srx.py 160.1 x 275 44.028 kN.m Sry = Fn(Syy, n) 230.9, 0.726 134.25 cm³ Mry = Sry.py 134.25 x 275 36.918 kN.m (Mx/Mrx)Z1+(My/Mry)Z2 (34.021/44.028)²+(0.035/36.918)1= 0.598 OK

Compression Resistance Pc λx = Lex/rxx 100x0.1x20.555/8.82 = 23.3 OK Pcx = Area.pcx 58.73x268.765/10 = 1578.458 kN Table 24 b

Lateral Buckling Check Mb Mb = Mc Fully Restrained 136.785 kN.m

Combined Axial Compression and Bending to Annex I rb=mLT.MLT/Mb 0.44x-34/136.8 0.109 rc=Fc/Pcy 1173.1/1615.1 0.726 λr=(rbλLT+rcλy)/(rb+rc) (0.109•0+0.726•0)/(0.109+0.726) 0.000 λro=17.15 ε (2rb+rc)/(rb+rc) 17.15•1(2•0.109+0.726)/(0.109+0.726) 19.396 Mob= Mb(1-Fc/Pcy) 136.785(1-1173.1/1615.1) 37.428 Mxy= Mcx(1-Fc/ Pcy)

½ 136.785(1-1173.1/1615.1)½ 71.552 Mox= Mcx(1-Fc/Pcx)/(1+0.5Fc/Pcx) 136.785(1-1173.1/1578.5)/(1+0.5•1173.1/1578.5) 25.608 Moy= Mcy(1-Fc/Pcy)/(1+ky(Fc/Pcy)) 50.282(1-1173.1/1615.1)/(1+1.0(1173.1/1615.1)) 7.970 Mab=fn( λr, λro, ε, Mxy, Mob) 0.000, 19.396, 1.000, 71.552, 37.428 44.028 Max=fn( λx, ε, Mrx, Mox) 23.305, 1.000, 44.028, 25.608 42.377 May=fn( λy, ε, Mry, Moy) 0.000, 1.000, 36.918, 7.970 36.918 mx.Mx/Max+.5myx.My/Mcy(1-Fc/Pcx) 0.431x34/42.4+.5x0.674x0.8/(50.3(1-1173.1/1578.5)) 0.368 OK

Page 28: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 28

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

mLT.MLT/Mab+my.My/May 0.44x-34/44+0.8x0/36.9 0.341 OK mx.Mx/Max+my.My/May 0.431x34/42.4+0.8x0/36.9 0.347 OK Compare with Simplied to 4.8.3.3 0.862, 0.836, 0.853 0.862 Compare with MoreExact to 4.8.3.3 0.896, 0.837, 0.588 0.896

Deflection Check - Load Case 32 Deflection Limits (Trusses) δ ≤ 20555/240 = 85.6 mm Live (Case 2) 12.88 mm OK

δ ≤ 20555/200 = 102.8 mm D+W (Case 31) 18.1 mm OK

δ ≤ 20555/200 = 102.8 mm D+L+W (Case 32) 27.15 mm OK

VERTICAL MEMBERS

AXIAL WITH MOMENTS (MEMBER)

Initial Design for 38 Loading Cases

Member 1073 (E2) @ Level 3 in Load Case 1

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

Member Forces in Load Case 1

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

1073 121 217.95C 0.00 -0.17 0.02 0.15 -0.02 0.00

125 217.95C 0.00 -0.17 0.02 -0.15 0.02 @ 11.305

Additional Nominal Moments MxUp -51.072 kN.m

Classification and Properties (BS 5950: 2000) Section (32.5 kg/m) 180x180x6 SHS 32.5 [Grade 43] Class = Fn(b/t,d/t,py,F,Mx,My) 27, 27, 275, 217.949, 51.216, 0.022 (Axial: Non-Slender) Plastic Auto Design Load Cases 1 & (Wind 3-5, 8-10, 13-15, 18-20, 23-25, 28-30, 33-35, 38-40, 43-45, 48-50, 53-55 and 58-60)

Local Capacity Check Fvx/Pvx 0.165 / 341.303 = 0 Low Shear Mcx = py.Sxx≤1.2 py.Zxx 275 x 269.03≤1.2 x 275 x 230.78 = 73.983 kN.m Fvy/Pvy 0.021 / 341.303 = 0 Low Shear Mcy = py.Syy≤1.2 py.Zyy 275 x 269.03≤1.2 x 275 x 230.78 = 73.983 kN.m

Pz = Ag.py 41.37 x 275 = 1137.675 kN n = F/Pz 217.949 / 1137.675 = 0.192 OK Srx = Fn(Sxx, n) 269.03, 0.192 255.94 cm³ Mrx = Srx.py 255.94 x 275 70.385 kN.m Sry = Fn(Syy, n) 269.03, 0.192 255.94 cm³ Mry = Sry.py 255.94 x 275 70.385 kN.m (Mx/Mrx)Z1+(My/Mry)Z2 (51.216/70.385)1.667+(0.015/70.385)1.667= 0.589 OK

Compression Resistance Pc λx = Lex/rxx 100x1x1.8/7.09 = 25.4 OK Pcx = Area.pcx 41.37x270.133/10 = 1117.541 kN Table 24 a λy = Ley/ryy 100x1x1.8/7.09 = 25.4 OK Pcy = Area.pcy 41.37x270.13/10 = 1117.541 kN Table 24 a

Equivalent Uniform Moment Factors mLT, mx, my and myx mLT=0.2+(.15M2+.5M3+.15M4)/Mmax 0.2+(.15x13+.5x26+.15x38)/51 ≥ 0.44 0.599 Table 18

my=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x0+.6x0+.1x0)/0 ≥ .8x0/0 0.457 Table 26 mx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x-13+.6x-26+.1x-38)/51 ≥ .8x38/51 0.599 Table 26

Page 29: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 29

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

myx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x0+.6x0+.1x0)/0 ≥ .8x0/0 0.436 Table 26

Lateral Buckling Check Mb Mb = Mc Section not susceptible to lateral torsional buckling 73.983 kN.m

Combined Axial Compression and Bending to Annex I rb=mLT.MLT/Mb 0.599x-49.2/74 0.399 rc=Fc/Pcy 217.9/1117.5 0.195 λr=(rbλLT+rcλy)/(rb+rc) (0.399•0+0.195•25.4)/(0.399+0.195) 8.339 λro=17.15 ε (2rb+rc)/(rb+rc) 17.15•1(2•0.399+0.195)/(0.399+0.195) 28.667 Mob= Mb(1-Fc/Pcy) 73.983(1-217.9/1117.5) 59.555 Mxy= 2Mcx(1-Fc/ Pcy) 2•73.983(1-217.9/1117.5) 119.109 Mox= Mcx(1-Fc/Pcx)/(1+0.5Fc/Pcx) 73.983(1-217.9/1117.5)/(1+0.5•217.9/1117.5) 54.263 Moy= Mcy(1-Fc/Pcy)/(1+ky(Fc/Pcy)) 73.983(1-217.9/1117.5)/(1+0.5(217.9/1117.5)) 54.263 Mab=fn( λr, λro, ε, Mxy, Mob) 8.339, 28.667, 1.000, 119.109, 59.555 70.385 Max=fn( λx, ε, Mrx, Mox) 25.388, 1.000, 70.385, 54.263 68.450 May=fn( λy, ε, Mry, Moy) 25.388, 1.000, 70.385, 54.263 68.450 mx.Mx/Max+.5myx.My/Mcy(1-Fc/Pcx) 0.599x51.2/68.5+.5x0.436x0/(74(1-217.9/1117.5)) 0.449 OK mLT.MLT/Mab+my.My/May 0.599x-49.2/70.4+0.457x0/68.5 0.419 OK mx.Mx/Max+my.My/May 0.599x51.2/68.5+0.457x0/68.5 0.431 OK Compare with Simplied to 4.8.3.3 0.679, 0.594, 0.594 0.679 Compare with MoreExact to 4.8.3.3 0.651, 0.394, 0.544 0.651

DIAGONAL MEMBERS

AXIAL WITH MOMENTS (MEMBER)

Initial Design for 37 Loading Cases

Member 837 (E1-N.92) @ Level 3 in Load Case 1

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

Member Forces in Load Case 1 and Maximum Deflection from Load Case 31

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

837 89 372.96T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

92 372.96T 0.00 0.00 0.00 0.00 0.00 @ 0.000 @ 0.000 @ 1.245

Classification and Properties (BS 5950: 2000) Section (13.7 kg/m) 2No 75x75x6 ANG 13.7 (0mm) [Grade 43] Class = Fn(b,d,t,py) 75, 75, 6, 275 (Axial: Non-Slender) SemiComp Auto Design Load Cases 1 & (Wind 3-5, 8-10, 13-15, 18-20, 23-25, 28-30, 33-35, 38-40, 43-45, 48-50, 53-55 and 58-60)

Local Capacity Check Fvx/Pvx 0 / 133.65 = 0 Low Shear Mcx = py.Zxx 275 x 16.8 = 4.62 kN.m Fvy/Pvy 0 / 133.65 = 0 Low Shear Mcy = py.Zyy 275 x 22 = 6.049 kN.m Ae = Fn(Ag,A.net,py,Us) 17.46,17.46,275,410 17.46 cm² Pz = Ae.py 17.46x275 480.15 kN F/Ae.py+Mx/Mcx+My/Mcy -372.956 / 480.15 + 0.002 / 4.62 + 0.003 / 6.049 = 0.778 OK

Lateral Buckling Check Mb u-u Le = 1.00 L 1 x 2.54 = 2.54 m λv = ?(Ley/ryy)²+(Lvv/rvv)² ?(2.54/3.07)²+(0.635/1.47)² = 93.32 OK < 100

λLT=Fn(λv,Iu,Iv,J,A,Zu) 93.32, 145.4, 37.8, 2.3, 17.5, 27.4 41.75

Page 30: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 30

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

pb = Fn (py,λLT) 275, 41.75 257.74 N/mm² Table 16 Mb = Zu.pb 27.42 x 257.74 7.067 kN.m

