+ All Categories
Home > Documents > TST56 Welded Joints Examples 12.13 Edit

TST56 Welded Joints Examples 12.13 Edit

Date post: 06-Jul-2018
Category:
Upload: daniyal-ahmad
View: 256 times
Download: 3 times
Share this document with a friend

of 56

Transcript
  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    1/56

    Welded joints examples

    Celsius®355 NH

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    2/56

    Welded Joints Examples Contents

    2

    CONTENTS

    RHS T-Joint Moment in Plane 03

    CHS Gap K-Joint 09

    CHS Overlap K-Joint 12

    RHS Gap K-Joint 15

    RHS Overlap K-Joint 21

    RHS Chord CHS Bracings Gap K-Joint 23

    RHS Chord CHS Bracings Overlap K-Joint 82.7 29

    RHS Chord CHS Bracings Overlap K-Joint 102.7 33

    RHS Chord RHS Bracings Overlap KT-Joint 36CHS Chord CHS Bracings Gap KT-Joint 41

    CHS Chord CHS Bracings Overlap KT-Joint 46

    UB Chord RHS Bracings Gap K-Joint 52

    1

    2

    3

    4

    5

    6

    7

    8

    910

    11

    12

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    3/56

    Welded Joints Examples RHS T-Joint Moment In Plane

    1 RHS T-Joint Moment In Plane

    3

    References are generally to Tata Steel publication ‘Design of Welded Joints’ (unless otherwise stated).

    SHS 150 x 150 x 10

     All material Celsius 355 to EN 10210

    RHS 150 x 150 x 8

    90º

     

    N1,Ed = 19.2 kN

    Mip,1,Ed = 54 kNm

    Np,Ed = 350 kN

    Mip,0,Ed = 16.6 kNm

    N0,Ed = 136 kN

    Mip,0,Ed = 35.8 kNm  

    Dimensions 

    b0 = 150 mm b1 = 150 mmh0 = 150 mm h1 = 150 mmt0 = 10.0 mm t1 = 8.0 mm

    Validity limits check  

    Chord:

    (b0-3 t0)/t0  ; (h0-3 t0)/t0 ≤ 38ε (Class 1 or 2 compression)38ε = 38 √(235/f y0) = 38√(235/355) = 30.92(b0-3 t0)/t0 = (150-3 x 10)/10 = 12 ∴PASS(h0-3 t0)/t0 = (150-3 x 10)/10 = 12 ∴PASS

    b0/t0 ≤ 35 b0/t0 = 150/10 = 15 ∴PASSh0/t0 ≤ 35 h0/t0 = 150/10 = 15 ∴PASS

    Compression brace:

    bi/ti ; hi/ti ≤ 35 b1/t1 = 150/8 =18.75 ∴PASSh1/t1 = 150/8 =18.75 ∴PASS

    Compression brace:

    (b1-3 t1)/t1  ; (h1-3 t1)/t1 ≤ 38ε (Class 1 or 2 compression)38ε = 38 √(235/f y0) = 38√(235/355) = 30.92

    (b1-3 t1)/t1 = (150-3 x 8)/8 = 15.75 ∴PASS(h1-3 t1)/t1 = (150-3 x 8)/8 = 15.75 ∴PASS

    0.25 ≤ bi/b0 ≤ 1.0 b1/b0 = 150/150 = 1.0 ∴PASS

    0.5 ≤ h0/b0 ≤ 2.0 h0/b0 = 150/150 = 1.0 ∴PASS

    0.5 ≤ hi/bi ≤ 2.0 h1/b1 = 150/150 = 1.0 ∴PASS

    30° ≤ θi ≤ 90° θ1 = 90° ∴PASS

    Reference

    5.3.1 Figure 37

    (EN 1993-1-1)Table 5.2

    (EN 1993-1-1)Table 5.2

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    4/56

    Welded Joints Examples RHS T-Joint Moment In Plane

    4

     Axial : Chord face failure (deformat ion) 

    (valid when β ≤ 0.85)

    required not check0.1150

    150

    b

    b

    0

    1 ∴===β  

     Although this check is not required in this particular case, the chord end stressfactor calculation for is shown below for information as it includes moments;

    RHS chord end stress factor, kn 

    RHS chord most compressive

    stress, σ0,Ed;

    0,op,el

    Ed,0,op

    0,ip,el

    Ed,0,ip

    0

    Ed,0Ed,0

    W

    M

    W

    M

     A

    N++=σ  

    Note: Moment is additive to compressive stress which is positive for moments. ForRHS chords use most compressive chord stress.

     A0 = 54.9 cm2 = 5490 mm

    32Ed,0 10236

    100010008.35

    109.54

    1000136

    ×

    ××+

    ×

    ×=σ  

    2Ed,0 mm/N47.176=σ  

    Chord factored stress ratio, n;

    ⎟ ⎠

     ⎞⎜⎝ 

    ⎛ =

    ⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛  σ=

    355

    47.176

    f n

    0y

    Ed,0 

    497.0n =  

    Using formulae: Using graph:

    For n > 0 (compression):

    β−=

    n4.03.1kn   but kn ≤ 1.0

    0.10.1

    497.04.03.1kn   ≤

    ×−=  

    0.1k0.1but101.1k nn   =∴≤=  

    From graph, for β = 1.0;

    kn = 1.0

    (However, not required in this case as chord deformation not critical asβ>0.85)

    Reference5.3.3

    6.3

    5.3.2.1

    5.3.2.1

    5.3.2.1Fig. 38

     5.3.2.1

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    5/56

    Welded Joints Examples RHS T-Joint Moment In Plane

    5

     Axial : Chord shear  

    (valid for X-joints with Cos θ1 > h1/h0) As this is a T-joint with θ1 = 90° this check is notrequired.

     Axial : Chord s ide wal l buckl ing

    (valid when β = 1.0) β = 1.0∴check required

    5M01

    1

    1

    0bnRd,1 /t10

    sin

    h2

    sin

    tf kN   γ⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ +

    θθ=  

    Chord side wall buckling strength, f b 

    For compression brace, T-joint:

    0y

    i0

    0

    E

    sin

    12

    t

    h

    46.3

    π

    θ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ −

    =λ   where: E = 210000 N/mm2 

    589.0

    355

    210000

    90sin

    12

    10

    150

    46.3   =

    π

    °⎟ ⎠

     ⎞⎜⎝ 

    ⎛ −

    =λ  

    Using formulae: Using graph:

    From EN 1993-1-1:2005, 6.3.1.2, flexural buckling

    reduction factor, χ;

    From EN 1993-1-1:2005, table 6.1, 21.0=α  (curve ‘a’)

    ( ) 22.015.0   λ+−λα+=φ  

    ( )( 714.0589.02.0589.021.015.0 2 =+−+=φ  

    1.0but

    1

    22 ≤χλ−φ+φ=χ  

    1.0but

    589.0714.0714.0

    1

    22≤χ

    −+=χ  

    895.0=χ  

    From graph, for

    589.0=λ ;

    895.0=χ  

    0yb f f    χ=   (for T- and Y-joints with compression in bracing)

    2b N/mm318355895.0f    =×=  

    0.1/1010

    90sin

    1502

    90sin

    103180.1N Rd,1   ⎟⎟

     ⎠

     ⎞⎜⎜

    ⎝ 

    ⎛ ×+

    °

    ×

    °

    ××=  

    Reference5.3.3

    5.3.3

    5.3.3

    5.3.2.3

    6.1 (For ‘E’)

    5.3.2.3

    (EN 1993-1-1)Table 6.1

    (EN 1993-1-1)6.3.1.2

    5.3.2.3Fig. 40

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    6/56

    Welded Joints Examples RHS T-Joint Moment In Plane

    6

     Ax ial : Chord punch ing shear

    (valid when 0.85 ≤ β ≤ 1 – 1/γ)

    5.7102

    150

    t2

    b

    0

    0 =×

    ==γ  

    867.05.7

    110.185.0   =−≤≤  

    ∴Check not required

     Axial : Brac ing failure (effect ive width)

    (valid when β ≥ 0.85)

    β = 1.0

    ∴check required

    ( ) 5Mi,eff 1i11yRd,1 /b2t4h2tf N   γ+−=  

    where:

    ii,eff iiyi

    00y

    0

    0i,eff  bbbutbtf 

    tf 

    bt10b   ≤×=  

    mm150bbutmm1251508355

    10355

    150

    1010b i,eff i,eff    ≤=××

    ××

    ×=  

    beff,i = 125 mm

    ( ) 0.1/12528415028355N Rd,1   ×+×−××=  

    PASSkN2.19kN1471N Rd,1   ∴>=  

    Moment in plane: Chord face failure (deformation) 

    (valid when β ≤ 0.85)

    required not check0.1150

    150

    b

    b

    0

    1 ∴===β  

    Reference 

    5.3.3

    6.3

    5.3.3

    6.3

    5.3.3

    5.3.2.2

    5.3.5.1

    6.3

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    7/56

    Welded Joints Examples RHS T-Joint Moment In Plane

    7

    Moment in plane: Chord side wall crushing

    (valid when 0.85 < β ≤ 1.0)

    required check0.1150

    150

    b

    b

    0

    1 ∴===β  

    ( ) 5M2

    010ykRd,1,ip /t5htf 5.0M   γ+=  

    where:

    f yk = f y0  (for T-joints)

    ∴ f yk = 355 N/mm2 

    ( ) 0.1/105150103555.0M 2Rd,1,ip   ×+××=  

    PASSkNm54kNm71M Rd,1,ip   ∴>=  

    Moment in plane: Bracing failure (effective width) 

    (valid when 0.85 < β ≤ 1.0)

    required check0.1150

    150

    b

    b

    0

    1 ∴===β  

    ( ) 5M11111

    1,eff 1,ip,pl1yRd,1,ip /tthb

    b

    b1Wf M   γ

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡−⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ −−=  

    where:

    Wpl,ip,1 = 237 cm3 = 237000 mm

    beff,1 = 125 mm

    ( ) 0.1/88150150150

    1251237000355M

    Rd,1,ip   ⎥⎦

    ⎢⎣

    ⎡−⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ −−=  

    PASSkNm54kNm1.74M Rd,1,ip   ∴>=  

    Summary Axial joint resistance for brace 1 limited by chord side wall buckling andmoment in plane resistance by chord side wall crushing resistance.

     Axial joint resistance, PASSkN2.19kN1272N Rd,1   ∴>=  

    Moment in plane joint resistance, PASSkNm54kNm71M Rd,1,ip   ∴>=  

    Reference

    5.3.5.1

    6.3

    5.3.5.1

    5.3.2.4

    5.3.5.1

    6.3

    5.3.5.1

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    8/56

    Welded Joints Examples RHS T-Joint Moment In Plane

    8

    Interaction checkWhen more than one type of force exists, e.g. axial and moments in plane, aninteraction check is required;

    0.1M

    M

    M

    M

    N

    N

    Rd,i,op

    Ed,i,op

    Rd,i,ip

    Ed,i,ip

    Rd,i

    Ed,i≤++   (for RHS chords)

     As there are no moments out of plane;

    776.0M

    07154

    12722.19

    Rd,i,op=++  

    PASS000.1776.0   ∴≤  

    Reference2.3

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    9/56

    Welded Joints Examples CHS Gap K-Joint

    2 CHS Gap K-Joint

    9

    References are generally to Tata Steel publication ‘Design of Welded Joints’ (unless otherwise stated).

    N1,Ed = 500 kN N2,Ed = - 400 kN

    CHS 219.1x12.5 All material CELSIUS 355 to EN 10210

    CHS 139.7x5.0  CHS 114.3x3.6

    45º45º 

    40

    Np,Ed = 1000 kN  N0,Ed = 1636 kN

     Note: Brace 1 usually designated compression and brace 2 tension.

