+ All Categories
Home > Documents > TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware...

TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware...

Date post: 30-Apr-2020
Category:
Upload: others
View: 10 times
Download: 0 times
Share this document with a friend
154
V4.41x, May 22, 2008 TTC-1000 Transformer Temperature Controller Instruction & Operation Manual One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300 Fax: (973) 328-0666 Website: advpowertech.com e-mail: [email protected] (This manual applies to firmware versions 4.41X) Advanced Power Technologies
Transcript
Page 1: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008

TTC-1000

Transformer Temperature Controller

Instruction & Operation Manual

One or Two Probe

Four Output

Firmware version 4.41x

215 State Route 10, Building 2

Randolph, NJ 07869

Phone: (973) 328-3300

Fax: (973) 328-0666

Website: advpowertech.com

e-mail: [email protected]

(This manual applies to firmware versions 4.41X)

Advanced Power Technologies

Page 2: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

Table of Contents

V4.41x, May 22, 2008i

1 INTRODUCTION ...........................................................................................1

2 PRODUCT DESCRIPTION............................................................................3

2.1 Controls & Indicators ..............................................................................3

2.2 Connection Overview Small Form Panel Unit.........................................5

2.3 Connection Overview Large Form Panel Unit.........................................6

2.4 Connections Overview - NEMA Enclosure .............................................7

2.5 Specifications .........................................................................................8

2.6 Part Number Details .............................................................................10

3 INSTALLATION and CONNECTIONS.........................................................11

3.1 Mounting...............................................................................................11

3.2 Power Hookup ......................................................................................12

3.3 Temperature Probes.............................................................................13

3.3.1 TTC-PROBE-01 Installation ..........................................................13

3.3.2 TTC-PROBE-11 Installation ..........................................................14

3.3.3 Magnetic Mount Probe (TTC-PROBE-02) Installation ...................15

3.3.4 Probe Lead Connections ...............................................................16

3.4 Auxiliary CT Input for Calculated Winding Temperature.......................18

3.5 Cooling Control and Condition Alarm Connections...............................18

3.6 Unit Alarm Connections........................................................................20

3.7 Telemetry Connections.........................................................................20

3.7.1 RS-232 Terminal Connections ......................................................20

3.7.2 Analog Outputs..............................................................................21

3.7.3 RS-485 for DNP3.0 Communications............................................22

3.7.4 Fiber Optic Interface for DNP3.0 Communications........................23

3.7.5 Setting Repeat Mode on Fiber Optic Channel ...............................25

3.8 Optically Isolated Inputs........................................................................25

3.9 Heater Connections..............................................................................26

4 SETTINGS...................................................................................................27

4.1 Programming Settings Through Front Panel ........................................27

4.2 Programming Settings Through a PC...................................................28

4.3 Settings for Calculated Winding Temperature ......................................30

Page 3: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

Table of Contents

V4.41x, May 22, 2008ii

4.3.1 CT RATIO......................................................................................31

4.3.2 Rated Load....................................................................................32

4.3.3 Hot Spot Rise over Top Oil............................................................32

4.3.4 Winding Rise Time Constant .........................................................33

4.3.5 Calculated Winding Exponent Setting ...........................................33

4.3.6 Checking Winding Temperature ....................................................34

4.4 Setting Probe Names ...........................................................................35

4.5 Temperature Set Points........................................................................37

4.5.1 Setting Liquid Pickup and Drop Out Temperatures .......................39

4.5.2 Setting Calculated Winding Pickup and Drop Out Temperatures ..40

4.6 LTC Condition Monitoring.....................................................................41

4.6.1 LTCDIFF Temperature Monitoring.................................................42

4.6.2 LTCDIFF Rate of Rise Monitoring .................................................45

4.7 Load Pickup Set Points.........................................................................47

4.7.1 Setting Load Pickup Set Point .......................................................49

4.7.2 Setting Load Pickup Timer ............................................................50

4.8 Optically Isolated Input Settings ...........................................................51

4.9 Programmable Logic Settings...............................................................53

4.9.1 Assigning Liquid Temperature Set Points......................................54

4.9.2 Assigning Winding Temperature Set Points ..................................56

4.9.3 Assigning LTCDIFF for LTC Condition Monitoring Alarm ..............57

4.9.4 Assigning Load Pickup Set Points.................................................59

4.9.5 Assigning IN1 and IN2...................................................................60

4.9.6 Assigning OUT1, OUT2, OUT3 and OUT4....................................61

4.9.7 Time Set Points .............................................................................62

4.9.8 Setting Output Timers....................................................................64

4.9.9 Setting Output Invert......................................................................65

4.9.10 Application Examples ....................................................................66

4.10 Setting Output Control With Alarm........................................................69

4.11 Alternate Fan Banks .............................................................................70

4.12 Auto and Manual Control ......................................................................71

Page 4: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

Table of Contents

V4.41x, May 22, 2008iii

4.13 Setting Control of Unit Alarm ................................................................72

4.13.1 Device Alarm Setting.....................................................................73

4.13.2 Temperature Probe Alarm Setting.................................................73

4.13.3 Manual Mode Alarm Setting ..........................................................74

4.13.4 Winding Circuit Alarm Setting........................................................74

4.14 Setting Date and Time..........................................................................75

4.14.1 Setting Time and Date Via the Front Panel ...................................76

4.14.2 Setting Time and Date Via the PC.................................................76

4.15 Setting Password..................................................................................77

4.16 Setting Unit ID ......................................................................................77

5 TELEMETRY OPTIONS ..............................................................................79

5.1 Analog Outputs.....................................................................................79

5.1.1 Setting the Analog Output Range..................................................80

5.1.2 Setting the Analog Source.............................................................81

5.1.3 Enabling Negative Scaling.............................................................82

5.2 DNP3.0.................................................................................................82

5.2.1 Setting BAUD Rate........................................................................85

5.2.2 Setting NODE Address..................................................................85

5.2.3 Setting Remote Blocking ...............................................................86

5.3 Telemetry Via RS232............................................................................86

6 VIEW TEMPERATURES .............................................................................88

6.1 Single Probe .........................................................................................88

6.2 Dual Probe............................................................................................89

6.3 Single Probe With Calculated Winding .................................................90

6.4 Dual Probe With Calculated Winding....................................................91

6.5 Reset Min/Max......................................................................................92

7 VIEW SETTINGS.........................................................................................93

7.1 View Settings Via Front Panel ..............................................................93

7.2 View Settings Via PC............................................................................93

8 STATUS ......................................................................................................96

8.1 View Status Via Front Panel .................................................................96

Page 5: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

Table of Contents

V4.41x, May 22, 2008iv

8.2 View Status Via PC ..............................................................................96

9 SETTING FILES ..........................................................................................98

9.1 Upload Setting Files .............................................................................98

9.1.1 Upload Settings Using HyperTerminal...........................................98

9.1.2 Upload Settings Using HyperAccess .............................................99

9.2 Download Setting Files.......................................................................100

9.2.1 Download Settings Using HyperTerminal ....................................100

9.2.2 Download Settings Using HyperAccess ......................................101

9.2.3 Download Settings Using a *.csv Template With HyperTerminal 101

9.2.4 Download Settings Using a *.csv Template With HyperAccess...102

10 DATA LOGGING....................................................................................103

10.1 Data Storage ......................................................................................103

10.2 Data Points .........................................................................................104

10.3 Setting the Time Base ........................................................................104

10.4 Selecting Data Points .........................................................................104

10.4.1 Add or Delete P1 From Log.........................................................105

10.4.2 Add or Delete P2 From Log.........................................................105

10.4.3 Add or Delete Calculated Winding From Log ..............................106

10.4.4 Add or Delete Load From Log .....................................................106

10.5 Viewing the Data Log .........................................................................107

10.6 Saving the Data Log as a Text File Using HyperTerminal ..................108

10.7 Import Data Log as a Comma Delimited Text Using HyperAccess....108

10.8 Import to Excel....................................................................................109

11 DOWNLOAD PROGRAM UPDATES.....................................................113

11.1 Download Firmware Using HyperTerminal .........................................114

11.2 Download Firmware HyperAccess......................................................114

12 Front Panel Setting Sheets ....................................................................116

13 PC Setting Sheets..................................................................................129

14 DNP3.0 PROFILE DOCUMENT.............................................................143

Page 6: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

Table of Figures

V4.41x, May 22, 2008v

Figure 2.1: Controls and Indicators – all versions .................................................3

Figure 2.2: Small Panel Mount Connection Overview...........................................5

Figure 2.3: Large Panel Mount Connection Overview...........................................6

Figure 2.4: NEMA Mount Connection Overview...................................................7

Figure 3.1: Mounting Bracket..............................................................................11

Figure 3.2: Power Connections..........................................................................12

Figure 3.3: PROBE-01 Installation......................................................................13

Figure 3.4: PROBE-11 Installation......................................................................14

Figure 3.5: Magnetic Mount, Application of Thermal Compound ........................15

Figure 3.6: Magnetic Mount Views......................................................................16

Figure 3.7: Probe Connections ...........................................................................17

Figure 3.8: Temperature Probe Shield Grounding ..............................................17

Figure 3.9: Split Core CT Installation ..................................................................18

Figure 3.10: Auxiliary CT Connections................................................................18

Figure 3.11: Connections to Relay Outputs ........................................................19

Figure 3.12: Connections to Unit Alarm ..............................................................20

Figure 3.13: Connections to Analog Outputs ......................................................21

Figure 3.14: Panel Mount and NEMA 4 RS-485 Connections ............................23

Figure 3.15: Outline of Fiber Optic Interface .......................................................24

Figure 3.16: Optically Isolated Input Connections...............................................25

Figure 4.1: Over Temperature Operation............................................................38

Figure 4.2: Under Temp Operation .....................................................................38

Figure 4.3: LTC Differential Set Point Operation.................................................42

Figure 4.4: LTCDIFF Rate of Rise Method .........................................................45

Figure 4.5: Load Pickup Set Point Operation......................................................48

Figure 4.6: Input Set for LEVEL ..........................................................................51

Figure 4.7: Input Set for PULSE..........................................................................52

Table 4.1: Operands ...........................................................................................53

Table 10. 1: Maximum Records ........................................................................103

Page 7: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

Warranty

V4.41x, May 22, 2008vi

All new products sold to customers are warranted against defects in design, materials, and workmanship for

the life of their use to the original end user. If it is determined that the new product defect is covered under

this warranty, Advanced Power Technologies, LLC (the “Company”) will repair, replace, or substitute an

identical unit at its own discretion to the customer at no charge. The Company requires the customer to ship

the unit back to the factory for diagnosis under all circumstances. In such event, the Company may, at its

own discretion, decide to provide the customer with a substitute unit which may be sent to the customer

either from the Company’s factory or from an authorized representative or distributor from their inventory. All

expenses related to the shipment of defective units back to the Company or the provision of a substitute unit

to the customer are the responsibility of the customer. This expense may include, but is not limited to,

freight, insurance, Customs clearance, and duties. All expenses related to the shipment of repaired units

back to customers (or the provision of a new unit to the customer) will be borne by the Company.

Product Upgrade Policy

From time to time, the Company makes product upgrades to add or enhance the performance of the

products. Customers of a particular product being issued an upgrade will be notified either by the Company

directly or through its authorized representatives or distributors. Customers who have purchased an annual

upgrade policy will receive all upgrades during the calendar year free of charge. Customers who did not

purchase the annual upgrade policy may purchase each unit upgrade individually. The annual upgrade

policy can be purchased at any time. Regardless of whether the upgrade policy is purchased, the Company

will make reasonable efforts to notify all customers of all available upgrades.

Equipment Repair and Warranty

Repair costs of products not covered under this warranty are paid for by customers. Customers are

responsible for the cost of shipping the products to the Company located at: 215 State Route 10, BLDG 2,

Randolph, NJ 07869, USA. All products repaired by the Company will continue to be warranted against

defects in material and workmanship for its installed life at the original end user.

Limitations

The Company's warranty does not extend to (A) The Company's products subject to (i) improper installation,

connection, operation, maintenance, or storage; (ii) accident, damage, abuse, or misuse; (iii) abnormal or

unusual operating conditions or applications outside the specifications for the product; (iv) a purpose or

application in any way different from that for which the products were designed; (v) repairs conducted by

persons other than the Company employees or an authorized representative or distributor; or (vi)

modifications made to the product by the customer or end user, (B) Equipment and products not

manufactured by the Company. Such equipment and products may be covered by a warranty issued by the

respective manufacturer. This warranty is in lieu of any other warranties, express or implied, including

without limitation, any warranty of merchantability or fitness for a particular purpose, and is in lieu of any and

all other obligations or liability of the Company. Under no circumstances shall the Company be liable for any

accidental or consequential damages or for any other loss, injury, damage, or expense of any kind including

loss of profits arising hereunder. To the extent any court, arbitration panel, or other governmental body of

competent jurisdiction shall declare any provision of this warranty invalid or unenforceable by reason of a

rule of law or public policy, all the other provisions hereof shall remain in full force and effect.

Page 8: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

1 V4.41x, May 22, 2008

1 INTRODUCTION

The TTC-1000, Transformer Temperature Controller is a mission specificprogrammable controller that measures up to two different probe temperatures,load and calculated winding temperature. The user can program four (4)independent outputs based on the state of pre-programmed temperature setpoints, time set points, load set points or the outputs themselves. The controllercan measure any two of top oil, winding, LTC tank, or ambient temperature toaccuracy of ± 1 ºC and does not require calibration. Calculated windingtemperature is based on the methods of ANSI C57.91 and uses measured top oiltemperature and load current.

The outputs can be used to:

Control cooling fans and pumps.

Provide high temperature, LTC condition, and cooling system performancealarms.

Provide a trip output.

The TTC-1000 is substation hardened and designed to operate over a widetemperature range of –50 to 85 ºC suitable for installation in outdoor cabinets.

The TTC-1000 contains many features including:

Measures temperature from -35 to 160 ºC.

Does not require calibration.

Optional 0-1 or 4 - 20 mA analog outputs.

Optional dual probe version for top oil and the heated well.

Optional aux CT input for calculated winding temperatures.

Patented Load Pickup Cooling™ set points for early activation of coolingbased on sudden increases in load.

Comprehensive Patented Dual Algorithm LTC Condition Monitoring™ for thedetection of both slowly and quickly evolving problems.

Universal probe kit includes thermo well fitting adapters and probe sleeves.

Optional magnetic mount temperature probe when a thermo well is notavailable.

Reports Min and Max Temperatures, time stamped with date and time.

Data logging.

Periodic exercise of cooling fans.

Automatic swapping of lead and lag fan banks.

Page 9: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 20082

Four independent temperature set points per probe.

Cooling system performance monitor to alarm when cooling is commandedbut the current draw of the cooling fans or pumps is outside a specifiedrange.

Six scheme logic programmable form C relay outputs, all trip duty rated.

Dedicated programmable for B alarm relay in small form panel units and formC alarm relay in large form panel units and NEMA units.

Remote/Local Communications through RS-232, no special softwarerequired.

Flash memory for convenient firmware upgrades.

Same unit operates from 38 to 160VDC or 120VAC and is immune toreversal of battery voltage polarity.

Available in either compact panel mount or a 304 Stainless Steel NEMA 4Xenclosure.

Optional MODBUS or DNP3.0 Level 1 communications for reading analogsplus status and remotely commanding cooling via RS-485 or Multi-ModeFiber Optics.

Two optional optically isolated inputs for remote cooling control by SCADA,reporting status from liquid level or sudden pressure alarms over DNP3.0, orfor selective blocking of outputs.

Each TTC-1000 is burnt-in for a total of 48 hours prior to shipping and comeswith a lifetime warranty.

U.S. Patents 6,714,022, 6,222,714, 7,323,852 and other Patents Pending

Page 10: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 20083

2 PRODUCT DESCRIPTION

The following section describes the front panel display, indicators, and switches,connection points, mounting, physical size and panel cutout requirements

2.1 Controls & Indicators

Figure 2. shows the front panel display, indicators, and switches for all versions.The overall panel size will vary, however the layout is identical.

Figure 2.1: Controls and Indicators – all versions

UP arrow button for navigating forward into menu categories andincreasing settings.

DOWN arrow button for navigating backward into menu categories anddecreasing settings.

LEFT arrow button used for moving to the next character to the left whenchanging settings.

RIGHT arrow button used for moving to the next character to the rightwhen changing settings.

YES button is used to enter a menu category, request to change a setting,and acknowledge a setting change.

1

2

3

4

5

YES NO

ACTIVE

ALARM

RS-232

CLEAR WINDOW NO TEXTURE

Advanced Power Technologies

TTC-1000

654321 7 8

10

9

Page 11: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 20084

NO button is used to leave a menu category or abort a setting change.

ACTIVE indicator is a green LED that illuminates when power is applied.

ALARM indicator is a red LED that illuminates whenever an alarmcondition is present. Alarms can be caused by a failure detected in theelectronics, or a broken temperature probe. In NEMA 4 mounting models,this indicator will flash when using the light activated Min/Max resetfeature.

16 character by 2 line Liquid Crystal Display.

9 pin 15KV ESD protected RS-232 interface.

6

7

8

9

10

Page 12: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 20085

2.2 Connection Overview Small Form Panel Unit

Figure 2.2: Small Panel Mount Connection Overview

Phoenix connector for probes, analog and alarmshown unplugged for clarity

YES NO

ACTIVE

ALARM

RS-232

CLEAR WINDOW NOTEXTURE

Advanced PowerTechnologies

TTC-1000

5.70 in.

2.83 in.

5.35Cutout

2.65 in.Cutout

12Power

34Aux CT

GND

PROBE 1

SHIELD

TB1

TB2

TB3

COM

TMP

REF

PROBE 2

COM

TMP

REF

+ -A1

+ -A2 ALARM

OUT1OUT2OUT3OUT4

ANALOG OUT

CHASSISGROUND

ShieldConnect toground

TB2

COM

REF

TMP

1

2

3

4

5

6

7

8

9

10

11

12

NC

COM

Front Panel DB-9

RS-232

1

2

3

4

5

6

7

8

9

GROUND

Rx

Tx

N/C

N/C

N/C

RTS

CTS

N/C

To Alarm

Power In38 to 160VDC or 120VAC

TB11

2

3

4Aux CT InputMust use EXTERNAL CTSupplied

Main circuitboard

NO

NC

COMOUT 4

10

11

12

TB3

OUT 3

OUT 2

OUT 1

1

2

3

4

5

6

7

8

9

NO

NC

COM

NO

NC

COM

NO

NC

COM

Relay Board

_

+_

+

A2

A1

Probe 1TTC-PROBE-YY-XXX

REF RTD

WHT

BLK

RED

Probe 2TTC-PROBE-YY-XXX

REF RTD

WHT

BLK

RED

GNDB

GNDA

Connectionsfor RS485Option

Connectionsfor Analog OutOption

Set Screw6.10 in.

2.63 in.

.32 in.

0.52 in.

COM

REF

TMP

Page 13: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 20086

2.3 Connection Overview Large Form Panel Unit

Figure 2.3: Large Panel Mount Connection Overview

Terminal blocks are shown lessplugs for clarity. All terminals areon plug-in blocks as illustrated

above

Set Screw

6.0 in.