Simplified Approach py.Zx 275x16.8 4.62 kN.m λx = ?(Lex/rxx)²+(Lvv/rvv)² ?(100x1x2.54/2.29)²+(100x0.635/1.47)²= 119 OK

py.Zy 275x22 6.049 kN.m py.Zv 275x13.04 3.586 kN.m F/Pc+mx.Mx/py.Zx+my.My/py.Zy 0+1x0/4.6+1x0/6 0.001 OK Major and Minor Axis Moments Mu = 0.001 kN.m, Mv = 0.004 kN.m F/Pcy+mLT.MLT/Mb+mv.Mv/py.Zv 0+1x0/7.1+1x0/3.6 0.001 OK

Deflection Check - Load Case 61 Deflection Limits (Trusses) δ ≤ 2540/200 = 12.7 mm D+W (Case 31) 0.01 mm OK

δ ≤ 2540/200 = 12.7 mm D+L+W (Case 32) 0.01 mm OK

DIAGONAL MEMBERS

AXIAL WITH MOMENTS (MEMBER)

Initial Design for 38 Loading Cases

Member 930 (E4-N.326) @ Level 3 in Load Case 45

Member Loading and Member Forces Loading Combination : 1 UT + 1.2 D1 + 1.2 L1 + 1.2 S1

Member Forces in Load Case 45

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

930 308 45.19C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

326 45.19C 0.00 0.00 0.00 0.00 0.00 @ 0.000 @ 0.000 @ 1.245

Classification and Properties (BS 5950: 2000) Section (5.29 kg/m) 60x60x3 SHS 5.29 [Grade 43] Class = Fn(b/t,d/t,py,F,Mx,My) 17, 17, 275, 45.195, 0, 0 (Axial: Non-Slender) Plastic Auto Design Load Cases 1 & (Wind 3-5, 8-10, 13-15, 18-20, 23-25, 28-30, 33-35, 38-40, 43-45, 48-50, 53-55 and 58-60)

Local Capacity Check Pz = Ag.py 6.74 x 275 = 185.35 kN OK F/Ag.py 45.195 / 185.35 = 0.244 OK

Compression Resistance Pc λx = Lex/rxx 100x1x3.511/2.32 = 151.3 OK Pcx = Area.pcx 6.74x78.83/10 = 53.131 kN Table 24 a λy = Ley/ryy 100x1x3.511/2.32 = 151.3 OK Pcy = Area.pcy 6.74x78.83/10 = 53.131 kN Table 24 a

Simplified Approach F/Pc 45.195/53.131 0.851 OK F/Pcy 45.195/53.131 0.851 OK

More Exact Approach F/Pcx 45.2/53.1 0.851 OK F/Pcy 45.2/53.1 0.851 OK

Page 31: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 31

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

END VERTICAL

AXIAL WITH MOMENTS (MEMBER)

Initial Design for 38 Loading Cases

Members 1010 and 1056 (E1) @ Level 2 in Load Case 1

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

Member Forces in Load Case 1 and Maximum Deflection from Load Case 32

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

19 325.98C 0.01 -13.00 -0.15 -18.48 -0.06 42.84 -0.13 0.13

89 277.88C 0.03 -51.24 0.07 -34.02 -0.01 @ 0.500 @ 0.495 @ 0.830

Additional Nominal Moments MxUp -50.002 kN.m

Classification and Properties (BS 5950: 2000) Section (73.08 kg/m) 254x254 UC 73 [Grade 43] Class = Fn(b/T,d/t,py,F,Mx,My) 8.96, 23.29, 275, 325.98, 84.02, 0.13 (Axial: Non-Slender) Plastic Auto Design Load Cases 1 & (Wind 3-5, 8-10, 13-15, 18-20, 23-25, 28-30, 33-35, 38-40, 43-45, 48-50, 53-55 and 58-60)

Local Capacity Check Fvx/Pvx 51.243 / 360.568 = 0.142 Low Shear Mcx = py.Sxx≤1.2 py.Zxx 275 x 992.1≤1.2 x 275 x 898.4 = 272.828 kN.m

Fvy/Pvy 0.067 / 1073.75 = 0 Low Shear Mcy = py.Syy≤1.2 py.Zyy 275 x 465.4≤1.2 x 275 x 307.52 = 101.482 kN.m

Pz = Ag.py 93.1 x 275 = 2560.25 kN n = F/Pz 325.984 / 2560.25 = 0.127 OK Srx = Fn(Sxx, n) 992.1, 0.127 951.25 cm³ Mrx = Srx.py 951.25 x 275 261.594 kN.m Sry = Fn(Syy, n) 465.4, 0.127 464.02 cm³ Mry = Sry.py 464.02 x 275 101.482 kN.m (Mx/Mrx)Z1+(My/Mry)Z2 (1.916/261.594)²+(0.084/101.482)1= 0.127 OK

Compression Resistance Pc λx = Lex/rxx 100x1x2/11.07 = 18.1 OK Pcx = Area.pcx 93.1x274.085/10 = 2551.729 kN Table 24 b λy = Ley/ryy 100x1x2/6.48 = 30.9 OK Pcy = Area.pcy 93.1x253.31/10 = 2358.349 kN Table 24 c

Equivalent Uniform Moment Factors mLT, mx, my and myx mLT=0.2+(.15M2+.5M3+.15M4)/Mmax 0.2+(.15x37+.5x8+.15x46)/84 ≥ 0.44 0.44 Table 18

my=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x0+.6x0+.1x0)/0 ≥ .8x0/0 0.8 Table 26 mx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x-37+.6x-8+.1x-46)/84 ≥ .8x46/84 0.437 Table 26

myx=0.2+(.1M2+.6M3+.1M4)/Mmax 0.2+(.1x0+.6x0+.1x0)/0 ≥ .8x0/0 0.8 Table 26

Lateral Buckling Check Mb Le = (1.4L+2D+1.4L+2D)/2 (1.4 x 2 + 2 x 0.254 + 1.4 x 2 + 2 x 0.254)/2 = 3.308 m λ = Le/ryy 3.308 / 6.48 51.05 OK v = Fn (x,Le,ryy,λ) 17.317, 3.308, 6.48, 51.05 0.914 Table 19 λLT= u.v.λ.?βW 0.849 x 0.914 x 51.05 ? 1 39.61

pb = Fn (py,λLT) 275, 39.61 262.76 N/mm² Table 16 Mb = Sxx.pb ≤ Mc 992.1 x 262.76 ≤ 272.828 = 260.686 kN.m

Combined Axial Compression and Bending to Annex I rb=mLT.MLT/Mb 0.44x-84/260.7 0.142

Page 32: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 32

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

rc=Fc/Pcy 326/2358.3 0.138 λr=(rbλLT+rcλy)/(rb+rc) (0.142•39.6+0.138•30.9)/(0.142+0.138) 35.292 λro=17.15 ε (2rb+rc)/(rb+rc) 17.15•1(2•0.142+0.138)/(0.142+0.138) 25.835 Mob= Mb(1-Fc/Pcy) 260.686(1-326/2358.3) 224.652 Mxy= Mcx(1-Fc/ Pcy)

½ 272.828(1-326/2358.3)½ 253.271 Mox= Mcx(1-Fc/Pcx)/(1+0.5Fc/Pcx) 272.828(1-326/2551.7)/(1+0.5•326/2551.7) 223.686 Moy= Mcy(1-Fc/Pcy)/(1+ky(Fc/Pcy)) 101.482(1-326/2358.3)/(1+1.0(326/2358.3)) 76.834 Mab=fn( λr, λro, ε, Mxy, Mob) 35.292, 25.835, 1.000, 253.271, 224.652 253.271 Max=fn( λx, ε, Mrx, Mox) 18.067, 1.000, 261.594, 223.686 261.088 May=fn( λy, ε, Mry, Moy) 30.864, 1.000, 101.482, 76.834 96.558 mx.Mx/Max+.5myx.My/Mcy(1-Fc/Pcx) 0.437x84/261.1+.5x0.8x0.1/(101.5(1-326/2551.7)) 0.141 OK mLT.MLT/Mab+my.My/May 0.44x-84/253.3+0.8x0/96.6 0.146 OK mx.Mx/Max+my.My/May 0.437x84/261.1+0.8x0/96.6 0.141 OK Compare with Simplied to 4.8.3.3 0.287, 0.28, 0.28 0.287 Compare with MoreExact to 4.8.3.3 0.272, 0.28, 0.165 0.28

Deflection Check - Load Case 32 Deflection Limits (Trusses) δ ≤ 2000/240 = 8.3 mm Live (Case 2) 0.06 mm OK

δ ≤ 2000/200 = 10 mm D+W (Case 31) 0.09 mm OK

δ ≤ 2000/200 = 10 mm D+L+W (Case 32) 0.13 mm OK

ROOF BRACING

STRUT AND TIE (MEMBER)

Initial Design for 1 Loading Cases (Using Critical Cases Switch in Frame Geometry)

Member 497 (B3-C2) @ Level 2 : Classification and Properties (BS 5950: 2000) Section (12.2 kg/m) 100x100x8 ANG 12.2 [Grade 43] Class = Fn(b,d,t,py) 100, 100, 8, 275 (Axial: Non-Slender) SemiComp Auto Design Load Cases 1 (No Wind Loading Cases)

Single Angle Tie Connected Through One Leg Only : 4.6.3.1 (Case 1) Ae = Fn(Ag - 0.3 a2) 15.6 - 0.3 x 7.6 13.32 cm² Tc = Ae.py 13.32x275/10 = 366.3 kN F (Tie)/Tc 8.48 / 366.3 0.023 OK

Members Numbers - (Grid Line: A - A) - Front View

Page 33: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 33

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Maximum Stress Ratio - (Grid Line: A - A) - Front View

End Gable Frame

AXIAL WITH MOMENTS (MEMBER)

Initial Design for 38 Loading Cases

Members 26, 55, 58 and 61 (A2-A3) @ Level 3 in Load Case 1

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

Member Forces in Load Case 1 and Maximum Deflection from Load Case 2

Mem

ber

No.