    Dimensions 

    d0 = 219.1 mm d1 = 139.7 mm d2 = 114.3 mmt0 = 12.5 mm t1 = 5.0 mm t2 = 3.6 mm

    Validity limits check  

    10 ≤ d0/t0 ≤ 50 d0/t0 = 219.1/12.5 = 17.53 ∴PASS

    d0/t0 ≤ 70ε2 (Class 1 or 2 for compression chord)

    70ε2 = 70 [√(235/f y0)]2 = 70(235/355) = 46.34

    17.53 < 46.34 ∴PASS

    di/ti ≤ 70ε2 (Class 1 or 2 for compression brace)

    70ε2 = 70 [√(235/f y0)]2 = 70(235/355) = 46.34

    d1/t1 = 139.7/5.0 = 27.94 < 46.34 ∴PASS

    di/ti ≤ 50 d1/t1 = 139.7/5.0 = 27.94 ∴PASSd2/t2 = 114.3/3.6 = 31.75 ∴PASS

    0.2 ≤ di/d0 ≤ 1.0 d1/d0 = 139.7/219.1 = 0.64 ∴PASS

    d2/d0 = 114.3/219.1 = 0.52 ∴PASS

    -0.55 d0 ≤ e ≤ +0.25 d0  -0.55 x 219.1 ≤ e ≤ +0.25 x 219.1-120.5 ≤  e ≤ +54.8e = 0 mm ∴PASS

    g ≥ t1 + t2  t1 + t2 = 5 + 3.6 = 8.6 mmg = 40 mm ∴PASS

    30° ≤ θ i ≤ 90° θ1 = 45° ∴PASSθ2 = 45° ∴PASS

    Reference 

    5.1.1 Figure 27

    (EN 1993-1-1)Table 5.2

    (EN 1993-1-1)Table 5.2

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    10/56

    Welded Joints Examples CHS Gap K-Joint

    10

    Chord face failure (deformation) 

    Compression brace (1):

    5M0

    1

    1

    200ypg

    Rd,1 /d

    d2.108.1

    sin

    tf kkNfailure, face Chord   γ⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ +

    θ=  

    Gap/lap function, kg 

    764.85.122

    1.219

    t2

    d

    0

    0

    =×==γ  

    Using formulae: Using graph:

    ( )⎥⎥⎦

    ⎢⎢⎣

    −+γ

    +γ=33.1t/g5.0exp1

    024.01k

    0

    2.12.0

    g

     

    Note: g is positive for a gap and negative for an overlap

    ( )⎥⎥⎦

    ⎢⎢⎣

    −×+×

    +=33.15.12/405.0exp1

    764.8024.01764.8k

    2.12.0

    g

     

    761.1kg  =  

    from graph;

    g/t0 = 40/12.5 = 3.2

    kg = 1.761

    CHS chord end stress factor, kp 

    CHS chord least compressive applied factored stress, σp,Ed;

    0,op,el

    Ed,0,op

    0,ip,el

    Ed,0,ip

    0

    Ed,pEd,p

    W

    M

    W

    M

     A

    N++=σ  

    Note: Moment is additive to compressive stress which is positive for moments. For

    CHS chords use least compressive chord stress.

    2

    2Ed,pN/mm30.123

    101.81

    10001000=

    ×

    ×=σ  

    Chord factored stress ratio, np; 347.0355

    30.123

    f n

    0y

    Ed,pp   =⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ =

    ⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛  σ=  

    Using formulae: Using graph:

    For np > 0 (compression):

    kp = 1 - 0.3 np (1 + np) but ≤ 1.0( ) 0.1but347.01347.03.01kp   ≤+×−=  

    860.0kp  =  

    from graph;

    kp = 0.860

    Reference

    5.1.3

    6.3

    5.1.2.2

    5.1.2.1

    5.1.2.1

    5.1.2.1

    5.1.2.2Fig.29

    5.1.2.1Fig.28

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    11/56

    Welded Joints Examples CHS Gap K-Joint

    11

    0.1/1.219

    7.1392.108.1

    45sin

    5.12355860.0761.1N

    2

    Rd,1   ⎟ ⎠

     ⎞⎜⎝ 

    ⎛ +

    °×××

    =  

    kN986N Rd,1   =  

    Tension brace (2):

    Rd,12

    1Rd,2 N

    sin

    sinN

    θ

    θ=  

    98645sin

    45sinN Rd,2   ×°

    °=  

    kN986N Rd,2   =  

    Chord punching shear

    (valid when di ≤ d0 – 2 t0)

    di ≤ d0 – 2 t0

    di ≤ 219.1 – 2 x 12.5 = 194.1 mm

    d1 = 139.7 mm < 194.1 mm ∴check chord punching shear

    d2 = 114.3 mm < 194.1 mm ∴check chord punching shear

    5M

    i2

    ii0

    0yRd,i /

    sin2

    sin1dt

    3

    f N   γ

    θ

    θ+π=

     

    Brace (1):

    0.1/45sin2

    45sin17.1395.12

    3

    355N

    2Rd,1 °

    °+××π××=

     

    kN1919N Rd,1   =  

    Brace (2):

    0.1/45sin2

    45sin13.1145.12

    3

    355N

    2Rd,2 °

    °+××π××=

     

    kN1570N Rd,2   =  

    Joint strength dictated by chord face failure for both bracings;

    PASSkN500kN986N,resistance  joint 1 Brace Rd,1   ∴>=  

    PASSkN400kN986N,resistance  joint 2 Brace Rd,2   ∴>=  

    Reference

    5.1.3

    5.1.3

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    12/56

    Welded Joints Examples CHS Overlap K-Joint

    3 CHS Overlap K-Joint

    12

    References are generally to Tata Steel publication ‘Design of Welded Joints’ (unless otherwise stated).

    N1,Ed = 500 kN 

    Np,Ed = 1000 kN  CHS 219.1x12.5 All material CELSIUS 355 to EN 10210

    CHS 139.7x5.0 

    N2,Ed = - 400 kN

    N0,Ed

     = 1636 kN

    CHS 114.3x3.6

    45º45º 

    - 45

    e = - 42.2

     

    Note: Brace 1 usually designated compression and brace 2 tension

    Dimensions 

    d0 = 219.1 mm d1 = 139.7 mm d2 = 114.3 mmt0 = 12.5 mm t1 = 5.0 mm t2 = 3.6 mm

    Validity limits check  

    10 ≤ d0/t0 ≤ 50 d0/t0 = 219.1/12.5 = 17.53 ∴PASS

    d0/t0 ≤ 70ε2 (Class 1 or 2 for compression chord)70ε2 = 70 [√(235/f y0)]

    2 = 70(235/355) = 46.34

    17.53 < 46.34 ∴PASS

    di/ti ≤ 70ε2 (Class 1 or 2 for compression brace)

    70ε2 = 70 [√(235/f y0)]

    2 = 70(235/355) = 46.34

    d1/t1 = 139.7/5.0 = 27.94 < 46.34 ∴PASS

    di/ti ≤ 50 d1/t1 = 139.7/5.0 = 27.94 ∴PASSd2/t2 = 114.3/3.6 = 31.75 ∴PASS

    0.2 ≤ di/d0 ≤ 1.0 d1/d0 = 139.7/219.1 = 0.64 ∴PASS

    d2/d0 = 114.3/219.1 = 0.52 ∴PASS

    -0.55 d0 ≤ e ≤ +0.25 d0  -0.55 x 219.1 ≤ e ≤ +0.25 x 219.1-120.5 ≤  e ≤ +54.8e = -42.2 mm ∴PASS

    25% ≤ λov ≤ 100% λov = |g| sin θi /di x 100% ∴PASSλov = 45 sin 45°/114.3 x 100%λov = 27.8% ∴PASS

    30° ≤ θ i ≤ 90° θ1 = 45° ∴PASSθ2 = 45° ∴PASS

    Reference

    5.1.1 Figure 27

    (EN 1993-1-1)Table 5.2

    (EN 1993-1-1)Table 5.2

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    13/56

    Welded Joints Examples CHS Overlap K-Joint

    13

    Chord face failure (deformation)

    Compression brace (1):

    5M0

    1

    1

    200ypg

    Rd,1 /d

    d2.108.1

    sin

    tf kkNfailure, face Chord   γ⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ +

    θ=  

    Gap/lap function, kg 

    764.85.122

    1.219t2

    d

    0

    0 =×

    ==γ  

    Using formulae: Using graph:

    ( )⎥⎥⎦

    ⎢⎢⎣

    −+γ

    +γ=33.1t/g5.0exp1

    024.01k

    0

    2.12.0

    g  

    Note: g is positive for a gap and negative for an overlap

    ( )( )⎥

    −−×+

    ×+=

    33.15.12/455.0exp1

    764.8024.01764.8k

    2.12.0

    g  

    024.2kg  =  

    from graph;

    g/t0 = -45/12.5 = -3.6

    kg = 2.024

    CHS chord end stress factor, kp 

    CHS chord least compressive applied factored stress, σp,Ed;

    0,op,el

    Ed,0,op

    0,ip,el

    Ed,0,ip

    0

    Ed,pEd,p

    W

    M

    W

    M

     A

    N++=σ  

    Note: Moment is additive to compressive stress which is positive for moments. ForCHS chords use least compressive chord stress.

    2

    2Ed,pN/mm30.123

    101.81

    10001000=

    ×

    ×=σ  

    Chord factored stress ratio, np; 347.0355

    30.123

    f n

    0y

    Ed,pp   =⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ =

    ⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛  σ=  

    Using formulae: Using graph:

    For np > 0 (compression):

    kp = 1 - 0.3 np (1 + np) but ≤ 1.0

    ( ) 0.1but347.01347.03.01kp   ≤+×−=  

    860.0kp  =  

    from graph;

    kp = 0.860

    Reference

    5.1.3

    6.3

    5.1.2.2

    5.1.2.1

    5.1.2.1

    5.1.2.2Fig. 29

     

    5.1.2.1Fig. 28

     5.1.2.1

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    14/56

    Welded Joints Examples CHS Overlap K-Joint

    14

    0.1/1.219

    7.1392.108.1

    45sin

    5.12355860.0024.2N

    2

    Rd,1   ⎟ ⎠

     ⎞⎜⎝ 

    ⎛ +

    °×××

    =  

    kN1134N Rd,1   =  

    Tension brace (2):

    Rd,121Rd,2 Nsin

    sinN θ

    θ=  

    113445sin

    45sinN Rd,2   ×°

    °=  

    kN1134N Rd,2   =  

    Chord punching shear check not required for overlapping bracings

    Localised shear check for overlapping bracings not required as overlap not greaterthan 60%.

    Therefore, joint strength dictated by chord face failure for both bracings;

    PASSkN500kN1134N,resistance  joint 1 Brace Rd,1   ∴>=  

    PASSkN400kN1134N,resistance  joint 2 Brace Rd,2   ∴>=  

    Reference

    5.1.3 

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    15/56

    Welded Joints Examples RHS Gap K-Joint

    4 RHS Gap K-Joint

    15

    References are generally to Tata Steel publication ‘Design of Welded Joints’ (unless otherwise stated).

    N1,Ed = 650 kN 

    SHS 200 x 200 x 10 All material Celsius 355 to EN 10210

    SHS 120 x 120 x 5

    45º

    5

    45º 

    N2,Ed = - 650 kN

    40

    Np,Ed = 1000 kN  N0,Ed = 1920 kN 

    Dimensions 

    b0 = 200 mm b1 = 120 mm b2 = 120 mmh0 = 200 mm h1 = 120 mm h2 = 120 mmt0 = 10.0 mm t1 = 5.0 mm t2 = 5.0 mm

    Validity limits check  

    Chord:

    (b0-3 t0)/t0  ; (h0-3 t0)/t0 ≤ 38ε (Class 1 or 2 compression)38ε = 38 √(235/f y0) = 38√(235/355) = 30.92(b0-3 t0)/t0 = (200-3 x 10)/10 = 17 ∴PASS(h0-3 t0)/t0 = (200-3 x 10)/10 = 17 ∴PASS

    b0/t0 ≤ 35 b0/t0 = 200/10 = 20 ∴PASSh0/t0 ≤ 35 h0/t0 = 200/10 = 20 ∴PASS

    Compression brace:

    bi/ti ; hi/ti ≤ 35 b1/t1 = 120/5 =24 ∴PASSh1/t1 = 120/5 =24 ∴PASS

    Compression brace:

    (b1-3 t1)/t1  ; (h1-3 t1)/t1 ≤ 38ε (Class 1 or 2 compression)38ε = 38 √(235/f y0) = 38√(235/355) = 30.92(b1-3 t1)/t1 = (120-3 x 5)/5 = 21 ∴PASS(h1-3 t1)/t1 = (120-3 x 5)/5 = 21 ∴PASS

    Tension brace:

    bi/ti ; hi/ti ≤ 35 b2/t2 = 120/5 =24 ∴PASSh2/t2 = 120/5 =24 ∴PASS

    bi/b0 ≥ 0.35 b1/b0 = 120/200 = 0.6 ∴PASSb2/b0 = 120/200 = 0.6 ∴PASS

    0.1+0.01 b0/t0 ≤ bi/b0 ≤ 1.0 0.1+0.01 b0/t0 = 0.3b1/b0 = 120/200 = 0.6 ∴PASSb2/b0 = 120/200 = 0.6 ∴PASS

    Reference

    5.3.1 Figure 37

    (EN 1993-1-1)Table 5.2

    (EN 1993-1-1)Table 5.2

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    16/56

    Welded Joints Examples RHS Gap K-Joint

    16

    0.5 ≤ h0/b0 ≤ 2.0 h0/b0 = 200/200 = 1.0 ∴PASS

    0.5 ≤ hi/bi ≤ 2.0 h1/b1 = 120/120 = 1.0 ∴PASSh2/b2 = 120/120 = 1.0 ∴PASS

    -0.55 h0 ≤ e ≤ +0.25 h0  -0.55 x 200 ≤ e ≤ +0.25 x 200-110.0 ≤  e ≤ +50.0e = +5.0 mm ∴PASS

    30° ≤ θ i ≤ 90° θ 1 = 45° ∴PASS

    θ 2 = 45° ∴PASS

    g ≥ t1 + t2  40 ≥ 5 + 5 = 10 mm ∴PASS

    0.5 b0(1-β) ≤ g ≤ 1.5 b0(1-β) g = 40 mmβ = (b1+b2+h1+h2)/(4 b0)β = (120+120+120+120)/(4x200) = 0.60.5 x 200(1-0.6) ≤ g ≤ 1.5 x 200(1-0.6)40 mm ≤ g ≤ 120 mm ∴PASS

    -0.55 h0 ≤ e ≤ +0.25 h0  e = 5 mm-0.55 x 200 ≤ e ≤ +0.25 x 200-110 ≤ e ≤ +50 ∴PASS

    Chord face failure (deformation) – brace 1

    Note: Brace 1 usually designated compression and brace 2 tension.