3.558

0.40

CHASSISGROUND

Power In38 to 160VDC or 120VAC

Aux CT Input

TB3

Tx

Rx

1

2

3

4

5

6

7

8

9

TB1A1

2

3

4

5

6

7

8

9

TB21

2

3

4

5

6

7

8

9

10

11

12

NO

NC

COM

1

2

3

4

5

6

7

Multi-ModeFiber OpticDNP 3.0 orMODBUSInterface

TB1B

OUT 4NO

NC

COM

OUT 3

OUT 2

OUT 1NO

NC

COM

NO

NC

COM

NO

NC

COM

COM

REF

TMP

COM

REF

TMP

OpticallyIsolatedInputs

TB4IN1

IN2

1

2

3

4

Must use supplied Aux CT

Connect All Cable Shields toChassis Ground Stud

No Connection

No Connection

To Alarm

1

2

3

4

5

6

7

8

9

Front PanelDB-9

RS-232

GROUND

RxTx

N/C

N/C

N/C

RTS

CTS

N/C

REF RTD

WHT

BLK

RED

Probe 1

REF RTD

WHT

BLK

RED

Probe 2

7.3 Panel Cutout

3.7PanelCutout

3.558Case

7.20 Case

12

POWER

34

AuxCT

COM

TMP

REF

GROUNDSHIELD

TB3TB2

TB1B

COM

TMP

REF ALARM

NC

OUT4

C NO

NC

OUT3

C NO

NC

OUT2

C NO

NC

OUT1

C NO

NC

OUT5

C NO

NC

OUT6

C NO TB1A

COM

TMP

REF

A B

RS485

Rx TxGND

Rpt

Tx

Rx

567

1234

IN1 IN2TB4

Advanced Power Technologies

TTC-10 00

YES NO RS-232ACTIVE

ALARM

4.779

7.559

ANALOG OUT

+ -A1

+ -A2 TB5+ -

A3OK

TB51

2

3

4

5

6

_

+A1

_

+A2

_

+No

Connection

Note that while the Analog Outshows A3, this output is not

available for this version

B

A

GND

IEEE 485 DNPor MODBUS

DNP 3.0 orMODBUS

Interface – onlyone connection

method, wired orfiber, can be

present

Page 14: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 20087

2.4 Connections Overview - NEMA Enclosure

Figure 2.4: NEMA Mount Connection Overview

1/4-20x1/2

1.63 DIA

0.000

0.000

5.25

1.73

1.00 3.00 5.50

1.38 DIA

3.00

YES NO

ACTIVE

ALARM

RS-232

CLEAR WINDOWNO TEXTURE

Advanced Power Technologies

TTC-10 00

CHASSISGROUND

Power In38 to 160VDC or 120VAC

TB3

10

11

12

13

14

15

TB11

2

3

4

5

6

7

8

9

TB21

2

3

4

5

6

7

8

9

10

11

12

NO

NC

COM

1234

Multi-ModeFiber Optic

DNP 3.0Interface

- OR -Wired

IEEE 485Interface

IN1

OUT 4NO

NC

COM

OUT 3

OUT 2

OUT 1NO

NC

COM

NO

NC

COM

NO

NC

COM

COM

REF

TMP

COM

REF

TMP

1

2

3

4

5

6

7

8

9

Front Panel DB-9RS-232

GROUND

Rx

Tx

N/C

N/C

N/C

RTS

CTS

N/C

Connect AllCable Shields toChassis Ground

Stud

To Alarm

Aux CT Input Must use suppliedAux CT

No Connection

TTC-PROBE-YY-XXX

REF RTD

WHT

RED

BLK

Probe 1

TTC-PROBE-YY-XXX

REF RTD

WHT

RED

BLK

Probe 2

16IN2

Tx

Rx

LexanWindow

15.25

Oblong0.312 X 0.500

5.00

Liquid-TightProbe Cable Strain

Relief

7.00

14.5

MEMBRANEBREATHER

Connection LayoutConnections for Analog and DNP are on

daughter cards mounted on the main board

OUT1OUT2OUT3OUT4

TB1

OUT4 OUT2OUT3 OUT1

IN1IN2

4 Output

4 Output withDigital Inputs

OR

1234 TB3

TB2

2 1

Probe 1 Alarm Aux CT Power

101112 789 56 4

COM TMP REF

3

No ConnectionProbe 2

COM TMP REF

- + - +

A1A2- +

Analog daughter card may haveconnections for 3 analogs, only

up to two are available

OpticallyIsolatedInputs

TB41234

_

+A1

_

+A2

56

No Connection

TB5A12D0/RI

D0/RI

D0

/RI

D0

/RI

Tx

Rx

DNP output daughterboard, if present, maybe either IEEE485 or

Multi-Mode fiber

OR

Page 15: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 20088

2.5 Specifications

Power Supply Input Operating Range:

38 VDC to 160 VDC or 120VAC ±10%, 3 Watts max

Operating Temperature Range:

-50 to +85 °C

Liquid Temperature Measurement Range:

-35 to +160 °C

LTC Differential Temperature Measurement Range:

-20 to +20 °C

Winding Temperature Measurement Range:

-35 to 180 °C

Temperature Measurement Accuracy:

Average error over the entire measurement range of ± 1 °C.

Current Measurement Range:

Instantaneous 0 to 10 A RMS. Measurement accuracy ± 3.5%. Using split coreCT provided.

Output Contact Rating:

30 amps make for 250 msec.

10 amps continuous at 230VAC

0.4 amps break at 160VDC. See Section 3.5 for note on breaking under load

Alarm Contact Rating:

0.4 amp continuous at 160VDC. See Section 3.5 for note on breaking underload

Analog Output:

Selectable, 0 to 1 mA or 4 to 20 mA current source referenced to chassisground, or with 1500 VDC of isolation.

Maximum load 9,500 ohms for 0 to 1 mA and 450 ohms for 4 to 20 mA

Page 16: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 20089

Dimensions:

Small Panel Mount: 5.32” W x 2.61” H x 6” D. Aluminum

Large Panel Mount: 7.20” W x 3.558” H x 6.0”D Aluminum

NEMA 4X: 10” H x 6” W x 3.25” D. 304 Stainless Steel

Surge Withstand/Fast Transient:

Relay outputs, and station battery inputs: ANSI C37.90.1

EMI Withstand:

ANSI C37.90.2

Dielectric Withstand:

1500 VDC for 10 seconds

Electrostatic Discharge:

IEC 801-2

Timers:

Output and Load Pick Up Timer: 0 to 255 seconds (actual minimum delay 32msec)

Optically Isolated Inputs:

External wetting required. Picks up between 38 and 160 VDC. Maximum input160 VDC. 5000 Volts of isolation.

Fiber Optic Interface:

Transmit/Receive Wavelength 850nm. Supports 50 or 62.5 micron multi-modefiber. Optical budget is 9.1 dB. Modulation is Non Return to Zero (NRZ).Optional V-Pin fiber interface available.

Page 17: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200810

2.6 Part Number Details

Note that grayed out items are not available for this firmware version.

Probe lead length,10 to 250 ftzzz

1Universal Well Probe w/Snap Elbow

2Magnetic Surface Mount Probe

0

0

1 1Universal Well Probe Liquid Tight Rdy

0Ambient Temperature Probe 0

5ANSI C57 Well Probe w/Snap Elbow 0

2ANSI C57 Well Probe Liquid Tight Rdy 1

15/16" Well Probe w/Snap Elbow 2

11/4" Well Probe w/Snap Elbow 3

0

2

4 form C Outputs, No inputs

4 form C Outputs, 2 inputs

4 Connectorized 4 form C Outputs

1 6 form C Outputs, No inputs

5 6 form C Outputs, 2 inputs

66 Form C. Outputs with LTC PositionMonitoring

1

2

3

4

Single Probe

Dual Probe

AUX CT, Single Probe

AUX CT, Dual Probe

6Three Probe (NEMA)

7Three Probe w/AUX CT (NEMA)

0

1

No Extra CT Inputs

1 Extra CT Input

2?

82 ? 8 Extra CT Inputs

Panel Mounting 0

NEMA 4X Enclosure 3

NEMA 4X with Heater 4

Single analog output

Dual analog output

2

3

RS485Dnp3 w/1 analog out 6

No telemetry outputs 0

RS485Dnp3 w/2 analog out 7

RS485w/Dnp3 Level 1

Triple analog output 4

5

RS485 w/MODBUS 1

1

3

Extra RS-232 Port

Multi-Mode Fiber for DNP orMODBUS

4 Extra RS-232 Port & Fiber

5 12 Digital Inputs

6 12 Digital Inputs & Fiber

7 12 Digital Inputs & Extra RS-232

8 12 Digital Inputs, Fiber & RS-232

0 No option selected

TTC- 1000- U V W X Y Z

TTC- PROBE- 0 t -zzz

RS485Dnp3 w/3 analog out 8

MODBUS w/1 analog out 9

MODBUS w/2 analog out A

MODBUS w/3 analog out B

Page 18: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200811

3 INSTALLATION and CONNECTIONS

The following section gives information on hookup of power, temperature probes,split core CT, outputs, optically isolated inputs, analog outputs along withconnections to RS232 and RS485 or fiber optics for DNP3.0 communications.

3.1 Mounting

There are three mounting configurations available. Panel Mounts are intended forinstallation inside the transformer control cabinet and NEMA 4X for mountingeither inside or outside the control cabinet. Figure 2.2 shows the outline & cutoutrequired for small panel mounting.

The larger panel mount unit is designed to incorporate the additional featuresavailable in the NEMA package. The outline for the larger panel configuration isshown in Figure 2.3

Figure 2.4 shows the outline of the NEMA 4X enclosure. A mounting bracket,

P/N: 80001000167, suitable for retrofit or new applications is shown in Figure3.4. The bracket is constructed from 1/8” THK 5052 Aluminum.

Figure 3.1: Mounting Bracket

0.000

4.875

9.250

16.500

0.000

7.500

8.500

9.500

15.127

15.875

1.000

2.122

7.122

8.250

Ø 0.5166 PLACES

R 0.3754 PLACES

6.750

13.252

0.000 2.000

Ø 0.3124 PLACES

0.625

452 PLACES

Page 19: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200812

3.2 Power Hookup

The TTC-1000 can be powered from either DC substation battery betweenvoltages of 38 to 160 VDC or from AC voltage of 120 ±10% VAC. On small panelmount units (Figure 3.2a) power is connected to terminals 1 and 2 of barrier styleterminal block TB1 and on TB3, terminals 1 and 2 (Figure 3.2b) on the largepanel unit. On NEMA units (Figure 3.2c) power is connected to terminals 1 and 2on TB-3. The TTC-1000 is not sensitive to polarity because it uses a bridgerectifier on the power input. This feature eliminates the risk of damage due to thereversal of power applied to this input.

Figure 3.2: Power Connections

NOTE:

1. The chassis of the panel mount unit or NEMA 4 enclosure MUST bebonded to ground. Panel mount units must be bonded to the groundbus in the control cabinet and NEMA units must be bonded to the maintransformer grounding on the transformer tank. It is especiallyimportant to ground the unit when operating from 120 VAC.

2. For NEMA 4 units it is strongly recommended that the external ¼-20ground stud be utilized for proper grounding.

3. When powering from AC substation service, it is essential thatappropriate surge suppression for lightning protection is installed onthe AC mains feeding the unit. An application note, ANTC003.PDF, isavailable on our web site, www.advpowertech.com. This note hasdetailed information on addressing this problem.

12

Power

34AuxCT

TB1

a) Small PanelMount

c) NEMA 4

TB2 TB3

TB1TB1A

1234

PowerAux CT

12

POWER

34

AuxCT

GROUND

TB3

ALARM

NC

OUT2

C NO NC

OUT1

C NOTB1A

567

b) Large PanelMount

Page 20: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200813

WARNING:

NEVER CONNECT POWER TO TERMINALS DESIGNATED FOR THE AUXCT. SERIOUS DAMAGE WILL OCCUR.

3.3 Temperature Probes

The TTC-1000 can be equipped with either one or two probes. Universalthermowell probe types TTC-PROBE-01 and TTC-PROBE-11 are each providedwith three thermometer well adapter fittings: 7/8-UNF (ANSI/IEEE C57thermometer well), ½-NPT and ¾-NPT and three probe sleeves: 0.481, 0.625and 0.675 OD.

Temperature probes are interchangeable and do not require calibration. Thetemperature probes and measurement circuitry are intrinsically accurate to thestated accuracy specification. The probe leads are connected to a plug gablecompression style terminal block. A terminal block is supplied with each unit and

plugs into TB2.

3.3.1 TTC-PROBE-01 Installation

Probe type TTC-PROBE-01 is provided with a strain relief that seals thethermometer well and holds the probe from pulling out of the well. Figure 3.3shows the outline drawing for this probe type.

Figure 3.3: PROBE-01 Installation

To install the probe into the thermo well:

1. Select the appropriate thermo well adapter fitting and either wrap the malethreads with Teflon tape or coat with suitable pipe dope compound. Oncethe male threads are prepared, thread the adapter fittings into the thermowell.

Probe Cable Brass Fittings(Included)

Snap Elbow

Probe

Thermometer WellProbeSleeve

(Included)

Washer(Included)

Spring(Included)

Washer(Included)

Page 21: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200814

2. If the probe well’s ID is greater than 0.390 select the appropriate probesleeve and slide over the probe. Tighten the set screw with theaccompanying Allen Key.

3. Slide the probe into the thermo well.

4. Ensure that the snap elbow fitting is fully open. Apply Teflon tape to themale threads of the snap elbow fitting. Thread the snap elbow into thefemale threads of the thermo well adapter fitting. The spring holds theprobe at the end of the well.

5. Close the elbow, forming a 90 degree right angle. Tighten the domedstrain relief until the insert is tight against the probe cable.

3.3.2 TTC-PROBE-11 Installation

Probe type TTC-PROBE-11 allows coupling of flexible conduit directly to the

thermometer well adapter fittings provided. Its unique design allows the probe tobe held in the well. Figure 3.4 illustrates this assembly.

Figure 3.4: PROBE-11 Installation

To install the probe into the thermo well:

1. Select the appropriate thermo well adapter fitting and either wrap the malethreads with Teflon tape or coat with suitable pipe dope compound. Oncethe male threads are prepared, thread the adapter fittings into the thermowell.

2. If the probe well’s ID is greater than 0.390 select the appropriate probesleeve and slide over the probe. Tighten the set screw with theaccompanying Allen Key.

3. Slide the probe into the thermo well.

4. Thread the appropriate brass fitting into the thermometer well. The springholds the probe at the end of the well.

1/2 NPTLiquid Tight

FittingNot Included

Flexible ConduitNot Included

Brass Fittings(Included)

Washer(Included)

Spring(Included)

Washer(Included)

Probe

Thermometer WellProbeSleeve

(Included)

Page 22: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200815

5. Thread the appropriate conduit fitting into the ½-NPT female threads.

3.3.3 Magnetic Mount Probe (TTC-PROBE-02) Installation

A magnetic mount probe (P/N: TTC-PROBE-02-xxx) is available for surfacemounting to the LTC or transformer tank when a thermo well is unavailable.

To mount the probe you will need:

RTV silicone sealant suitable for the outdoor applications and rated for themaximum operating temperature.

Thermal grease (supplied with probe).

To install the probe:

1. Coat center probe area with a liberal coating of thermal grease as shown inFigure 3.5.

Figure 3.5: Magnetic Mount, Application of Thermal Compound

2. Place probe on the wall of the transformer or LTC tank to be monitored. Thelocation should be as high as possible on the tank, but bellow the top level ofthe transformer’s or LTC tank’s oil level. It is recommended that the probe beinstalled on the LTC tank wall away from direct exposure to the sun. Directexposure of the tank to sunlight can cause the surface to be at a slightlyelevated temperature above normal, which may cause the differentialtemperature to be in error. See Figure 3.6.

Apply a liberal coating of

Thermal Grease

Page 23: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200816

3. Place a bead of RTV silicone or other suitable sealing compound around theperimeter of the probe to seal the probe surface from moisture. See Figure3.6.

Figure 3.6: Magnetic Mount Views

3.3.4 Probe Lead Connections

The probe leads are color-coded and are inserted into the terminal block in thefollowing sequence:

Probe Panel Marking Wire Color Terminal #

1 COM White 12

1 TMP Red 11

1 REF Black 10

2 COM White 9

2 TMP Red 8

2 REF Black 7

The resistance from the white to black probe leads is 1000 ohms and from whiteto red leads is 1000 ohms at 23 C and increases as a function of temperature.Figure 3.7a shows the probe connections for small panel mount units, Figure3.7b shows the probe connections for large panel mount units, and Figure 3.7cshows probe connections for NEMA units.

RTV Seal

Tank Wall

Page 24: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200817

Figure 3.7: Probe Connections

NOTE:

It is extremely important that the probe shields be bonded to the TTC-1000case. Failure to do this will allow surges to enter through these leads anddo internal damage to the TTC-1000

For dual probe units, you must use both temperature probes for properoperation. The unit will continuously alarm if you fail to use both probes.

If a second probe is unavailable, you can use two 1,000 ohm resistors. Oneend of one resistor to REF, the end of the second resistor to TMP. Tie theloose end of both resistors to COM.

It is noted that probes can be supplied from lengths of 10 foot to 250 feet. Whenusing existing substation wiring with probe lengths less than 250 feet, it isimportant to connect the probe’s shield drain wire to the shield the cable andobserve that the total wiring length does not exceed 250 feet. Also it is importantto ensure that the TTC-1000’s chassis is grounded to a point close to where theshield drain wire terminates as shown in Figure 3.8.

Figure 3.8: Temperature Probe Shield Grounding

12

Power

34

Aux CT

OUT1OUT2OUT3OUT4GND

PROBE #1

SHIELD

TB1TB2

TB3

COM

TMP

REF

PROBE #2

COM

TMP

REF

+ -

A1

+ -

A2 ALARM

Temperature

Probe

Probe Drain

Wire

Substation

Cable

Cable's

Drain Wire Local

Ground Bus

a) Small PanelMount

c) NEMA 4

COM

TMP

REF

SHIELD

TB2COM

TMP

REF

COM

TMP

REF

A B

RS485GND

1234

IN1 IN2TB4

PROBE #1TB2

C

O

M

T

M

P

R

E

F

PROBE #2

C

O

M

T

M

P

R

E

F

b) Large PanelMount

TB16789101112

R

E

F

T

M

P

C

O

M

12345

C

O

M

T

M

P

R

E

F

Page 25: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200818

3.4 Auxiliary CT Input for Calculated Winding Temperature

Models TTC-1000-xx3x and TTC-1000-xx4x are equipped with an auxiliary CTinput. A split core CT is supplied with these models and is intended to be appliedover the secondary leads from the bushing CT. To apply the CT, first open thewindow by inserting a small screwdriver in the clasp holding the core halves

closed. Select a CT secondary tapensuring that it is either shorted oralready in use. It is recommendedthat B phase CT be used for thispurpose. Wrap the wire with severallayers of electrical tape and applythe split core CT over the wire and

snap it closed. It is highlyrecommended that a cable tie beapplied under the split core CT tokeep it from sliding down againstthe lug. Figure 3.9 illustrates theassembly of the split core CT ontothe bushing CT secondary.

Figure 3.9: Split Core CT Installation

Figure 3.10a illustrates the CT connections to TB1 for small Panel Mount models,Figure 3.10b for large panel units, and Figure 3.10c illustrates the connections toTB2 of the NEMA 4X models.

Figure 3.10: Auxiliary CT Connections

WARNING: SEVERE DAMAGE WILL RESULT IF THE SECONDARY LEADSOF THE BUSHING CT ARE CONNECTED DIRECTLY TO THE UNIT.

3.5 Cooling Control and Condition Alarm Connections

Figure 3.11a illustrates the connections of the (4) form c dry relay contacts forsmall panel mount models. Figure 3.11b shows these connections on large panel

CABLETIE

BUSHING CTSECONDARY

ELECTRICALTAPE

SPLIT CORECT

a) Small PanelMount

c) NEMA 4

12

POWER

34

AuxCT

GROUND

TB3

ALARM

NC

OUT2

C NO NC

OUT1

C NOTB1A

567

b) Large PanelMount

12Power

34AuxCT

TB1TB2 TB3

TB1TB1A

1234

PowerAuxCT

Page 26: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200819

mount units, Figure 3.11c illustrates the NEMA unit with optically isolated digitalinputs, and 3.11d illustrates the NEMA unit with no digital inputs. Each relay iscapable of carrying 10 Amps at 230 VAC. Configure these contacts for coolingcontrol, high temperature alarms, or LTC condition alarm. Programming thesecontacts will be discussed in Section 4.9.

NOTE: The ability for these contacts to break its load is based on a numberof factors including voltage applied and the type of load. In general, there isa higher tendency for contacts to become welded shut at higher voltages.Therefore, protection devices, such as MOV’s are highly recommended ifthese contacts will be required to break more load current than that shownin the Specifications.

