+ All Categories
Home > Documents > TSpec4’’’ ’ Technical’Report’ › nstc › triplespec › Documents › TTR02... ·...

TSpec4’’’ ’ Technical’Report’ › nstc › triplespec › Documents › TTR02... ·...

Date post: 06-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
10
TSpec4 Technical Report 1 ID: TSpec4TR #02 Subj: The TripleSpec Design Date: February 17, 2012 (v2.0) From: Terry Herter, John Wilson, Chuck Henderson To: The TSpec4 Team Summary: This report briefly summarizes the original design of TripleSpec (TSpec) as relevant to TSpec4. The performance is discussed in TSpec4TR #1 (TSpec4 Requirements) while the design changes required for TSpec4 are given in TSpec4TR #3 (Design Changes). OptoMechanical Layout: The basic design of TripleSpec consists of three key components: reimager, slit viewer, and spectrograph. The reimager transforms the incoming telescope fnumber to match that of the spectrograph. It also contains a field stop, Lyot stop, and at its output is the slit. A roughly 4’x4’ field is reflected from the slit plane to the slit viewer camera which is used for acquisition and guiding. The light passing through the slit enters the spectrographic portion of TripleSpec where a prismatic crossdisperser provides order separation ahead of the reflection grating and 7element camera. The slit viewer uses a 1024x1024 NIR array while the spectrograph employs a 2048x1024 section of a separate NIR array. Data acquisition occurs independently for the two arrays. All versions of TSpec (including TSpec4 for Blanco) have identical spectrographs. The changes are in the reimaging and slit viewer sections. Figure 1 shows a toplevel solid model of the TSpec design. The main (clam shell) LN2 cryogen tank cools the internal optics, mechanical structures and slit viewer detector. TripleSpec is designed to operate at any orientation so that the 120 liter main tank is only halffilled giving roughly a three day hold time. A twoliter secondary cryogen tank (not shown) provides a stable temperature base for the spectrograph detector obviating the need for active thermal control of the focal plane. The hold time of the secondary tank is many weeks. Three rigid bulkheads (Figure 2) section off the instrument volume and provide dimensional stability and mount points for the optical components. The resulting dimensional and thermal stability are excellent.
Transcript
Page 1: TSpec4’’’ ’ Technical’Report’ › nstc › triplespec › Documents › TTR02... · 2012-12-02 · Infrasil Prism Harold Johnson Optical Labs 22 Infrasil Prism Coatings

TSpec4         Technical  Report    

1    

 

ID:   TSpec4-­‐TR  #02  

Subj:   The  TripleSpec  Design  

Date:   February  17,  2012  (v2.0)  

From:   Terry  Herter,  John  Wilson,  Chuck  Henderson  

To:   The  TSpec4  Team  

Summary:  

This  report  briefly  summarizes  the  original  design  of  TripleSpec  (TSpec)  as  relevant  to  TSpec4.      The  performance  is  discussed  in  TSpec4-­‐TR  #1  (TSpec4  Requirements)  while  the  design  changes  required  for  TSpec4  are  given  in  TSpec4-­‐TR  #3  (Design  Changes).  

Opto-­‐Mechanical  Layout:  

The  basic  design  of  TripleSpec  consists  of  three  key  components:  re-­‐imager,  slit  viewer,  and  spectrograph.    The  re-­‐imager  transforms  the  incoming  telescope  f-­‐number  to  match  that  of  the  spectrograph.    It  also  contains  a  field  stop,  Lyot  stop,  and  at  its  output  is  the  slit.    A  roughly  4’x4’  field  is  reflected  from  the  slit  plane  to  the  slit  viewer  camera  which  is  used  for  acquisition  and  guiding.    The  light  passing  through  the  slit  enters  the  spectrographic  portion  of  TripleSpec  where  a  prismatic  cross-­‐disperser  provides  order  separation  ahead  of  the  reflection  grating  and  7-­‐element  camera.    The  slit  viewer  uses  a  1024x1024  NIR  array  while  the  spectrograph  employs  a  2048x1024  section  of  a  separate  NIR  array.    Data  acquisition  occurs  independently  for  the  two  arrays.    All  versions  of  TSpec  (including  TSpec4  for  Blanco)  have  identical  spectrographs.    The  changes  are  in  the  re-­‐imaging  and  slit  viewer  sections.  