Node

End1

End2

Axial

Force

(kN)

Torque

Moment

(kN.m)

Shear Force

(kN)

Bending Moment

(kN.m)

Maximum Moment

(kN.m @ m)

Maximum

Deflection

(mm @ m) x-x y-y x-x y-y x-x y-y

75 62.20C 0.64 2.95 0.04 35.41 0.47 41.47 0.57 9.76

112 60.04C -0.42 -26.54 0.15 -61.50 0.22 @ 2.055 @ 2.055 @ 3.042

Classification and Properties (BS 5950: 2000) Section (46.1 kg/m) 203x203 UC 46 [Grade 43] Class = Fn(b/T,d/t,py,F,Mx,My) 9.25, 22.33, 275, 62.2, 61.5, 0.57 (Axial: Non-Slender) Compact Auto Design Load Cases 1 & (Wind 3-5, 8-10, 13-15, 18-20, 23-25, 28-30, 33-35, 38-40, 43-45, 48-50, 53-55 and 58-60)

Local Capacity Check Fvx/Pvx 26.543 / 241.402 = 0.11 Low Shear Mcx = py.Sxx≤1.2 py.Zxx 275 x 497.4≤1.2 x 275 x 449.87 = 136.785 kN.m Fvy/Pvy 0.147 / 665.161 = 0 Low Shear Mcy = py.Syy≤1.2 py.Zyy 275 x 230.9≤1.2 x 275 x 152.37 = 50.282 kN.m Pz = Ag.py 58.73 x 275 = 1615.075 kN n = F/Pz 62.204 / 1615.075 = 0.039 OK Srx = Fn(Sxx, n) 497.4, 0.039 495.62 cm³ Mrx = Srx.py 495.62 x 275 136.296 kN.m Sry = Fn(Syy, n) 230.9, 0.039 230.84 cm³ Mry = Sry.py 230.84 x 275 50.282 kN.m (Mx/Mrx)Z1+(My/Mry)Z2 (61.503/136.296)²+(0.216/50.282)1= 0.208 OK

Page 34: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 34

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Compression Resistance Pc λx = Lex/rxx 100x0.1x8.222/8.82 = 9.3 OK Pcx = Area.pcx 58.73x275/10 = 1615.075 kN Table 24 b

Lateral Buckling Check Mb Mb = Mc Fully Restrained 136.785 kN.m

Combined Axial Compression and Bending to Annex I rb=mLT.MLT/Mb 0.541x-61.5/136.8 0.243 rc=Fc/Pcy 62.2/1615.1 0.039 λr=(rbλLT+rcλy)/(rb+rc) (0.243•0+0.039•0)/(0.243+0.039) 0.002 λro=17.15 ε (2rb+rc)/(rb+rc) 17.15•1(2•0.243+0.039)/(0.243+0.039) 31.955 Mob= Mb(1-Fc/Pcy) 136.785(1-62.2/1615.1) 131.517 Mxy= Mcx(1-Fc/ Pcy)

½ 136.785(1-62.2/1615.1)½ 134.125 Mox= Mcx(1-Fc/Pcx)/(1+0.5Fc/Pcx) 136.785(1-62.2/1615.1)/(1+0.5•62.2/1615.1) 129.032 Moy= Mcy(1-Fc/Pcy)/(1+ky(Fc/Pcy)) 50.282(1-62.2/1615.1)/(1+1.0(62.2/1615.1)) 46.553 Mab=fn( λr, λro, ε, Mxy, Mob) 0.002, 31.955, 1.000, 134.125, 131.517 134.125 Max=fn( λx, ε, Mrx, Mox) 9.322, 1.000, 136.296, 129.032 136.296 May=fn( λy, ε, Mry, Moy) 0.000, 1.000, 50.282, 46.553 50.282 mx.Mx/Max+.5myx.My/Mcy(1-Fc/Pcx) 0.539x61.5/136.3+.5x0.8x0.6/(50.3(1-62.2/1615.1)) 0.248 OK mLT.MLT/Mab+my.My/May 0.541x-61.5/134.1+0.8x0.2/50.3 0.251 OK mx.Mx/Max+my.My/May 0.539x61.5/136.3+0.8x0.2/50.3 0.247 OK Compare with Simplied to 4.8.3.3 0.311, 0.286, 0.286 0.311 Compare with MoreExact to 4.8.3.3 0.291, 0.285, 0.261 0.291

Deflection Check - Load Case 2 Deflection Limits (Trusses) δ ≤ 8222/240 = 34.3 mm Live (Case 2) 9.76 mm OK

δ ≤ 8222/200 = 41.1 mm D+W (Case 26) 9.2 mm OK δ ≤ 8222/200 = 41.1 mm D+L+W (Case 27) 3.77 mm OK

K. DESIGN OF ROOF PURLIN Analysis Inputs ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Members Section File Revision Date and Time 1 sectionZ240X2.5mm.doc 2/22/2012 10:24:28 AM

Start Loc. End Loc. Braced R kφ ex ey (m) (m) Flange (kN) (mm) (mm) 1 0.000 26.350 Top 0.7000 0.0000 0.00 0.00 Supports Type Location Bearing Fastened K (m) (mm) 1 XYT 0.000 100.0 Yes 1.0000 2 XT 2.750 25.4 No 1.0000 3 XT 5.500 25.4 No 1.0000 4 XYT 8.250 100.0 Yes 1.0000 5 XT 11.450 25.4 No 1.0000 6 XT 14.650 25.4 No 1.0000 7 XYT 17.850 100.0 Yes 1.0000 8 XT 20.683 25.4 No 1.0000 9 XT 23.517 25.4 No 1.0000 10 XYT 26.350 100.0 Yes 1.0000 Loading: Dead Load Type Angle Start Loc. End Loc. Start End (deg) (m) (m) Magnitude Magnitude 1 Distributed 90.000 0.000 26.350 -0.2942 -0.2942 kN/m Loading: Roof Live Load

Page 35: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 35

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Type Angle Start Loc. End Loc. Start End (deg) (m) (m) Magnitude Magnitude 1 Distributed 90.000 0.000 26.350 -0.8826 -0.8826 kN/m Loading: Wind Load Type Angle Start Loc. End Loc. Start End (deg) (m) (m) Magnitude Magnitude 1 Distributed 90.000 0.000 26.350 1.5000 1.5000 kN/m Load Combination: D Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 Load Combination: D+Lr Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Roof Live Load 1.0000 Load Combination: D+0.75(L+Lr) Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 0.7500 4 Product Load 0.7500 5 Roof Live Load 0.7500 Load Combination: D+W Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Wind Load 1.0000 Load Combination: D+0.7E Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Earthquake Load 0.7000 Load Combination: D+0.75(W+L+Lr) Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000

Page 36: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 36

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

3 Live Load 0.7500 4 Product Load 0.7500 5 Roof Live Load 0.7500 6 Wind Load 0.7500 Load Combination: D+0.75(W+L+S) Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 0.7500 4 Product Load 0.7500 5 Snow Load 0.7500 6 Wind Load 0.7500 Load Combination: D+0.75(0.7E+L+Lr) Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Earthquake Load 0.5250 4 Live Load 0.7500 5 Product Load 0.7500 6 Roof Live Load 0.7500 Load Combination: 0.6D+W Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Wind Load 1.0000 Load Combination: 0.6D+0.7E Specification: 2007 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Earthquake Load 0.7000 Member Check - 2007 North American Specification - US (ASD) ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Load Combination: 0.6D+W Design Parameters at 17.8500 m, Left side: Lx 9.6000 m Ly 2.2132 m Lt 2.2132 m Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: sectionZ240X2.5mm.doc Material Type: A529 Grade 50, Fy=344.74 MPa Cbx 1.8196 Cby 1.0000 ex 0.0000 mm Cmx 1.0000 Cmy 1.0000 ey 0.0000 mm

Braced Flange: Top Red. Factor, R: 0 Stiffness, kφ: 0 kN

Page 37: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 37

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Loads: P Mx Vy My Vx (kN) (kN-m) (kN) (kN-m) (kN) Total 0.000 10.524 6.166 0.000 0.000 Applied 0.000 10.524 6.166 0.000 0.000 Strength 56.182 12.003 41.680 2.872 40.676 Effective section properties at applied loads: Ae 1050.47 mm^2 Ixe 8984062 mm^4 Iye 1267466 mm^4 Sxe(t) 74867 mm^3 Sye(l) 14617 mm^3 Sxe(b) 74867 mm^3 Sye(r) 14617 mm^3 Interaction Equations NAS Eq. C5.2.1-1 (P, Mx, My) 0.000 + 0.877 + 0.000 = 0.877 <= 1.0 NAS Eq. C5.2.1-2 (P, Mx, My) 0.000 + 0.877 + 0.000 = 0.877 <= 1.0 NAS Eq. C3.3.1-1 (Mx, Vy) Sqrt(0.487 + 0.022)= 0.714 <= 1.0 NAS Eq. C3.3.1-1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <= 1.0

Member Check - 2007 North American Specification - US (ASD) ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Load Combination: D+Lr Design Parameters at 17.8500 m, Left side: Lx 9.6000 m Ly 2.2132 m Lt 2.2132 m Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: sectionZ240X2.5mm.doc Material Type: A529 Grade 50, Fy=344.74 MPa Cbx 1.8196 Cby 1.0000 ex 0.0000 mm Cmx 1.0000 Cmy 1.0000 ey 0.0000 mm