Figure 3.11: Connections to Relay Outputs

GROUNDSHIELDTB1B

NC

OUT4

C NO

NC

OUT3

C NO

NC

OUT2

C NO

NC

OUT1

C NO

NC

OUT5

C NO

NC

OUT6

C NO TB1A1234

IN1 IN2TB4

b) Large Panel Unit

SHIELD

TB3OUT1OUT2OUT3OUT4

a) Small Panel Unit

OUT4 OUT2OUT3 OUT1

IN 1IN 2

c) NEMA with Inputs

OUT1OUT2OUT3OUT4

d) NEMA without Inputs

Page 27: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200820

3.6 Unit Alarm Connections

The single form B relay is utilized to provide a dry contact closure for alarmconditions. While the unit is energized, the alarm relay is energized. This allowsthe unit to provide an alarm should the device lose DC power or becomes de-energized.

The TTC-1000 monitors five conditions: Processor (DEVICE), Temperature(TPROBE), Winding (WNDG), Communications Processor (CPROC) and ManualMode (MANUAL). The TTC-1000 allows the user to enable or disable any or allof the alarm conditions, except the Communications Processor alarm, throughprogramming. The user can also program how each output reacts when analarm occurs.

Figure 3.12a illustrates the connections to small panel mount models, Figure3.12b illustrates connections to large panel mount models, and Figure 3.12c theNEMA 4 models. Note: NEMA 4 models with board serial numbers ending in Awith DNP3.0 and analog outputs will only have a normally closed alarm relaycontact.

Figure 3.12: Connections to Unit Alarm

The user can program each output in how it reacts when either a Processor orTemperature alarm occurs. The user can set an output to pick up, drop out, orstay in its current state when either alarm occurs.

3.7 Telemetry Connections

TTC-1000 provides a 9 pin female subminiature D connector on all models.Panel mount models can either have analog outputs or an RS-485 interface forDNP3.0 communications. NEMA 4 models can be equipped with both analoginterfaces and an RS-485 interface for DNP3.0 communications.

3.7.1 RS-232 Terminal Connections

Connection to this interface is through the front panel mounted DB-9 connector.When connecting to a standard RS-232 port in a PC, either desktop or laptop,

Rx

Tx

Tx

Rpt

AUX CT ALARM POWER

TB3

GROUND

TB2 COM

TMP

REF

COM

TMP

REF

+ -A1

+ -A2 ALARM

TB22 1

Probe1

Probe 2 Alarm

101112 789 56 4

Probe 33

a) Small Panel Unit b) Large Panel Unit c) NEMA Unit

Page 28: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200821

use a 9 pin female to 9 pin male null modem cable. The following table lists thepin connections to the DB-9 connector.

PIN FUNCTION

1 No connection

2 Receive Data

3 Transmit Data

4 No connection

5 Ground

6 No connection

7 Request to send

8 Clear to send

9 No connection

3.7.2 Analog Outputs

The TTC-1000 is available with up to two analog outputs configured as currentloops. The source for each analog output can be selected from probe 1 (P1),probe 2 (P2), or calculated winding temperature. The analog output is designedto operate with a series resistance of 9,500 Ohms when set to 0 to 1 mA or 450Ohms when set to 4 to 20 mA.

The analog outputs are connected to either terminal block TB2 on both panelmount and NEMA 4 models with serial letter suffix ‘A’. For these models Figure3.13a illustrates the connections to both panel and NEMA, Figure 3.13billustrates the large panel, and Figure 3.13c NEMA 4 models with a plug-indaughter board. NEMA 4 models equipped with a plug-in analog output moduleutilize TB4 for connections to the analog outputs.. The terminal marked + is thecurrent source output. The connection marked – is the current transmitter’s returnand is tied directly to the chassis ground on non-isolated outputs and isolated

from chassis ground when the isolated output is used.

Figure 3.13: Connections to Analog Outputs

TB2 COM

TMP

REF

COM

TMP

REF

+ -A1

+ -A2 ALARM

a) Small Panel Unit andNEMA “A” boards.

b) Large Panel Unit c) NEMA Unit

TB5 A1 A2 A3

OUT 3

NC

C NO

OUT 2

NC

C NO

OUT1

NC

C NO

GROUND

Analog output daughter card

May have connectionsfor 2 or 3 analog outputs

- + - +

A1A2

TB4

- +A3

Page 29: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200822

NOTE: Connect to the analog outputs through shielded cable. Connect thedrain wire of the shield to one of the ground stud on the rear of the TTC-1000 or inside the NEMA 4 enclosure. Twisted pair cable is recommended.

The analog outputs A1 and A2 can be programmed for 0 to 1 mA or 4 to 20 mA.Both analog outputs are identically programmed. Consult Section 5.1 forprogramming the scaling of the analog outputs.

3.7.3 RS-485 for DNP3.0 Communications

Units equipped with the optional DNP3.0 communications interface contain aseparate microprocessor to handle all overhead functions associated with theDNP3.0 protocol without affecting operation of the transformer cooling controland monitoring. The small panel unit and the NEMA units use a plug-in module

that contains a half duplex RS-485 asynchronous communications interfacecapable of supporting multi-drop topologies with a single shielded twisted paircable. This circuit is part of the main board in the large panel unit but still uses aseparate processor. On the Small panel and the NEMA units, A jumper, J2, canbe selectively installed if the TTC-1000 is either the first or last device on the twowire communications bus. Figure 3.19c illustrates the location of J2 on theCommunications Processor Module. Jumper J2 must be installed if the TTC-1000 is either the first or last device on the multi-drop communications bus.Installation of the jumper connects a 120 ohm termination resistor. Termination isvital to reduce reflections which affect proper operation when the length of thecommunications bus is long and/or there are many devices connected. The twowire module uses a fail-safe RS-485 transceiver that insures that incorrectoperation does not occur due to an open or short circuit on the communicationsbus. While the TTC-1000 is immune from shorted or open communications link,other devices may require the use of bias resistors. On the large panel unit, an

external resistor can be placed between the A & B terminals as there is nointernal jumper.

NOTE: For small panel mount versions, the unit contains the jumper but itis not installed. To install jumper J2, the unit must be disassembled. TheRelay Board must be removed to gain access to the CommunicationsProcessor Module. J2 is located on the Communications ProcessorModule. It is noted that an 120 ohm resistor (a carbon or metal film resistorrecommended) may be installed externally between rear panel terminals A& B on the plug-in terminal block TB2.

The use of shielded twisted pair wire or cable is essential between nodes of thecommunications bus. Connection of devices on the bus should be carefullyconsidered. Every device on the bus must be connected in a daisy chain fashionlike a string of Holiday lights. The devices on the bus should never be connected

Page 30: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200823

in a star configuration. Polarity of the connections are also critical and should becarefully observed and followed. For example, the “A” connection also known asthe TD/RD should be connected to every other node’s “A” connection. Likewisefor the “B” or the not TD/RD line. Figures 3.14a, b, & c illustrate connections topanel mount and NEMA 4 models.

If using a wired RS-484 connection, it is essential that the termination be in thevicinity of the TTC-1000. As this is al low voltage communication circuit, groundpotential rise or other surge phenomenon will damage the unit. It is preferred touse a fiber connection directly from the TTC-1000. The RS485 output is intendedfor connection to a LOCAL wired to fiber conversion or other device located onthe transformer or in the control cabinet. .

Figure 3.14: Panel Mount and NEMA 4 RS-485 Connections

There are many good references on implementing multi-drop RS-485communication links from the semiconductor divisions of Texas Instruments,National Semiconductor, and MAXIM Integrated Products.

3.7.4 Fiber Optic Interface for DNP3.0 Communications

Both panel and NEMA units can be equipped with the optional DNP3.0communications interface with a multi-mode fiber optic interface. NEMA modelsuse a plug-in Communications Processor module. The interface utilizes aseparate microprocessor to handle all overhead functions associated with theDNP3.0 protocol without affecting operation of the transformer cooling controland monitoring. Fiber optics are recommended for substation installations as itavoids the problems of ground potential rise issues commonly associated withdirect metallic connection.

The optical interface operates at a wavelength of 850nm with 50 or 62.5 micronmulti-mode fiber terminated with ST style connectors. As with all fiber opticcommunication links, the optical budget is an important number in determiningthe maximum distance that can be spanned with a specific manufacturer’s fiber.All optical fiber, whether it is glass or plastic core, has a specific loss in dB per

COM

TMP

REF

COM

TMP

REF

COM

TMP

REF

A B

DNP

PROBE1 PROBE2 PROBE3

TB2TB2 C

OM

TMP

REF

COM

TMP

REF

ALARM

A GND

BGND

A B

DO

/RI

DO

/RI

TB4

J2

IEEE 485 BusTermination Jumper

a) Small Panel Unit b) Large Panel Unit c) NEMA Unit

Page 31: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200824

kilometer. It is important to remember that optical losses can vary frommanufacturer to manufacturer for the same core diameter and material. Themaximum distance which can be spanned is defined by the following equation:

DISTANCE in kM = (Optical Budget – 3dB) / Optical Loss in dB/kM

The optical budget for the TTC-1000’s optical interface is 9.1dB. Therefore, using62.5 micron glass core fiber, with a loss of 4.0 dB / kM the maximum distancespanned is approximately 1.5 kM or 4,900 feet.

The fiber optic interface has the ability to operate either point to point or can bedaisy chained with other intelligent electronic devices. A switch, S1, is providedto allow the user to select either point-to-point or repeat. Setting S1 to REPEATpasses the signal received on the fiber to the Tx fiber port without any delay.Panel mount models can be set to Repeat Mode via a setting provided. Pleaserefer to Section 3.7.5 for Repeat Mode setting.

In addition, three diagnostic indicators are provided for troubleshooting: Txindicates that the fiber interface is transmitting data to the DNP master, Rxindicates that the fiber interface is receiving data from the DNP master, and Re-Tx if S1 is in the REPEAT position and received data is being re-transmittedthrough the Tx port to the next IED in the chain.

Figure 3.15 is an outline drawing showing the fiber interface and the location ofswitch S1 and diagnostic indicators Tx, Rx, and Re-Tx.

Figure 3.15: Outline of Fiber Optic Interface

Rx

Rx

Tx

Tx

Rpt

a) Large Panel Unit b) NEMA Unit

Page 32: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200825

3.7.5 Setting Repeat Mode on Fiber Optic Channel

On units equipped with a fiber optic communications channel you can configurethe fiber interface for repeat mode. This passes incoming data to the transmitchannel transparently.

To change this setting, access the PROGRAM menu from the front panel asdiscussed in Section 4.1. To set the repeat mode from the front panel, press the

or arrow button until the following menu item is displayed:

Once the setting is accepted, the repeat mode will be enabled.

3.8 Optically Isolated Inputs

These inputs are not available on the small panel unit, but are available on boththe large panel unit and the NEMA units. Models equipped with inputs containtwo optically isolated inputs, IN1 and IN2. These inputs must be wetted from anexternal power supply between 38 and 160 VDC. Connections are made throughplug-in terminal block TB1. These optically isolated inputs may be used by theprogrammable logic to control or supervise any output. These inputs can also beused to communicate status information from devices such as the liquid levelalarm or sudden pressure over DNP3.0. IN1 and IN2 can be programmed to beLEVEL or PULSE active. Figure 3.16 illustrates these connections. The use ofshielded cable is recommended.

Figure 3.16: Optically Isolated Input Connections

TB1BTB4GROUND IN2 IN1

OUT4

IN1IN2

a) Large Panel Unit b) NEMA Unit

PRGM SETTING 106REPEAT=OFF

Page 33: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200826

3.9 Heater Connections

NEMA 4X Models, TTC-1000-4XX, are equipped with a 13 Watt thermostaticallycontrolled heater and a specially designed vent that allows moisture to escapeand does not allow moisture to re-enter. The heater can be operated from DCvoltages of 38 to 160 or at 120 VAC. For convenience, the heater circuit isconnected to TB3 terminals 1 and 2. However, the user can connect the heaterto a separate power source.

The thermostat turns off the heater circuit when the internal ambient temperaturerises above 86 F (30 C) +/-10 F. The thermostat turns the heater back on at aninternal ambient temperature between 80 to 75 F.

Page 34: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200827

4 SETTINGS

Settings can be made either through the front panel or using a PC equipped withterminal emulation software. Proper operation of the TTC-1000 has been verifiedwith Windows Terminal, Windows HyperTerminal, HyperTerminal Private Edition,and HyperAccess HyperTerminal as supplied in Windows XP has a bug thatprevents backscrolling once 500 lines of information has been transferred, thisproblem is corrected in HyperTerminal Private Edition available fromHilgraeve.com. The terminal portion of some SEL software will work forprogramming though file transfer is not possible with them. For settings through aPC you will need a female to male DB-9 null modem cable (A standard SELcable used with their relays is a null modem cable). The TTC-1000 is fixed tocommunicate at 9600 bits/sec with 8 bits, no parity and one stop bit.

Setting sheets for programming from the front panel are in Section 12.1. Settingsheets for programming from a PC is in Section 12.2. The user should thoroughly

familiarize themselves with the necessary settings and record their desiredsettings on the sheets provided.

4.1 Programming Settings Through Front Panel

To access the PROGRAM menu press the or arrow buttons two times fromthe scrolling temperature display until the display reads:

You cannot enter PROGRAM unless you enter the correct password. The TTC-1000 recognizes two passwords, one programmed and a super user password.The password programmed at the factory is 0000. The super user password is0905 and cannot be changed.

First, you must press YES to begin entering the password. The zero will flash.Use the orbuttons to scroll between the digits. The currently active digit willflash. Use the or arrow buttons to scroll through the digits 0 – 9. Press YESafter you have entered all four digits.

If the password is correct, you will see the 1st setting, SP11PICKUP. Pressing theNO button at any time will bounce you back to the password entry display.

If the password is incorrect the display will read:

There is no limit to the number of times you may try to enter a password.

ENTER PROGRAMPASSWORD=0

WRONG PASSWORDPASSWORD=0

Page 35: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200828

Fast scrolling through the front panel is available to navigate through the settingscreens more quickly. To use fast scroll mode, simply hold the UP or DOWNarrow buttons for more than 1.5 seconds. The unit will automatically scroll at afast rate until you release the UP or DOWN arrow button.

4.2 Programming Settings Through a PC

Data communications from the TTC-1000 is implemented through the front panelmounted DB-9 connector at a fixed data rate of 9600 bits per second, 8 bits ofdata, no parity, and one stop bit. Operation has been verified Windows Terminal3.1, Procomm Plus and HyperTerminal. It is recommended that the terminalemulation be set for either ANSI or TTY. The pin out of this port is designed touse a 9 pin female to 9 pin male null modem cable. You will need to configureyour terminal emulation program before you get started.

Press the “Enter” key and observe that the Main Menu is displayed. On the“Enter Code:” line type “2/” followed by the four password digits. If this is a newunit type “2/0000 “. If you are unsure if a password has been programmed, oryou are having trouble type “2/0905 “ for the super user password. The list ofsettings will scroll on the screen as follows:

PROGRAM01 SP11 PICKUP=00 øC02 SP11 DRPOUT=00 øC03 SP12 PICKUP=00 øC04 SP12 DRPOUT=00 øC05 SP13 PICKUP=00 øC06 SP13 DRPOUT=00 øC07 SP14 PICKUP=00 øC08 SP14 DRPOUT=00 øC09 SP21 PICKUP=00 øC10 SP21 DRPOUT=00 øC11 SP22 PICKUP=00 øC12 SP22 DRPOUT=00 øC13 SP23 PICKUP=00 øC14 SP23 DRPOUT=00 øC15 SP24 PICKUP=00 øC16 SP24 DRPOUT=00 øC17 WSP1 PICKUP=00 øC18 WSP1 DRPOUT=00 øC19 WSP2 PICKUP=00 øC20 WSP2 DRPOUT=00 øC21 WSP3 PICKUP=00 øC22 WSP3 DRPOUT=00 øC23 WSP4 PICKUP=00 øC24 WSP4 DRPOUT=00 øC25 LTCDIFF PICKUP=00 øC26 LTCDIFF DRPOUT=00 øC27 LTCDIFF PICKUPTMR=00 MIN28 LSP1 PICKUP=0.0 A29 LSP1 DRPOUT=0.0 A30 LSP2 PICKUP=0.0 A31 LSP2 DRPOUT=0.0 A32 LOAD PICKUP TMR1 =00 sec33 LOAD PICKUP TMR2 =00 sec34 IN1 CTRL=LEVEL (0)35 IN2 CTRL=LEVEL (0)36 OUT1 PICKUP TMR=00 sec37 OUT1 AUTO (0)38 OUT1 UNCHG (0) w/ALRM

Page 36: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200829

39 OUT2 PICKUP TMR=00 sec40 OUT2 AUTO (0)41 OUT2 UNCHG (0) w/ALRM42 OUT3 PICKUP TMR=00 sec43 OUT3 AUTO (0)44 OUT3 UNCHG (0) w/ALRM45 OUT4 PICKUP TMR=00 sec46 OUT4 AUTO (0)47 OUT4 UNCHG (0) w/ALRM48 SP11 Not Assigned49 SP12 Not Assigned50 SP13 Not Assigned51 SP14 Not Assigned52 SP21 Not Assigned53 SP22 Not Assigned54 SP23 Not Assigned55 SP24 Not Assigned56 LTC Not Assigned57 WSP1 Not Assigned58 WSP2 Not Assigned59 WSP3 Not Assigned60 WSP4 Not Assigned61 LSP1 Not Assigned62 LSP2 Not Assigned63 OUT1 Not Assigned64 OUT2 Not Assigned65 OUT3 Not Assigned66 OUT4 Not Assigned67 IN1 Not Assigned68 IN2 Not Assigned69 TIME1 00:00 TO 00:00 Assigned TO OUT070 TIME2 00:00 TO 00:00 Assigned TO OUT071 TIME3 00:00 TO 00:00 Assigned TO OUT072 OUT1 =Not INVERT (0)73 OUT2 =Not INVERT (0)74 OUT3 =Not INVERT (0)75 OUT4 =Not INVERT (0)76 CT RATIO=0077 RATED LOAD=00 A78 WINDING RISE @ RATED LOAD=00 øC79 WINDING TC=00 MIN80 COOLING TYPE=Not DIRECTED FOA (0)81 TPROBE1 NAME=TOP OIL (0)82 TPROBE2 NAME=TOP OIL (0)83 ALTERNATE=DSABL (0)84 ANALGOUT=0to1mA (0)85 A1 SOURCE=P1 (0)86 A2 SOURCE=P1 (0)87 BAUD RATE= 1200 (0)88 NODE ADDR=0089 REMOTE BLK=DSABL (0)90 TIMEBASE=00 sec91 INCLUDE P1 IN LOG=NO (0)92 INCLUDE P2 IN LOG=NO (0)93 INCLUDE WINDING IN LOG=NO (0)94 INCLUDE LOAD IN LOG=NO (0)95 TIME=05:4296 DATE=02/03/0197 WNDCKT ALRM ENABLED (0)98 DEVICE ALRM ENABLED (0)99 TEMPERATURE ALRM ENABLED (0)100 MANUAL ALRM ENABLED (0)101 TIME SP CNTR=00102 UNIT ID=103 NEG ANALGOUT SCALING=NO (0)104 LTCDIFF RISE=19 øC105 LTCDIFF RATE=00 MIN106 REPEAT=NO (0)107 PASSWORD=0000

Enter Code:

Page 37: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200830

4.3 Settings for Calculated Winding Temperature

Models equipped with the Aux CT input are supplied with a split core CT which issnapped over the secondary leads from the bushing CT. You may skip thissection if your model does not contain this feature. The winding hot spottemperature is calculated using the measured load current and top oiltemperature along with certain settings including the primary CT’s ratio, hot spotrise over top oil temperature at rated load, rated load current, winding rise timeconstant and if the transformer cooling is directed ODAF.