    Compression brace (1):

    5M0

    2121

    i

    200yn

    Rd,i /b4

    hhbb

    sin

    tf k9.8N   γ⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛    +++

    θ

    γ=  

    Reference

    5.3.3

    5.3.3

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    17/56

    Welded Joints Examples RHS Gap K-Joint

    17

    RHS chord end stress factor, kn 

    RHS chord most compressive applied factored stress, σ0,Ed;

    0,op,el

    Ed,0,op

    0,ip,el

    Ed,0,ip

    0

    Ed,0Ed,0

    W

    M

    W

    M

     A

    N++=σ  

    Note: Moment is additive to compressive stress which is positive for moments. ForRHS chords use most compressive chord stress.

    2

    2Ed,0N/mm34.256

    109.74

    10001920=

    ×

    ×=σ  

    Chord factored stress ratio, n;

    ⎟ ⎠

     ⎞⎜⎝ 

    ⎛ =

    ⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛  σ=

    355

    34.256

    f n

    0y

    Ed,0  

    722.0n =  

    Using formulae: Using graph:

    For n > 0 (compression):

    β−=

    n4.03.1kn   but kn ≤ 1.0

    0.1but6.0

    722.04.03.1kn   ≤

    ×−=  

    819.0kn  =  

    From graph, for β = 0.6;

    kn = 0.819

    10

    102

    200

    t2

    b

    0

    0 =

    ×

    ==γ  

    0.1/2004

    120120120120

    45sin

    1010355819.09.8N

    2

    Rd,1   ⎥⎦

    ⎤⎢⎣

    ⎡×

    +++×

    °××××

    =  

    kN694N Rd,1   =  

    Reference 

    5.3.2.1

    5.3.2.1

    6.3

    5.3.2.1Fig. 38

     5.3.2.1

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    18/56

    Welded Joints Examples RHS Gap K-Joint

    18

    Chord shear between bracings check – brace 1

    5M

    i

    0,v0yRd,i /

    sin3

     Af N   γ

    θ=  

    where:for RHS bracings:

    212.0

    103

    4041

    1

    t3

    g41

    1

    2

    2

    2

    0

    2  =

    ×

    ×+

    =

    +

     

     Av,0 = (2 h0 + α b0) t0 

    ( ) 20,v mm442410200212.02002 A   =×+×=  

    0.1/45sin3

    4424355N Rd,i

    °

    ×=  

    kN1282N Rd,1   =  

    Bracing Effective width – brace 1

    ( ) 5Meff iiiiyiRd,i /bbt4h2tf N   γ++−=  

    where:

    ii,eff iiyi

    00y

    0

    0i,eff  bbbutb

    tf 

    tf 

    b

    t10b   ≤×=  

    mm120bbutmm1201205355

    10355

    200

    1010b i,eff i,eff    ≤=××

    ××

    ×=  

    beff,i = 120 mm

    ( ) 0.1/1201205412025355N Rd,i   ++×−××=  

    kN817N Rd,1   =  

    Reference

    5.3.3

    5.3.2.5

    5.3.2.5

    5.3.3

    5.3.2.2

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    19/56

    Welded Joints Examples RHS Gap K-Joint

    19

    Chord punch ing shear – brace 1

    (valid when β ≤ 1 – 1/γ)

    β ≤ 1 – 1/γ 

    0.6 ≤ 1 – 1/10 = 0.9 mm ∴check chord punching shear

    5Mi,p,eii

    i

    i

    00yRd,i /bb

    sin

    h2

    sin3

    tf N   γ⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ ++

    θθ=  

    where:

    ii,p,ei0

    0i,p,e bbbutb

    b

    t10b   ≤=  

    mm120bbutmm60120200

    1010b i,p,ei,p,e   ≤=×

    ×=  

    be,p,i = 60 mm

    0.1/6012045sin

    1202

    45sin3

    10355N Rd,i   ⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ ++

    °×

    °

    ×=  

    kN1506N Rd,1   =  

    Summary - brace 1Joint strength for brace 1 dictated by chord face deformation.

    ∴ Brace 1 joint resistance, PASSkN650kN694N Rd,1   ∴>=  

    Brace 2Repeat brace resistance formulae for brace 2.

    Note: As both braces are of same geometry, brace 2 resistance will be the same:

    Chord face deformation, kN694N Rd,2   =  

    Chord shear check, kN1282N Rd,2   =  

    Bracing effective width, kN817N Rd,2   =  

    Punching shear, kN1506N Rd,2   =  

    ∴ Brace 2 joint resistance, PASSkN650kN694N Rd,2   ∴>=  

    Reference 5.3.3

    5.3.3

    5.3.2.2

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    20/56

    Welded Joints Examples RHS Gap K-Joint

    20

    Chord axial load resistance in gap

    Check: N0,gap,Rd ≥ N0,gap,Ed 

    ( )   ( ) 5M2Rd,0,plEd,00y0,v0y0,v0Rd,gap,0 /V/V1f  Af  A AN   γ⎥⎦⎤

    ⎢⎣

    ⎡−+−=  

    where:

     A0 = 74.9 cm2 = 7490 mm

     Av,0 = 4424 mm

    2

     

    V0,Ed = max( |N1,Ed| sin θ1 , |N2,Ed| sin θ2)

    V0,Ed = max( |650| sin 45° , |-650| sin 45°) = max (459.6, 459.6)

    V0,Ed = 459.6 kN

    0M

    0y0,vRd,0,pl

    )3/f ( AV

    γ=  

    kN7.906

    0.1

    )3/355(4424V Rd,0,pl   =

    ×=  

    650  - 650

    Np,Ed = 1000 1000  460

      460N0,Ed = 1920

    1000 460 

    N0,gap,Ed = 1460

    460 Horz 460 Horz

     Change of chord axial force in K-joint  

    N0,gap,Ed = max (Np,Ed + N1,Ed cos θ1, N0,Ed + N2,Ed cos θ2)

    N0,gap,Ed = max (1000 + 650 cos 45°, 1920 + (-650) cos 45°)

    N0,gap,Ed = max (1460, 1460) = 1460 kN

    ( ) ( ) 0.1/7.906/6.4591355442435544247490N 2Rd,gap,0   ⎥⎦

    ⎤⎢⎣

    ⎡−×+−=  

    PASSkN1460kN2442N Rd,gap,0   ∴>=  

    Reference5.3.3

    5.3.3

    5.3.2.5

    5.3.3

    5.3.3(EN 1993-1-1)

    6.2.6 (2)

    5.3.3

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    21/56

    Welded Joints Examples RHS Overlap K-Joint

    5 RHS Overlap K-Joint

    21

    References are generally to Tata Steel publication ‘Design of Welded Joints’ (unless otherwise stated).

    N1,Ed = 600 kN 

    Np,Ed = 1000 kN  N0,Ed = 1849 kNSHS 200 x 200 x 10

     All material Celsius 355 to EN 10210

    SHS 120 x 120 x 5 N2,Ed = - 600 kN

    45º45º 

    70 i

    -50.1

     Dimensions 

    b0 = 200 mm b1 = 120 mm b2 = 120 mmh0 = 200 mm h1 = 120 mm h2 = 120 mmt0 = 10.0 mm t1 = 5.0 mm t2 = 5.0 mm

    Validity limits check  

    Chord:

    (b0-3 t0)/t0  ; (h0-3 t0)/t0 ≤ 38ε (Class 1 or 2 compression)38ε = 38 √(235/f y0) = 38√(235/355) = 30.92(b0-3 t0)/t0 = (200-3 x 10)/10 = 17 ∴PASS

    (h0-3 t0)/t0 = (200-3 x 10)/10 = 17 ∴PASSCompression brace:

    (b1-3 t1)/t1  ; (h1-3 t1)/t1 ≤ 33ε (Class 1 compression)33ε = 33 √(235/f y0) = 33√(235/355) = 26.85(b1-3 t1)/t1 = (120-3 x 5)/5 = 21 ∴PASS(h1-3 t1)/t1 = (120-3 x 5)/5 = 21 ∴PASS

    Tension brace: bi/ti ; hi/ti ≤ 35 b2/t2 = 120/5 =24 ∴PASS

    h2/t2 = 120/5 =24 ∴PASS

    0.25 ≤ bi/b0 ≤ 1.0 b1/b0 = 120/200 = 0.6 ∴PASS

    b2/b0 = 120/200 = 0.6 ∴PASS

    0.5 ≤ h0/b0 ≤ 2.0 h0/b0 = 200/200 = 1.0 ∴PASS

    0.5 ≤ hi/bi ≤ 2.0 h1/b1 = 120/120 = 1.0 ∴PASSh2/b2 = 120/120 = 1.0 ∴PASS

    -0.55 h0 ≤ e ≤ +0.25 h0  -0.55 x 200 ≤ e ≤ +0.25 x 200-110.0 ≤  e ≤ +50.0e = -50.1 mm ∴PASS

    25% ≤ λ ov  λ ov = |g| sin θ i /h i x 100%λ ov = 70 sin 45°/120 x 100%

    λ ov = 41.2% ∴PASS

    bi/b j ≥ 0.75 bi/b j = 120/120 = 1.0 ∴PASS

    Reference

    5.3.1 Figure 37

    (EN 1993-1-1)Table 5.2

    (EN 1993-1-1)Table 5.2

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    22/56

    Welded Joints Examples RHS Overlap K-Joint

    22

    Bracing Effective width – Overlapping brace, i (2)

    Note: Only the overlapping brace (i) need be checked. The resistance of theoverlapped brace (j) is based on an efficiency ratio to that of the overlappingbrace.

    Overlapping brace, i (2):

    For 25% ≤ λov < 50%

    5Miov

    iov,ei,eff iyiRd,i /t450

    h2bbtf N   γ⎟

     ⎠

     ⎞⎜

    ⎝ 

    ⎛ −

    λ++=  

    where:

    ii,eff iiyi

    00y

    0

    0i,eff  bbbutb

    tf 

    tf 

    b

    t10b   ≤×=  

    mm120bbutmm1201205355

    10355

    200

    1010b i,eff i,eff    ≤=××

    ××

    ×=  

    beff,i = 120 mm

    iov,eiiyi

     jyj

     j

     j

    ov,e bbbutbtf 

    tf 

    b

    t10

    b   ≤×=  

    120bbut1205355

    5355

    120

    510b ov,eov,e   ≤××

    ××

    ×=  

    mm50b ov,e   =  

    0.1/5450

    2.411202501205355N Rd,i   ⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ ×−×++×=  

    PASSkN600kN617NN Rd,2Rd,i   ∴>==  

    Bracing Effective width – Overlapped brace, j (1)

    )( )yii

    yj jRd,iRd, j

    f  A

    f  ANN   =  

    where:

     A j = A1 = 22.7 cm2 = 2270 mm

     Ai = A2 = 22.7 cm2 = 2270 mm

    ( )

    ( )3552270

    3552270617N Rd, j

    ×

    ××=  

    PASSkN600kN617NN Rd,1Rd,i   ∴>==  

    Reference

    5.3.3

    5.3.3

    5.3.2.2

    5.3.2.2

    5.3.3

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    23/56

    Welded Joints Examples RHS Chord CHS Bracings Gap K-Joint

    6 RHS Chord CHS Bracings Gap K-Joint

    23

    References are generally to Tata Steel publication ‘Design of Welded Joints’ (unless otherwise stated).