Braced Flange: Top Red. Factor, R: 0 Stiffness, kφ: 0 kN Loads: P Mx Vy My Vx (kN) (kN-m) (kN) (kN-m) (kN) Total 0.000 -10.380 -6.082 0.000 0.000 Applied 0.000 -10.380 -6.082 0.000 0.000 Strength 56.182 12.003 41.680 2.872 40.676 Effective section properties at applied loads: Ae 1050.47 mm^2 Ixe 8984062 mm^4 Iye 1267466 mm^4 Sxe(t) 74867 mm^3 Sye(l) 14617 mm^3 Sxe(b) 74867 mm^3 Sye(r) 14617 mm^3 Interaction Equations NAS Eq. C5.2.1-1 (P, Mx, My) 0.000 + 0.865 + 0.000 = 0.865 <= 1.0 NAS Eq. C5.2.1-2 (P, Mx, My) 0.000 + 0.865 + 0.000 = 0.865 <= 1.0 NAS Eq. C3.3.1-1 (Mx, Vy) Sqrt(0.474 + 0.021)= 0.704 <= 1.0 NAS Eq. C3.3.1-1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <= 1.0 Web Crippling Check - 2007 North American Specification - US (ASD) ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Load Combination: 0.6D+W Parameters at 17.850 m: Total Load: 12.823 kN on top flange Total Moment: 10.524 kN-m Bearing: 100.000 mm

Page 38: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 38

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Flange fastened to bearing surface: Yes Distance from edge of bearing to edge of opposite load: 26.350 m Section: sectionZ240X2.5mm.doc Material Type: A529 Grade 50, Fy=344.74 MPa Applied Load: 12.823 kN on top flange Applied Moment: 10.524 kN-m Distance from edge of bearing to end of member: 8.4500 m Part Elem Calculation Type Pa (kN) Pay (kN) Notes 1 3 Zee, FS-IOF 22.281 22.281 Web Crippling Strength 22.281 Web Crippling Check: 12.823 kN <= 22.281 kN Moment Check: 10.524 kN-m <= 15.074 kN-m Interaction Equations NAS Eq. C3.5.1-1 (P, M) 0.317 + 0.418 = 0.735 <= 0.782

L. DESIGN OF CONNECTION

BASE PLATE AT: C1 - LEVEL 0

Base-Plate Connection to BS 5950

LOADING CASE 001 : DEAD PLUS LIVE (ULTIMATE)

Basic Data Applied Forces at Interface Resultant Forces M, Fv, F Moment +0.0 kNm, Shear -4.8 kN, Axial +347.1 kN Forces taken from Member End (Axial Compression)

Basic Dimensions Column: 254x254UC73 [43] D=254.1, B=254.6, T=14.2, t=8.6, r=12.7, py=275 Bolts 24 mm ? in 26 mm holes Grade 8.8 Bolts Plates S 275, Welds E 35 Data grout, Fcu, Fcv, py, slope 15 N/mm², 40 N/mm², 0.40 N/mm², 265 N/mm², 0 deg to vertical Design to BS 5950-1: 2000 and the SCI Green Book: Joints in Steel Construction : Moment Connections: SCI-P-207/95 Column Capacities Mc, Fvc, Fc 272.8 kN.m, 360.6 kN, 2560.3 kN Fc = 2560.3 kN OK

Summary of Results (Unity Ratios) Concrete Pressure 0.22 OK Base-Plate thickness in Compression 0.48 OK

Page 39: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 39

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Comp-stiff perpendicular to Flange 0.07, 0.05, 0.24, 0.73, 0.21 0.73 OK Web in Compression-zone 0.33 0.33 OK Comp-stiff between Flanges 0.04, 0.07, 0.12, 0.11, 0.32 0.32 OK Comp-stiff main vertical weld 0.13, 0.15, 0.24 0.24 OK Horizontal Shear 0.01 OK

Step 1: Base-Plate Pressure Allowable Pressure=0.60•Fcu 0.60•15 9.0 N/mm² Pressure Configuration Compression Only Ac=x2•wf+x4•wf 275.00•320.00 + 275.00•320.00 1760.0 cm² Conc Cap C=0.60•Fcu•Ac 0.60•15•176000.0 1584.0 kN OK Pressure=P•1000/Ac 347.1•1000/176000 1.97 N/mm² OK

Step 2a: Plate Compression Bending e=L1 63.7 63.7 mm Mapp=p•e²/2 2.0•63.7²/2 3995 Nmm/mm tp=?(6•Mapp/py) ?(6•3995/265) 9.5 mm OK

Note: Axial Load Axial Using Elastic Modulus Zp (4.13.2.2)

Base-Plate Stiffener in Compression Pyr=Fn(py, SlenRF, OutStand) 275.0, 1.00, 80.00 275.0 N/mm²

Comp-stiff perpendicular to Flange Fapp=P1•Weff 2.0•160.0 0.32 kN/mm Fcap=pyr•ts 275•16 4.40 kN/mm OK Fcap w=pyw•tw•2•0.7 275•18•2•0.7 6.93 kN/mm OK FVapp=P1•Weff•Lcrit 2.0•160.0•147.0 (at 147 mm from free edge) 46.39 kN Fvcap=py•ts•0.9•0.6•h 275•16•0.9•0.6•80 (at 147 mm) 190.08 kN OK Mapp=P1•Weff•Lcrit²/2 2.0•160.0•147.0²/2 (at 147 mm) 3.41 kN.m Mcap=py•ts•h²/6 275•16•80²/6 (at 147 mm) 4.69 kN.m OK FVapp=P1•Weff•Le 2.0•160.0•148.0 (at vert weld) 46.68 kN Fvcap w=pyw•tw•1•0.7•h 220•18•1•0.7•80 (at vert weld) 221.76 kN OK

Web in Compression-zone FCapp=P1•Weff 2.0•304.50 0.60 kN/mm Fvloc=Fv/(D-2(fw+T)) 4.8/(254.1 - 2( 10 + 14.2 )) 0.02 kN/mm Fres=?(Fapp²+Fvloc²) ?(0.3² + 0.0²) 0.6 kN/mm Fcap w=2•0.7•leg•Py 2•0.7•6•220 1.85 kN/mm OK

Comp-stiff between Flanges FCapp=P1•Weff 2.0•94.20 0.19 kN/mm Fcap=py•t 275•16 4.40 kN/mm OK Fcap w=pyw•tw•1•0.7 220•18•1•0.7 2.77 kN/mm OK Fvapp=Fapp•Le/2/(2-alpha) 0.19•254.10/2/(2 - 1.00) 23.60 kN Fvcap=py•ts•0.9•0.6•h 275•16•0.9•0.6•80 190.08 kN OK Fvcap w=pyw•tw•1•0.7•h 220•18•1•0.7•80 221.76 kN OK Mapp=Fapp•Le²/2(1-alpha+alpha²/4) 0.2•254.10²/2(1 - 1.00 + 1.00²/4) 1.50 kN.m Mcap=py•ts•h²/6 275•16•80²/6 4.69 kN.m OK

Comp-stiff main vertical weld Main vertical weld between Flange-Toe and Stiffeners FappGross=FtoeE+Fflg+FtoeI 46.7 + 0.00 + 23.60 70.29 kN FappOverlap=L•B•P1 310.1•69.50 + 1.97 42.50 kN Fapp=FappGross-FappOverlap 70.29 - 42.50 27.78 kN Fvcap w=pyw•tw•1•0.7•h 220•18•0•0.7•80 221.76 kN OK Fvcap=py•min(T,tw)•0.6•h 275•min(14.2 , 18)•0.6•80 187.44 kN OK Fvcap=py•min(t,tw)•0.6•h 275•min(8.6 , 18)•0.6•80 113.52 kN OK

Step 4: Shear Base Friction Friction Fr=0.72•Fc 0.72•+347.1 kN 249.9 kN

Bolt Bearing Pss=Min(Bs, Cb, Pb, Bb)•nbs Min(132.4, 10.4, 220.8, 480.0) = 10.4•4 41.5 kN Pts=Min(Bsten, Cb, Pb, Bb)•nbt Min(132.4, 10.4, 220.8, 480.0) = 10.4•4, (no tension) 41.5 kN

Total Shear Capacity Total Cap=Fr+Pss+Pts 249.9 + 41.5 + 41.5 332.9 kN OK

Page 40: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 40

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

� \\WINDOWS-1B6NFB8\ALWADI-SERVER\ALWADI-DATA\ALWADI-BACKUP\1-ENGINEERING DEPARTMENT\MASTERSERIES ANALYSIS\MASTER\ABM MILITARY COLLEGE PACKAGE 4A\FINAL\3D -V03.$5

BEAM SPLICE AT 2.400 M FROM : C1 - LEVEL 2 : MEMBERS 33, 38, 69, 72, 80, 94, 141, 147, 157 AND 181 (C1-C4)

Non Bearing - Beam to Beam Moment Splice Connection to BS 5950

LOADING CASE 001 : DEAD PLUS LIVE (ULTIMATE)

Basic Data Applied Forces at Interface Resultant Forces M, Fv, F +16.9 kNm, +0.8 kN, -385.2 kN (Bottom in tension, Axial Tension) Beam Gap= 5 mm Therefore No direct bearing. HSFG Bolts Non-slip at service) Design to BS 5950-1: 2000 and the SCI Green Book: Joints in Steel Construction : Moment Connections: SCI-P-207/95

Basic Dimensions Beam-254x254UC73 [43] D=254.1, B=254.6, T=14.2, t=8.6, r=12.7, py=275 Bolts 20 mm ? in 22 mm holes HSFG - Pt 1 Bolts, Non-slip at Service Plates S 275, Welds E 35 Beam Capacities Mc, Fvc, Fc 272.8 kN.m, 360.6 kN, 2560.3 kN Fc = 2560.3 kN OK

Summary of Results (Unity Ratios) Top Flange in Tension Bolt Capacity 0.14 OK Top Flange in Tension Axial Capacity 0.12 OK Bottom Flange in Tension Bolt Capacity 0.31 OK Bottom Flange in Tension Axial Capacity 0.27 OK Web Bolt Capacity 0.01 OK Web Plate Moment Capacity 0.00 OK Web Plate Shear Capacity 0.00 OK Web Axial Capacity 0.00 OK

Resultant Forces Flange forces Min Flange Force=10% • Af • py 10% • 3615 • 275 99.4 kN Top Flange Force=Ff / 2-Mf / d 385.2 / 2 - 16.9 / 0.240 122.2 kN Bot Flange Force=Ff / 2+Mf / d 385.2 / 2 + 16.9 / 0.240 263.0 kN