The ranges for these settings are:

Setting Setting Range Comments

CT Ratio 1:1 to 9999:1 Can be set to 0

Hot Spot Rise over Top Oil 0 to 99 C 18 to 22 C

Rated Load Current 0 to 65,535 A Enter top rating

Winding Rise Time Constant 0 to 999 minutes Minimum 32msec

m Constant 0.8 or 1

The steady state winding temperature is calculated based on the followingequation1:

TOm

nnnngHS RatedLoadCRatioLoadfl)n

2)/*(*( [1]

Where: n = 1, 2, 3

peraturewindng temalculatedUltimate cnHS

loade at ratedtemperaturr Top Oilise #n oveHot Spot Rg fl)(n

nt #nload curreMeasuredLoadn

ratioCTPrimaryCTRationn

currentd of #n CTRated loaLoadRatedn

coolingotherallfor0.8FOW,orFOAdirectedfor1.0m

emperatureTop Oil TMeasuredTO

1ANSI C57.91-1995

Page 38: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200831

It is noted that the Hot Spot Rise over Top Oil at rated load is not alwaysavailable. In this case we recommend using a value between 18 to 22 ºC.

To accommodate the transient affect of changing load current, the windingtemperature can be estimated at any point in time by entering the winding timeconstant. Therefore, the displayed winding temperature is calculated as follows:

TOt

HSHSHSHS

IUet )1)(()( / [2]

Where:

e te at timtemperaturWinding(t)θHS

above[1]equationusingetemperaturwindingUltimateθUHS

[1]equationusingemperaturewinding tInitialθIHS

minutesinconstanttimeWindingHS

retemperatutop oilMeasuredθTO

Because data to calculate W may not be available, the recommended setting forthe winding time constant is between 5 to 10 minutes.

4.3.1 CT RATIO

The CT RATIO is the CT ratio of the bushing CT which the split core CT isapplied to. The CT ratio must be relative to 1. Therefore, if the CT ratio is 240:5the CT ratio to enter is 48.

Programming from the front panel, press the arrow button until the setting 076is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits 0 – 9. Use the orbuttons to scroll between thedigits. The currently active digit will flash. Press YES after you have entered allfour digits.

For programming from a PC just type the CT ratio on the “Enter:” line as follows:

Enter:76/48

PRGM SETTING 076CT RATIO=0000

Page 39: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200832

4.3.2 Rated Load

The Rated Load setting is the top name plate rating in Amps. If the nameplateindicates ratings of 1000/1200/1400, use 1400 as the rated load. On sometransformers the nameplate might only list the rating in MVA. In this case you willneed to divide the top MVA rating by the voltage of winding monitored with theCT. The rated load for a 3 phase transformer is calculated as follows:

Rated Load = MVA / (Voltage x 1.732)

Programming from the front panel, press the arrow button until the setting 077is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits 0 – 9. Use the orbuttons to scroll between thedigits. The currently active digit will flash. Press YES after you have entered alldigits.

For programming from a PC just type the Rated Load on the “Enter:” line asfollows:

Enter:77/1473

This will program the Rated Load to 1473 Amps.

4.3.3 Hot Spot Rise over Top Oil

The Hot Spot Rise over Top Oil setting is either a number that can be obtainedfrom the transformer manufacturer, deduced from heat run data or estimated inthe range of 18 to 22 º C.

Programming from the front panel, press the arrow button until the setting 078is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits 0 – 9. Use the orbuttons to scroll between thedigits. The currently active digit will flash. Press YES after you have entered alldigits.

PRGM SETTING 078WINDINGRISE=00 ºC

PRGM SETTING 077RATED LOAD=00000

Page 40: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200833

For programming from a PC just type the Winding Rise @ Rated Load on the“Enter:” line as follows:

Enter:78/20

This will program the hot spot rise to 20 degrees Celsius.

4.3.4 Winding Rise Time Constant

The Winding Rise Time Constant is the amount of time, in minutes, for thewinding hot spot temperature to reach 67 percent of its final value. A number offactors including the volume and type of oil used and the mass of the transformerare factors that influence this setting. Because calculating this value iscumbersome, we recommend a setting from 5 to 10 minutes.

Programming from the front panel, press the arrow button until the setting 079

is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits 0 – 9. Use the orbuttons to scroll between thedigits. The currently active digit will flash. Press YES after you have entered alldigits.

For programming from a PC just type the Winding TC on the “Enter:” line asfollows:

Enter:79/7

This will program the winding rise time constant to 7 minutes.

4.3.5 Calculated Winding Exponent Setting

The m exponent used to calculate winding temperature can be modified. The twochoices are 0.8 for non-directed FOA type transformers and 1.0 for directed FOAor FOW types.

Programming from the front panel, press the arrow button until the setting 080is displayed:

PRGM SETTING 079WINDINGTC=000MIN

PRGM SETTING 080DIRECTED FOA=NO

Page 41: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200834

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between NO and YES. Press YES when you have made the correctselection.

For programming from a PC just type the Cooling Type on the “Enter:” line asfollows:

Enter:80/1

This will program the Cooling Type to directed FOA/FOW. Enter 0 for all othercooling types.

4.3.6 Checking Winding Temperature

A built in WNDGCAL test function is provided to verify proper operation of thecalculated winding temperature function. All settings described in Sections 4.3.1

through 4.3.5 must be made before performing this check. To verify correctoperation of calculated winding temperature:

Connect the split core CT to the unit as described in Section 3.4.

Loop a conductor from a suitable test set capable of generating 5.0 AmpsRMS through the window of the split core CT.

Press the arrow button until the display reads:

Press the YES button.

Press the arrow button once. The display will read:

Record this number.

Press the NO button.

Press the arrow button once. The display will read:

Wait until the display scrolls to winding temperature:

VIEW SETTINGSPRESS YES TO VIEW

VIEW SETTING 107W N D G C A L = 4 5 C

07/21/03 13:35T O P O I L = 2 3 C

Page 42: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200835

Check the measured winding temperature against the WNDGCAL value. Ifthe winding temperature is not within three degrees, re-check the connectionsto the split core CT and the current passing through the CT’s primary.

4.4 Setting Probe Names

After connecting the probe or probes and verifying that they are measuringtemperature, you can choose one of the following names for each probe:

TOP OIL

WINDING

AMBIENT

LTCDIFF

BOTMOIL

LTCTANK

DIVTANK

SELTANK

NOTE: The MIN/MAX log should always be reset after changing probenames. This is especially critical for the LTCDIFF as its range is differentfrom the TOP OIL, WINDING, BOTMOIL and AMBIENT temperatures.

Programming from the front panel, press the arrow button until the setting 081or 082 is displayed:

Or

PRGM SETTING 081P1 NAME=TOP OIL

07/21/03 13:35W I N D I N G = 4 5 C

Page 43: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200836

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll through the available names. Press YES after you have made yourselection.

When programming from a PC the following are the valid codes for the probenames available:

0...... TOP OIL

1...... WINDING

2...... AMBIENT

3...... LTCDIFF

4...... BOTMOIL

5...... LTCTANK

6...... DIVTANK

7...... SELTANK

PRGM SETTING 082P2 NAME=LTCDIFF

Page 44: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200837

Therefore to display TOPOIL for probe 1 type:

Enter:81/0

This will program the probe 1’s name to TOPOIL. To program probe 2’s name toLTCDIFF type:

Enter:82/3

4.5 Temperature Set Points

The TTC-1000 has four independent temperature set points per temperatureprobe and four calculated winding set points. Dual probe units with calculatedwinding temperature have a total of 12 temperature set points. Each set pointhas its own pick up and drop out temperatures. The pick up and drop outtemperature can be set at different temperatures and allows the controller to

operate as either an under or over temperature controller. The following twoequations describe how the controller reacts depending on the setting of the pickup and drop out temperature for liquid temperature probes:

If SPpn Pick UP > = SPpn Drop Out then operate as over temperature

If SPpn Pick UP < SPpn Drop Out then operate as under temperature

Where: p = Probe # (1 or 2) & n = Set point # (1, 2, 3, 4)

The equations for winding temperature pickup and drop temperatures are:

If WSPn Pick UP > = WSPn Drop Out then operate as over temperature

If WSPn Pick UP < WSPn Drop Out then operate as under temperature

Where: n = Set point # (1, 2, 3, 4)

The over temperature set point is ideal for handling the pickup of fans or pumpsas well as generating over temperature alarms and trip signals. The under

temperature feature is useful to block the operation of pumps at lowtemperatures.

Figure 4.1 and 4.2 show when the SP picks up and drops out for when thecontroller is configured to operate in the over and under temperature modesrespectively.

Page 45: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200838

Figure 4.1: Over Temperature Operation

Figure 4.2: Under Temp Operation

SPpn PickUp

Temperature

SPpn Drop OutTemperature

Temperature

Time

SPpn

SPpn Pick UpTemperature

SPpn Drop OutTemperature

Temperature

Time

SPpn

Page 46: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200839

Once a set point has picked up, it will not drop out until the pre-programmedconditions are met. This feature is especially useful to allow the fans to continueto run until the top oil temperature drops to some lower temperature.

Each output can be controlled directly by a temperature set point. The flexibleprogrammable logic allows simple configuration to handle more complicatedtasks.

You will need to set pickup and drop out temperatures for each set point youwish to use. Once set, temperature set points take up to 16 seconds to takeaffect. Once you have established the pickup and drop out settings you are readyto assign the set points to a specific output. A set point will not pickup an outputuntil you assign it to OUT1, OUT2, OUT3, or OUT4.

When changing pickup or drop out temperature set points, the new value takeseffect the next time temperature data is updated which occurs every 16 seconds.However, once a SP is picked up, changing the pickup temperature to a higher (ifover temperature) or lower (if under temperature) value will not cause the SP todrop out. Once a temperature set point is picked up, the only way it can drop outis if the drop out condition is met.

When changing pickup or drop out temperature set points, the new value takeseffect the next time temperature data is updated which occurs every 16seconds. However, once a SP is picked up, changing the pickup temperatureto a higher (if over temperature) or lower (if under temperature) value will notcause the SP to drop out.

Once a temperature set point is picked up, the only way it can drop out is if thedrop out condition is metSP21, SP22, SP23, and SP24 drop out and pick up aresettable in single probe models, but do not have any function.

WSP1, WSP2, WSP3, WSP4 drop out and pick up are settable in modelswithout the calculated winding feature, but do not have any function.

4.5.1 Setting Liquid Pickup and Drop Out Temperatures

These settings are used to start a stage of cooling or indicate a high temperaturealarm for either probe 1 or probe 2 liquid temperatures. Models with a singleprobe channel measuring either Top Oil temperature or Winding temperaturethrough a heated well will use SP11, SP12, SP13 & SP14. Models with twoprobe channels where one probe measures Top Oil and the second probemeasures the winding temperature using a heated well may use SP11, SP12,SP13, SP14, SP21, SP22, SP23, SP24.

Page 47: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200840

Programming liquid set points from the front panel, press the or arrowbuttons until the setting 001 is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits. Use the orbuttons to scroll between the digits.The currently active digit will flash. The first digit will scroll ‘-‘, 0, 1. The seconddigit will scroll 0 to 9 if the first digit is 0, 0 to 6 if the first digit is 1 and last digit is0, 0 to 5 if the first digit is 1 and the last digit is greater than 0. The last digit willscroll 0 to 9 if the first two digits are less than 16. Press YES after you haveentered all digits.

After setting the pickup temperature, press the arrow button once:

Use the procedure described above to change the drop out setting.

The remaining liquid set points can be changed by pressing the arrow buttonand following the above procedure.

For programming from a PC just type the desired temperature on the “Enter:” lineas follows:

Enter:1/75

This will program SP11 pickup to 75C.

Enter:2/70

This will program SP11 drop out to 70C.

4.5.2 Setting Calculated Winding Pickup and Drop Out Temperatures

Four separate set points are allocated for units equipped with calculated windingtemperature. It is important that the winding calculation be set as per Section4.3.1 through 4.3.5 and checked prior to making these settings as per Section4.3.6.

PRGM SETTING 001S P 1 1 P I C K U P = 7 5 C

PRGM SETTING 002SP11DRPOUT= 70C

Page 48: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200841

Set points WSP1, WSP2, WSP3 and WSP4 pickup and drop out temperaturescan be set by the front panel by using the or arrow buttons until the setting017 is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits. Use the orbuttons to scroll between the digits.The currently active digit will flash. The first digit will scroll ‘-‘, 0, 1. The seconddigit will scroll 0 to 9 if the first digit is 0, 0 to 6 if the first digit is 1 and last digit is0, 0 to 5 if the first digit is 1 and the last digit is greater than 0. The last digit willscroll 0 to 9 if the first two digits are less than 16. Press YES after you haveentered all digits.

After setting the pickup temperature, press the arrow button once:

Use the procedure described above to change the drop out setting.

The remaining liquid set points can be changed by pressing the arrow buttonand following the above procedure.

For programming from a PC just type the desired temperature on the “Enter:” lineas follows:

Enter:17/85

This will program WSP1 pickup to 85C.

4.6 LTC Condition Monitoring

The TTC-1000 uses two mechanisms to detect tap changer problems. The first isbased on measuring the arithmetic difference between the LTC tank temperatureand top oil temperature and therefore is only available in dual temperature probeunits. The range of the LTCDIFF temperature is from –20 to +20 ºC. A timer canbe employed to supervise the pickup of the LTCDIFF set point to allow settingwith greater sensitivity and security. This method is particularly well suited todetect slowly evolving problems in the tap changer compartment from coking,polymerization of contacts, or loose connections.

PRGM SETTING 017WSP1PICKUP= 85C

PRGM SETTING 018WSP1DRPOUT= 80C

Page 49: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200842

The second method uses a rate of rise algorithm that subtracts an initialLTCDIFF temperature from the LTCDIFF temperature at the end of a time perioddefined as LTCDIFF RATE. The difference between the initial temperature andfinal temperature is programmable from 0 to 40 ºC and is defined as LTCDIFFRISE. This method is particularly well suited to detected rapid increases intemperature possibly associated with an evolving arc in the tap changercompartment.

Both the LTCDIFF comparison against the LTCDIFF pickup temperature setpoint and the LTCDIFF rate of rise operate a single LTC point which is mappedinto the programmable logic of the TTC-1000.

NOTE: When using LTC condition monitoring, it is important to rememberto name one of the probes LTCDIFF. Evaluation of the LTC set point is notdone unless one of the probes is named LTCDIFF.

4.6.1 LTCDIFF Temperature Monitoring

Figure 4.3 illustrates how the LTC differential set point operates for LTC conditionmonitoring.

Figure 4.3: LTC Differential Set Point Operation

Temperature

Time

LTC Set Point

LTC DIFF Pickup

LTC Tank Temperature

Top Oil Temperature

LTC Tank Temp - Top Oil Temp

LTC DIFF Drop Out

LTC Pickup Timer

Page 50: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200843

The TTC-1000 uses an LTC pickup timer settable from zero to 999 minutes tosupervise the LTC set point. The above example shows that the LTCDIFF setpoint does not pickup until after the timer is complete. If the differentialtemperature drops down below the pick up temperature while the timer is inprogress, the timer will reset. This timer allows the LTCDIFF set point to “ride”through daylight heating and hence permits a more sensitive setting. The aboveexample shows that the LTC set point does not drop out because the differencebetween the LTC Tank temperature and the Top Oil temperature does not dropdown to the LTCDIFF drop out temperature set point.

NOTE: The LTCDIFF temperature displayed is the calculated differential.The corresponding analog output tracks this differential temperature.

The LTCDIFF temperature is designed to read negative, because sometimes theLTC tank runs cooler than the top oil temperature. It is recommended that you

monitor the LTCDIFF temperature for a period of time to determine the normaloperating differential for the transformer. A good rule of thumb is to set theLTCDIFF pickup temperature from 3 to 7 degrees higher than the observedoperating differential. The sensitivity of this setting can be improved through theuse of the LTC pickup timer (LTCPUTMR) setting. The recommended setting forthe LTCPUTMR is between 360 to 480 minutes ( 6 to 8 hours ) to ignore theaffects of daylight heating on a lightly loaded transformer. The LTCPUTMR canbe set up to 999 minutes (16 hours 39 minutes).

To use this feature you must first make sure one of the two probes has beennamed LTCDIFF. Next, program the LTCDIFF PU (pickup) and LTCDIFF DO(drop out) temperatures. As mentioned earlier, it is a recommended that theLTCDIFF temperature be monitored to determine the transformer’s normaloperating point. Finally, the LTCPUTMR can be set once the transformers normaloperating condition is determined. Setting the LTCPUTMR to zero permits theLTCDIFF set point to pickup as soon as the LTCDIFF PU temperature is

reached. Setting the LTCPUTMR to some time other than zero will delay thepickup of the LTCDIFF set point as long as the LTCDIFF temperature is equal toor above the LTCDIFF PU temperature.

NOTE: The LTCPUTMR will not change while in progress. New settings willtake effect after the set point drops out or if the LTCDIFF temperature wereto drop below the LTCDIFF PU temperature while the timer is in progress.

Once you have established the pickup and drop out settings you are ready toassign the LTC set point to a specific output. This set point will not pickup anoutput until you assign it to OUT1, OUT2, OUT3, or OUT4.

Page 51: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200844

NOTE:

1. In single probe versions, the LTCDIFF pickup and dropout settingsdisplay “N/A”.

2. Be careful to check that the LTCDIFF pickup and dropout set points arenever set to greater than 20 or less than –20. Erroneous operation of theLTCDIFF pickup or dropout will result if these set points are set beyondthe stated range.

4.6.1.1 Setting LTCDIFF Set Point

Programming LTCDIFF set points from the front panel, press the or arrowbuttons until the setting 025 is displayed:

Press the YES button. Use the or arrow buttons to scroll through the digits.Use the orbuttons to scroll between the digits. Each digit moved that isdisplayed will flash. Digits not displayed will not flash. The first digit is dedicatedto display a minus (-) sign. Press YES after you have entered all digits.

After setting the pickup temperature, press the arrow button once:

Use the procedure described above to change the drop out setting.

For programming from a PC just type the desired temperature on the “Enter:” lineas follows:

Enter:25/3

This will program LTCDIFF pickup to 3C.

Enter:26/-3

This will program LTCDIFF drop out to -3C.

PRGM SETTING 026LTCDIFFDO= 00C

PRGM SETTING 025LTCDIFFPU= 05C

Page 52: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200845

4.6.1.2 Setting LTCDIFF Pickup Timer

Programming LTCDIFF pick up timer from the front panel, press the or arrowbuttons until the setting 027 is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits 0 – 9. Use the orbuttons to scroll between thedigits. The currently active digit will flash. Press YES after you have entered alldigits.

For programming from a PC just type the LTC pickup timer value on the “Enter:”line as follows:

Enter:27/480

This will program the LTCDIFF pickup timer to 480 minutes.

4.6.2 LTCDIFF Rate of Rise Monitoring

Figure 4.4 illustrates the LTCDIFF rate of rise method.

Figure 4.4: LTCDIFF Rate of Rise Method

The LTCDIFF Rate of Rise method uses two parameters: LTCDIFF RISE andLTCDIFF RATE. This function is disabled if either of these parameters are set to

PRGM SETTING 027LTCPUTMR=480MIN

Temperature

Time

LTCDIFF RofR

LTCDIFF

LTCDIFF RISE

LTCDIFF RATE

Page 53: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200846

zero. This method operates by comparing the measured rise between a start andstop period defined by parameter LTCDIFF RATE with the programmedparameter LTCDIFF RISE. If the measured rise is greater than or equal to theLTCDIFF RISE for a duration equal to or greater than the LTCDIFF RATE timer,an internal set point LTCDIFF R-R is picked up. If the LTCDIFF temperaturedecreases while the LTCDIFF RATE timer is in progress, the timer will reset andthe logic will wait for another LTCDIFF temperature increase before starting thetimer again. The recommended range for setting LTCDIFF Rise is 5 to 20 C.The LTCDIFF Rate can be set from 1 to 255 minutes.

NOTE: If the Rate of Rise setpoint has picked up, there is an extremely serious

problem in the tap changer and immediate attention is required. The rate of risefeature will remain picked up unless the unit is either powered down or it ismanually reset through the front panel.

4.6.2.1 Setting LTCDIFF Rise

Programming LTCDIFF Rise from the front panel, press the or arrow buttonsuntil the setting 104 is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits 0 – 9. Use the orbuttons to scroll between thedigits. The currently active digit will flash. Press YES after you have entered alldigits.