Figure  1  shows  a  top-­‐level  solid  model  of  the  TSpec  design.    The  main  (clam  shell)  LN2  cryogen  tank  cools  the  internal  optics,  mechanical  structures  and  slit  viewer  detector.    TripleSpec  is  designed  to  operate  at  any  orientation  so  that  the  120  liter  main  tank  is  only  half-­‐filled  giving  roughly  a  three  day  hold  time.    A  two-­‐liter  secondary  cryogen  tank  (not  shown)  provides  a  stable  temperature  base  for  the  spectrograph  detector  obviating  the  need  for  active  thermal  control  of  the  focal  plane.      The  hold  time  of  the  secondary  tank  is  many  weeks.    Three  rigid  bulkheads  (Figure  2)  section  off  the  instrument  volume  and  provide  dimensional  stability  and  mount  points  for  the  optical  components.    The  resulting  dimensional  and  thermal  stability  are  excellent.    

Page 2: TSpec4’’’ ’ Technical’Report’ › nstc › triplespec › Documents › TTR02... · 2012-12-02 · Infrasil Prism Harold Johnson Optical Labs 22 Infrasil Prism Coatings

TSpec4         Technical  Report    

2    

 

 

Figure  1:  Simplified  solid  model  view  of  TSpec  showing  the  cryogen  tank  and  optical  components.    The  other  shell,  cryogen  tanks,  mounting  bulkheads,  baffles,  etc.  are  not  shown.  

 

 

Figure  2:  Image  of  TSpec  during  assembly  showing  bulkheads  and  spectrograph  camera  (black).    The  array  mount  (not  yet  installed)  is  in  the  foreground.  

 

Dewar Window

Collimator

Slit Viewer

2 Folds for packaging

Grating

Detector

7-element camera

Clam Shell LN2 Tank: 60 liter ‘half-load’ ~ 3 day hold time

Fits inside ~30” dia, 46.5” long dewar. 700 lbs

Optics  Mount  to  inner  3  bulkheads  

Bulkheads  resist  ‘closing’  of  LN2  tank  

clam  shell  horns  

Page 3: TSpec4’’’ ’ Technical’Report’ › nstc › triplespec › Documents › TTR02... · 2012-12-02 · Infrasil Prism Harold Johnson Optical Labs 22 Infrasil Prism Coatings

TSpec4         Technical  Report    

3    

 

Re-­‐imager  and  Slit  Viewer:  

Figures  3  and  4  show  the  front  end  of  TripleSpec.        Light  enters  through  a  ZnSe  entrance  window,  passes  through  a  field  stop  at  the  telescope  focus  and  is  collimated  by  an  off-­‐axis  paraboloid  (OAP1).    The  beam  proceeds  through  a  Lyot  stop  to  another  off-­‐axis  paraboloid  (OAP2)  which  focused  the  light  onto  the  entrance  slit  of  the  spectrograph.    The  spectrograph  slit  consists  of  an  gold  coated  silicon  wafer  which  reflects  the  field  surrounding  the  slit  towards  the  slit  viewer  optics  (Figures  4  and  5).    A  fold  mirror  directs  the  light  into  the  slit  viewer  camera  which  in  the  Palomar  version  consists  of  two  lenses  that  focus  light  onto  a  1024x1024  Hawaii-­‐1  detector.    A  K-­‐band  filter  is  placed  at  the  beam  waist  which  serves  as  another  Lyot  stop.      The  slit  is  located  about  100  pixels  (25”)  from  the  edge  of  the  slit  viewer  field.    This  serves  two  purposes:    this  is  the  location  of  best  image  quality  for  the  re-­‐imager,  and  additional  reference/guide  stars  can  be  found  by  rotating  the  field  (accomplished  by  rotating  the  instrument).    

 

Figure  3:  Optical  layout  of  TSpec  re-­‐imager  which  relays  the  telescope  focus  to  the  slit  plane  matching  the  f-­‐number  of  the  spectrograph.  