    Dimensions 

    b0 = 200 mm d1 = 114.3 mm d2 = 114.3 mmh0 = 200 mm t1 = 6.3 mm t2 = 6.3 mmt0 = 10.0 mm

    Validity limits check  

    Chord:

    (b0-3 t0)/t0  ; (h0-3 t0)/t0 ≤ 38ε (Class 1 or 2 compression)38ε = 38 √(235/f y0) = 38√(235/355) = 30.92(b0-3 t0)/t0 = (200-3 x 10)/10 = 17 ∴PASS(h0-3 t0)/t0 = (200-3 x 10)/10 = 17 ∴PASS

    b0/t0 ≤ 35 b0/t0 = 200/10 = 20 ∴PASSh0/t0 ≤ 35 h0/t0 = 200/10 = 20 ∴PASS

    Compression brace:

    (d1/t1 ≤ 50ε (Class 1 or 2 compression)50ε = 50 √(235/f y0) = 50√(235/355) = 40.7d1/t1 = 114.3/6.3 = 18.1 ≤ 40.7 ∴PASS

    Tension brace:

    di/ti ≤ 50 d2/t2 = 114.3/6.3 = 18.1 ∴PASS

    0.4 ≤ di/b0 ≤ 0.8 d1/b0 = 114.3/200 = 0.57 ∴PASSd2/b0 = 114.3/200 = 0.57 ∴PASS

    Reference

    5.3.1 Figure 37(EN 1993-1-1)

    Table 5.2

    (EN 1993-1-1)Table 5.2

    g = 85

    45°45°

    Np,Ed = 1212 kN

    N2,Ed = - 500 kN

    N1,Ed = 500 kN

    N0,Ed = 1920 kN

    CHS 114.3 x 6.3

    SHS 200 x 200 x 10

     ALL MATERIAL;CELSIUS 355 to EN 10210

    e = 23.3

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    24/56

    Welded Joints Examples RHS Chord CHS Bracings Gap K-Joint

    24

    0.5 ≤ h0/b0 ≤ 2.0 h0/b0 = 200/200 = 1.0 ∴PASS

    -0.55 h0 ≤ e ≤ +0.25 h0  -0.55 x 200 ≤ e ≤ +0.25 x 200-110.0 ≤  e ≤ +50.0e = +23.0 mm ∴PASS

    30° ≤ θ i ≤ 90° θ 1 = 45° ∴PASSθ 2 = 45° ∴PASS

    g ≥ t1 + t2  85 ≥ 6.3 + 6.3 = 12.6 mm ∴PASS

    Chord face failure (deformation) – brace 1

    Note: Brace 1 usually designated compression and brace 2 tension.

    Compression brace (1):

    5M0

    2121

    i

    200yn

    Rd,i /b4

    dddd

    sin

    tf k9.8N   γ⎟

    ⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛    +++

    θ

    γ=  

    RHS chord end stress factor, kn 

    RHS chord most compressive applied factored stress, σ0,Ed;

    0,op,el

    Ed,0,op

    0,ip,el

    Ed,0,ip

    0

    Ed,0Ed,0

    W

    M

    W

    M

     A

    N++=σ  

    Note: Moment is additive to compressive stress which is positive for moments. ForRHS chords use most compressive chord stress.

    2

    2Ed,0N/mm34.256

    109.74

    10001920=

    ×

    ×=σ  

    Chord factored stress ratio, n;

    ⎟ ⎠

     ⎞⎜⎝ 

    ⎛ =⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛  σ=

    355

    34.256

    f n

    0y

    Ed,0 

    722.0n =  

    Reference

    5.3.3

    5.3.2.1

    5.3.2.1

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    25/56

    Welded Joints Examples RHS Chord CHS Bracings Gap K-Joint

    25

    Using formulae: Using graph:

    For n > 0 (compression):

    β−=

    n4.03.1kn   but kn ≤ 1.0

    0.1but6.0

    722.04.03.1kn   ≤×

    −=  

    819.0kn  =  

    From graph, for β = 0.6;

    kn = 0.819

    10102

    200

    t2

    b

    0

    0 =×==γ  

    0.1/2004

    3.1143.1143.1143.114

    45sin

    1010355819.09.8N

    2

    Rd,1   ⎥⎦

    ⎤⎢⎣

    ⎡×+++

    ×°××××

    =  

    kN5194

    661......kN661N Rd,1   =π×=  

    Chord shear between bracings check – brace 1

    5M

    i

    0,v0yRd,i /

    sin3

     Af N   γ

    θ=  

    where:for CHS bracings:

    0=α  

     Av,0 = (2 h0 + α b0) t0 

    ( )2

    0,v mm40001020002002 A   =×+×=  

    0.1/45sin3

    4000355N Rd,i

    °

    ×=  

    kN9104

    ......kN1159N Rd,1   =π×=  

    Reference

    6.3

    5.3.3

    5.3.2.5

    5.3.2.5

    5.3.2.1Fig. 38

     5.3.2.1

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    26/56

    Welded Joints Examples RHS Chord CHS Bracings Gap K-Joint

    26

    Bracing Effective width – brace 1

    ( ) 5Meff iiiiyiRd,i /bdt4d2tf N   γ++−=  

    where:

    ii,eff iiyi

    00y

    0

    0i,eff  dbbutd

    tf 

    tf 

    b

    t10b   ≤×=  

    mm120bbutmm2.95120

    3.6355

    10355

    200

    1010b i,eff i,eff    ≤=×

    ×

    ×××=  

    beff,i = 95.2 mm

    ( ) 0.1/2.953.1143.643.11423.6355N Rd,i   ++×−××=  

    kN7254

    .....kN923N Rd,1   =π×=  

    Chord punch ing shear – brace 1

    (valid when β ≤ 1 – 1/γ)

    β ≤ 1 – 1/γ 

    0.6 ≤ 1 – 1/10 = 0.9 mm ∴check chord punching shear

    5Mi,p,eii

    i

    i

    00yRd,i /bd

    sin

    d2

    sin3

    tf N   γ⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ ++

    θθ=  

    where:

    ii,p,ei0

    0i,p,e dbbutd

    b

    t10b   ≤=  

    mm120bbutmm2.573.114200

    1010b i,p,ei,p,e   ≤=××=  

    be,p,i = 57.2 mm

    0.1/2.573.11445sin

    3.1142

    45sin3

    10355N Rd,i   ⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ ++

    °×

    °

    ×=  

    kN11264

    ........kN1434N Rd,1   =π×=  

    Summary - brace 1

    Joint strength for brace 1 dictated by chord face deformation.

    ∴ Brace 1 joint resistance, PASSkN500kN519N Rd,1   ∴>=  

    Reference

    5.3.3

    5.3.2.2

    5.3.3

    5.3.3

    5.3.2.2

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    27/56

    Welded Joints Examples RHS Chord CHS Bracings Gap K-Joint

    27

    Brace 2Repeat brace resistance formulae for brace 2.

    Note: As both braces are of same geometry, brace 2 resistance will be the same:

    Chord face deformation, kN519N Rd,2   =  

    Chord shear check, kN910N Rd,2   =  

    Bracing effective width, kN725N Rd,2   =  

    Punching shear, kN1126N Rd,2   =  

    ∴ Brace 2 joint resistance, PASSkN500kN519N Rd,2   ∴>=  

    Chord axial load resistance in gap

    Check: N0,gap,Rd ≥ N0,gap,Ed 

    ( )   ( ) 5M2Rd,0,plEd,00y0,v0y0,v0Rd,gap,0 /V/V1f  Af  A AN   γ⎥⎦

    ⎤⎢

    ⎡ −+−=  

    where:

     A0 = 74.9 cm2 = 7490 mm

     Av,0 = 4000 mm2 

    V0,Ed = max( |N1,Ed| sin θ1 , |N2,Ed| sin θ2)

    V0,Ed = max( |500| sin 45° , |-500| sin 45°) = max (354,354 )

    V0,Ed = 354 kN

    0M

    0y0,vRd,0,pl

    )3/f ( AVγ

    =  

    kN8.8190.1

    )3/355(4000V Rd,0,pl   =

    ×=  

    Reference

    5.3.3

    5.3.2.5

    5.3.3

    5.3.2.2

    5.3.3(EN 1993-1-1)

    6.2.6 (2)

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    28/56

    Welded Joints Examples RHS Chord CHS Bracings Gap K-Joint

    28

    500  - 500

    Np,Ed = 1212 

    1212  354

      354N0,Ed = 1920

    1212 

    354 

    N0,gap,Ed = 1566

    354 Horz 354 Horz

     

    Change of chord axial force in K-joint  

    N0,gap,Ed = max (Np,Ed + N1,Ed cos θ1, N0,Ed + N2,Ed cos θ2)

    N0,gap,Ed = max (1212 + 500 cos 45°, 1920 + (-500) cos 45°)

    N0,gap,Ed = max (1566, 1566) = 1566 kN

    ( ) ( ) 0.1/8.819/3541355400035540007490N 2Rd,gap,0   ⎥⎦⎤

    ⎢⎣

    ⎡ −×+−=  

    PASSkN1566kN2520N Rd,gap,0   ∴>=  

    Reference

    5.3.3

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    29/56

    Welded Joints Examples RHS Chord CHS Bracings Overlap K-Joint 82.7

    7 RHS Chord CHS Bracings Overlap K-

    Joint 82.7

    29

    References are generally to Tata Steel publication ‘Design of Welded Joints’ (unless otherwise stated).

    NOTE: BRACE ‘j ’ USUALLY DESIGNATED COMPRESSION AND BRACE ‘ i’ TENSION.

    Dimensions 

    h0 = 100.0 mm b0 = 200.0 mm di = 114.3 mm d j = 114.3 mmt0  = 10.0 mm ti  = 6.3 mm t j  = 6.3 mm f u,i = 470 N/mm²

     

    f u,j = 470 N/mm²

    (f u,i  & f u,j from EN10210-1:2006 Table A.3) 

    For Eccentricity;

    ( ) 2h

    sin

    sinsing

    sin2

    d

    sin2

    de 0

     ji

     ji

     j

     j

    i

    i −⎥⎥⎦

    ⎢⎢⎣

    θ+θ

    θ×θ×

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡+

    θ×+

    θ×=

     

    ( )mm1.109g

    60sin100

    3.1147.82g

    sin100

    dgwhere

    i

    iov

    −=

    °××

    =

    θ××λ

    =

     

    Reference

    6.5 Figure 57

    30° 60°e = - 19.5

    CHS 114.3 x 6.3

    CHS 114.3 x 6.3

    Ni,Ed = - 400kN

    N j,Ed = 500kN

    Np,Ed = 1000kN N0,Ed = 1636kN

    RHS 200 x 100 x 10

     ALL MATERIAL;CELSIUS 355 to EN 10210

    -109.1

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    30/56

    Welded Joints Examples RHS Chord CHS Bracings Overlap K-Joint 82.7

    30

    ( ) ( )  ( )   ( ) ( )

    ( )

    mm5.19e

    2

    100

    3060sin

    30sin60sin1.109

    30sin2

    3.114

    60sin2

    3.114e

    −=

    −⎥⎦

    ⎤⎢⎣

    °+°°×°

    ×⎥⎦

    ⎤⎢⎣

    ⎡−+

    °×+

    °×=

     

    Validity limits check  

    b0/t0 ≤ 38ε2 (Class 1 or 2 for compression chord)

    38ε2

     = 38 [√(235/f y0)]2

     = 38(235/355) = 25.15b0/t0 = 200.0/10.0 = 20.0 < 25.15 ∴PASS

    d j/t j ≤ 50ε2 (Class 1 for compression brace) 

    50ε2 = 50 [√(235/f y0)]2 = 50(235/355) = 33.10

    d j/t j = 114.3/6.3 = 18.14 < 33.10 ∴PASS

    di/ti ≤ 50 (Tension Brace) di/ti = 114.3/6.3 = 18.14 ≤ 50 ∴PASS

    0.4 ≤ di/b0 ≤ 0.8 di/d0 = 114.3/200.0 = 0.57 ∴PASSd j/d0 = 114.3/200.0 = 0.57 ∴PASS

    0.5 ≤ h0/ b0 ≤ 2.0 h0/ b0 = 100.0/200.0 = 0.50 ∴PASS

    -0.55 h0 ≤ e ≤ +0.25 h0  -0.55 x 100.0 ≤ e ≤ +0.25 x 100.0-55 ≤  e ≤ +25e = -19.5 mm ∴PASS

    λov ≥ 25% λov = |g| sin θI /di x 100% ∴PASSλov = 109.1 sin 60°/114.3 x 100%λov = 82.7% ∴PASS

    30° ≤ θI ≤ 90° θ j = 30° ∴PASSθI = 60° ∴PASS

    di/d j ≥ 0.75 di/d j = 114.3/114.3 = 1.0 ∴PASS

    Brace Effective Width; 

    Overlapping brace (i):

    ( ) 5Miiov,eiiyiRd,i /t4d2ddtf N  γ−++=  

    where:

    iov,eiiyi

     jyj

     j jov,e ddbutdtf 

    tf 

    t/d

    10

    d   ≤××

    ×

    ×=  

    Reference 

    (EN1993-1-1)

    (Table 5.2)

    (EN1993-1-1)(Table 5.2)

    5.3 Figure 37

    5.3.3

    5.3.2.2

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    31/56

    Welded Joints Examples RHS Chord CHS Bracings Overlap K-Joint 82.7

    31

    mm63d3.114but63d

    3.114dbut3.1143.6355

    3.6355

    3.6/3.114

    10d

    ov,eov,e

    ov,eov,e

    =∴≤=

    ≤××

    ××=  

    ∴  Ni,Rd = 355 x 6.3 x (114.3 + 63 + 228.6 – 25.2) / 1.0

    =Rd,iN 851 kN ----- 851 × π⁄ 4 = 668 kN > 400 kN ∴  PASS

    Brace Effective Width;

    Overlapped Brace (j):

    )( )yii

    yj jRd,iRd, j

    f  A

    f  ANN

    ×

    ××=  

    where:

    22i

    22 j

    mm2140cm4.21 A

    mm2140cm4.21 A

    ==

    ==

     

    ( )( )3552140

    3552140668N Rd, j ×

    ××=  

    PASSkN500kN668N Rd, j   ∴>=  

    Overlapping Bracings Shear Check For CHS Bracings;

    .weldingneedstoe

    hidden%20componentverticalbracebetweendifference As

    %8.271004.346

    2504.346.diff component.vert%

    kN250)30(sin500N

    kN4.346)60(sin400N

    )(sinNN&)(sinNN

    ;N&Nof componentVertical

    Ed,v, j

    Ed,v,i

     jEd, jEd,v, jiEd,iEd,v,i

    Ed, jEd,i

    >∴

    =×−

    =∴

    =°×=∴

    =°×=∴

    θ×=θ×=∴

     

    Reference

    5.3.3

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    32/56

    Welded Joints Examples RHS Chord CHS Bracings Overlap K-Joint 82.7

    32

    Shear Check valid when 80% < λov < 100% and overlapped brace hidden toe welded;

    ( )5M j

     j j,eff s j j,u

    i

    ii,eff iov

    i,u

     jEd, jiEd,i

    1

    sin

    tdcd2

    3

    sin

    tdd2100

    100

    3

    4......