For programming from a PC just type the LTCDIFF Rise value on the “Enter:” lineas follows:

Enter:104/15

This will program LTCDIFF Rise to 15C

4.6.2.2 Setting LTCDIFF Rate

Programming LTCDIFF Rate from the front panel, press the or arrow buttonsuntil the setting 105 is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits 0 – 9. Use the orbuttons to scroll between the

PRGM SETTING 104LTCDIFFRISE=15 C

PRGM SETTING 105LTCDIFFRATE=15 m

Page 54: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200847

digits. The currently active digit will flash. Press YES after you have entered alldigits.

For programming from a PC just type the LTCDIFF Rate value on the “Enter:”line as follows:

Enter:105/15

This will program the LTCDIFF RATE to 15 minutes.

4.7 Load Pickup Set Points

Load current is measured with an external split core Aux CT supplied withmodels equipped with this feature. The Aux CT is not intended for directexposure to the elements and should be installed within a NEMA 4 enclosure.

Units equipped with this feature have two load set points. Apply these set pointsto activate cooling earlier based on a sudden increase in load current due tonormal switching operations. Each set point has a load pickup timer settable from0 to 255 seconds. The timer operates to block inadvertent load set point pickupdue to fault conditions or inrush.

Each load set point has its own pickup and drop out current setting. Each settingis adjustable from 0 to 9.9 Amps in 0.1 Amp increments. These settings arebased on the primary current measured by the split core CT. Figure 4.4 illustratesthe operation of the Load Pickup Set Points.

Page 55: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200848

Figure 4.5: Load Pickup Set Point Operation

The first case shows that the load current remains above the pickup set point forthe full duration of the load pickup timer. In this case the load pickup set point willbe picked up. The second case shows a transient load or external fault whereinthe load current drops below the pickup point soon after the timer starts. Thiscauses the timer to reset and the load pickup set point remains dropped out.

NOTE: When load current is present, it is important to set the load dropoutset point before the load pickup set point. If load pickup set point is setfirst, the load set point may be already picked up when this setting is madeand will not drop out.

The load set points can also be used to generate an alarm should the controllercommand cooling and the cooling system is drawing too little or too muchcurrent. For example, if the pickup current is set lower than the drop outtemperature, the set point operates as an under load detector. Conversely,setting the pickup point higher than the dropout point allows the set point tooperate as an overload detector. Setting one set point for under load and theother as overload permits detection of the cooling system’s load current “sweetspot”.

Load Pick UpCurrent

Load Drop OutCurrent

LOAD

Time

Load PickupTimer

Timer Resets

Load PickupSet Point

Page 56: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200849

NOTE: The calculated winding temperature feature will not functioncorrectly when monitoring the cooling system’s load current.

4.7.1 Setting Load Pickup Set Point

These settings are used to start a stage of cooling based on a sudden increasein load current. Two set points LSP1 and LSP2 are available to start up to twostages of cooling. As with temperature set points, load set points can beconfigured to operate in under current mode. To operate in under current thedrop out current must be greater than the pick up current.

Programming load set points from the front panel, press the or arrow buttonsuntil the setting 028 is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits. Use the orbuttons to scroll between the digits.The currently active digit will flash. Press YES after you have entered all digits.

After setting the pickup current, press the arrow button once:

Use the procedure described above to change the drop out setting.

The second load set point, LSP2, can be changed by pressing the arrowbutton and following the above procedure.

For programming from a PC just type the desired load current set point value onthe “Enter:” line as follows:

Enter:28/4.0

This will program LSP1 pickup to 4.0A.

Enter:29/3.3

This will program LSP1 drop out to 3.3A.

NOTE: Load pickup and drop out set points are the CT busing secondarycurrent and must always be entered with a decimal point and trailing 1/10’sdigit. For 3 amps you must enter 3.0. For .5 amps you must enter 0.5.

PRGM SETTING 028LOADPUSP1= 4.0

PRGM SETTING 029LOADDOSP1= 3.3

Page 57: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200850

4.7.2 Setting Load Pickup Timer

Programming Load Pickup Timer from the front panel, press the or arrowbuttons until the setting 032 is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits 0 – 9. Use the orbuttons to scroll between thedigits. The currently active digit will flash. Press YES after you have entered alldigits.

The LSP2 Pickup Timer, can be changed by pressing the arrow button andfollowing the above procedure.

For programming from a PC just type the load set point pickup timer value on the“Enter:” line as follows:

Enter:32/120

This will program the Load pickup timer to 120 seconds.

PRGM SETTING 032LSP1PUTMR=120sec

Page 58: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200851

Debounce

Timer

INn

SignalApplied to

Input n

4.8 Optically Isolated Input Settings

The TTC-1000 may be optionally equipped with two optically isolated inputs.Each input contains a limiting resistor that allows these inputs to recognize awide range of input voltage of 38 to 160 VDC as being picked up. Inputs arescanned every 32 milliseconds. Contact chatter is debounced by requiring theinput be stable for two scans before the new state is recognized. Inputs may beassigned to any output using the programmable logic.

Each of the digital inputs can be set either as level active, LEVEL MODE orpositive edge active, PULSE MODE. For LEVEL MODE, the recognized state ofIN1 or IN2 follows the voltage applied to the input. There is a built-in 64millisecond debounce time on all low to high voltage transitions. There is no

debounce delay on high to low transitions. For PULSE, the recognized state ofthe input toggles every low to high voltage transition. High to Low transitions willnot change the recognized state of IN1 or IN2 in PULSE mode. There areseparate settings of LEVEL or PULSE for IN1 and IN2. Figure 4.5 illustrates theoperation of inputs set to LEVEL and Figure 4.6 illustrates the operation inputsset to PULSE.

Figure 4.6: Input Set for LEVEL

Page 59: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200852

DebounceTimer

INn

SignalApplied to

Input n

Figure 4.7: Input Set for PULSE

Programming from the front panel, press the arrow button until the setting 034is displayed:

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between LEVEL and PULSE. Press YES when you have made thecorrect selection.

The second input, IN2, can be changed to LEVEL or PULSE MODE by pressingthe arrow button and following the above procedure.

For programming from a PC just type the input detection, IN1 or IN2 CNTRL,mode on the “Enter:” line as follows:

Enter:34/1

This will program the IN1 CNTRL to PULSE MODE. Type 0 for LEVEL MODE.

PRGM SETTING 034I N 1 = L E V E L

Page 60: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200853

4.9 Programmable Logic Settings

The TTC-1000 utilizes a simple scheme to control the four relay outputs. Eachoutput can be configured to be picked up or dropped out by assigning any of theavailable operands to a specific output. Table 4.1 illustrates the availableoperands.

Type Quantity Description

Temperature Set Points(Probe 1: SP11, SP12, SP13,SP14; Probe 2: SP21, SP22,SP23, SP24)

4 for Single Probe,8 for Dual Probe

Each has its own pickup and dropouttemperatures settable from -35 to 160 º C.

LTC DIFF Set Point or’ed withLTCDIFF R-R (Not available insingle probe ver.)

1 Uses two methods: LTCDIFF compared toa set point or LTCDIFF Rate of Rise.

Winding Set Points: WSP1,WSP2, WSP3, WSP4

4 Each has its own pickup and dropouttemperatures settable from 0 to 180 º C.

Load Set Points: LSP1, LSP2 2 Each has its own pickup and dropoutcurrents settable from 0.0 to 9.9 Amps

Outputs(OUT1,OUT2,OUT3,OUT4)

4 Outputs can be assigned to either itself orany other output.

TIME (TIME1, TIME2, TIME3) 3 Settable pickup and dropout times. Eachsettable from 00:00 to 23:59

INPUT (IN1, IN2) 2 From optically isolated inputs, if equipped.

Table 4.1: Operands

An operand can only be assigned to a specific output and cannot be assigned toanother output as long as it is assigned. For example, SP11 cannot be assignedto OUT2 and OUT3; it can only be assigned to either OUT2 or OUT3. IN1 or IN2may be assigned like any other operand.

Any of the temperature set points or outputs can be inverted when assigned. Forexample inverting SP11 will cause SP11 to be recognized as true whenever it isde-asserted. Also, these specific operands can be either AND’ed () or OR’ed(+) to a specific output. In evaluating a specific output, the TTC-1000 groups allof the OR’ed terms together and all of the AND’ed terms together. As anexample by assigning SP11 + and SP21 + to OUT3 will result in the followingBoolean expression for OUT3:

OUT3 = SP11 + SP21

Assigning SP11 to OUT3 and SP21 and SP12 + to OUT3 will result in thefollowing Boolean expression:

OUT3 = SP12 SP11SP21

Page 61: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200854

Note, the OR operator plays no roll in the evaluation of the above expression.

The TIME operands cannot be inverted and can only be OR’ed to the other termsassigned to the same output. As an example, if TIME2 is assigned to OUT3 inaddition to the operands SP1, SP2 and OUT1 as shown above, the Booleanexpression will be evaluated as:

OUT3 = (TIME2 + SP12) SP11SP21

TIME set points are evaluated as true at any time the real time clock date iswithin the specified pickup or drop out range of these set points.

NOTE: Do not use the inversion operator on individual set points whenremote control through DNP3.0 and fail-safe cooling control is desired. TheINVERT setting must be used on each output requiring fail-safe coolingcontrol when remote cooling control through DNP3.0 is required. The use

of the inversion operator on a set point will not be recognized by theremote control functions resulting in the cooling to be de-energized.

There are additional settings available that enhance the flexibility of theprogrammable logic. These functions include:

Output Timers for delaying pickup of the output relays.

Output Inversion that permits overall inversion of logic equations controllingoutputs. This is particularly useful for fail safe operation.

NOTE: Fail safe operation is strongly recommended. Fail safe operationensures that the cooling system picks up whenever the TTC-1000 becomesde-energized or encounters a failure.

Fail safe requires the output relay controlling the cooling stage to drop outinstead of picking up. This requires that each of the individual termsoperating an output to drop out and be AND’ed to every term or each termis OR’ed and the overall output invert used to drop out the relay. Pleaseremember to connect the contactor coil to the normally closed contact ofthe TTC-1000’s output relay.

4.9.1 Assigning Liquid Temperature Set Points

Liquid temperature set points must be assigned to a specific output to start astage of cooling, generate high temperature alarms, and generate hightemperature trips. For more complicated applications, these set points can beassigned to block a stage of cooling.

NOTE: DO NOT ASSIGN SP21, SP22, SP23, and SP24 IF ASSIGNING THELTCDIFF SET POINT.

Page 62: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200855

To assign a liquid set point (SP11, SP12, SP13, SP14, SP21, SP22, SP23,SP24) to an output from the front panel, press the or arrow buttons until thesetting 048 is displayed:

Press the YES button.

The first character is the inversion operator. Use the or arrow buttons to scrollbetween the inversion operator, !, and a blank space. While the inversionoperator is displayed, the ! character will flash.

Use the orbuttons to scroll to the AND/OR logic operator. The operator willflash. Use the or arrow buttons to scroll between the and + operators.

Selecting will AND SP11 with any other set point or operand controlling thesame output. Use to permit or block an output from operating. Selecting + willOR SP11 with any other set point or operand controlling the same output. Use +when you have a number of operands which can command the same output:

Use the orbuttons to scroll to the output #. The output number will flash.

Use the or arrow buttons to scroll from 0 to 4. Setting the output number tozero will have the effect of de-assigning the set point. The following illustrates thechange to output 1:

Press YES after you have set the inversion, AND/OR and output number.

The remaining set points, SP12, SP13, SP14, SP21, SP22, SP23 and SP24 canbe assigned by pressing the arrow button and following the above procedure.

PRGM SETTING 048SP11 TO OUT0

PRGM SETTING 048! SP11 TO OUT0

PRGM SETTING 048SP11 + TO OUT1

PRGM SETTING 048SP11 + TO OUT0

Page 63: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200856

For programming from a PC just type the SP11 assignment on the “Enter:” lineas follows:

Enter:48/0/1/1

This will assign SP11 Or’ed to OUT1. To assign !SP11 And’ed OUT1:

Enter:48/1/0/1

Consult the setting sheets to assign the remaining temperature set points SP12through SP24.

4.9.2 Assigning Winding Temperature Set Points

Winding temperature set points must be assigned to a specific output to start astage of cooling, generate high temperature alarms, and generate hightemperature trips. To assign a winding set point (WSP1, WSP2, WSP3, WSP4)

to an output from the front panel, press the or arrow buttons until the setting057 is displayed:

Press the YES button.

The first character is the inversion operator. Use the or arrow buttons to scrollbetween the inversion operator, !, and a blank space. While the inversionoperator is displayed, the ! character will flash.

Use the orbuttons to scroll to the AND/OR logic operator. The operator willflash. Use the or arrow buttons to scroll between the and + operators.Selecting will AND WSP1 with any other set point or operand controlling thesame output. Use to permit or block an output from operating. Selecting + willOR WSP1 with any other set point or operand controlling the same output. Use +when you have a number of operands which can command the same output:

Use the orbuttons to scroll to the output #. The output number will flash.Use the or arrow buttons to scroll from 0 to 4. Setting the output number to

PRGM SETTING 057! WSP1 TO OUT0

PRGM SETTING 057WSP1 + TO OUT1

PRGM SETTING 057WSP1 + TO OUT0

Page 64: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200857

zero will have the effect of de-assigning the set point. The following illustrates thechange to output 1:

Press YES after you have set the inversion, AND/OR and output number.

The remaining set points, WSP2, WSP3 and WSP4 can be assigned by pressingthe arrow button and following the above procedure.

For programming from a PC just type the WSP1 assignment on the “Enter:” lineas follows:

Enter:57/0/1/1

This will assign WSP1 OR’ed to OUT1. To assign !WSP1 And’ed OUT1:

Enter:57/1/0/1

Consult the setting sheets to assign the remaining temperature set points WSP2through WSP4.

4.9.3 Assigning LTCDIFF for LTC Condition Monitoring Alarm

The LTCDIFF set point must be assigned to a specific output to generate an LTCcondition alarm. You may dedicate a single output or group it with other hightemperature alarms by Or’ing it to the output used to indicate high temperaturealarms. To assign the LTCDIFF set point to an output from the front panel, pressthe or arrow buttons until the setting 056 is displayed:

Press the YES button.

The first character is the inversion operator. Use the or arrow buttons to scrollbetween the inversion operator, !, and a blank space. While the inversionoperator is displayed, the ! character will flash.

Use the orbuttons to scroll to the AND/OR logic operator. The operator willflash. Use the or arrow buttons to scroll between the and + operators.Selecting will AND LTC with any other set point or operand controlling thesame output. Use to permit or block an output from operating. Selecting + will

PRGM SETTING 056LTC TO OUT0

PRGM SETTING 056! LTC TO OUT0

Page 65: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200858

OR LTC with any other set point or operand controlling the same output. Use +when you have a number of operands which can command the same output:

Use the orbuttons to scroll to the output #. The output number will flash.Use the or arrow buttons to scroll from 0 to 4. Setting the output number tozero will have the affect of de-assigning the set point. The following illustrates thechange to output 4:

Press YES after you have set the inversion, AND/OR and output number.

For programming from a PC just type the LTCDIFF assignment on the “Enter:”line as follows:

Enter:56/0/1/4

This will assign LTCDIFF OR’ed to OUT4. To assign LTCDIFF And’ed OUT4:

Enter:56/0/0/4

PRGM SETTING 056LTC + TO OUT4

PRGM SETTING 056LTC TO OUT0

Page 66: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200859

4.9.4 Assigning Load Pickup Set Points

Load pickup set points must be assigned to a specific output to start a stage ofcooling based on a sudden increase in load current. To assign a load pickup setpoint (LSP1 and LSP2) to an output from the front panel, press the or arrowbuttons until the setting 061 is displayed:

Press the YES button.

The first character is the inversion operator. Use the or arrow buttons to scrollbetween the inversion operator, !, and a blank space. While the inversionoperator is displayed, the ! character will flash.

Use the orbuttons to scroll to the AND/OR logic operator. The operator willflash. Use the or arrow buttons to scroll between the and + operators.Selecting will AND LSP1 with any other set point or operand controlling thesame output. Use to permit or block an output from operating. Selecting + willOR LSP1 with any other set point or operand controlling the same output. Use +when you have a number of operands which can command the same output:

Use the orbuttons to scroll to the output #. The output number will flash.Use the or arrow buttons to scroll from 0 to 4. Setting the output number tozero will have the affect of de-assigning the set point. The following illustrates thechange to output 1:

Press YES after you have set the inversion, AND/OR and output number.

PRGM SETTING 061LSP1 TO OUT0

PRGM SETTING 061! LSP1 TO OUT0

PRGM SETTING 061LSP1 + TO OUT1

PRGM SETTING 061LSP1 + TO OUT0

Page 67: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200860

LSP2 can be assigned by pressing the arrow button and following the aboveprocedure.

For programming from a PC just type the LSP1 assignment on the “Enter:” lineas follows:

Enter:61/0/1/1

This will assign LSP1 OR’ed to OUT1. To assign !LSP1 And’ed OUT1:

Enter:61/1/0/1

Consult the setting sheets to assign LSP2.

4.9.5 Assigning IN1 and IN2

The IN1 and IN2 can be incorporated into the programmable logic by assigningthese points to a specific output. IN1 and IN2 are useful if you wish to start astage of cooling through a switch on the control panel or even from your RTU. Itcan also be used to block an output relay should the need arise. One suchapplication could be the blocking of a high temperature trip. To assign the IN1 orIN2 to an output from the front panel, press the or arrow buttons until thesetting 067 is displayed:

Press the YES button.

The first character is the inversion operator. Use the or arrow buttons to scrollbetween the inversion operator, !, and a blank space. While the inversionoperator is displayed, the ! character will flash.

Use the orbuttons to scroll to the AND/OR logic operator. The operator willflash. Use the or arrow buttons to scroll between the and + operators.Selecting will AND IN1 with any other set point or operand controlling the sameoutput. Use to permit or block an output from operating. Selecting + will OR IN1with any other set point or operand controlling the same output. Use + when youhave a number of operands which can command the same output:

PRGM SETTING 067IN1 TO OUT0

PRGM SETTING 067! IN1 TO OUT0

Page 68: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200861

Use the orbuttons to scroll to the output #. The output number will flash.Use the or arrow buttons to scroll from 0 to 4. Setting the output number tozero will have the affect of de-assigning the set point. The following illustrates thechange to output 1:

Press YES after you have set the inversion, AND/OR and output number.

IN2 can be assigned by pressing the arrow button and following the aboveprocedure.

For programming from a PC just type the IN1 assignment on the “Enter:” line asfollows:

Enter:67/0/1/1

This will assign IN1 OR’ed to OUT1. To assign !IN1 And’ed OUT1:

Enter:67/1/0/1

Consult the setting sheets to assign IN2.

4.9.6 Assigning OUT1, OUT2, OUT3 and OUT4

The OUT1, OUT2, OUT3 and OUT4 can be incorporated into the programmablelogic by assigning these points to another output. This enhances the ability of theprogrammable logic. It should be noted that an output should not be assigned toitself unless a latching function is desired. To assign OUT1, OUT2, OUT3 orOUT4 to an output from the front panel, press the or arrow buttons until thesetting 063 is displayed:

Press the YES button.

The first character is the inversion operator. Use the or arrow buttons to scrollbetween the inversion operator, !, and a blank space. While the inversionoperator is displayed, the ! character will flash.

PRGM SETTING 067IN1 + TO OUT1

PRGM SETTING 063OUT1 TO OUT0

PRGM SETTING 067IN1 + TO OUT0

Page 69: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200862

Use the orbuttons to scroll to the AND/OR logic operator. The operator willflash. Use the or arrow buttons to scroll between the and + operators.Selecting will AND OUT1 with any other set point or operand controlling thesame output. Use to permit or block an output from operating. Selecting + willOR OUT1 with any other set point or operand controlling the same output. Use +when you have a number of operands which can command the same output:

Use the orbuttons to scroll to the output #. The output number will flash.Use the or arrow buttons to scroll from 0 to 4. Setting the output number tozero will have the affect of de-assigning the set point. The following illustrates thechange to output 2:

Press YES after you have set the inversion, AND/OR and output number.