Web Forces M res Fn(Fv, ecc, Mecc, Mweb) 0.8, 35.0, 0.0, 0.0 0.0 kN.m Lever Arms Lv, Lh, Ld 35.0, 0.0, 35.0 Moment Forces Fmv, Fmh, Fmd 0.4, 0.0, 0.4

Page 41: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 41

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Shear Component fv=Fv / bolts 0.8 / 2 0.4 kN Axial Component fp=Fw / bolts 0.0 / 2 0 kN

Resultant Web Bolt Forces Fvx=?((fmh+ fv)²+fp²) ?((0.0 + 0.4)² + 0²) 0.4 kN

Fvy=?((fmv+ fp)²+fv²) ?((0.4 + 0)² + 0.4²) 0.6 kN

Fvxy=Fn(fmd, fv, fp, Ld, Lh, Lv) 0.4, 0.4, 0, 35.0, 0.0, 35.0 0.6 kN Bolts In Line

Top Flange in Tension Bolt Shear Capacity Bearing Capacity-Outer Plate pb=460, edge=35.0, ?=20, tk=16, (cl 6.4.4) 190.1 kN (pb is the Average pb reduced by the end Bolt edge distance) Bearing Capacity-Beam Flange pb=460, edge=62.5, ?=20, tk=14.2, (cl 6.4.4) 196.0 kN Bearing Capacity-Inner Plates pb=460, edge=35.0, ?=20, tk=16, (cl 6.4.4) 190.1 kN (pb is the Average pb reduced by the end Bolt edge distance) HSFG Bolts (non-slip at service) NS=1.1, Ks=1.00, µ=0.45, Po=143.3, psAs=98 70.9 kN Bolt Shear Capacity BSC=70.9, tg=46.2, LJ=200 141.9 kN Resultant Bolt Shear Capacity Min(380.3, 196.0, 141.9) 141.9 kN Bolt Shear Load F / No Bolts 122.2/ 6.0 20.4 kN OK

Plate and Flange Capacity Outer Plate Fcap=T•B•py 16.0 • 250.0 • 275 1100.0 kN Fnet=(T•Bnet)•Py•Ke (16.0 • 206.0) • 275 • 1.2 1087.7 kN

Flange Fcap=T•B•py 14.2 • 254.6 • 275 994.2 kN Fnet=(T•Bnet)•Py•Ke (14.2 • 210.6) • 275 • 1.2 986.9 kN

Inner Plate Fcap=T•B•py 16.0 • 160.0 • 275 704.0 kN Fnet=(T•Bnet)•Py•Ke (16.0 • 116.0) • 275 • 1.2 612.5 kN Resultant Axial load 122.2 kN Axial Capacity Min((612.5 + 1087.7), 986.9) 986.9 kN OK

Bottom Flange in Tension Bolt Shear Capacity Bearing Capacity-Outer Plate pb=460, edge=35.0, ?=20, tk=16, (cl 6.4.4) 190.1 kN (pb is the Average pb reduced by the end Bolt edge distance) Bearing Capacity-Beam Flange pb=460, edge=62.5, ?=20, tk=14.2, (cl 6.4.4) 196.0 kN Bearing Capacity-Inner Plates pb=460, edge=35.0, ?=20, tk=16, (cl 6.4.4) 190.1 kN (pb is the Average pb reduced by the end Bolt edge distance) HSFG Bolts (non-slip at service) NS=1.1, Ks=1.00, µ=0.45, Po=143.3, psAs=98 70.9 kN Bolt Shear Capacity BSC=70.9, tg=46.2, LJ=200 141.9 kN Resultant Bolt Shear Capacity Min(380.3, 196.0, 141.9) 141.9 kN Bolt Shear Load F / No Bolts 263.0/ 6.0 43.8 kN OK

Plate and Flange Capacity Outer Plate Fcap=T•B•py 16.0 • 250.0 • 275 1100.0 kN Fnet=(T•Bnet)•Py•Ke (16.0 • 206.0) • 275 • 1.2 1087.7 kN

Flange Fcap=T•B•py 14.2 • 254.6 • 275 994.2 kN Fnet=(T•Bnet)•Py•Ke (14.2 • 210.6) • 275 • 1.2 986.9 kN

Inner Plate Fcap=T•B•py 16.0 • 160.0 • 275 704.0 kN Fnet=(T•Bnet)•Py•Ke (16.0 • 116.0) • 275 • 1.2 612.5 kN Resultant Axial load 263.0 kN Axial Capacity Min((612.5 + 1087.7), 986.9) 986.9 kN OK

Web Zone Bolt Shear Capacity Bearing Capacity-Web Plates pb=460, edge=35.0, ?=20, tk=2x12, (cl 6.4.4) 193.2 kN

Page 42: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 42

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Bearing Capacity-Beam Web pb=460, edge=32.5, ?=20, tk=8.6, (cl 6.4.4) 64.3 kN HSFG Bolts (non-slip at service) NS=1.1, Ks=1.00, µ=0.45, Po=143.3, psAs=98 70.9 kN

Bolt Shear Capacity BSC=98.0, tg=32.6, LJ=70.0 141.9 kN Resultant Bolt Shear Capacity Min(193.2, 64.3, 141.9) 64.3 kN Bolt Shear Load Max(Fvx,Fvy,Fvxy) 0.4, 0.6, 0.6 0.6 kN OK

Plate Capacity per plate App. Moment=(Mweb+V • ecc)/2 (0.0 + 0.8 • 35.0)/2 0.0 kN.m Moment Cap=Znet • py 53614.6 • 275 14.7 kN.m OK App. Shear V/2 0.8/2 0.4 kN Shear Cap=0.9 • t • Dnet • 0.6 • py 0.9 • 12 • 131.0 • 0.6 • 275 233.4 kN OK

Web Axial Capacity Fcap=T•B•py 8.6 • 225.7 • 275 533.8 kN Fnet=(T•Bnet)•Py•Ke (8.6 • 181.7) • 275 • 1.2 515.7 kN OK

� \\WINDOWS-1B6NFB8\ALWADI-SERVER\ALWADI-DATA\ALWADI-BACKUP\1-ENGINEERING DEPARTMENT\MASTERSERIES ANALYSIS\MASTER\ABM MILITARY COLLEGE PACKAGE 4A\FINAL\3D -V03.$5

BEAM SPLICE AT 14.500 M FROM : C1 - LEVEL 2 : MEMBERS 33, 38, 69, 72, 80, 94, 141, 147, 157 AND 181 (C1-C4)

Non Bearing - Beam to Beam Moment Splice Connection to BS 5950

LOADING CASE 001 : DEAD PLUS LIVE (ULTIMATE)

Basic Data Applied Forces at Interface Resultant Forces M, Fv, F +23.1 kNm, +0.2 kN, -1242.7 kN (Bottom in tension, Axial Tension) Beam Gap= 5 mm Therefore No direct bearing. HSFG Bolts Non-slip at service) Design to BS 5950-1: 2000 and the SCI Green Book: Joints in Steel Construction : Moment Connections: SCI-P-207/95

Basic Dimensions Beam-254x254UC73 [43] D=254.1, B=254.6, T=14.2, t=8.6, r=12.7, py=275 Bolts 20 mm ? in 22 mm holes HSFG - Pt 1 Bolts, Non-slip at Service Plates S 275, Welds E 35 Beam Capacities Mc, Fvc, Fc 272.8 kN.m, 360.6 kN, 2560.3 kN Fc = 2560.3 kN OK

Summary of Results (Unity Ratios) Top Flange in Tension Bolt Capacity 0.62 OK Top Flange in Tension Axial Capacity 0.53 OK Bottom Flange in Tension Bolt Capacity 0.84 OK Bottom Flange in Tension Axial Capacity 0.73 OK Web Bolt Capacity 0.00 OK Web Plate Moment Capacity 0.00 OK

Page 43: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 43

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Web Plate Shear Capacity 0.00 OK Web Axial Capacity 0.00 OK

Resultant Forces Flange forces Min Flange Force=10% • Af • py 10% • 3615 • 275 99.4 kN Top Flange Force=Ff / 2-Mf / d 1242.7 / 2 - 23.1 / 0.240 525.1 kN Bot Flange Force=Ff / 2+Mf / d 1242.7 / 2 + 23.1 / 0.240 717.6 kN

Web Forces M res Fn(Fv, ecc, Mecc, Mweb) 0.2, 35.0, 0.0, 0.0 0.0 kN.m Lever Arms Lv, Lh, Ld 35.0, 0.0, 35.0 Moment Forces Fmv, Fmh, Fmd 0.1, 0.0, 0.1 Shear Component fv=Fv / bolts 0.2 / 2 0.1 kN Axial Component fp=Fw / bolts 0.0 / 2 0 kN

Resultant Web Bolt Forces Fvx=?((fmh+ fv)²+fp²) ?((0.0 + 0.1)² + 0²) 0.1 kN

Fvy=?((fmv+ fp)²+fv²) ?((0.1 + 0)² + 0.1²) 0.1 kN

Fvxy=Fn(fmd, fv, fp, Ld, Lh, Lv) 0.1, 0.1, 0, 35.0, 0.0, 35.0 0.1 kN Bolts In Line

Top Flange in Tension Bolt Shear Capacity Bearing Capacity-Outer Plate pb=460, edge=35.0, ?=20, tk=16, (cl 6.4.4) 190.1 kN (pb is the Average pb reduced by the end Bolt edge distance) Bearing Capacity-Beam Flange pb=460, edge=62.5, ?=20, tk=14.2, (cl 6.4.4) 196.0 kN Bearing Capacity-Inner Plates pb=460, edge=35.0, ?=20, tk=16, (cl 6.4.4) 190.1 kN (pb is the Average pb reduced by the end Bolt edge distance) HSFG Bolts (non-slip at service) NS=1.1, Ks=1.00, µ=0.45, Po=143.3, psAs=98 70.9 kN