    ...........cosNcosN

    γ×

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    θ

    ××+×+

    θ

    ×⎥⎥⎦

    ⎢⎢⎣

    ⎡⎜⎜⎝ 

    ⎛ +×⎟

     ⎠

     ⎞λ−

    ××π

    ≤θ+θ

     

    mm4.91d3.1144.91d

    3.114but3.1143.6355

    10355

    200

    1010d

    dbutdtf 

    tf 

    b

    t10d:where

    i,eff i,eff 

    i,eff 

    iiii,y

    00,y

    0

    0i,eff 

    =∴≤=

    ≤×××

    ××

    =

    ≤××

    ××=

     

    mm4.91d3.1144.91d

    3.114but3.1143.6355

    10355

    200

    1010d

    dbutdtf 

    tf 

    b

    t10d:where

     j,eff  j,eff 

     j,eff 

     j j j j,y

    00,y

    0

    0 j,eff 

    =∴≤=

    ≤××

    ××

    ×=

    ≤××

    ××=

     

    )weldedtoehidden(2c:where s=

     

    ( )

    ( )( )( )

    ( ) 11

    30sin

    3.64.9123.1142

    3

    470

    60sin

    3.64.913.1142100

    7.82100

    3

    470

    4......

    ...........cosNcosN   j jii

    ×

    ⎥⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢⎢

    °××+×

    ×+°

    ×⎥⎥⎦

    ⎢⎢⎣

    ⎡⎜⎜⎝ 

    ⎛ +××⎟⎟

     ⎠

     ⎞−

    ××π

    ≤θ+θ∴

     

    = 1307 kN

    ∴  ( ) ( ) PASSkN1307kN63330cos50060cos400   ∴≤=°×+°×  

    Reference

    5.3.3

    5.3.2.2

    5.3.2.2

    5.1.3

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    33/56

    Welded Joints Examples RHS Chord CHS Bracings Overlap K-Joint 102.7

    8 RHS Chord CHS Bracings Overlap K-

    Joint 102.7 

    33

    References are generally to Tata Steel publication ‘Design of Welded Joints’ (unless otherwise stated).

    NOTE: BRACE ‘j ’ USUALLY DESIGNATED COMPRESSION AND BRACE ‘ i’ TENSION.

    Dimensions 

    h0 = 100.0 mm b0 = 200.0 mm di = 114.3 mm d j = 114.3 mmt0  = 10.0 mm ti  = 6.3 mm t j  = 6.3 mm f u,i = 470 N/mm²

     

    f u,j = 470 N/mm²

    (f u,i & f u,j from EN10210-1:2006 Table A.3) 

    For Eccentricity;

    ( ) 2h

    sin

    sinsing

    sin2

    d

    sin2

    de 0

     ji

     ji

     j

     j

    i

    i −⎥⎥⎦

    ⎢⎢⎣

    θ+θ

    θ×θ×

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡+

    θ×+

    θ×=  

    ( )mm5.135g

    60sin100

    3.1147.102g

    sin100

    dgwhere

    i

    iov

    −=

    °×

    ×=

    θ×

    ×λ=

     

    Reference

    6.5 Figure 57

    30° 60°e = - 30.6

    CHS 114.3 x 6.3

    CHS 114.3 x 6.3

    Ni,Ed = - 400kN

    N j,Ed = 500kN

    Np,Ed = 1000kN N0,Ed = 1636kN

    RHS 200 x 100 x 10

     ALL MATERIAL;CELSIUS 355 to EN 10210

    g = -135.5

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    34/56

    Welded Joints Examples RHS Chord CHS Bracings Overlap K-Joint 102.7

    34

    ( ) ( )  ( )   ( ) ( )

    ( )

    mm6.30e

    2

    100

    3060sin

    30sin60sin5.135

    30sin2

    3.114

    60sin2

    3.114e

    −=

    −⎥⎦

    ⎤⎢⎣

    °+°°×°

    ×⎥⎦

    ⎤⎢⎣

    ⎡−+

    °×+

    °×=

     

    Validity limits check 

    b0/t0 ≤ 38ε2 (Class 1 or 2 for compression chord)

    38ε2 = 38 [√(235/f y0)] 2

     = 38(235/355) = 25.15

    b0/t0 = 200.0/10.0 = 20.0 < 25.15 ∴PASS

    d j/t j ≤ 50ε2 (Class 1 for compression brace)

    50ε2 = 50 [√(235/f y0)]2 = 50(235/355) = 33.10

    d j/t j = 114.3/6.3 = 18.14 < 33.10 ∴PASS

    di/ti ≤ 50 (Tension Brace) di/ti = 114.3/6.3 = 18.14 ≤ 50 ∴PASS

    0.4 ≤ di/b0 ≤ 0.8 di/d0 = 114.3/200.0 = 0.57 ∴PASSd j/d0 = 114.3/200.0 = 0.57 ∴PASS

    0.5 ≤ h0/ b0 ≤ 2.0 h0/ b0 = 100.0/200.0 = 0.50 ∴PASS

    -0.55 h0 ≤ e ≤ +0.25 h0  -0.55 x 100.0 ≤ e ≤ +0.25 x 100.0-55 ≤  e ≤ +25e = -30.6 mm ∴PASS

    λov ≥ 25% λov = |g| sin θ i /di x 100% ∴PASSλov = 135.5 sin 60°/114.3 x 100%λov = 102.7% ∴PASS

    30° ≤ θi ≤ 90° θ j = 30° ∴PASSθi = 60° ∴PASS

    di/d j ≥ 0.75 di/d j = 114.3/114.3 = 1.0 ∴PASS

    Brace Effective Width;

    Overlapping brace (i):

    ( ) 5Miiov,eiiyiRd,i /t4d2ddtf N  γ−++=   where λov ≥ 80%;

    where:

    mm63d3.114but63d

    3.114dbut3.114

    3.6355

    3.6355

    3.6/3.114

    10d

    ddbutdtf 

    tf 

    t/d

    10d

    ov,eov,e

    ov,eov,e

    iov,eiiyi

     jyj

     j jov,e

    =∴≤=

    ≤×

    ×

    ××=

    ≤××

    ××=

     

    Reference

    (EN1993-1-1)Table 5.2

    (EN1993-1-1)Table 5.2

    5.3 Figure 37

    5.3.3

    5.3.2.2

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    35/56

    Welded Joints Examples RHS Chord CHS Bracings Overlap K-Joint 102.7

    35

    Ni,Rd  = 355 x 6.3 x (114.3 + 63 + 228.6 – 25.2) / 1.0

    =Rd,iN 851 kN -------> 851 × π⁄ 4 = 668 kN > 400 kN ∴  PASS

    Brace Effective Width; 

    Overlapped Brace (j):

    ( )yiiyj j

    Rd,iRd, jf  A

    f  ANN

    ×

    ××=  

    where:

    22i

    22 j

    mm2140cm4.21 A

    mm2140cm4.21 A

    ==

    == 

    ( )( )3552140

    3552140668N Rd, j ×

    ××=  

    PASSkN500kN668N Rd, j   ∴>=  

    Overlapping Bracings Shear Check for CHS Bracings; where λov > 100%;

    where:

    ∴ 

    Reference

    5.3.3

    5.3.3

    5.3.2.2

    mm4.91d3.1144.91d

    3.114but3.1143.6355

    10355

    200

    1010d

    dbutdtf 

    tf 

    b

    t10d

     j,eff  j,eff 

     j,eff 

     j j j j,y

    00,y

    0

    0 j,eff 

    =∴≤=

    ≤×××

    ××

    =

    ≤××

    ××=

    ( )

    5M

     jEd, jiEd,i

    1

    )30sin(

    3.64.913.1143

    3

    470

    4......

    ...........cosNcosN

    γ×

    ×+×××

    π

    ≤θ+θ

    ( )5M j

     j j,eff  j j,u

     jEd, jiEd,i

    1

    sin

    tdd3

    3

    4......

    ...........cosNcosN

    γ×

    θ

    ×+×××

    π

    ≤θ+θ

    kN673cosNcosN  j jii   ≤θ+θ

    ( ) ( ) PASSkN673kN63330cos50060cos400   ∴≤=°×+°×

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    36/56

    Welded Joints Examples RHS Chord RHS Bracings Overlap KT-Joint

    9 RHS Chord RHS Bracings Overlap KT-

    Joint 

    36

    References are generally to Tata Steel publication ‘Design of Welded Joints’ (unless otherwise stated).

    NOTE: Brace ‘j’ designated overlapped, Brace ‘i’ overlappingBrace ‘1’ SHS is 90 x 90 x 5.0, Brace ‘2’ and ‘3’ is SHS 100 x 100 x 6.3 

    Dimensions 

    h0 = 200.0 mm h1 = 90.0 mm h2 = 100.0 mm h3 = 100.0 mmb0 = 200.0 mm b1 = 90.0 mm b2 = 100.0 mm b3 = 100.0 mmt0  = 10.0 mm t1  = 5.0 mm t2 = 6.3 mm t3  = 6.3 mm

    γM5 = 1.0 A1 = 23.2cm2  A2 = 16.7cm

    2  A3 = 23.2cm

    2

    This example is to show how to calculate a KT-Joint with SHS chord and braces. The method ofchecking a KT-Joint depends on the direction of the brace forces, gap or overlap and chord sectionprofile. This example is for;

    •  One diagonal brace opposite direction to the other two bracings•  Both diagonal bracings overlapping•  Rectangular chord and bracings

    With this configuration, the joint can be checked like two separate K-joints. Please be aware thatdifferent brace angle and overlap values may change how the joint is calculated and you should refer tothe Tata Design of Welded Joints literature before tackling any joint to make sure you are using thecorrect method and formulae.The force combination of the braces can be seen at 5.6.2 Figure 51(c) (asa (from left to right) compression-compression-tension) of our Design Of Welded Joints literature.