OUT2, OUT3, and OUT4 can be assigned by pressing the arrow button andfollowing the above procedure.

For programming from a PC just type the OUT1 assignment on the “Enter:” lineas follows:

Enter:63/0/1/2

This will assign OUT1 OR’ed to OUT2. To assign !OUT1 And’ed OUT2:

Enter:63/1/0/2

Consult the setting sheets to assign OUT2, OUT3 or OUT4.

4.9.7 Time Set Points

The time set points allow the user additional flexibility to activate events betweenspecific times. There are three time set points available.

Time set points are useful to exercise a bank of fans periodically. For example,the user can set the device to pick up an output at 03:00 hours and drop out at

PRGM SETTING 063! OUT1 TO OUT0

PRGM SETTING 063! OUT1 * TO OUT2

PRGM SETTING 063OUT1 + TO OUT0

Page 70: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200863

04:00 hours. Time set points can be used in conjunction with the temperature setpoints to control an output. Therefore, when controlling a bank of fans for thepurpose of exercising them daily, it is necessary to OR (+) the temperature setpoint to the same output as the time set point. Time set points are by default,OR’ed to any other operand assigned to the same output.

A counter is provided to set the frequency at which the time set points willoperate. For example, setting the counter to 7 will operate the time set pointsevery 7th day.

Time set points use a 24 hour clock.

When using time set points in conjunction with temperature set points for thepurpose of picking up a cooling bank in fail-safe mode, both set points should beassigned as usual. To operate in fail-safe, apply the OUT INVERT to the specificoutput.

4.9.7.1 Time Set Point Settings

To set and assign the TSP1 (TIME1), TSP2 (TIME2), TSP3 (TIME3) to an outputfrom the front panel, press the or arrow buttons until the setting 069 isdisplayed:

The first time, 00:00 is the pickup time. The second time, 00:00 is the drop outtime. OUT0 is the output the time set point is assigned to. In this case TSP1 isnot assigned.

Press the YES button. The 10’s hour digit will flash. Use the or arrow buttonsto set this digit. Use the button to move to the 1’s hour digit and observe thatit flashes. Again use the or arrow buttons to set this digit. Scroll to the 10’sminute digit by pressing the button and observe that it flashes. Use the orarrow buttons to set this digit. Scroll to the 1’s minute digit and observe that itflashes. Use the or arrow buttons to set this digit. Scroll once more to theoutput number by pressing the button. Use the or arrow buttons to set theoutput number from 0 to 4.

The following shows TSP1 set to pickup output 1 at 14:00 and drop out output 1after 14:15:

PROGRAM TSP1 0690 0 : 0 0 - 0 0 : 0 0 > O U T 0

PROGRAM TSP1 069

1 4 : 0 0 - 1 4 : 1 5 > O U T 1

Page 71: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200864

TSP2 and TSP3 are set using the same procedure described above.

For programming from a PC just type the TIME1 setting and assignment on the“Enter:” line as follows:

Enter:69/09:00/09:15/2

This will assign TIME1 OR’ed to OUT2. Consult the setting sheets to assignTIME2 and TIME3.

NOTE:

1. ALL 4 DIGITS OF THE TIME SET POINT PICKUP AND DROP OUT TIMESMUST BE ENTERED TO SET THE CORRECT TIME.

2. IF USING ALTERNATE, THE STOP TIME OF THE FIRST SET POINTMUST OVERLAP THE START TIME OF THE SECOND SET POINT.

4.9.7.2 Time Set Point Counter Setting

The time set point counter sets the frequency which the time set points will beallowed to pick up. It is settable from 0 to 255. A setting of 0 or 1 will operate thetime set points on a daily basis.

Programming time set point counter from the front panel, press the or arrowbuttons until the setting 101 is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits 0 – 9. Use the orbuttons to scroll between thedigits. The currently active digit will flash. Press YES after you have entered alldigits.

For programming from a PC just type the time set point counter value on the“Enter:” line as follows:

Enter:101/30

This will set all of the time set points programmed to pickup every 30th day.

4.9.8 Setting Output Timers

Setting the output timers delays the pickup of the output by the number ofseconds set. Each output has its own timer capable of being set from 0 to 255

PRGM SETTING 101T I M E S P C N T R = 0 0 0

Page 72: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200865

seconds. A setting of 0 will permit the output to pickup as soon as all of theprogrammable logic criteria are met. The output timer is only used in conjunctionwith the programmable logic and has no effect in manual, remote or alarmcontrol.

Programming the time set point counter from the front panel, press the orarrow buttons until the setting 036 is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits 0 – 9. Use the orbuttons to scroll between thedigits. The currently active digit will flash. Press YES after you have entered alldigits.

For programming from a PC just type the output timer value on the “Enter:” lineas follows:

Enter:36/15

This will set the delay to pickup output 1 by 15 seconds. Consult the settingsheets to program the pickup timers for OUT2, OUT3, and OUT4.

4.9.9 Setting Output Invert

The output invert enhances the flexibility of the programmable logic by providingan overall output inversion for an entire logic equation. This is particularly usefulfor fail safe operation of the controller. Fail safe operation is highly recommendedas it allows your cooling system to be activated should the TTC-1000 becomede-energized or a device or temperature probe alarm is detected. Fail safeoperation is achieved by ensuring the output relay drops out when the necessaryset points are satisfied to command a stage of cooling. In fail safe it is vital toremember to wire the contactor controlling the fan bank between the commonand normally closed contact.

Programming from the front panel, press the or arrow button until the setting072 is displayed:

PRGM SETTING 036OUT1PUTMR=000sec

PRGM SETTING 072I N V E R T O U T 1 = O F F

Page 73: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200866

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between OFF and ON. Selecting ON will invoke the overall invertfunction. Press YES when you have made the correct selection.

INVERT OUT2, INVERT OUT3, and INVERT OUT4 can be selected by pressingthe arrow button and following the above procedure.

For programming from a PC just type the setting for output invert on the “Enter:”line as follows:

Enter:72/1

This will set OUT1 to INVERT. Type 0 for OUT1 not INVERT.

Consult the setting sheets to change INVERT OUT2, INVERT OUT3 or INVERTOUT4.

4.9.10 Application Examples

Any of the operands (temperature set points, load set points, inputs, time setpoints, LTCDIFF set points or the outputs themselves) can be assigned to OUT1,OUT2, OUT3, or OUT4. When assigning the temperature, LTCDIFF, and outputoperands you have the option of inversion (!) and either logically AND’ing (*) orOR’ing (+) the operand with other assigned operands to control a specific output.For example, you can assign two temperature set points with the AND (*)operator to OUT2. When both operands are picked up at the same time, theOUT2 picks up, after a settable pickup timer has timed out. If the OUT2 pickuptimer is set to zero, OUT2 will pickup in 32 milliseconds once both temperatureset points are picked up. OUT2 will remain picked up until either of the twotemperature set points drop out.

Using the inversion operator with a temperature set point programmed for overtemperature, is particularly useful when it is desirable to run the fans if the

controller becomes de-energized. When using the inversion operator for thispurpose, it is necessary to use the B contact of the output relay.

Time set points are also operands that can be assigned to OUT1, OUT2, OUT3or OUT4. However, time set points do not use the inversion (!) operator and arealways assigned with the OR (+) operator.

An INVERT setting is available for each output to allow the entire equation to beinverted. This is especially useful when using temperature and time set pointstogether in fail-safe.

Page 74: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200867

NOTE: Do not use the inversion operator on individual set points whenremote control through DNP3.0 and fail-safe cooling control is desired. TheINVERT setting must be used on each output requiring fail-safe coolingcontrol when remote cooling control through DNP3.0 is required. The useof the inversion operator on a set point will not be recognized by theremote control functions resulting in the cooling to be de-energized.

The following are some application examples:

Commanding the cooling fans:

The simplest application is using an output to control a cooling bank. First,program the Pickup and Dropout temperature set point. Second, assign the setpoint to an output as follows:

Using the LCD: SPkl OUTn where kl= 11,12,13,14,21,22,23,24 and n=1,2,3,4

Using RS232: kk/0/0/n where k=Parameter # and n=1,2,3,4

The Boolean equation to control the same bank from two different set points isexpressed as follows:

OUTn = Temperature Set Pointkp1 + Temperature Set Pointk2l2

Using the LCD: SPkp1+ OUTn where kp1=11,12,13,14,21,22,23,24 and n=1,2,3,4

SPkp2+ OUTn where kp2=11,12,13,14,21,22,23,24 and n=1,2,3,4

Using RS232: kk1/0/1/n where kk1=Parameter # and n=1,2,3,4

Kk2/0/1/n where kk2=Parameter # and n=1,2,3,4

To control a bank in fail-safe, simply invert each setting as follows:

Using the LCD: !SPkl OUTn where kl= 11,12,13,14,21,22,23,24 and n=1,2,3,4

Using RS232: kk/1/0/n where k=Parameter # and n=1,2,3,4

NOTE: Do not use the inversion operator on individual set points whenremote control through DNP3.0 and fail-safe cooling control is desired. TheINVERT setting must be used on each output requiring fail-safe coolingcontrol when remote cooling control through DNP3.0 is required. The useof the inversion operator on a set point will not be recognized by theremote control functions resulting in the cooling becoming de-energized.

To control a bank using two set points in fail-safe:

Using the LCD: SPkp1+ OUTn where kp1=11,12,13,14,21,22,23,24 and n=1,2,3,4

SPkp2+ OUTn where kp2=11,12,13,14,21,22,23,24 and n=1,2,3,4

Using RS232: kk1/0/1/n where kk1=Parameter # and n=1,2,3,4

Kk2/0/1/n where kk2=Parameter # and n=1,2,3,4

Page 75: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200868

Use the INVERT OUTn setting to cause the output relay to drop out when eithertemperature set point is achieved. The resulting Boolean equation is:

OUTn = !(Temperature Set Pointkp1 + Temperature Set Pointkp2)

Periodic exercise of cooling fans:

Use a time set point with the temperature set point, controlling the cooling fans,to exercise the fans on a daily basis. This is especially useful in areas where youmight be running the fans continuously during the cooler months of the year. TheBoolean equation to accomplish this task is:

OUTn = Time Set Pointm + Temperature Set Pointkl

Therefore, the cooling fans will come on when either the over temperaturecondition is achieved or the time of day is in between 02:00 to 03:00 hours.

To program the controller simply assign the time and temperature set points as

follows:

Using the LCD: 02:00 to 03:00 > OUTn

SPk + OUTn

Using RS232: mm/02:00/03:00/n where mm=parameter # and n=1,2,3,4

Kk/0/1/n where k=parameter # and n=1,2,3, 4

To operate the output in fail-safe, just invert the expression using the outputINVERT setting. Remember to use the B contact of the output relay.

Cooling Fan Alarm:

This example shows how to generate an alarm when cooling is commanded butthe measured current as sensed by the Aux CT is not within a specified range.The Boolean equation for this function is expressed as:

OUTn1 = (Load Set Pointm1 + Load Set Pointm2) OUTn2

First you must program Load Set Pointm1 for an underload condition, that is thepickup current less than dropout, and Load Set Pointm2 for overload. Once theseare programmed the two load set points must be assigned as OR to OUTn1 asfollows:

Using the LCD: LSPm1+ OUTn1 where m1=1,2 and n1=1,2,3,4

LSPm2+ OUTn1 where m2=1,2 and n1=1,2,3,4

Using RS232: mm1/0/1/n1 where mm1=Parameter # and n1=1,2,3,4

mm2/0/1/n1 where mm2=Parameter # and n1=1,2,3,4

Then assign the output, OUTn2, commanding cooling to OUTn1 as follows:

Using the LCD: OUTn2 OUTn1 where n1=1,2,3,4 and n2=1,2,3,4

Using RS232: n1/0/0/n2 where n1=Parameter # and n2=1,2,3,4

Page 76: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200869

4.10 Setting Output Control With Alarm

The TTC-1000 monitors two critical conditions: processor (DEVICE) andtemperature (TPROBE) and allows the user to control how each output reactswhen an alarm occurs. A DEVICE alarm occurs anytime the microprocessordetects a failure in any of the peripheral hardware including the non-volatile E2

memory, the real time clock, analog outputs, corruption of stored data and powersupply brown out.

The TPROBE alarm is generated anytime the processor is unable to obtainreliable temperature information. This failure can be due to a discontinuity in theleads connected to the temperature probe or with any of the internal circuitryassociated with the analog to digital conversion process. All temperature setpoint evaluations are suspended until the alarm condition is cleared.

The TTC-1000 allows you to program how an output will react whenever there is

a DEVICE or TPROBE alarm. There are three (3) ways an output can reactwhenever there is a DEVICE or TPROBE alarm:

1. Unchanged (UNCHG): the output remains as it was prior to thealarm.

2. Picked Up (PCKUP): the output picks up when alarm occurs.

3. Supervised (SUPVS): the output drops out when alarm occurs.

The TTC-1000 output control default is UNCHG for each output.

The user should decide how they wish each output to operate whenever there iseither a DEVICE or TPROBE alarm. For example if OUT1 and OUT2 control twoseparate banks of fans, it might be desirable to have OUT1 and OUT2 pickup assoon as a DEVICE or TPROBE alarm occur. This insures that the fans arerunning even though there might be a device or temperature probe failure.

NOTE: It is strongly recommended to set output control to supervised(SUPVS) for all outputs controlling cooling fans in fail-safe mode.

However, if OUT3 is used for a trip signal, it may be desirable to use the DEVICEor TPROBE alarm to supervise OUT3. This will insure that a trip signal is blockedwhenever a DEVICE or TPROBE alarms occur.

Also, if OUT4 is used for a high temperature alarm, it may be desirable for OUT4to remain unchanged if a DEVICE or TPROBE alarm occurs. This will insure thata high temperature alarm continues to be reported.

Programming from the front panel, press the or arrow button until the setting038 is displayed:

PRGM SETTING 038OUT1UNCHGw/ALRM

Page 77: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200870

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between PCKUP, SUPVS or UNCHG.

Press YES when you have made the correct selection.

For programming from a PC just type the setting for Output Control with Alarm onthe “Enter:” line as follows:

Enter:38/2

This will set OUT1 supervised with a Device or Temperature Probe Alarm. Type1 to pickup OUT1 with a Device or Temperature Probe Alarm, or 0 to leave theoutput unchanged with a Device or Temperature Probe Alarm.

Consult the setting sheets to change output control for OUT2, OUT3, and OUT4.

4.11 Alternate Fan Banks

The TTC-1000 can be programmed to alternate the energization between twooutputs. This feature is particularly useful when it is desirable to insure a fanbank is regularly exercised.

You can choose between seven (7) alternate options:

1. Disabled (DSABL)

2. Alternate between OUT1 and OUT2 (1 – 2)

3. Alternate between OUT1 and OUT3 (1 – 3)

4. Alternate between OUT1 and OUT4 (1 – 4)

5. Alternate between OUT2 and OUT3 (2 – 3)

6. Alternate between OUT2 and OUT4 (2 – 4)

7. Alternate between OUT3 and OUT4 (3 – 4)

As an example, if Alternate between OUT1 and OUT4 is selected, the first timeOUT1 picks up, the output relay associated with OUT1 will pick up. If OUT4 picksup while OUT1 is picked up, the relay associated with OUT4 will pick up.

Once both OUT1 and OUT4 drop out, the next time OUT1 picks up the relayassociated with OUT4 will pick up. If at sometime in the future OUT4 picks upwhen OUT1 is already picked up, the relay associated with OUT1 will pick up.The cycle repeats when both OUT1 and OUT4 have dropped out.

PRGM SETTING 038OUT1SUPVSw/ALRM

Page 78: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200871

Programming from the front panel, press the or arrow button until the setting083 is displayed:

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between 1 – 2, 1 – 3, 1 – 4, 2 –3, 2 – 4, 3 – 4, or DSABL:

Press YES when you have made the correct selection.

For programming from a PC just type the setting for ALTERNATE on the “Enter:”line as follows:

Enter:83/1

This will set ALTERNATE=1-2. Type 2 to ALTERNATE=1-3, 3 toALTERNATE=1-4, 4 to ALTERNATE=2-3, 5 to ALTERNATE=2-4, or 6 toALTERNATE=3-4. Type 0 to disable alternate.

4.12 Auto and Manual Control

The TTC-1000 supports direct manual control of any output relay directly fromthe front panel. When commanded ON, the relay picks up and commanded OFFthe relay drops out. Manual control is important for two reasons. First, it gives theuser a simple method to test the connections to the output relays whencommissioning the unit. Second, it gives the user the ability to manually overrideboth automatic or remote control should the operator desires to commandcooling on a continuous basis. It can also be used to prevent an output frompicking up.

Manual mode can be exerted by communicating through the RS-232 interface,but it is impossible to control the output relay using this method. This settingshould only be used when it is desired to block remote control of a specific outputrelay. Also, the TTC-1000 will leave the output relay whatever state it happenedto be at the time manual control is exerted through the RS-232 interface.

The TTC-1000 will cause the Device Alarm contacts to pick up when an output isput into the manual mode. In addition the ALARM LED on the front panel willilluminate. The user can block this alarm by using the manual mode alarmdisable setting shown in Section 4.13.3.

PRGM SETTING 083A L T E R N A T E D S A B L

PRGM SETTING 083A L T E R N A T E 1 - 2

Page 79: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200872

Once in Manual Mode any output relay will be de-energized if power is removedupon re-energization. The output remains in Manual Mode and cannot be re-energized without physically going to the device and turning the output on in themanual mode.

Setting from the front panel, press the or arrow button until the setting 037 isdisplayed:

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between MAN OFF, MAN ON or AUTO.

Press YES when you have made the correct selection. In this example, OUT1will be picked up.

Setting outputs from AUTO to MANUAL from a PC will only allow the output to bedropped out. It is not possible to pickup an output when setting from a PC. Tochange from AUTO to MANUAL using a PC just type the setting for auto ormanual on the “Enter:” line as follows:

Enter:37/1

This will set OUT1 to MANUAL OFF. Type 0 to return OUT1 to AUTO.

Consult the setting sheets to change AUTO to MANUAL for OUT2, OUT3, andOUT4.

4.13 Setting Control of Unit Alarm

The single form B relay is utilized to provide a dry contact closure for alarmconditions. While the unit is energized, the alarm relay is energized. This allowsthe unit to provide an alarm should the device lose DC power or becomes de-energized.

The TTC-1000 monitors five conditions: Processor (DEVICE), Temperature(TPROBE), Manual Mode (MANUAL), Winding (WNDCKT), DNP3.0Communications (CPROC). The TTC-1000 allows the user to enable or disableall of the alarm conditions, except the DNP3.0 Communications (CPROC),through programming.

PRGM SETTING 037O U T 1 C T R L = A U T O

PRGM SETTING 037OUT1CTRL=MAN ON

Page 80: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200873

4.13.1 Device Alarm Setting

A DEVICE alarm occurs anytime the microprocessor detects a failure in any ofthe peripheral hardware including the non-volatile E2 memory, the real time clock,analog outputs or corruption of stored data.

Setting from the front panel, press the or arrow button until the setting 098 isdisplayed:

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between ENABL (enable) and DSABL (disable).

Press YES when you have made the correct selection. Selecting DSABL willblock the device alarm relay and the front panel alarm LED from illuminating.However, the front panel will display the device alarm if present.

For programming from a PC just type the setting for device alarm enable on the“Enter:” line as follows:

Enter:98/1

This will disable the device alarm. Type 0 to enable the device alarm.

4.13.2 Temperature Probe Alarm Setting

The TPROBE alarm is generated anytime the processor is unable to complete anA/D conversion. This can be due to a discontinuity in the leads connected to thetemperature probe or with any of the internal circuitry associated with the analogto digital conversion process. All temperature set point evaluations aresuspended until the alarm condition is cleared.

Setting from the front panel, press the or arrow button until the setting 099 isdisplayed:

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between ENABL (enable) and DSABL (disable).

PRGM SETTING 098DEVICEALRM=ENABL

PRGM SETTING 098

DEVICEALRM=DSABL

PRGM SETTING 099TPROBEALRM=ENABL

Page 81: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200874

Press YES when you have made the correct selection. Selecting DSABL willblock the device alarm relay and the front panel alarm LED from illuminating.However, the front panel will display the alarm if present.