Bolt Shear Capacity BSC=70.9, tg=46.2, LJ=200 141.9 kN Resultant Bolt Shear Capacity Min(380.3, 196.0, 141.9) 141.9 kN Bolt Shear Load F / No Bolts 525.1/ 6.0 87.5 kN OK

Plate and Flange Capacity Outer Plate Fcap=T•B•py 16.0 • 250.0 • 275 1100.0 kN Fnet=(T•Bnet)•Py•Ke (16.0 • 206.0) • 275 • 1.2 1087.7 kN

Flange Fcap=T•B•py 14.2 • 254.6 • 275 994.2 kN Fnet=(T•Bnet)•Py•Ke (14.2 • 210.6) • 275 • 1.2 986.9 kN

Inner Plate Fcap=T•B•py 16.0 • 180.0 • 275 792.0 kN Fnet=(T•Bnet)•Py•Ke (16.0 • 136.0) • 275 • 1.2 718.1 kN Resultant Axial load 525.1 kN Axial Capacity Min((718.1 + 1087.7), 986.9) 986.9 kN OK

Bottom Flange in Tension Bolt Shear Capacity Bearing Capacity-Outer Plate pb=460, edge=35.0, ?=20, tk=16, (cl 6.4.4) 190.1 kN (pb is the Average pb reduced by the end Bolt edge distance) Bearing Capacity-Beam Flange pb=460, edge=62.5, ?=20, tk=14.2, (cl 6.4.4) 196.0 kN Bearing Capacity-Inner Plates pb=460, edge=35.0, ?=20, tk=16, (cl 6.4.4) 190.1 kN (pb is the Average pb reduced by the end Bolt edge distance) HSFG Bolts (non-slip at service) NS=1.1, Ks=1.00, µ=0.45, Po=143.3, psAs=98 70.9 kN

Bolt Shear Capacity BSC=70.9, tg=46.2, LJ=200 141.9 kN Resultant Bolt Shear Capacity Min(380.3, 196.0, 141.9) 141.9 kN Bolt Shear Load F / No Bolts 717.6/ 6.0 119.6 kN OK

Plate and Flange Capacity Outer Plate Fcap=T•B•py 16.0 • 250.0 • 275 1100.0 kN Fnet=(T•Bnet)•Py•Ke (16.0 • 206.0) • 275 • 1.2 1087.7 kN

Flange Fcap=T•B•py 14.2 • 254.6 • 275 994.2 kN Fnet=(T•Bnet)•Py•Ke (14.2 • 210.6) • 275 • 1.2 986.9 kN

Page 44: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 44

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Inner Plate Fcap=T•B•py 16.0 • 180.0 • 275 792.0 kN Fnet=(T•Bnet)•Py•Ke (16.0 • 136.0) • 275 • 1.2 718.1 kN Resultant Axial load 717.6 kN Axial Capacity Min((718.1 + 1087.7), 986.9) 986.9 kN OK

Web Zone Bolt Shear Capacity Bearing Capacity-Web Plates pb=460, edge=35.0, ?=20, tk=2x12, (cl 6.4.4) 193.2 kN Bearing Capacity-Beam Web pb=460, edge=32.5, ?=20, tk=8.6, (cl 6.4.4) 64.3 kN HSFG Bolts (non-slip at service) NS=1.1, Ks=1.00, µ=0.45, Po=143.3, psAs=98 70.9 kN

Bolt Shear Capacity BSC=98.0, tg=32.6, LJ=70.0 141.9 kN Resultant Bolt Shear Capacity Min(193.2, 64.3, 141.9) 64.3 kN Bolt Shear Load Max(Fvx,Fvy,Fvxy) 0.1, 0.1, 0.1 0.1 kN OK

Plate Capacity per plate App. Moment=(Mweb+V • ecc)/2 (0.0 + 0.2 • 35.0)/2 0.0 kN.m Moment Cap=Znet • py 53614.6 • 275 14.7 kN.m OK App. Shear V/2 0.2/2 0.1 kN Shear Cap=0.9 • t • Dnet • 0.6 • py 0.9 • 12 • 131.0 • 0.6 • 275 233.4 kN OK

Web Axial Capacity Fcap=T•B•py 8.6 • 225.7 • 275 533.8 kN Fnet=(T•Bnet)•Py•Ke (8.6 • 181.7) • 275 • 1.2 515.7 kN OK

BEAM SPLICE AT 2.500 M FROM : C1 - LEVEL 3 : MEMBERS 36, 42, 70, 76, 86, 107, 143, 151, 171 AND 194 (C1-C4)

Non Bearing - Beam to Beam Moment Splice Connection to BS 5950

LOADING CASE 001 : DEAD PLUS LIVE (ULTIMATE)

Basic Data Applied Forces at Interface Resultant Forces M, Fv, F +11.3 kNm, +3.4 kN, +699.9 kN (Bottom in tension, Axial Compression) Beam Gap= 5 mm Therefore No direct bearing. HSFG Bolts Non-slip at service) Design to BS 5950-1: 2000 and the SCI Green Book: Joints in Steel Construction : Moment Connections: SCI-P-207/95

Basic Dimensions Beam-203x203UC52 [43] D=206.2, B=204.3, T=12.5, t=7.9, r=10.2, py=275 Bolts 20 mm ? in 22 mm holes HSFG - Pt 1 Bolts, Non-slip at Service Plates S 275, Welds E 35

Page 45: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 45

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Beam Capacities Mc, Fvc, Fc 156.0 kN.m, 268.8 kN, 1822.7 kN Fc = 1822.7 kN OK

Summary of Results (Unity Ratios) Top Flange in Compression Bolt Capacity 0.72 OK Top Flange in Compression Axial Capacity 0.58 OK Bottom Flange in Compression Bolt Capacity 0.51 OK Bottom Flange in Compression Axial Capacity 0.42 OK Web Bolt Capacity 0.04 OK Web Plate Moment Capacity 0.01 OK Web Plate Shear Capacity 0.01 OK Web Axial Capacity 0.00 OK

Resultant Forces Flange forces Min Flange Force=10% • Af • py 10% • 2554 • 275 70.2 kN Top Flange Force=Ff / 2-Mf / d -699.9 / 2 - 11.3 / 0.194 -408.3 kN Bot Flange Force=Ff / 2+Mf / d -699.9 / 2 + 11.3 / 0.194 -291.6 kN

Web Forces M res Fn(Fv, ecc, Mecc, Mweb) 3.4, 35.0, 0.1, 0.0 0.1 kN.m Lever Arms Lv, Lh, Ld 30.0, 0.0, 30.0 Moment Forces Fmv, Fmh, Fmd 2.0, 0.0, 2.0 Shear Component fv=Fv / bolts 3.4 / 2 1.7 kN Axial Component fp=Fw / bolts 0.0 / 2 0 kN

Resultant Web Bolt Forces Fvx=?((fmh+ fv)²+fp²) ?((0.0 + 1.7)² + 0²) 1.7 kN

Fvy=?((fmv+ fp)²+fv²) ?((2.0 + 0)² + 1.7²) 2.6 kN

Fvxy=Fn(fmd, fv, fp, Ld, Lh, Lv) 2.0, 1.7, 0, 30.0, 0.0, 30.0 2.6 kN Bolts In Line

Top Flange in Compression Bolt Shear Capacity Bearing Capacity-Outer Plate pb=460, edge=89.0, ?=20, tk=16, (cl 6.4.4) 220.8 kN Bearing Capacity-Beam Flange pb=460, edge=89.0, ?=20, tk=12.5, (cl 6.4.4) 172.5 kN Bearing Capacity-Inner Plates pb=460, edge=89.0, ?=20, tk=16, (cl 6.4.4) 220.8 kN HSFG Bolts (non-slip at service) NS=1.1, Ks=1.00, µ=0.45, Po=143.3, psAs=98 70.9 kN

Bolt Shear Capacity BSC=70.9, tg=44.5, LJ=100 141.9 kN Resultant Bolt Shear Capacity Min(441.6, 172.5, 141.9) 141.9 kN Bolt Shear Load F / No Bolts -408.3/ 4.0 102.1 kN OK

Plate and Flange Capacity Axial Cap Outer Plate =T•B•Fy 16.0•200.0•275 880.0 kN Axial Cap Flange =T•B•Fy 12.5•204.3•275 702.3 kN Axial Cap Inner Plate =T•B•Fy 16.0•140.0•275 616.0 kN Resultant Axial load -408.3 kN Axial Capacity Min((616.0 + 880.0), 702.3) 702.3 kN OK

Bottom Flange in Compression Bolt Shear Capacity Bearing Capacity-Outer Plate pb=460, edge=89.0, ?=20, tk=16, (cl 6.4.4) 220.8 kN Bearing Capacity-Beam Flange pb=460, edge=89.0, ?=20, tk=12.5, (cl 6.4.4) 172.5 kN Bearing Capacity-Inner Plates pb=460, edge=89.0, ?=20, tk=16, (cl 6.4.4) 220.8 kN HSFG Bolts (non-slip at service) NS=1.1, Ks=1.00, µ=0.45, Po=143.3, psAs=98 70.9 kN

Bolt Shear Capacity BSC=70.9, tg=44.5, LJ=100 141.9 kN Resultant Bolt Shear Capacity Min(441.6, 172.5, 141.9) 141.9 kN Bolt Shear Load F / No Bolts -291.6/ 4.0 72.9 kN OK

Plate and Flange Capacity Axial Cap Outer Plate =T•B•Fy 16.0•200.0•275 880.0 kN Axial Cap Flange =T•B•Fy 12.5•204.3•275 702.3 kN Axial Cap Inner Plate =T•B•Fy 16.0•140.0•275 616.0 kN Resultant Axial load -291.6 kN Axial Capacity Min((616.0 + 880.0), 702.3) 702.3 kN OK

Page 46: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 46

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Web Zone Bolt Shear Capacity Bearing Capacity-Web Plates pb=460, edge=32.5, ?=20, tk=2x12, (cl 6.4.4) 179.4 kN Bearing Capacity-Beam Web pb=460, edge=32.5, ?=20, tk=7.9, (cl 6.4.4) 59.1 kN HSFG Bolts (non-slip at service) NS=1.1, Ks=1.00, µ=0.45, Po=143.3, psAs=98 70.9 kN