Dewar Window

Telescope Focus

Off Axis Paraboloid 1

Off Axis Paraboloid 2

Lyot Stop

Reflective Slit

Page 4: TSpec4’’’ ’ Technical’Report’ › nstc › triplespec › Documents › TTR02... · 2012-12-02 · Infrasil Prism Harold Johnson Optical Labs 22 Infrasil Prism Coatings

TSpec4         Technical  Report    

4    

 

 

Figure  4:  Opto-­‐mechanical  layout  of  the  re-­‐imaging  and  slit  viewer  (SV)  sections  of  TripleSpec.      Numbers  track  the  passage  of  the  optical  beam  through  the  system.    See  text  for  additional  explanation.  

 

Figure  5:    Optical  path  of  TSpec  slit  viewer  (SV)  which  receives  light  reflected  from  the  slit  plane.    The  Palomar  system  has  a  two-­‐lens  camera  while  the  APO  SV  camera  has  four.  

5. Camera (OAP2)

1. Dewar Window

8. Slit Viewer

9. SV focal plane (not shown)

2. Field Stop

4. Lyot Stop

3. Collimator (OAP1)

6. Spectrograph slit & mirror defining SV field

7. Fold Mirror

Reflective Slit Plane

Fold Mirror

Lens 1 (ZnSe, aspheric)

Lyot Stop + Ks Filter

Lens 2 (ZnSe, aspheric)

Hawaii-1 detector

Page 5: TSpec4’’’ ’ Technical’Report’ › nstc › triplespec › Documents › TTR02... · 2012-12-02 · Infrasil Prism Harold Johnson Optical Labs 22 Infrasil Prism Coatings

TSpec4         Technical  Report    

5    

 

Spectrograph:  

Figures  6  and  7  show  the  spectrographic  stage  of  TripleSpec.    After  passing  through  the  slit  the  light  is  collimated  via  an  off-­‐axis  paraboloid.    Two  fold  mirrors  redirect  the  light  which  passes  through  two  ZnSe  prisms  and  an  Infrasil  prism  which  provide  the  low-­‐resolution  cross-­‐dispersion  for  order  sorting.    Next  a  grating  diffracts  the  light  into  the  7-­‐element  camera  which  focuses  onto  a  2048x1024  section  of  a  Hawaii-­‐2  HgCdTe  array.    The  camera  includes  elements  of  CaF2,  Infrasil,  Cleartran  (ZnS)  and  ZnSe.    One  surface  is  aspheric  and  one  is  a  conic;  the  balance  are  spherical.  

 

 

Figure  6:  Two  views  of  the  optical  layout  of  the  spectrograph  portion  of  TSpec.    Light  passing  through  the  slit  is  collimated,  reflected  off  two  fold  mirrors  and  passes  through  three  prisms  before  reaching  the  reflection  grating.    A  7-­‐element  camera  images  the  spectrum  onto  a  2048x1024  pixel  detector  area.  

Reflective Slit Substrate

Collimator (Off-axis Paraboloid)

3 Prisms (in series)

Detector 7-element Refractive Camera

Reflection Grating

Fold mirrors

Page 6: TSpec4’’’ ’ Technical’Report’ › nstc › triplespec › Documents › TTR02... · 2012-12-02 · Infrasil Prism Harold Johnson Optical Labs 22 Infrasil Prism Coatings

TSpec4         Technical  Report    

6    

 

 

Figure  7:  Opto-­‐mechanical  layout  of  the  spectrographic  (post-­‐slit)  section  of  TripleSpec.      Numbers  trace  the  passage  of  the  optical  beam  through  the  system.    See  text  for  additional  explanation.  

4. Grating

1. Collimator 3. Prisms

2. Fold mirrors

6. Detector

5. Camera

Page 7: TSpec4’’’ ’ Technical’Report’ › nstc › triplespec › Documents › TTR02... · 2012-12-02 · Infrasil Prism Harold Johnson Optical Labs 22 Infrasil Prism Coatings

TSpec4         Technical  Report    

7    

 

Component  Hardware:  

Table  1  lists  vendor-­‐provided  major  components  of  TSpec  with  delivery  times  updated  for  TSpec4  using  vendor  supplied  quotes.      (The  TSpec4  schedule  adds  margins  to  the  procurement  time  to  established  schedule  contingency.)      Although  there  is  a  necessary  change  in  the  precise  optical  prescription  of  the  re-­‐imager  OAPs  and  the  slit  viewer  lenses,  the  specifications  (i.e.  surface  accuracy  requirements)  are  expected  to  be  the  same.    (A  full  tolerancing  analysis  of  the  TSpec4  reimager  and  slit  viewer  will  be  conducted  prior  to  ordering  these  optical  components.)  Note  that  the  spectrograph  camera  is  procured  as  a  fully  assembled  and  tested  subsystem  from  a  single  vendor,  as  was  the  case  for  prior  versions  of  Tspec.  