    Reference

    45° 50°

    e = - 19.5

    N2,Ed = - 650kNN1 Ed = 492kN

    RHS 200 x 100 x 10

     ALL MATERIAL;CELSIUS 355 to EN 10210 N3,Ed = 150kN

    SHS 200 x 200 x 10.0

    Brace 1

    Brace 3

    Brace 2

    e2= -40.4

    e1 = -50.0

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    37/56

    Welded Joints Examples RHS Chord RHS Bracings Overlap KT-Joint

    37

    GEOMETRIC CALCULATIONS

    For Eccentricity; Brace 1 in relation to Brace 3;

    ( ) 2h

    sin

    sinsing

    sin2

    b

    sin2

    be 0

    31

    31

    3

    3

    1

    11   −⎥

    ⎤⎢⎣

    θ+θθ×θ

    ×⎥⎦

    ⎤⎢⎣

    ⎡+

    θ×+

    θ×=  

    Brace 1 to 3 overlap, λov = 50%;

    where;i

    iov

    sin100

    bg

    θ×

    ×λ=  

    ( )1

    45sin100

    0.900.50g1   −×°×

    ×=  

    mm6.63g1   −=  (gap is negative as it’s an overlap) 

    ( ) ( )  ( )   ( ) ( )

    ( )

    mm0.50

    2

    0.200

    9045sin

    90sin45sin6.63

    90sin2

    0.100

    45sin2

    0.90e1

    −=

    −⎥⎦

    ⎤⎢⎣

    °+°°×°

    ×⎥⎦

    ⎤⎢⎣

    ⎡−+

    °×+

    °×=

     

    For Eccentricity, Brace 2 in relation to Brace 3;

    ( ) 2h

    sin

    sinsing

    sin2

    b

    sin2

    be 0

    32

    32

    3

    3

    2

    22   −⎥

    ⎤⎢⎣

    ⎡θ+θθ×θ

    ×⎥⎦

    ⎤⎢⎣

    ⎡+

    θ×+

    θ×=

     

    Brace 2 to 3 overlap, λov = 50%;

    where;2

    2ov2

    sin100

    bg

    θ×

    ×λ=

     

    ( )°××

    =50sin100

    1000.50g2

     

    mm3.65g2

      −= (gap is negative as it’s an overlap)

    ( ) ( )  ( )   ( ) ( )

    ( )

    mm4.40

    2

    0.200

    9050sin

    90sin50sin3.65

    90sin2

    0.100

    50sin2

    0.100e2

    −=

    −⎥⎦

    ⎤⎢⎣

    °+°°×°

    ×⎥⎦

    ⎤⎢⎣

    ⎡−+

    °×+

    °×=

     

    Validity limits check for both K-Joints

    (b0-3 t0)/t0  ; (h0-3 t0)/t0 ≤ 38ε (Class 1 or 2 for chord)38ε = 38 [√(235/f y0)] = 38√ (235/355) = 30.92

    (b0-3 t0)/t0 = (200-3 x 10)/10 = 17 ∴PASS(h0-3 t0)/t0 = (200-3 x 10)/10 = 17 ∴PASS

    (b1-3 t1)/t1  ; (h1-3 t1)/t1 ≤ 33ε (Class 1 for compression braces)

    Reference

    6.5 Figure 57

    6.5 Figure 57

    5.3 Figure 37

    (EN1993-1-1)Table 5.2

    (EN1993-1-1)

    Table 5.2

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    38/56

    Welded Joints Examples RHS Chord RHS Bracings Overlap KT-Joint

    38

    33ε = 33 [√(235/f y0)] = 33√ (235/355) = 26.85(b1-3 t1)/t1 = (90-3 x 5)/5 = 15 ∴PASS(h1-3 t1)/t1 = (90-3 x 5)/5 = 15 ∴PASS(b3-3 t3)/t3 = (100-3 x 6.3)/6.3 = 12.9 ∴PASS(h3-3 t3)/t3 = (100-3 x 6.3)/6.3 = 12.9 ∴PASS

    bi/ti ; hi/ti ≤ 35 (Tension Brace) b2/t2 = 100.0/6.3 = 15.9 ∴PASSh2/t2 = 100.0/6.3 = 15.9 ∴PASS

    0.25 ≤ bi/b0 ≤ 1.0 b1/b0 = 90.0/200.0 = 0.45 ∴PASSb2/b0 = 100.0/200.0 = 0.5 ∴PASS

    b3/b0 = 100.0/200.0 = 0.5 ∴PASS

    0.5 ≤ h0/ b0 ≤ 2.0 h0/ b0 = 200.0/200.0 = 1.0 ∴PASS0.5 ≤ hi/ bi ≤ 2.0 h1/b1 = 90.0/90.0 = 1.0 ∴PASS

    h2/b2 = 100.0/100.0 = 1.0 ∴PASSh3/b3 = 100.0/100.0 = 1.0 ∴PASS

    -0.55 h0 ≤ e ≤ +0.25 h0  -0.55 x 200.0 ≤ e ≤ +0.25 x 200.0-110 ≤  e ≤ +50e1 = -50 mm ∴PASSe2 = -40.4 mm ∴PASS

    λov ≥ 25% λov,1 = |g| sin θ1 /h1 x 100%

    λov,1 = 63.6 x sin 45°/90 x 100%λov,1 = 50%  ∴PASSλov,2 = 65.3 x sin 50°/100 x 100%λov,2 = 50% ∴PASS

    30° ≤ θi ≤ 90° θ1 = 45° ∴PASSθ2 = 50° ∴PASSθ3 = 90° ∴PASS

    bi/b j ≥ 0.75 b1/b3 = 90.0/100.0 = 0.9 ∴PASSb2/b3 = 100.0/100.0 = 1.0 ∴PASS

    Brace 1 & 3 as overlap K-Joint

    Brace Effective Width Failure for 50% ≤λov

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    39/56

    Welded Joints Examples RHS Chord RHS Bracings Overlap KT-Joint

    39

    mm4.71b0.90but4.71b

    0.90bbut0.900.5355

    3.6355

    0.100

    3.610b

    1,ov,e1,ov,e

    1,ov,e1,ov,e

    =∴≤=

    ≤×××

    ××

    =  

    where;

    11,eff 111y

    00y

    0

    0

    1,eff  bbbutbtf 

    tf 

    b

    t10

    b   ≤××

    ×

    ×

    ×

    =  

    90bbut900.5355

    10355

    200

    1010b 1,eff 1,eff    ≤××

    ××

    ×=

     

    mm90b90bbutmm90b 1,eff 1,eff 1,eff    =∴≤=  

    N1,Rd = 355 x 5.0 x (90.0 + 71.4 + 2 x 90 – 4 x 5.0)/1.0

    =Rd,1N 570 kN > 492 kN ∴PASS

    For overlapped Brace (3):

    where;)

    ( )yiiyj j

    Rd,iRd, jf  A

    f  ANN

    ×

    ××=  

    221

    223

    mm1670cm7.16 A

    mm2320cm2.23 A

    ==

    == 

    ( )

    ( )3551670

    3552320570N Rd,3 ×

    ××=

     

    =Rd,3N  792kN > 150kN ∴PASS 

    Brace 2 & 3 as overlap K-Joint

    Brace Effective Width Failure for 50% ≤λov

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    40/56

    Welded Joints Examples RHS Chord RHS Bracings Overlap KT-Joint

    40

    mm63b0.100but63b

    0.100bbut0.1003.6355

    3.6355

    0.100

    3.610b

    2,ov,e2,ov,e

    2,ov,e2,ov,e

    =∴≤=

    ≤×××

    ××

    =

     

    where;

    22,eff 222y

    00y

    0

    02,eff  bbbutb

    tf 

    tf 

    b

    t10b   ≤×

    ××

    ××

    =

     

    100bbut1003.6355

    10355

    200

    1010b 2,eff 2,eff    ≤××

    ××

    ×=

     

    mm4.79b100bbutmm4.79b 2,eff 2,eff 2,eff    =∴≤=  

    N2,Rd = 355 x 6.3 x (79.4 + 63 + 2 x 100 – 4 x 6.3) / 1.0

    =Rd,2N 709 kN > 650 kN ∴PASS

    For Overlapped Brace (3):

     where:

    )( )yii

    yj jRd,iRd, j

    f  A

    f  ANN

    ×

    ××=

     

    222

    223

    mm2320cm2.23 A

    mm2320cm2.23 A

    ==

    ==

     

    ( )( )3552320

    3552320709N Rd,3 ×

    ××=

     

    N3,Rd  = 709kN > 150kN ∴PASS

    SUMMARY

    Here, the validity limits are combined to include all three braces and then for the calculations, due to thenature of the joint, it can be treated as two overlap K-Joints. This means Brace 3 (the vertical overlappedbrace) is checked twice in relation to Brace 1 and Brace 2 and must pass on both of these checks. It isimportant to check the joint configuration and refer to our Design of Welded Joints literature to make sure thecorrect method and formulae is used.

    Reference 

    5.3.2.2

    5.3.3 (K- & N-Overlap Sect)

    (Tata TechnicalGuide TST02)

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    41/56

    Welded Joints Examples CHS Chord CHS Bracings Gap KT-Joint

    10 CHS Chord CHS Bracings Gap KT-Joint 

    41

    512kN 1087kN

    References are generally to Tata Steel publication ‘Design of Welded Joints’ (unless otherwise stated).

    NOTE: Brace ‘1’ CHS is 88.9 x 5.0, Brace ‘2’ and ‘3’ is CHS 101.6 x 6.3

    Dimensions 

    d0 = 193.7 mm d1 = 88.9 mm d2 = 101.6 mm d3 = 101.6 mmt0  = 10.0 mm t1  = 5.0 mm t2 = 6.3 mm t3  = 6.3 mm

    γM5 = 1.0 A1 = 13.2cm2  A2 = 18.9cm

    2  A3 = 18.9cm

    2

    This example is to show how to calculate a gap KT-Joint with CHS chord and braces. Therecommendations for an all-CHS gap KT-Joint are in EN1993-1-8 Table 7.6. The method of checking aKT-Joint depends on the direction of the brace forces, gap or overlap and chord section profile. Thisexample is for;

    •  One diagonal brace opposite direction to the other two bracings•  Both diagonal bracings have a gap to the central brace•  Circular chord and bracings

    With this configuration, the joint capacity is based on the most highly loaded compression brace forchord face failure and punching shear failure for each brace. Please be aware that different brace angleand gap values may change how the joint is calculated and you should refer to the Tata Design ofWelded Joints literature before tackling any joint to make sure you are using the correct method andformulae.The force combination of the braces can be seen at 5.6.2 Figure 51(c) (as a (from left to right)compression-compression-tension) of our Design Of Welded Joints literature.

    Reference

    g2,3 = 52mmg1,3 = 30mm

    N3,Ed = 113kN

    45° 30°

    e = - 19.5

    N2,Ed = - 488kN

    N1 Ed = 369kN

    RHS 200 x 100 x 10

     ALL MATERIAL;CELSIUS 355 to EN 10210

    CHS 193.7 x 10.0

    Brace 1

    Brace 3

    Brace 2

    e2 = 21.2mme1 = 46.8mm

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    42/56

    Welded Joints Examples CHS Chord CHS Bracings Gap KT-Joint

    42

    Geometric Calculations

    For Eccentricity; Brace 1 in relation to Brace 3;

    ( ) 2d

    sin

    sinsing

    sin2

    d

    sin2

    de 0

    31

    31

    3

    3

    1

    11   −⎥

    ⎤⎢⎣

    θ+θθ×θ

    ×⎥⎦

    ⎤⎢⎣

    ⎡+

    θ×+

    θ×=

     

    Brace 1 to 3 gap, g1 = 30mm;

    ( ) ( )

    ( ) ( )

    ( )

    mm8.46

    2

    7.193

    9045sin

    90sin45sin0.30

    90sin2

    6.101

    45sin2

    9.88e1

    =

    −⎥⎦

    ⎤⎢⎣

    °+°

    °×°×⎥

    ⎤⎢⎣

    ⎡+

    °×

    +

    °×

    =

     

    For Eccentricity, Brace 2 in relation to Brace 3;

    ( ) 2d

    sin

    sinsing

    sin2

    d

    sin2

    de 0

    32

    32

    3

    3

    2

    22   −⎥

    ⎤⎢⎣

    θ+θθ×θ

    ×⎥⎦

    ⎤⎢⎣

    ⎡+

    θ×+

    θ×=

     

    Brace 2 to 3 gap, g2 = 52mm;

    ( ) ( )

    ( ) ( )

    ( )

    mm2.21

    2

    7.193

    9030sin

    90sin30sin0.52

    90sin2

    6.101

    30sin2

    6.101e

    2

    =

    −⎥⎦

    ⎢⎣

    °+°

    °×°×

    ⎥⎦

    ⎢⎣

    ⎡+

    °×+

    °×=

     

    Validity limits check for both K-Joints

    10 ≤ d0/t0 ≤ 50 d0/t0 = 193.7/10.0 = 19.37 ∴PASS

    d0/t0 ≤ 70ε2 (Class 1 or 2 for chord)

    70ε2 = 70 [√(235/f y0)]2 = 70√ (235/355)2 = 46.34

    d0/t0 = 19.37 ≤ 46.34 ∴PASS

    di/ti ≤ 50 d1/t1 = 88.9/5.0 = 17.78 ∴PASSd2/t2 = 101.6/6.3 = 16.13 ∴PASSd3/t3 = 101.6/6.3 = 16.13 ∴PASS

    di/ti ≤ 70ε2(Class 1 or 2 for compression bracings)

    70ε2 = 70 [√(235/f y0)]2 = 70√ (235/355)2 = 46.34

    d1/t1= 17.78 ∴PASSd3/t3 = 16.13 ∴PASS

    0.2 ≤ di/d0 ≤ 1.0 d1/d0 = 88.9/193.7 = 0.46 ∴PASSd2/d0 = 101.6/193.7 = 0.52 ∴PASSd3/d0 = 101.6/193.7 = 0.52 ∴PASS

    -0.55 d0 ≤ e ≤ +0.25 d0  -0.55 x 193.7 ≤ e ≤ +0.25 x 193.7-106.5 ≤  e ≤ +48.4e1 = 46.8 mm ∴PASSe2 = 21.2 mm ∴PASS

    Reference 

    5.1.1 Figure 27

    (EN1993-1-1)Table 5.2

    (EN1993-1-1)Table 5.2

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    43/56

    Welded Joints Examples CHS Chord CHS Bracings Gap KT-Joint

    43

    g ≥ t1 + t2 but ≤ 12t0  for g1,3 ≥ t1 + t3 = 5.0 + 6.3 = 11.3 mm but ≤ 12t0g2,3 ≥ t2 + t3 = 6.3 + 6.3 = 12.6 mm but ≤ 12t012t0 = 12 x 10.0 = 120 mm

    g1,3 = 30 mm ∴PASSg2,3 = 52 mm ∴PASS

    30° ≤ θi ≤ 90° θ1 = 45° ∴PASS

    θ2 = 30° ∴PASSθ3 = 90° ∴PASS

    Chord Face Failure (deformation);

    Based on compression brace with most compressive load;

    Compression brace (1);

    5M0

    321

    1

    200ypg

    Rd,1 /d3

    ddd2.108.1

    sin

    tf kkN  γ⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ 

    ×

    ++×+×

    θ

    ×××=

     

    Gap/lap factor, kg; 

    Using Formulae:

    ( )⎥⎥⎦

    ⎢⎢⎣

    −+

    γ+γ=

    33.1t/g5.0exp1

    024.01k

    0

    2.12.0

    g

     where;

    69.90.102

    7.193

    t2

    d

    0

    0 =×

    ==γ 

    Note: (g) is positive for gap and negative for overlap.Use the largest gap between two bracings having significant forces acting

    in opposite direction.