For programming from a PC just type the setting for temperature probe alarmenable on the “Enter:” line as follows:

Enter:99/1

This will disable the temperature probe alarm. Type 0 to enable the alarm.

4.13.3 Manual Mode Alarm Setting

The MANUAL alarm occurs anytime any of the four outputs is programmed fromAuto Mode to Manual Mode, independent of whether the output is picked up ordropped out. The Manual Mode alarm is for reporting only and does notsupervise any of the control functions.

Setting from the front panel, press the or arrow button until the setting 100 isdisplayed:

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between ENABL (enable) and DSABL (disable).

Press YES when you have made the correct selection. Selecting DSABL willblock the device alarm relay and the front panel alarm LED from illuminating.

However, the front panel will display the alarm if present.

For programming from a PC just type the setting for manual mode alarm enableon the “Enter:” line as follows:

Enter:100/1

This will disable the manual mode alarm. Type 0 to enable the alarm.

4.13.4 Winding Circuit Alarm Setting

The WNDCKT alarm occurs anytime the TOP OIL temperature exceeds 63 ºC fortwo hours in units that are equipped to measure load current. These are models

PRGM SETTING 100MANALRM=ENABL

PRGM SETTING 099

TPROBEALRM=DSABL

Page 82: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200875

–XX3X or –XX4X. This alarm is for reporting only and does not supervise anyof the control functions.

Setting from the front panel, press the or arrow button until the setting 097 isdisplayed:

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between ENABL (enable) and DSABL (disable).

Press YES when you have made the correct selection. Selecting DSABL willblock the device alarm relay and the front panel alarm LED from illuminating.However, the front panel will display the alarm if present.

For programming from a PC just type the setting for the winding circuit alarmenable on the “Enter:” line as follows:

Enter:97/1

This will disable the winding circuit probe alarm. Type 0 to enable the alarm.

4.14 Setting Date and Time

The TTC-1000 utilizes a real time clock to maintain date and time. This devicehas two functions. It supplies precise 32 millisecond time ticks for the Real TimeInterrupt and it keeps track of the time, date and day of the week. Also, the time,date, and day are maintained even while the unit is unpowered for 5 days at85ºC. The TTC-1000 powers the RTC through the use of large value thateliminates the need for battery backup and is designed to operate over the entiretemperature range.

Time and date are used to evaluate the TIME set points and data logging.

PRGM SETTING 097WNDCKTALRM=ENABL

PRGM SETTING 097

WNDCKTALRM=DSABL

Page 83: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200876

4.14.1 Setting Time and Date Via the Front Panel

Setting from the front panel, press the or arrow button until the setting 095 isdisplayed:

Press the YES button. The 10’s hour digit will flash. Use the or arrow buttonsto set this digit. Use the button to move to the 1’s hour digit and observe thatit flashes. Again use the or arrow buttons to set this digit. Scroll to the 10’sminute digit by pressing the button and observe that it flashes. Use the orarrow buttons to set this digit. Scroll to the 1’s minute digit and observe that itflashes. Use the or arrow buttons to set this digit. Press the YES button afterentering the time.

To set the date from the front panel, press the or arrow button until the setting096 is displayed:

Press the YES button. The 10’s month digit will flash. Use the or arrow

buttons to set this digit. Use the button to move to the 1’s month digit and

observe that it flashes. Again use the or arrow buttons to set this digit. Use

the button to move to the day and year digits and set them using the or

arrow buttons.

4.14.2 Setting Time and Date Via the PC

For setting time from a PC just type the current time on the “Enter:” line asfollows:

Enter:95/08:05

This will set the time to 8:05AM. The time entered must be a 4 digit internationaltime.

For setting the date from a PC just type the current date on the “Enter” line asfollows:

Enter:96/07/28/03

PRGM SETTING 095TIME=00:05

PRGM SETTING 096DATE=01/04/08

Page 84: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200877

This will set the date to July 28, 2003. The date must be entered with a total 6digits. A date entered of 5/3/03 will not register correctly. The correct entry forMay 3, 2003 is:

Enter:96/05/03/03

4.15 Setting Password

A four digit password can be entered to restrict access to programming settings,downloading of setting files, and downloading of firmware upgrades. The superuser password of 0905 is permanently recorded and cannot be changed.

Programming from the front panel, press the or arrow buttons until the setting107 is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits 0 – 9. Use the orbuttons to scroll between thedigits. The currently active digit will flash. Press YES after you have entered allfour digits.

For programming from a PC just type the new password on the “Enter:” line asfollows:

Enter:107/2767

It is important to remember to enter the password as a four digit number. Failureto enter a four digit number will result in an incorrect password.

4.16 Setting Unit ID

A six character unit identifier can be programmed. The unit ID is stored as asetting but also appears on the Status menu over the RS-232 interface.

Programming from the front panel, press the or arrow buttons until the setting102 is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits 0 – 9. Use the orbuttons to scroll between thedigits. The currently active digit will flash. Press YES after you have entered allfour digits.

PRGM SETTING 107PASSWORD=0000

PRGM SETTING 102UNIT ID=TX2767

Page 85: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200878

For programming from a PC just type the Unit ID on the “Enter:” line as follows:

Enter:102/TX2767

Page 86: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200879

5 TELEMETRY OPTIONS

This section will discuss the various telemetry options available, their use andany relevant settings. The TTC-1000 can be optionally equipped with currentloop outputs and a RS-485 DNP3.0 communications interface. All TTC-1000’scome equipped with a 9 pin DB-9 connector for RS-232 ASCII communications.Temperature information can be retrieved through the RS-232 interface.

5.1 Analog Outputs

The TTC-1000 is available with two analog outputs configured as current loops.The source for each analog output can be selected from probe 1 (P1), probe 2(P2), or calculated winding temperature. The analog output is designed tooperate with a series resistance of 9,500 Ohms when set to 0 to 1 mA or 450Ohms when set to 4 to 20 mA. The third analog output is configured to supply 0to 1 mA and cannot be switched to operate in the range of 4-20 mA.

The analog outputs are connected to terminal block TB2 on all panel mount units.NEMA units with serial letter suffix ‘B’ contain TB4 for connections to the analogoutputs. All other NEMA units utilize TB2. The terminal marked + is the currentsource output. The connection marked – is the current transmitter’s return and istied directly to the chassis ground.

NOTE: Connect to the analog outputs through shielded cable. Connect thedrain wire of the shield to one of the ground stud on the rear of the TTC-1000 or inside the NEMA 4 enclosure. Twisted pair cable is recommended.

The analog outputs A1 and A2 can be programmed for 0 to 1 mA or 4 to 20 mA.Both analog outputs are identically programmed.

The scaling of the analog output varies depending on what is being measured.The following table illustrates the scaling dependent on range and the quantitymeasured and whether negative temperature scaling is enabled:

Probe Min @ -35 Min @ 0 Max

0 to 1 mA Range:

P1 or P2 0 mA @ -35 ºC 0 mA @ 0 ºC 1 mA @ 160 ºC

CALC. WINDING 0 mA @ -35 ºC 0 mA @ 0 ºC 1 mA @ 180 ºC

LTCDIFF Not Applicable 0 mA @ -20 ºC 1 mA @ +20 ºC

4 to 20 mA Range:

P1 or P2 4 mA @ -35 ºC 4 mA @ 0 ºC 20 mA @ 160 ºC

CALC. WINDING 4 mA @ -35 ºC 4 mA @ 0 ºC 20 mA @ 180 ºC

LTCDIFF Not Applicable 4 mA @ -20 ºC 20 mA @ +20 ºC

Page 87: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200880

Upon initialization, the DAC is set to zero, if 0 to 1 mA or offset to drive 4 mA, ifset for 4 to 20 mA. During the initialization process, the processor looks to see ifthe DAC is installed. If installed, the DAC will be updated every 16 seconds whennew temperature data is available.

Should the user select a new range, the output will not change range until newtemperature data is available.

The relationship of the analog output differs depending on what the probe ismeasuring. For top oil, winding, and ambient temperatures the relationshipbetween output current and temperature is as follows:

Range 0 to 1mA with normal scaling:

For measurements from P1 or P2: Current = Temperature/160

For calculated winding temperature:Current = Temperature/180

Range 4 to 20mA with normal scaling:

For measurements from P1 or P2: Current = 0.1 x Temperature +4

For calculated winding temperature:Current = 0.089 x Temperature + 4

Range 0 to 1mA with negative scaling:

For measurements from P1 or P2: Current = Temperature/195

For calculated winding temperature:Current = Temperature/215

Range 4 to 20mA with negative scaling:

For measurements from P1 or P2: Current = 0.08205 x Temperature +6.872

For calculated winding temperature: Current = 0.07442 x Temperature + 6.605

For LTCDIFF the relationship is as follows:

Range 0 to 1mA:

0.540eTemperaturCurrent

Range 4 to 20mA:

12eTemperatur0.4Current

5.1.1 Setting the Analog Output Range

The analog output range for both A1 and A2 can be switched from 0 – 1 mA to 4– 20 mA. The range of the third analog output is fixed at 0 – 1 mA and cannot bechanged. To change this setting, enter PROGRAM mode from the front panel asdiscussed in Section 4.1. To set the analog output range from the front panel,press the or arrow button until the setting 084 is displayed:

Page 88: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200881

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between 0to1mA and 4to20mA.

Press YES when you have made the correct selection.

For programming from a PC, enter PROGRAM through the main menu asdiscussed in Section 4.2. Once in PROGRAM, type the setting for theANALGOUT range on the “Enter:” line as follows:

Enter:84/1

This will change the analog output range from 0 – 1 mA to 4 – 20 mA. Type 0 tochange to 0 – 1 mA.

5.1.2 Setting the Analog Source

The source of data for the analog input can either be liquid probe P1, liquid probeP2, or calculated winding temperature. The TTC-1000 automatically scales thedata to be reported.

To change this setting, enter PROGRAM mode from the front panel as discussedin Section 4.1. To set the analog source from the front panel, press the orarrow button until the setting 085 is displayed:

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between P1, P2 and WINDING.

Press YES when you have made the correct selection. A2 source can beselected by pressing the arrow button and following the above procedure. Thesetting for A3 source will appear if installed.

PRGM SETTING 084ANALGOUT=0to1mA

PRGM SETTING 084

ANALGOUT=4to20mA

PRGM SETTING 085A1SOURCE>P1

PRGM SETTING 085

A1SOURCE>WINDING

Page 89: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200882

For programming from a PC, enter PROGRAM through the main menu asdiscussed in Section 4.2. Once in PROGRAM, type the setting for the A1SOURCE on the “Enter:” line as follows:

Enter:85/2

This will change the source for analog output A1 to WINDING. Type 0 to changethe source to P1 or 1 to change the source to P2.

5.1.3 Enabling Negative Scaling

The default scaling of analog outputs for all but LTCDIFF is from zero degrees.However, if operating in cold climates, it may be necessary to scale the analogoutputs from –35 ºC for all temperatures except LTCDIFF.

To change this setting, enter PROGRAM mode from the front panel as discussedin Section 4.1. To set the analog source from the front panel, press the orarrow button until the setting 103 is displayed:

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between YES and NO.

Press YES when you have made the correct selection.

For programming from a PC, enter PROGRAM through the main menu asdiscussed in Section 4.2. Once in PROGRAM, type the setting for the NEGANALGOUT SCALING on the “Enter:” line as follows:

Enter:103/1

This will change the scaling from normal to negative. Type 0 to change back tonormal scaling.

5.2 DNP3.0

Units equipped with the optional DNP3.0 communications interface contain aplug-in Communications Processor module. The module contains a separatemicroprocessor to handle all overhead functions associated with the DNP3.0protocol without affecting operation of the transformer cooling control andmonitoring. The module contains either a half duplex, full duplex isolated RS-485,multi-mode fiber optic asynchronous communications interface capable of

PRGM SETTING 103NEG ANALGOUT=NO

Page 90: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200883

supporting multi-drop topologies. RS-485 interfaces differ from RS-232 in thatRS-485 uses a differential receiver and transmitter pair. This permits RS-485links to send and receive data over much greater distances as long as somesimple rules are followed. See Sections 3.7.3 and 3.7.4 for connections andjumper settings.

After making the proper connections to the TTC-1000, there are only two settingsthat need to be made: Node Address and Baud Rate. Node Addresses can beany number from 0 to 65535. Please consult the DNP3.0 reference materials assome higher order addresses are reserved for broadcast messages.

Baud Rates can be set to either 1200, 2400, 9600 or 19200. It is recommendedthat both Node Address and Baud Rate settings be made before attempting tocommunicate, however these settings can be changed “on-the-fly” withoutpowering down the TTC-1000.

The TTC-1000 implements DNP3.0 Level 1 communications. This includes Class0 polls (Object 60 Variation 1) of analog and binary output points. The TTC-1000supports Object 1 Variation 2 binary outputs. Binary outputs include alltemperature and load set points along with the state of each output relay.Because Variation 2 is supported, the TTC-1000 communicates whether or notan output relay is under manual control by exerting the “forced” status bit forthese points only. The “forced” status bit is located in bit 4 of each binary outputoctet transmitted to the Master. For Analog Outputs, the TTC-1000 supportsObject 30 Variation 4. These are 16 bit signed analog quantities without status.Included in the Analog Output points are all temperatures equipped plus loaddata if available. Also, the TTC-1000 uses two points to identify whether or notthe probe is measuring Top Oil, Heated Well, LTC Differential or Ambienttemperature. This is particularly useful for dual probe units. It is noted that Object1 Variation 2 and Object 30 Variation 4 points cannot be read individually andcan only be read by a Class 0 poll.

In addition, the TTC-1000 supports the remote control of the four output relays.The TTC-1000 supports both direct control (Object 10 Variation 0) and SelectBefore Operate control (Object 12 Variation 1). The TTC-1000 permits the userto command an output relay to pickup. It cannot be used to dropout an outputrelay. If the Binary Input point is turned off, it merely returns the device to localautomatic control. Once the unit accepts the remote control command, the“remote forced” bit will become a logic “1”. The “remote forced” bit will remain alogic “1” until that point is dropped out by the DNP Master.

Remote control can be blocked through the use of the REMOTE BLK setting.Enabling this setting will prevent all output points from picking up through remotecontrol. Also, enabling the REMOTE BLK setting after an output has beencommanded to remotely pickup but before remote control is returned to localcontrol, will cause all output points to revert back to local automatic control. The“remote forced” bit will remain logic “1” until the point is returned back to local

Page 91: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200884

automatic control. Remote control will be immediately re-enabled once theREMOTE BLK setting is disabled.

In addition, local manual control overrides remote control. The user shouldobserve the status of the “local forced” bit in the appropriate Binary Output point,as noted above, before attempting to exert control as the TTC-1000 willremember that the bit has been exerted even though the TTC-1000 is in ManualMode. Once an output is released from Manual Mode, the output will eitherreturn to automatic or remote control. If the point had been commandedremotely, the output will pickup as soon as the field personnel remove localmanual control. This could result in an undesired operation of the specific outputrelay. Users of remote control should always remember to turn off a Binary Inputonce they have turned it on to insure a return to local automatic control. This iswhy Users should observe the “local forced” and “remote forced” bits.

To maintain compatibility with Fail-Safe operation of the cooling system, remote

commanding of cooling operates in conjunction with the INVERT setting for eachoutput. For example, if the INVERT bit is set for OUT1, then the OUT1 relay willdrop out. This is an important point to remember when setting the programmablelogic as Fail-Safe cooling will not be observed under remote control if the userimplements Fail-Safe cooling by assigning a set point using the inversionoperator.

Finally, the user should not expect instantaneous report of updated temperatureand status from the TTC-1000. The use of a separate CommunicationsProcessor does not guarantee instantaneous reporting of data. The philosophy ofimplementation is that the top priority of the Main microprocessor is for controland monitoring and the Communications Processor is to receive potentially high-speed request messages from the DNP Master and to respond to these requestswithout delay. While higher polling rates are possible, it is highly recommendedthat the polling rate be between 1,000 to 10,000 milliseconds, but should be nofaster than 500 milliseconds.

Please refer to the DNP3.0 Profile Document in Section 14 for additional detailsand specific definitions of all points supported.

Page 92: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200885

5.2.1 Setting BAUD Rate

The BAUD rate of the RS-485 interface can be changed in steps of 1200, 2400,9600, or 19200.

To change this setting, enter PROGRAM mode from the front panel as discussedin Section 4.1. To set the BAUD RATE from the front panel, press the orarrow button until the setting 087 is displayed:

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between 1200, 2400, 9600 and 19200.

Press YES when you have made the correct selection.

For programming from a PC, enter PROGRAM through the main menu asdiscussed in Section 4.2. Once in PROGRAM, type the setting for the BAUDRATE on the “Enter:” line as follows:

Enter:87/2

This will change the BAUD RATE to 9600. Type 0 to change the BAUD RATE to1200, 1 to change to 2400, or 3 to change to 19200.

5.2.2 Setting NODE Address

A unique node address of 0 to 65535 can be entered. Please refer to yourDNP3.0 Technical Reference documents as certain node addresses arereserved.

To change this setting, enter PROGRAM mode from the front panel as discussedin Section 4.1. To set the node address from the front panel, press the orarrow button until the setting 088 is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits 0 – 9. Use the orbuttons to scroll between the

PRGM SETTING 088NODE ADDR=00000

PRGM SETTING 087BAUD RATE= 1200

PRGM SETTING 087

BAUD RATE= 9600

Page 93: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200886

digits. The currently active digit will flash. Press YES after you have entered allfour digits.

For programming from a PC, enter PROGRAM through the main menu asdiscussed in Section 4.2. Once in PROGRAM, type the setting for the nodeaddress on the “Enter:” line as follows:

Enter:88/7

This will set the node address to 7.

5.2.3 Setting Remote Blocking

Remote block is useful if it is necessary to block remote control of any of theoutput relays. This is only necessary if Objects 10 and 12 have beenimplemented to permit Supervisory and Control to command cooling remotely.

To change this setting, enter PROGRAM mode from the front panel asdiscussed in Section 4.1. To set the node address from the front panel, press theor arrow button until the setting 089 is displayed:

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between DSABL (disable) and ENABL (enable).

Press YES when you have made the correct selection. Selecting ENABL willblock the remote control of the output relays.

For programming from a PC, enter PROGRAM through the main menu asdiscussed in Section 4.2. Once in PROGRAM, type the setting for remote blockon the “Enter:” line as follows:

Enter:89/1

This will enable remote block. Type 0 to disable remote block.

5.3 Telemetry Via RS232

Asynchronous data communications is implemented through the front panelmounted DB-9 connector at a fixed data rate of 9600 bits per second, 8 bits of

PRGM SETTING 089REMOTE BLK=DSABL

PRGM SETTING 089

REMOTE BLK =ENABL

Page 94: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200887

data, no parity, and one stop bit. We have verified operation of the interface withProcomm Plus, HyperTerminal and Windows Terminal 3.1. It is recommendedthat the terminal emulation be set for either ANSI or TTY. The pin out of this portis designed to use a 9 pin female to 9 pin male null modem cable.

The TTC-1000 permits remote reporting of temperature or resetting of the time ofday by sending a forward slash ‘/’ followed by either the characters T(temperature) or R (reset) followed by an ASCII carriage return character (13Hex).

Sending the string: /T causes the TTC-1000 to reply with the ambienttemperature. The temperature reported will be in the units (Celsius or Fahrenheit)that the TTC-1000 was programmed to display temperature. Units are nottransmitted. It is noted that the command /T is echoed back to the host computeralong with the measured temperature without a carriage return character. Forexample, if the TTC-1000 is measuring an ambient temperature of 68 ºF, the

exact format of the reply for a single probe unit is:

68

For dual probe versions, the reply is:

68/93

Where the first temperature is probe #1 and the second is probe #2.