 

Table  1:  Major  Vendor-­‐Supplied  Hardware  

Description Vendor

Procurement Duration (weeks)

H2RG FPA (1k x 2k) Teledyne 48 H2RG FPA (1k x 1k) Teledyne 48 ZnSe Window II-VI 10 Window Coating Infinite Optics 1-2 Off-Axis Paraboloids Axsys 29 Lyot Stop Laser Light Technologies 3 Slit Substrate Michael Cabral (VCU) 12 Slit Viewer Lens 1 Nu-Tek Precision Optical Corp. 10-12 SV L1 Coating Infinite Optics 1-2 Slit View Lens 2-4 Nu-Tek Precision Optical Corp. 10-12 SV L2-4 Coating Infinite Optics 1-2 Slit Viewer Filter Asahi Spectra 8-9 Fold Mirrors JML Optical Industries 13-14 ZnSe Fab & Coating II-VI 12-14 Infrasil Prism Harold Johnson Optical Labs 22 Infrasil Prism Coatings Infinite Optics 1-2 Grating (140 x 110 mm) Newport RGL 8-12 Spectrograph Camera New England Optical Systems 26 Dewar Precision Cryo 24

 

Page 8: TSpec4’’’ ’ Technical’Report’ › nstc › triplespec › Documents › TTR02... · 2012-12-02 · Infrasil Prism Harold Johnson Optical Labs 22 Infrasil Prism Coatings

TSpec4         Technical  Report    

8    

 

Order  Layout  and  Spectral  Resolution:  

Figure  8  shows  the  order  layout  for  TSpec.    The  array  is  oriented  (rotated  about  the  optical  axis  and  translated)  to  place  the  third  order  (K-­‐band)  roughly  parallel  to  the  “top”  of  the  array.      TSpec  uses  a  110.5  lines/mm  grating  replica  grating  fabricated  from  a  GNIRS  master.        Figure  9  shows  the  variation  of  the  spectral  resolution  as  a  function  of  wavelength  and  order.      The  as-­‐designed  spectral  resolution  is  achieved  with  the  Palomar  TSpec.    Moreover,  the  spectral  resolution  increases  for  the  (physically)  smaller  slit  size  used  with  the  APO  TSpec  (as  expected,  the  resolution  is  limited  by  the  slit  and  not  any  optical  aberrations).  

 

Figure  8:  As-­‐designed  order  layout  for  TSpec  showing  the  wavelength  range  of  the  orders.    Order  widths  (slit  lengths)  are  30”  (Palomar)  and  43”  (APO).      

1.88 2.46

1.48 1.235

1.06

0.93 0.829

1.415 1.13

0.945

0.81

0.74 0.77

1.85

0.78 0.8

Page 9: TSpec4’’’ ’ Technical’Report’ › nstc › triplespec › Documents › TTR02... · 2012-12-02 · Infrasil Prism Harold Johnson Optical Labs 22 Infrasil Prism Coatings

TSpec4         Technical  Report    

9    

 

 

Figure  9:  As-­‐designed  spectral  resolution  of  Palomar  TSpec  as  a  function  of  order  and  wavelength.    This  spectral  resolution  is  achieved  by  the  Palomar  TSpec.    For  APO  TSpec  the  spectral  resolution  improves  to  ~  3700,  as  expected  given  its  slit  size.  

 

 

Page 10: TSpec4’’’ ’ Technical’Report’ › nstc › triplespec › Documents › TTR02... · 2012-12-02 · Infrasil Prism Harold Johnson Optical Labs 22 Infrasil Prism Coatings

TSpec4         Technical  Report    

10    

 

Summary  

The  Palomar  and  APO  versions  of  TSpec  have  met  there  their  original  design  specifications.    They  have  been  acquiring  science  data  for  over  three  years.    The  changes  required  to  adapt  the  TSpec  design  to  the  Blanco  telescope  are  relatively  straightforward  and  present  no  significant  technical  challenges.      The  required  changes  are  given  in  TSpec4-­‐TR  #3  (Design  Changes).  

 


Recommended