    Using Formulae: Using Graph:

    ( )⎥⎥⎦

    ⎢⎢⎣

    −×+

    ×+=

    33.10.10/525.0exp1

    69.9024.0169.9k

    2.12.0

    g  

    70.1kg =  

    From graph;

    g/t0 = 52/10.0 = 5.2

    kg = 1.70

    Reference

    5.1.3 (K- & N-

    Joints)

    5.1.2.2 (kg)

    6.3 (γ)

    For graph5.1.2.2 Fig. 29

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    44/56

    Welded Joints Examples CHS Chord CHS Bracings Gap KT-Joint

    44

    PASSkN369kN538N  Rd,1   ∴>=

     CHS chord end stress factor, kp 

    CHS chord least compressive applied factored stress, σp,Ed;

    0,op,el

    Ed,0,op

    0,ip,el

    Ed,0,ip

    0

    Ed,pEd,p

    W

    M

    W

    M

     A

    N++=σ  

    Note: Moment is additive to compressive stress which is positive for moments.For CHS chords use least compressive chord stress.

    2

    2Ed,pN/mm7.88

    107.57

    1000512=

    ×

    ×=σ  

    Chord factored stress ratio, np; 25.0355

    7.88

    f n

    0y

    Ed,pp   =⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ =

    ⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛  σ=  

    Using formulae: Using graph:

    For np > 0 (compression):

    kp = 1 - 0.3 np (1 + np) but ≤ 1.0( ) 0.1but25.0125.03.01kp   ≤+×−=  

    91.0kp =  

    from graph;

    kp = 0.91

    0.1/7.1933

    6.1016.1019.882.108.1

    45sin

    0.1035591.070.1N 

    2

    Rd,1   ⎟ ⎠

     ⎞⎜⎝ 

    ⎛ ×

    ++×+×

    °×××

    =

     

    For this type of configuration (see 5.6.2 Figure 51(c));

    1Rd,13Ed,31Ed,1 sinNsinNsinN  θ×≤θ×+θ×  

    °×≤°×+°× 45sin53890sin11345sin369 

    PASSkN380kN374  ∴≤  

    Reference 

    5.1.2.1

    5.1.2.1

    5.1.2.1 (kp)

    For graph5.1.2.1 Fig. 28

    5.6.2

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    45/56

    Welded Joints Examples CHS Chord CHS Bracings Gap KT-Joint

    45

    1Rd,12Ed,2 sinNsinN  θ×≤θ× 

    °×≤°× 45sin53830sin448 

    PASSkN380kN244  ∴≤  

    Check for Chord Punching Shear failure; 

    Valid if: di ≤ d0 – 2t0  where d0 – 2t0 = 193.7 – (2 x 10.0) = 173.7 mmd1 = 88.9 mmd2 = 101.6 mmd3 = 101.6 mm

    Therefore check for Chord Punching Shear;

    5M

    i2

    i10

    0yRd,i /

    sin2

    sin1dt

    3

    f N  γ

    θ×

    θ+××π××=  

    For Brace 1;

    0.1/45sin2

    45sin19.880.10

    3

    355N 

    2Rd,1 °×

    °+××π××=

     

    PASSkN369kN977N  Rd,1   ∴>=

     

    For Brace 2;

    0.1/30sin2

    30sin16.1010.10

    3

    355N 

    2Rd,2 °×

    °+××π××=

     

    PASSkN488kN1963N  Rd,2   ∴>=  

    For Brace 3;

    0.1/90sin2

    90sin16.1010.10

    3

    355N 

    2Rd,3 °×

    °+××π××=

     

    PASSkN113kN654N  Rd,3   ∴>=  

    Summary

    Here, the validity limits are combined to include all three braces. The eccentricity values use both brace 1 and2 (diagonals) in relation to brace 3 (the vertical brace). It is important to check the joint configuration and referto our Design of Welded Joints literature to make sure the correct method and formulae is used. To re-iterate

    this is a theoretical method which is not supported by research or tests.

    Reference

    5.1.3

    5.1.3

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    46/56

    Welded Joints Examples CHS Chord CHS Bracings Overlap KT-Joint

    11 CHS Chord CHS Bracings Overlap KT-

    Joint 

    46

    512kN 1087kN

    References are generally to Tata Steel publication ‘Design of Welded Joints’ (unless otherwise stated).

    NOTE: Brace ‘j’ designated overlapped, Brace ‘i’ overlappingBrace ‘1’ CHS is 88.9 x 5.0, Brace ‘2’ and ‘3’ is CHS 101.6 x 6.3 

    Dimensions 

    d0 = 193.7 mm d1 = 88.9 mm d2 = 101.6 mm d3 = 101.6 mmt0  = 10.0 mm t1  = 5.0 mm t2 = 6.3 mm t3  = 6.3 mm

    γM5 = 1.0 A1 = 13.2 cm2  A2 = 18.9 cm

    2  A3 = 18.9 cm

    2

    f u1 = 470 N/mm2  f u2 = 470 N/mm

    2  f u3 = 470 N/mm

    2

    This example is to show how to calculate an overlap KT-Joint with CHS chord and braces. Please beaware that there are no recommendations for an overlap KT- Joint in EN1993-1-8 or elsewhere as faras Tata Steel is aware. This is a Tata Steel method and is included in the Tata Steel Design of WeldedJoints literature. It is a theoretical method which is not supported by research or tests. The method ofchecking a KT-Joint depends on the direction of the brace forces, gap or overlap and chord sectionprofile. This example is for;

    •  One diagonal brace opposite direction to the other two bracings•  Both diagonal bracings overlapping•  Circular chord and bracings

    With this configuration, the joint capacity is based on the most highly loaded compression brace forchord face failure. Please be aware that different overlap values may change how the joint is calculatedand you should refer to the Tata Design of Welded Joints literature before tackling any joint to makesure you are using the correct method and formulae.The force combination of the braces can be seenat 5.6.2 Figure 51(c) (as a (from left to right) compression-compression-tension) of our Design OfWelded Joints literature. Due to one of the braces falling within the limits (overlapping percentage) forthe localised brace-to-chord shear check, this calculation has also been completed.

    Reference

    ‘f u‘ values takenfrom ProductStandardEN10210-1Table A.3 asrequired by UKNational Annex

    45° 50°

    e = - 19.5

    N2,Ed = - 488kN

    N1 Ed = 369kN

    RHS 200 x 100 x 10

     ALL MATERIAL;CELSIUS 355 to EN 10210 N3,Ed = 113kN

    CHS 193.7 x 10.0

    Brace 1

    Brace 3

    Brace 2

    e2 = -60.4mme1 = -73.2mm

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    47/56

    Welded Joints Examples CHS Chord CHS Bracings Overlap KT-Joint

    47

    Geometric Calculations

    For Eccentricity; Brace 1 in relation to Brace 3;

    ( ) 2d

    sin

    sinsing

    sin2

    d

    sin2

    de 0

    31

    31

    3

    3

    1

    11   −⎥

    ⎤⎢⎣

    θ+θθ×θ

    ×⎥⎦

    ⎤⎢⎣

    ⎡+θ×

    +θ×

    =  

    Brace 1 to 3 overlap, λov = 71.6%;

    where;1

    1ov

    sin100

    dg

    θ×

    ×λ=  

    ( )1

    45sin100

    9.886.71g1   −×°××=  

    mm90g1   −=  (gap is negative as it’s an overlap) 

    ( ) ( )  ( )   ( ) ( )

    ( )

    mm2.73

    2

    7.193

    9045sin

    90sin45sin0.90

    90sin2

    6.101

    45sin2

    9.88e1

    −=

    −⎥⎦

    ⎤⎢⎣

    °+°

    °×°×⎥⎦

    ⎤⎢⎣

    ⎡−+

    °×+°×

    =

     

    For Eccentricity, Brace 2 in relation to Brace 3;

    ( ) 2d

    sin

    sinsing

    sin2

    d

    sin2

    de 0

    32

    32

    3

    3

    2

    22   −⎥

    ⎤⎢⎣

    ⎡θ+θθ×θ×⎥

    ⎤⎢⎣

    ⎡ +θ×

    +θ×

    =

     

    Brace 2 to 3 overlap, λov = 65.2%;

    where;2

    2ov2

    sin100

    dg

    θ×

    ×λ=

     

    ( )°××

    =50sin100

    6.1012.65g2

     

    mm5.86g2   −=

     (gap is negative as it’s an overlap)

    ( ) ( )  ( )   ( ) ( )

    ( )

    mm4.60

    2

    7.193

    9050sin

    90sin50sin5.86

    90sin2

    6.101

    50sin2

    6.101e2

    −=

    −⎥⎦

    ⎤⎢⎣

    °+°°×°

    ×⎥⎦

    ⎤⎢⎣

    ⎡−+

    °×+°×

    =

     

    Validity limits check for both K-Joints

    10 ≤ d0/t0 ≤ 50 d0/t0 = 193.7/10.0 = 19.37 ∴PASS

    d0/t0 ≤ 70ε2 (Class 1 or 2 for chord)

    70ε2 = 70 [√(235/f y0)]2 = 70√ (235/355)2 = 46.34d0/t0 = 19.37 ≤ 46.34 ∴PASS

    Reference 

    6.5 Figure 57

    6.5 Figure 57

    5.1.1 Figure 27

    (EN1993-1-1)Table 5.2

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    48/56

    Welded Joints Examples CHS Chord CHS Bracings Overlap KT-Joint

    48

    di/ti ≤ 50 d1/t1 = 88.9/5.0 = 17.78 ∴PASSd2/t2 = 101.6/6.3 = 16.13 ∴PASSd3/t3 = 101.6/6.3 = 16.13 ∴PASS

    di/ti ≤ 70ε2(Class 1 or 2 for compression bracings)

    70ε2 = 70 [√(235/f y0)]2 = 70√ (235/355)2 = 46.34

    d1/t1= 17.78 ∴PASSd3/t3 = 16.13 ∴PASS

    0.2 ≤ di/d0 ≤ 1.0 d1/b0 = 88.9/193.7 = 0.46 ∴PASSd2/b0 = 101.6/193.7 = 0.52 ∴PASS

    d3/b0 = 101.6/193.7 = 0.52 ∴PASS

    -0.55 d0 ≤ e ≤ +0.25 d0  -0.55 x 193.7 ≤ e ≤ +0.25 x 193.7-106.5 ≤  e ≤ +48.4e1 = -73.2 mm ∴PASSe2 = -60.4 mm ∴PASS

    λov ≥ 25% λov,i = |g| sin θi /di x 100%λov,1 = 90.0 x sin 45°/88.9 x 100%λov,1 = 71.6%  ∴PASSλov,2 = 86.5 x sin 50°/101.6 x 100%λov,2 = 65.2% ∴PASS

    30° ≤ θi ≤ 90° θ1 = 45° ∴PASSθ2 = 50° ∴PASSθ3 = 90° ∴PASS

    Chord Face Failure (deformation);

    Compression brace (1);

    5M0

    1

    1

    200ypg

    Rd,1 /d

    d2.108.1

    sin

    tf kkN  γ⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ ×+×

    θ

    ×××=  

    Gap/lap factor, kg;

    Reference 

    (EN1993-1-1)Table 5.2 

    5.1.1 Figure 27

    6.5 Figure 57

    5.1.3 (K- & N- Joints) 

    5.1.2.2 (kg)

    6.3 (γ)

    Using Formulae:

    ( )⎥⎥⎦

    ⎢⎢⎣

    −+

    γ+γ=

    33.1t/g5.0exp1

    024.01k

    0

    2.12.0

    g

     where;

    69.90.102

    7.193

    t2

    d

    0

    0 =×==γ

     

    Note: (g) is positive for gap and negative for overlap

    Use the smallest overlap for (g)

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    49/56

    Welded Joints Examples CHS Chord CHS Bracings Overlap KT-Joint

    49

    PASSkN369kN637N  Rd,1   ∴>=

    PASSkN488kN588N  Rd,2   ∴>=

     

    CHS chord end stress factor, kp 

    CHS chord least compressive applied factored stress, σp,Ed;

    0,op,el

    Ed,0,op

    0,ip,el

    Ed,0,ip

    0

    Ed,pEd,p

    W

    M

    W

    M

     A

    N++=σ  

    Note: Moment is additive to compressive stress which is positive for moments.For CHS chords use least compressive chord stress.