Bolt Shear Capacity BSC=98.0, tg=31.9, LJ=60.0 141.9 kN Resultant Bolt Shear Capacity Min(179.4, 59.1, 141.9) 59.1 kN Bolt Shear Load Max(Fvx,Fvy,Fvxy) 1.7, 2.6, 2.6 2.6 kN OK

Plate Capacity per plate App. Moment=(Mweb+V • ecc)/2 (0.0 + 3.4 • 35.0)/2 0.1 kN.m Moment Cap=Znet • py 23306.1 • 275 6.4 kN.m OK App. Shear V/2 3.4/2 1.7 kN Shear Cap=0.9 • t • Dnet • 0.6 • py 0.9 • 12 • 81.0 • 0.6 • 275 144.3 kN OK

Web Axial Capacity Fcap=T•B•py 7.9 • 181.2 • 275 393.7 kN Fnet=(T•Bnet)•Py•Ke (7.9 • 137.2) • 275 • 1.2 357.7 kN OK

BEAM SPLICE AT 14.500 M FROM : C1 - LEVEL 3 : MEMBERS 36, 42, 70, 76, 86, 107, 143, 151, 171 AND 194 (C1-C4)

Non Bearing - Beam to Beam Moment Splice Connection to BS 5950

LOADING CASE 001 : DEAD PLUS LIVE (ULTIMATE)

Basic Data Applied Forces at Interface Resultant Forces M, Fv, F +11.0 kNm, +1.0 kN, +1255.2 kN (Bottom in tension, Axial Compression) Beam Gap= 5 mm Therefore No direct bearing. HSFG Bolts Non-slip at service) Design to BS 5950-1: 2000 and the SCI Green Book: Joints in Steel Construction : Moment Connections: SCI-P-207/95

Basic Dimensions Beam-203x203UC52 [43] D=206.2, B=204.3, T=12.5, t=7.9, r=10.2, py=275 Bolts 20 mm ? in 22 mm holes HSFG - Pt 1 Bolts, Non-slip at Service Plates S 275, Welds E 35 Beam Capacities Mc, Fvc, Fc 156.0 kN.m, 268.8 kN, 1822.7 kN Fc = 1822.7 kN OK

Summary of Results (Unity Ratios) Top Flange in Compression Bolt Capacity 0.80 OK Top Flange in Compression Axial Capacity 0.97 OK Bottom Flange in Compression Bolt Capacity 0.67 OK Bottom Flange in Compression Axial Capacity 0.81 OK Web Bolt Capacity 0.01 OK

Page 47: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 47

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Web Plate Moment Capacity 0.00 OK Web Plate Shear Capacity 0.00 OK Web Axial Capacity 0.00 OK

Resultant Forces Flange forces Min Flange Force=10% • Af • py 10% • 2554 • 275 70.2 kN Top Flange Force=Ff / 2-Mf / d -1255.2 / 2 - 11.0 / 0.194 -684.4 kN Bot Flange Force=Ff / 2+Mf / d -1255.2 / 2 + 11.0 / 0.194 -570.8 kN

Web Forces M res Fn(Fv, ecc, Mecc, Mweb) 1.0, 35.0, 0.0, 0.0 0.0 kN.m Lever Arms Lv, Lh, Ld 30.0, 0.0, 30.0 Moment Forces Fmv, Fmh, Fmd 0.6, 0.0, 0.6 Shear Component fv=Fv / bolts 1.0 / 2 0.5 kN Axial Component fp=Fw / bolts 0.0 / 2 0 kN

Resultant Web Bolt Forces Fvx=?((fmh+ fv)²+fp²) ?((0.0 + 0.5)² + 0²) 0.5 kN Fvy=?((fmv+ fp)²+fv²) ?((0.6 + 0)² + 0.5²) 0.8 kN

Fvxy=Fn(fmd, fv, fp, Ld, Lh, Lv) 0.6, 0.5, 0, 30.0, 0.0, 30.0 0.8 kN Bolts In Line

Top Flange in Compression Bolt Shear Capacity Bearing Capacity-Outer Plate pb=460, edge=89.0, ?=20, tk=16, (cl 6.4.4) 220.8 kN Bearing Capacity-Beam Flange pb=460, edge=89.0, ?=20, tk=12.5, (cl 6.4.4) 172.5 kN Bearing Capacity-Inner Plates pb=460, edge=89.0, ?=20, tk=16, (cl 6.4.4) 220.8 kN HSFG Bolts (non-slip at service) NS=1.1, Ks=1.00, µ=0.45, Po=143.3, psAs=98 70.9 kN Bolt Shear Capacity BSC=70.9, tg=44.5, LJ=200 141.9 kN Resultant Bolt Shear Capacity Min(441.6, 172.5, 141.9) 141.9 kN Bolt Shear Load F / No Bolts -684.4/ 6.0 114.1 kN OK

Plate and Flange Capacity Axial Cap Outer Plate =T•B•Fy 16.0•200.0•275 880.0 kN Axial Cap Flange =T•B•Fy 12.5•204.3•275 702.3 kN Axial Cap Inner Plate =T•B•Fy 16.0•140.0•275 616.0 kN Resultant Axial load -684.4 kN Axial Capacity Min((616.0 + 880.0), 702.3) 702.3 kN OK

Bottom Flange in Compression Bolt Shear Capacity Bearing Capacity-Outer Plate pb=460, edge=89.0, ?=20, tk=16, (cl 6.4.4) 220.8 kN Bearing Capacity-Beam Flange pb=460, edge=89.0, ?=20, tk=12.5, (cl 6.4.4) 172.5 kN Bearing Capacity-Inner Plates pb=460, edge=89.0, ?=20, tk=16, (cl 6.4.4) 220.8 kN HSFG Bolts (non-slip at service) NS=1.1, Ks=1.00, µ=0.45, Po=143.3, psAs=98 70.9 kN Bolt Shear Capacity BSC=70.9, tg=44.5, LJ=200 141.9 kN Resultant Bolt Shear Capacity Min(441.6, 172.5, 141.9) 141.9 kN Bolt Shear Load F / No Bolts -570.8/ 6.0 95.1 kN OK

Plate and Flange Capacity Axial Cap Outer Plate =T•B•Fy 16.0•200.0•275 880.0 kN Axial Cap Flange =T•B•Fy 12.5•204.3•275 702.3 kN Axial Cap Inner Plate =T•B•Fy 16.0•140.0•275 616.0 kN Resultant Axial load -570.8 kN Axial Capacity Min((616.0 + 880.0), 702.3) 702.3 kN OK

Web Zone Bolt Shear Capacity Bearing Capacity-Web Plates pb=460, edge=32.5, ?=20, tk=2x12, (cl 6.4.4) 179.4 kN Bearing Capacity-Beam Web pb=460, edge=32.5, ?=20, tk=7.9, (cl 6.4.4) 59.1 kN HSFG Bolts (non-slip at service) NS=1.1, Ks=1.00, µ=0.45, Po=143.3, psAs=98 70.9 kN

Bolt Shear Capacity BSC=98.0, tg=31.9, LJ=60.0 141.9 kN Resultant Bolt Shear Capacity Min(179.4, 59.1, 141.9) 59.1 kN Bolt Shear Load Max(Fvx,Fvy,Fvxy) 0.5, 0.8, 0.8 0.8 kN OK

Page 48: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 48

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Plate Capacity per plate App. Moment=(Mweb+V • ecc)/2 (0.0 + 1.0 • 35.0)/2 0.0 kN.m Moment Cap=Znet • py 23306.1 • 275 6.4 kN.m OK App. Shear V/2 1.0/2 0.5 kN Shear Cap=0.9 • t • Dnet • 0.6 • py 0.9 • 12 • 81.0 • 0.6 • 275 144.3 kN OK

Web Axial Capacity Fcap=T•B•py 7.9 • 181.2 • 275 393.7 kN Fnet=(T•Bnet)•Py•Ke (7.9 • 137.2) • 275 • 1.2 357.7 kN OK

APEX JOINT AT : C4 - LEVEL 3 : MEMBERS 36, 42, 70, 76, 86, 107, 143, 151, 171 AND 194 (C1-C4)

Beam to Beam End-Plated Connection to BS 5950

LOADING CASE 001 : DEAD PLUS LIVE (ULTIMATE)

Basic Data Applied Forces at End-plate Interface Right Rafter Forces M, Fvr, Fr 18.6 kNm, 16.3 kN, 1198.6 kN Resultant Forces M, Fv, F 18.6 kNm, -71.1 kN, 1196.6 kN Load directions Top of Joint in Tension, Rafter moving Up and in Compression. Design to BS 5950-1: 2000 and the SCI Green Book: Joints in Steel Construction : Moment Connections: SCI-P-207/95 Rafter Capacities Mc, Fvc, Fc 246.3 kN.m, 391.1 kN, 2026.5 kN Fc = 2026.5 kN OK

Summary of Results (Unity Ratios) Moment Capacity (for 1 rows of bolts) 0.00 OK Shear Capacity 0.11 OK Extended End-plate Stiffener 0.00, 0.00, 0.00, 0.93, 0.00, 0.00 0.93 OK Flange Welds 0.00, 0.88 0.88 OK Web Welds 0.00, 0.10 0.10 OK Haunch Welds 0.14, 0.06, 0.16 0.16 OK End of Haunch Compression Zone 0.14, 0.10 0.14 OK

Step 1: Tension Zone BOLT ROW 1 End Plate row 1 only Mp=Leff•tk•tk •py/6 188.6•20.0•20.0•265.0/6 3331.9 kN.mm T2.5: 7 Prmode1=4•Mp/m 4•3331.9/38.05 350.3 kN Eq 2.1 Pr=min(Prmode1,3) min(350.3, 316.3) 316.3 kN

Page 49: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 49

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Potential Tension Capacity Sigma Pri 316.3 kN 316.3 kN