    2

    2Ed,pN/mm7.88

    107.57

    1000512=

    ×

    ×=σ  

    Chord factored stress ratio, np; 25.0355

    7.88

    f n

    0y

    Ed,pp   =⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ =⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛  σ=  

    Using formulae: Using graph:

    For np > 0 (compression):

    kp = 1 - 0.3 np (1 + np) but ≤ 1.0( ) 0.1but25.0125.03.01kp   ≤+×−=  

    91.0kp =  

    from graph;

    kp = 0.91

    0.1/7.193

    9.882.108.1

    45sin

    0.1035591.015.2N 

    2

    Rd,1   ⎟ ⎠

     ⎞⎜⎝ 

    ⎛ ×+×

    °×××

    =  

    Tension Brace (2); 

    Rd,12

    1Rd,2 N

    sin

    sinN  ×

    θ

    θ=

     

    63750sin

    45sinN  Rd,2   ×°

    °=

     

    Chord Punching shear not required for overlapping bracings

    Reference

    For graph5.1.2.2 Fig. 29

    5.1.2.1

    5.1.2.1

    5.1.2.1 (kp)

    For graph5.1.2.1 Fig. 28

    5.1.3

    Using Formulae: Using Graph:

    ( )⎥⎥⎦

    ⎢⎢⎣

    −−×+

    ×+=

    33.10.10/)5.86(5.0exp1

    69.9024.0169.9k

    2.12.0

    g  

    15.2kg =  

    From graph;

    g/t0 = -86.5/10.0 = -8.7

    kg = 2.15

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    50/56

    Welded Joints Examples CHS Chord CHS Bracings Overlap KT-Joint

    50

    Localised Brace-to-Chord Shear Check for overlapped Jo ints;  

     Although this failure mode check was included as a corrigendum in section 7.1.2 (6) of EN 1993-1-8, noequations have been included in tables 7.2, 7.10, 7.21 or 7.24. In their absence, the following criteria foradequacy of the shear connection may be used. They are based on research by CIDECT but expressed usingEN1993-1-8 symbols.

    Modified equation only applicable when brace 3 is the overlapped brace (j) and diagonals 1 and 2 overlap (i).

    For KT-Joint overlap joint check 60%

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    51/56

    Welded Joints Examples CHS Chord CHS Bracings Overlap KT-Joint

    51

    where Brace Effective Width (overlapped brace);

     j j,eff  j jyj

    00y

    0

    0 j,eff  ddbutd

    tf 

    tf 

    d

    t12d   ≤×

    ×

    ××=

     

    6.101dbut6.1013.6355

    0.10355

    7.193

    0.1012d 3,eff 3,eff    ≤××

    ××

    ×=

     

    6.101dbut100d 3,eff 3,eff    ≤=

     

    mm100d 3,eff    =

     

     Assume the hidden toes of braces 1 & 2 are NOT welded therefore;

    ( )2cweldeds/toehiddenIf 1c1c

    s2s

    1s

    ==

    Therefore;

    ( )( ) .......90cos11350cos48845cos369  ≤°+°−−° 

    ........50sin

    3.61006.1012100

    2.65100

    3

    470

    45sin

    0.59.889.882100

    6.71100

    3

    470

    4   °

    ×⎥⎦

    ⎤⎢⎣

    ⎡+××⎟

     ⎠

     ⎞⎜⎝ 

    ⎛    −

    ×+°

    ×⎥⎦

    ⎤⎢⎣

    ⎡+××⎟

     ⎠

     ⎞⎜⎝ 

    ⎛    −

    ×⎜⎜⎝ 

    ⎛ ×π

     

    ( )0.1

    0.1

    90sin

    3.610011001

    3

    470×⎟ ⎠

     ⎞°××+×

    ×+

     

    ( ) 0.13419073809712674674

    kN575  ×++×π≤

     

    ( )9897454

    kN575  ×π≤

     

    Summary

    Here, the validity limits are combined to include all three braces. The eccentricity values use both brace 1 and2 (diagonal) in relation to brace 3 (the vertical overlapped brace). The localised brace-to-chord shear checkhas been completed due to the high overlap. Please note that even if one brace is within limits for the brace-to-chord shear check, the check will still have to be calculated. In this example both diagonal braces overlapwithin the limits for the shear check. The brace-to-chord shear check equation sees the addition of thehorizontal loads of the 3 bracings, the 2 angled braces having loads that result in the same horizontal

    direction. This means the brace 2 load (negative tension load) had to be subtracted so that the double-negative created a positive result so that the equation calculated correctly. It is important to check the jointconfiguration and refer to our Design of Welded Joints literature to make sure the correct method andformulae is used. To re-iterate this is a theoretical method which is not supported by research or tests.

    Reference

    5.1.2.3

    5.1.3

    PASSkN778kN575  ∴≤

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    52/56

    Welded Joints Examples UB Chord RHS Bracings Gap K-Joint

    12  UB Chord RHS Bracings Gap K-Joint 

    52

    References are generally to Tata Steel publication ‘Design of Welded Joints’ (unless otherwise stated). Reference

    Dimensions 

    b0 = 125.3 mm h1 = 100.0 mm h2 = 100.0 mmh0 = 311.0 mm b1 = 100.0 mm b2 = 100.0 mmtw = 9.0 mm t1 = 6.3 mm t2 = 6.3 mmtf = 14.0 mmdw = h0 – 2 x (tf  – r 0) = 265.2 mmr 0 = 8.9 mm

    Validity limits check  5.7.1 Figure 55(EN1993-1-1

    Chord: Web; Table 5.2)

    dw/tw ≤ 38ε (Class 1 or 2 compression)38ε = 38 √(235/f y0) = 38 √(235/355) = 30.92

    dw/tw  = 265.2/9 = 29.5 ∴PASSdw ≤ 400 dw = 265.2 ∴PASSChord: Flange;

    cf /tf  ≤ 10ε (Class 1 or 2 compression) (EN1993-1-110ε  = 10 √(235/f y0) = 10 √(235/355) = 8.1 Table 5.2)cf  = (b0 – 2r 0 - tw)/2 = (125.3 – 2 × 8.9 – 9)/2 = 49.25

    cf /tf = 49.25/14.0 = 3.52 ∴PASS

    Compression and Tension brace:

    hi/ti ≤ 35 hi/ti = 100/6.3 = 15.87 ∴PASSbi/ti ≤ 35 bi/ti = 100/6.3 = 15.87 ∴PASShi/bi = 1.0 hi/bi = 100/100 = 1.0 ∴PASS

    Compression brace:

    (b1 – 3t1)/t1 ; (h1 – 3t1)/t1 ≤ 38ε (Class 1 or 2 compression)38ε = 38 √(235/355) = 30.92(b1 – 3t1)/ t1 = (100 – 3 × 6.3)/6.3 = 81.1/6.3 = 12.87 ∴PASS

    g = 165.8mm

    45°45°

    Np,Ed = 250 kN

    N2,Ed = -150 kNN1,Ed = 150 kN

    N0,Ed = 462 kN

    SHS 100 x 100 x 6.3

    UB 305 x 127 x 48 S355

    MATERIAL;BRACES: CELSIUS S355 to EN 10210UB CHORD: ADVANCE S355 to EN 10025

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    53/56

    Welded Joints Examples UB Chord RHS Bracings Gap K-Joint

    53

    g ≥ t1 + t2 = 6.3 + 6.3 = 12.6 Referenceg = 165.8 (zero eccentricity) ∴PASS30° ≤ Ө1 ≤ 90° Ө1 = 45° ∴PASS30° ≤ Ө2 ≤ 90° Ө2 = 45° ∴PASS

    Chord Web Yielding;

    5Mi

    i,ww0yRd,1 /

    sin

    btf N   γ

    θ

    ××=

      5.7.4 

    where… ( ) ( )0f i0f i

    ii,w r t10t2butr t5

    sinhb   ++≤++θ

      5.7.2 

    ( ) ( )9.80.14103.62but9.80.14545sin

    100b 1,w   ++×≤++°

    =

     

    bw,1 = 255.92 but ≤ 241.6

    bw,1 = 241.6 mm and bw,2 = bw,1 as same brace and angle dimensions. 

    Therefore;

    kN10920.1/

    45sin

    6.2410.9355N Rd,1   =

    °

    ××=

     

    and N2,Rd = N1,Rd as same brace and angle dimensions

    1092 > 150 kN  ∴PASS

    Chord Shear ;

    5M

    i

    0v0yRd,i /

    sin3

     Af N   γ

    θ×

    ×=

      5.7.4 

    where… Av,0 = A0 – (2 - α) x b0 x tf  + (tw + 2r) x tf 5.7.3

    where…

    ⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛ 

    ×

    ×+

    =

    ⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛ 

    ×

    ×+

    2

    2

    2f 

    2

    0.143

    8.16541

    1

    t3

    g41

    1

      5.7.3

     

    α   = 0.073

    ∴  Av,0 = 6120  – (2 - 0.073) x 125.3 x 14.0 + (9.0 + 2 x 8.9) x 14.0

    Av,0 = 3114.9 mm2

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    54/56

    Welded Joints Examples UB Chord RHS Bracings Gap K-Joint

    54

    Reference

    ∴  0.1/45sin3

    9.3114355N Rd,1

    °×

    ×=  

    kN903N Rd,1   =

     and N2,Rd = N1,Rd as same brace and angle dimensions

    903kN > 150 kN  ∴PASS

    Bracing Effective Width;

    5Mi,eff iyiRd,i /ptf 2N   γ×××=   5.7.4 

    Check if Bracing Effective Width required (Page 60 Welded Joints Literature);

    g / tf ≤ 20 - 28β 

    165.8 / 14.0 ≤ 20 – 28 (100+100+100+100/4 x 125.3)

    11.8 ≤ -2.4  ∴  Check Effective Width;

    where… peff,i = tw + 2r + 7tf x (f y0 / f yi) 5.7.2

    but ≤ bi + hi – 2ti for K or N gap joints

    peff,1 = 9.0 + 2 x 8.9 + 7 x 14.0 x (355/355)

    but ≤ 100 + 100 – 2 x 6.3

    peff,1 = 124.8 but ≤ 187.4

    and peff,2 = peff,1 as same brace and angle dimensions

    0.18.1243.63552N Rd,1   ÷×××=  

    558kN > 150kN  ∴PASS

    and N2,Rd = N1,Rd as same brace and angle dimensions

    Chord Axial Force Resistance in gap;

    ( ) 5MRd,0,pl

    Ed,00y0,v0y0,v0Rd,gap,0 /

    V

    V1f  Af  A AN   γ

    ⎥⎥⎥

    ⎢⎢⎢

    ⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛ −××+×−=

      5.7.4

     

    where… ( )2Ed,21Ed,1Ed,0 sinN,sinNmaxV   θ×θ×=   5.7.4 

    ( )°×−°×= 45sin150,45sin150maxV Ed,0  

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    55/56

    Welded Joints Examples UB Chord RHS Bracings Gap K-Joint

    55

    Vo,Ed = 106.1kN Reference 

    where…( )   ( )

    0.1

    3/3558.31413/f  AV

    0M

    0y0,vRd,0,pl

    ×=

    γ=

      5.7.4

     

    Vpl,0,Rd = 643.9kN

    ( ) 0.1/9.6431.106

    13558.31413558.31416120N Rd,gap,0 ⎥⎥⎦

    ⎢⎢⎣

    ⎟ ⎠

     ⎞

    ⎜⎝ 

    ⎛ 

    −××+×−=  

    N0,gap,Rd = 2077kN 

    check; N0,gap,Rd ≥ N0,gap,Ed

    250kN

    250.0+106.1

    356.1

    Therefore; N0,gap,Ed = 356.1kN 

    2077kN ≥  356.1kN  ∴PASS 

    150kN 150kN

  • 8/17/2019 TST56 Welded Joints Examples 12.13 Edit

    56/56

    www.tatasteeleurope.com

    While care has been taken to ensure that the

    information contained in this brochure is

    accurate, neither Tata Steel Europe Limited, nor

    its subsidiaries, accept responsibility or liability

    for errors or for information which is found to be

    misleading.

    Copyright 2013

     Tata Steel Europe Limited

     Tata Steel

    PO Box 101

    Weldon Road

    Corby

    Northants

    NN17 5UA


Recommended