Step 2: Compression Zone Beam Compression Beam Compression Zone Flange and Web in Compression Utilising 20% OverStressing Total Area Flange and Web 204.3•12.5 + 7.9•137.0 36.4 cm² Pcbeam 36.4•275•1.20 1199.9 kN Eq 2.9

Potential Compression Capacity Pcmin 1199.9 1199.9 kN OK

Step 4: Moment Capacity Fc=Min(Pri+N, Pc) min(316.3 + 1196.6,1199.9) 1199.9 kN Fri=Fc-Axial 1199.9 - 1196.6 3.3 kN Pδ=Pri -Fri 316.3 - 3.3 313.0 kN

Final Bolt Forces and Moment Capacities Bolt row 1: Mc1 =(Pr1-Pδ )• h1 316.3 - 313.0 = 3.3•341.1 1.1 kN.m Mc 1.1 kN.m Mm=M-N•Hn 18.6 - 1196.6•187.7 -206.0 kN.m OK Mm is -ve. Joint in full compression. No tension zone generated OK Ft for 1 rows 3.3 3.3 kN Ftdesign=Ft •Mapp/Mc' 3.3•0.0/1.1 0.0 kN

Final Web Compression Zone Height Reducing Compression zone for applied moments. F red=PCbeam-Ft design 1199.9 - 0.0 1199.9 kN h red=F red/t/py/1.2 1199.9/7.9/275/1.2 460.3 mm h=max(0, h old-h red) max(0,137.0 - 460.3) 0.0 mm OK

Step 5: Shear Bolts Bolt Shear Capacity BSC=132.375, tg=40 132.4 kN Bearing Capacity-End Plate pb=460, edge=50.0, ?=24, tk=20, kbs=1.00 220.8 kN Bearing Capacity-Bolts pb=1000, ?=24, tk=20 480.0 kN Pss=Min(bearing...,shear) Min(220.8, 480.0, 132.4) 132.4 kN Pts Min(bearing...,0.4•shear) Min(220.8, 480.0, 53.0) 53.0 kN V=Ns•Pss+Nt•Pts 4•132.4 + 2•53.0 635 kN OK

Step 6C: Beam Tension Stiffeners Extended End-plate Stiffener Asn=Bsn•ts 100•16 1600 mm² Fapp=Fu•m1/(m1+m2) 3.3•42.0/(42.0 + 32.4) 1.9 kN Tension Asnreq=Fapp/pyt 1.9/275 6.8 mm² OK Bending fs=3•F•la/(Ls•Ls•ts) 3•1.9•50.0/(175•175•16) 0.6 N/mm² OK Shear fv=F/(Ls-snipe)/ts 1.9/(175 - 10)/16 0.7 N/mm² pv=0.6•py 0.6•275.0 165.0 N/mm² OK Ten weld leg >= Stk•0.7 12 >= 16•0.7 12 >= 11.2 OK Weld Bending fmw=fm•ts/(2•0.7•leg) 0.6•16/(2•0.7• 12) <= 275 0.5 N/mm² OK Weld Shear fvw=fv•ts/(2•0.7•leg) 0.7•16/(2•0.7•12) 0.7 N/mm² OK

Steps 7&8: Welds Flange Tension Weld Fapp=min(B•T•Py, Ftdesign) Min(204.3•12.5•275, 0.0) 0.0 kN FwCap=2•0.7•ts•L•Pyw 2•0.7•10•(204.3 - 2•10)•275 709.6 kN OK

Flange Compression Weld Flange Weld OK if >= 0.7•T 10 >= 0.7•12.5 >= 8.8 mm OK

Web Welds in Tension Zone Web weld Active Tension bolts outside web zone n/a

Web Welds in Shear Zone Lws=D-(Tt+Tb )-rt-rb-Lwt 300.0 - 26.2 - 10.2 - 10.2 - 14 239.6 mm FwCap=2•0.7•ts•Lws•Pyw 2•0.7•10•239.6•220 738.0 kN OK

Haunch Welds Mh= min(Mappeaves,Mcrafter) min(18.6, 156.0) 18.6 kN.m Method Force is resisted by both the Web Weld and the End Weld Each area must resist at least 1/4 of total load Applied Force Fh=Mh/(D-T) 18.6/(206.2 - 12.5) 96.0 kN

Page 50: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 50

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Fhcomp=(Ft+N)/Cos(θ) 0.0 + 1196.6 / Cos(-4.2) 1199.8 kN Fh=min(Fh,Fhcomp) min(96.0 , 1199.8) 96.0 kN

Haunch Web Weld Lw =(Hl-Dc/2-Tep)/Cos(Τheta) (200 - 0.0/2 - 20)/Cos(-4.2) 154.0 mm Lw=Lw -tw-(T+tw1)/Sin(Theta1) 154.0 - 10 -(12.5 + 6)/Sin(28.2)= 154.0-10-39.2 104.8 mm WebCap=2•0.7•t(Lw-2•t)•Pyw 2•0.7•6(104.8 - 2•6)•220 171.5 kN t=tw•Cos((90-ThetaH1)/2) 10•Cos((90-28.2)/2) 8.6 mm WebCap>= Fh/4 171.5 >= 96.0/4 24.0 kN OK

Haunch End Weld EndCap=t(B-2•w)•Pyw 9(204.3 - 2•10)•275 434.8 kN EndCap>= Fh/4 434.8 >= 96.0/4 24.0 kN OK Total Capacity=WebCap+EndCap 171.5 + 434.8 606.3 kN OK

Step 8: End of Haunch Compression Zone Force Applied From Haunch Weld design Proportioning applied load Fh between haunch Web and End welds Fend=Fh•Endcap/(Endcap +Webcap) 96.0•434.8/(434.8 + 171.5) 68.9 kN Fend=Max(Fend,Fh/4) max(68.9, 96.0/4) 68.9 kN FCapp=Fend•Tan(ThetaH1) 68.9•Tan(28.2) 36.9 kN

Web Bearing n =min(5,2+0.6•Be/K) min(5, 2 + 0.6•206.2/22.7) 5.000 Web Bearing Pbw =(b1+n•k)•t•Pyb (10.0 + 5.0•22.7)•7.9•275 268.3 kN OK

Web Buckling Px mod=min(1,(ae+0.7•d)/(1.4•d)) min(1,(206.2 + 0.7•181.2)/(1.4•181.2)) 1.000 Px =Pbw•mod•25ε•t/?((b1+n•k)d) 268.3•1.00x25x1.00•7.9/?((10.0+5•22.7)x181.2) 354.2 kN OK

BASE PLATE AT : A4 - LEVEL 3

Base-Plate Connection to BS 5950

LOADING CASE 001 : DEAD PLUS LIVE (ULTIMATE)

Basic Data Applied Forces at Interface Resultant Forces M, Fv, F Moment +0.0 kNm, Shear -1.4 kN, Axial +39.4 kN

Page 51: Truss 40 m Span

AL WADI STEEL ST. 17, Gate 98

INDUSTRIAL AREA

DOHA, QATAR

Job ref : Job Ref

Sheet : 51

Made By : Glend Bañaga

Date : 15/03/2012

Checked : Hany Ahmed Hassan

Approved : Hany Ahmed Hassan

Forces taken from Member End (Axial Compression)

Basic Dimensions Column: 203x203UC46 [43] D=203.2, B=203.6, T=11.0, t=7.2, r=10.2, py=275 Bolts 24 mm ? in 26 mm holes Grade 8.8 Bolts Plates S 275, Welds E 35 Data grout, Fcu, Fcv, py, slope 15 N/mm², 40 N/mm², 0.40 N/mm², 265 N/mm², 0 deg to vertical Design to BS 5950-1: 2000 and the SCI Green Book: Joints in Steel Construction : Moment Connections: SCI-P-207/95 Column Capacities Mc, Fvc, Fc 136.8 kN.m, 241.4 kN, 1615.1 kN Fc = 1615.1 kN OK

Summary of Results (Unity Ratios) Concrete Pressure 0.03 OK Base-Plate thickness in Compression 0.26 OK Horizontal Shear 0.02 OK Flange & Web Welds 0.00 0.00 OK

Step 1: Base-Plate Pressure Allowable Pressure=0.60•Fcu 0.60•15 9.0 N/mm² Pressure Configuration Compression Only Ac=x2•wf+x4•wf 200.00•400.00 + 200.00•400.00 1600.0 cm² Conc Cap C=0.60•Fcu•Ac 0.60•15•160000.0 1440.0 kN OK Pressure=P•1000/Ac 39.4•1000/160000 0.25 N/mm² OK

Step 2a: Plate Compression Bending e=L1 98.4 98.4 mm Mapp=p•e²/2 0.2•98.4²/2 1192 Nmm/mm tp=?(6•Mapp/py) ?(6•1192/265) 5.2 mm OK Note: Axial Load Axial Using Elastic Modulus Zp (4.13.2.2)

Step 4: Shear Base Friction Friction Fr=0.72•Fc 0.72•+39.4 kN 28.4 kN

Bolt Bearing Pss=Min(Bs, Cb, Pb, Bb)•nbs Min(132.4, 10.4, 220.8, 480.0) = 10.4•2 20.7 kN Pts=Min(Bsten, Cb, Pb, Bb)•nbt Min(132.4, 10.4, 220.8, 480.0) = 10.4•2, (no tension) 20.7 kN

Total Shear Capacity Total Cap=Fr+Pss+Pts 28.4 + 20.7 + 20.7 69.8 kN OK

Step 5: Flange & Web Welds Load dispersal Flanges resist Moment and Axial, Web resists Axial and Shear. Direct Bearing therefore design for tensile forces only. Areas A, Af, Aw 58.7, 2 x 22.4, 13.0 cm²

Flange Welds Fapp=F•Af/A 39.4•22.4/58.7 0.0 kN No Resultant Tensile Force

Web Welds Web weld load=Fv/(D-2(fw+T)) 1.4/(203.2 - 2(8 +11.0)) 0.01 kN/mm Fcap w=2•0.7•leg•Py 2•0.7•6•220 1.85 kN/mm OK


Recommended