Sending the string /S causes the TTC-1000 to report the status of the outputrelays (OUT1, OUT2, OUT3 and OUT4) and alarm type (DEVICE, TPROBE, andWDGCKT) as a series of ASCII character ‘0’ for off and ASCII character ‘1’ foron. The string reported is as follows:

OUT1/OUT2/OUT3/OUT4/ALRM_DEVICE/ALRM_TPROBE/ALRM_WNDCKT

A typical response to the /S command is:

1/0/0/0/0/0/0

This string indicates that OUT1 is picked up and OUT2, OUT3, OUT4,ALRM_TPROBE, ALRM_TPROBE, and ALRM_WNDCKT are dropped out.

Sending the string /R causes the TTC-1000 to reset the real time clock to00:00:00 hours. The date is not changed. It is noted that the characters /R areechoed back to the host computer.

Page 95: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200888

6 VIEW TEMPERATURES

The temperature & time display will be the first display you see upon power up.Date, time, and temperature are updated when fresh data is available. Thedisplay will continuously scroll through a set sequence. The sequence willdepend on the number of liquid temperature probe channels and if the unit isequipped to measure calculated winding temperature. Automatic scrolling can beinterrupted at any time by pressing the YES button. Once automatic scrolling isstopped, pressing the or arrow buttons will permit manual scrolling to thevarious displays. To resume automatic scrolling, press the NO button.

NOTE: The unit will return to the automatic scrolling from any menu afterone minute of inactivity. Activity is defined as any button being pressed.

6.1 Single Probe

For single probe units, model number –XX1X the display sequence will appearas follows:

The name set for P1 will appear on the display as shown above.

07/29/03 13:15P1 TOP OIL 45C

TOP OIL MIN= 35C@ 03:15 07/29/03

TOP OIL MAX= 65C@ 17:42 07/18/03

RST MIN/MAXP U S H Y E S T O R S T

Page 96: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200889

6.2 Dual Probe

For dual probe units, model number –XX2X the display sequence will appear asfollows:

The name set for P1 and P2 will appear on the display as shown above.

07/29/03 13:15P1 TOP OIL 45C

TOP OIL MIN= 35C@ 03:15 07/29/03

TOP OIL MAX= 65C@ 17:42 07/18/03

RST MIN/MAXP U S H Y E S T O R S T

07/29/03 13:15P2 WINDING 58C

WINDING MIN= 43C@ 03:15 07/29/03

WINDING MAX= 83C@ 17:42 07/18/03

Page 97: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200890

6.3 Single Probe With Calculated Winding

For single probe units with calculated winding temperature, model number –XX3X the display sequence will appear as follows:

The name set for P1 will appear on the display as shown above.

07/29/03 13:15P1 TOP OIL 45C

TOP OIL MIN= 35C@ 03:15 07/29/03

TOP OIL MAX= 65C@ 17:42 07/18/03

RST MIN/MAXP U S H Y E S T O R S T

07/29/03 13:15WINDING 58C

WINDING MIN= 43C@ 03:15 07/29/03

WINDING MAX= 83C@ 17:42 07/18/03

07/29/03 13:15LOAD 453 A

Page 98: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200891

6.4 Dual Probe With Calculated Winding

For dual probe units with calculated winding temperature, model number –XX4Xthe display sequence will appear as follows:

The name set for P1 and P2 will appear on the display as shown above.

RST MIN/MAXP U S H Y E S T O R S T

WINDING MIN= 43C@ 03:15 07/29/03

WINDING MAX= 83C@ 17:42 07/18/03

07/29/03 13:15P1 TOP OIL 45C

TOP OIL MIN= 35C@ 03:15 07/29/03

TOP OIL MAX= 65C@ 17:42 07/18/03

07/29/03 13:15WINDING 58C

07/29/03 13:15LOAD 453 A

07/29/03 13:15P2 LTCDIFF - 03C

LTCDIFF MIN= -08 C@ 03:15 07/29/03

LTCDIFF MAX= 02C@ 17:42 07/18/03

Page 99: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200892

6.5 Reset Min/Max

The minimum and maximum registers may be reset by pressing the YES buttonwhen the display is showing:

To confirm that the min/max values are reset, the display will read:

New data will be recorded as soon as the data is ready.

RST MIN/MAXP U S H Y E S T O R S T

MIN/MAX IS RST

Page 100: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200893

7 VIEW SETTINGS

View allows display of settings without entering PROGRAM. Settings may beviewed from the front panel or via a PC.

7.1 View Settings Via Front Panel

To view settings from the front panel, first press the or arrow buttons until theVIEW Settings screen is displayed:

Pressing the YES button will allow you to scroll through each parameter by usingthe or arrow buttons. By pressing NO you will bounce back to the abovedisplay.

7.2 View Settings Via PC

To view settings via a PC, first press the Enter key to display the Main Menu.When the user presses 1 followed by the Enter key, the user will see thefollowing display:

VIEW01 SP11 PICKUP=00 øC02 SP11 DRPOUT=00 øC03 SP12 PICKUP=00 øC04 SP12 DRPOUT=00 øC05 SP13 PICKUP=00 øC06 SP13 DRPOUT=00 øC07 SP14 PICKUP=00 øC08 SP14 DRPOUT=00 øC09 SP21 PICKUP=00 øC10 SP21 DRPOUT=00 øC11 SP22 PICKUP=00 øC12 SP22 DRPOUT=00 øC13 SP23 PICKUP=00 øC14 SP23 DRPOUT=00 øC15 SP24 PICKUP=00 øC16 SP24 DRPOUT=00 øC17 WSP1 PICKUP=00 øC18 WSP1 DRPOUT=00 øC19 WSP2 PICKUP=00 øC20 WSP2 DRPOUT=00 øC21 WSP3 PICKUP=00 øC22 WSP3 DRPOUT=00 øC23 WSP4 PICKUP=00 øC24 WSP4 DRPOUT=00 øC25 LTCDIFF PICKUP=00 øC26 LTCDIFF DRPOUT=00 øC27 LTCDIFF PICKUPTMR=00 MIN28 LSP1 PICKUP=0.0 A29 LSP1 DRPOUT=0.0 A

VIEW SETTINGSP U S H Y E S T O V I E W

Page 101: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200894

30 LSP2 PICKUP=0.0 A31 LSP2 DRPOUT=0.0 A32 LOAD PICKUP TMR1 =00 sec33 LOAD PICKUP TMR2 =00 sec34 IN1 CTRL=LEVEL (0)35 IN2 CTRL=LEVEL (0)36 OUT1 PICKUP TMR=00 sec37 OUT1 AUTO (0)38 OUT1 UNCHG (0) w/ALRM39 OUT2 PICKUP TMR=00 sec40 OUT2 AUTO (0)41 OUT2 UNCHG (0) w/ALRM42 OUT3 PICKUP TMR=00 sec43 OUT3 AUTO (0)44 OUT3 UNCHG (0) w/ALRM45 OUT4 PICKUP TMR=00 sec46 OUT4 AUTO (0)47 OUT4 UNCHG (0) w/ALRM48 SP11 Not Assigned49 SP12 Not Assigned50 SP13 Not Assigned51 SP14 Not Assigned52 SP21 Not Assigned53 SP22 Not Assigned54 SP23 Not Assigned55 SP24 Not Assigned56 LTC Not Assigned57 WSP1 Not Assigned58 WSP2 Not Assigned59 WSP3 Not Assigned60 WSP4 Not Assigned61 LSP1 Not Assigned62 LSP2 Not Assigned63 OUT1 Not Assigned64 OUT2 Not Assigned65 OUT3 Not Assigned66 OUT4 Not Assigned67 IN1 Not Assigned68 IN2 Not Assigned69 TIME1 00:00 TO 00:00 Assigned TO OUT070 TIME2 00:00 TO 00:00 Assigned TO OUT071 TIME3 00:00 TO 00:00 Assigned TO OUT072 OUT1 =Not INVERT (0)73 OUT2 =Not INVERT (0)74 OUT3 =Not INVERT (0)75 OUT4 =Not INVERT (0)76 CT RATIO=0077 RATED LOAD=00 A78 WINDING RISE @ RATED LOAD=00 øC79 WINDING TC=00 MIN80 COOLING TYPE=Not DIRECTED FOA (0)81 TPROBE1 NAME=TOP OIL (0)82 TPROBE2 NAME=TOP OIL (0)83 ALTERNATE=DSABL (0)84 ANALGOUT=0to1mA (0)85 A1 SOURCE=P1 (0)86 A2 SOURCE=P1 (0)87 BAUD RATE= 1200 (0)

Page 102: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200895

88 NODE ADDR=0089 REMOTE BLK=DSABL (0)90 TIMEBASE=00 sec91 INCLUDE P1 IN LOG=NO (0)92 INCLUDE P2 IN LOG=NO (0)93 INCLUDE WINDING IN LOG=NO (0)94 INCLUDE LOAD IN LOG=NO (0)95 TIME=08:1296 DATE=02/03/0197 WNDCKT ALRM ENABLED (0)98 DEVICE ALRM ENABLED (0)99 TEMPERATURE ALRM ENABLED (0)100 MANUAL ALRM ENABLED (0)101 TIME SP CNTR=00102 UNIT ID=103 NEG ANALGOUT SCALING=NO (0)104 LTCDIFF RISE=19 øC105 LTCDIFF RATE=00 MIN106 REPEAT=NO (0)

After transmitting the data to the host computer, the TTC-1000 automatically logsoff. The user must press the Enter key to re-display the Main Menu.

NOTE: In single probe units, TEMP PROBE2 NAME=N/A.

Page 103: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200896

8 STATUS

STATUS allows you to take a snapshot of the recognized state of any output,temperature set points, LOAD, LTCDIFF set points, time set points and opticallyisolated inputs. In the case of outputs, this will be the state of the programmablelogic. This may not be the state of the output relay as it may be controlled eithermanually or remotely.

8.1 View Status Via Front Panel

To view settings from the front panel, first press the or arrow buttons until theVIEW Status screen is displayed:

To view the status of each operand you must first press YES. After pressing YESyou can use the or arrow buttons to scroll between the operands. PressingNO at any time will bounce you out of the display of status.

8.2 View Status Via PC

To view settings via a PC, first press the Enter key to display the Main Menu.When the user presses 3 followed by the Enter key, the user will see thefollowing display:

STATUSTIME=08:13 DATE=02/03/01UNIT ID:TEMPERATURE TOP OIL/TOP OIL/WINDING 22/21/21 øCLOAD=00 ATOP OIL MIN=17 øC @ 45:4: 20/46/20TOP OIL MAX=22 øC @ 00:06 80/79/35TOP OIL MIN=00 øC @ 00:00 00/00/00TOP OIL MAX=22 øC @ 05:15 02/03/01WINDING MIN=00 øC @ 00:00 00/00/00WINDING MAX=22 øC @ 05:16 02/03/01SP11=DRP'D OUTSP12=PICKED UPSP13=PICKED UPSP14=PICKED UPSP21=PICKED UPSP22=PICKED UPSP23=PICKED UPSP24=PICKED UPLTC=DRP'D OUTWSP1=PICKED UPWSP2=PICKED UPWSP3=PICKED UPWSP4=PICKED UPLSP1=PICKED UPLSP2=PICKED UP

VIEW STATUSP U S H Y E S T O V I E W

Page 104: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200897

IN1=PICKED UPIN2=PICKED UPOUT1=DRP'D OUTOUT2=DRP'D OUTOUT3=DRP'D OUTOUT4=DRP'D OUTTIME1=DRP'D OUTTIME2=DRP'D OUTTIME3=DRP'D OUTLTCR-R=DRP'D OUT

You must press the Enter key on your keyboard to display the Main Menu.

Page 105: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200898

9 SETTING FILES

Uploading and downloading of setting files can only be accomplished throughconnection from a PC directly connected to the TTC-1000. To save a setting fileon your PC use Upload Setting file. To transfer a previously stored setting filefrom your PC to the TTC-1000, use Download Setting file, or you can use the“Send CSV Settings To Unit” menu option to send a comma separated variablesettings file.

9.1 Upload Setting Files

Upload settings transfers the binary settings to a designated file in a PCconnected through the RS232 communications port. The TTC-1000 uses theXMODEM protocol which is supported by HyperTerminal, HyperAccess, as wellas other terminal emulation programs. Checksum error checking is employed.

9.1.1 Upload Settings Using HyperTerminal

HyperTerminal as supplied in Windows XP does not work properly when scrollingback to view settings and is not recommended. The following instructions applyto both versions. In these instructions, HyperTerminal will stand for both versions,XP and Private Edition.

The procedure to upload a setting file is as follows:

1. Press Enter to display the TTC-1000 Main Menu.

2. Press 4 and then press Enter:

3. Click on Transfer on the HyperTerminal toolbar, a drop down menu willappear –

a. Click on Receive File and a dialog box will open

b. Select Xmodem from the Use Receiving Protocol option

c. Click on the Browse button and another dialog box will open wherethe directory can be selected to place the file.

d. Click on Receive

4. Another dialog box will open for entering the file name the file is to besaved as.

a. Enter the file name and click on OK The three letter suffix will notautomatically be added. It is a good practice to add an ending suchas .BIN or .DAT to indicate it is not a text file. .

5. Another dialog box will open that shows the file transfer progress

a. HyperTerminal will try twice with CRC error detection to transfer thefile. The third attempt will be using Checksum, the method the TTC-1000 uses.

b. The retry box will briefly show 3 and then the box will disappear.This means the file has been saved.

Page 106: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 200899

c. If the number of retries exceeds 3, cancel and start over. At thispoint the transfer will not take place. Recheck your settings.

d. If the main TTC-1000 menu returns to the HyperTerminal window,the transfer has timed out and the procedure must be restarted.

6. Even if the HyperTerminal transfer times out, continue with the procedureup until the transfer progress dialog box appears. This will save yoursettings as far as protocol and directory so that it will not need to be re-entered, thus speeding up the process and avoiding another timeout.

NOTE: Upload can be terminated by pressing the Esc key on your PC priorto starting the file transfer.

9.1.2 Upload Settings Using HyperAccess

The procedure to upload a setting file is as follows:

1. Press Enter to display the TTC-1000 Main Menu.

2. Press 4 and then press Enter:

3. Click on Transfer on the HyperAccess toolbar, a drop down menu willappear –

a. Click on Receive File and a dialog box will open

b. Click on the Browse button and another dialog box will open wherethe directory can be selected to place the file.

c. Select Xmodem from the Transfer Protocol option

i. Click on the Settings button

ii. A dialog box will open where you can select the ErrorChecking mode

iii. Select Checksum (This setting can be left in Auto, but theprogram will try twice with CRC until it tries Checksum)

d. Click on Receive

4. Another dialog box will open for entering the file name the file is to besaved as.

a. Enter the file name and click on OK. The three letter suffix will notautomatically be added. It is a good practice to add an ending suchas .BIN or .DAT to indicate it is not a text file.

5. Another dialog box will open that shows the file transfer progress. If themain TTC-1000 menu returns to the HyperAccess window, the transferhas timed out and the procedure must be restarted.

6. Even if the HyperAccess transfer times out, continue with the procedureup until the transfer progress dialog box appears. This will save yoursettings as far as protocol and directory so that it will not need to be re-entered, thus speeding up the process and avoiding another timeout.

Page 107: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008100

9.2 Download Setting Files

Download settings transfers the binary setting file or *.csv file on your PC to theTTC-1000 connected through the RS232 communications port. The TTC-1000uses the XMODEM protocol which is supported by HyperTerminal andHyperAccess as well as other terminal emulation programs. Checksum errorchecking is employed.

NOTE: Be careful that the file sent is NOT a text file and is a valid settingsfile. Transferring a text version of a settings file into the TTC-1000 willcause the settings to be overwritten by text characters causingunpredictable behavior. To recover from this situation, download a knowngood settings file to overwrite the text. The master password 0905 will needto be used to regain access. Should this not work, please contact us forassistance.

NOTE: Download may be terminated prior to the transfer by pressing anykey on the keyboard

NOTE: The TTC-1000 will suspend all measurements and calculations oncedownloading is selected. The outputs will also be blocked during this time.The TTC-1000 transfers the new settings to a buffer register and willtransfer the settings to E2 memory only after the checksum test is passed.

9.2.1 Download Settings Using HyperTerminal

The procedure to download a setting file is as follows:

1. Press Enter to display the TTC-1000 Main Menu

2. Type 5 followed by / followed by the 4 digit password:

a. Note that at any time the internal data in the unit is to be changed,the password will need to be entered.

3. Click on Transfer on the HyperTerminal toolbar

a. A drop down menu will appear

b. Click on the Send File option

4. A dialog box will open to select the location and name of the file to betransferred.

a. Make sure Xmodem is selected in the Protocol window

b. Click on Browse to select the directory and then the file to be sent.

c. The Send button will now be selectable, click on it.

5. A dialog box will appear to track the transfer progress.

6. The dialog box will disappear and a note will appear in the terminalwindow that the transfer was successful.

Page 108: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008101

9.2.2 Download Settings Using HyperAccess

The procedure to download a setting file is as follows:

7. Press Enter to display the TTC-1000 Main Menu

8. Type 5 followed by / followed by the 4 digit password:

a. Note that at any time the internal data in the unit is to be changed,the password will need to be entered.

9. Click on Transfer on the HyperAccess toolbar

a. A drop down menu will appear

b. Click on the Send File option

10.A dialog box will open to select the location and name of the file to betransferred.

a. Click on Browse to select the directory and then the file to be sent.

b. Make sure Xmodem is selected in the Protocol window

c. Click on the Settings button to make sure the error checking is setto Checksum

d. Click on the Send button.

11.A dialog box will appear to track the transfer progress.

12.The dialog box will disappear and a note will appear in the terminalwindow that the transfer was successful.

9.2.3 Download Settings Using a *.csv Template With HyperTerminal

The TTC-1000 will accept setting downloads from a *.csv file (comma separatedvariable file). A Microsoft Excel setting template can be obtained from thefactory. Simply fill in the setting values using MS Excel. When you’re done, savethe file to a *.csv formatted file.

The procedure to download a CSV formatted setting file is as follows:

13.Press Enter to display the TTC-1000 Main Menu

14.Type 6 followed by / followed by the 4 digit password:

a. Note that at any time the internal data in the unit is to be changed,the password will need to be entered.

15.Click on Transfer on the HyperTerminal toolbar

a. A drop down menu will appear

b. Click on the Send File option

16.A dialog box will open to select the location and name of the file to betransferred.

a. Make sure Xmodem is selected in the Protocol window

Page 109: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008102

b. Click on Browse to select the directory and then the file to be sent.

c. The Send button will now be selectable, click on it.

17.A dialog box will appear to track the transfer progress.

The dialog box will disappear and a note will appear in the terminal window that thetransfer was successful.

9.2.4 Download Settings Using a *.csv Template With HyperAccess

The procedure to download a setting file is as follows:

1. Press Enter to display the TTC-1000 Main Menu

2. Type 6 followed by / followed by the 4 digit password:

a. Note that at any time the internal data in the unit is to be changed,the password will need to be entered.

3. Click on Transfer on the HyperAccess toolbar

a. A drop down menu will appear

b. Click on the Send File option

4. A dialog box will open to select the location and name of the file to betransferred.

a. Click on Browse to select the directory and then the file to be sent.

b. Make sure Xmodem is selected in the Protocol window

c. Click on the Settings button to make sure the error checking is setto Checksum

d. Click on the Send button.

5. A dialog box will appear to track the transfer progress.

6. The dialog box will disappear and a note will appear in the terminalwindow that the transfer was successful.

NOTE: The TTC-1000 will suspend all measurements and calculations oncedownloading is selected. The outputs will also be blocked during this time.The TTC-1000 transfers the new settings to a buffer register and willtransfer the settings to E2 memory only after the checksum test is passed.

Page 110: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008103

10 DATA LOGGING

Data logging permits storage of time stamped temperature and load data. Theuser has the ability to change the time base used for time stamping from 1 to9999 seconds. Setting the time base to zero erases the log and prevents recordsfrom being recorded. The user can select which points to record. Points whichcan be recorded include probe P1’s temperature, P2’s temperature, calculatedwinding temperature, and load. Once the log is full, the oldest records are overwritten with the newest records. Since the records are stored in non-volatilememory, records are never lost even in the event of a power interruption.

10.1 Data Storage

There are 32,512 bytes available for storage of data records. A byte is defined asan 8 bit quantity. Each record is time stamped at an interval defined as the TimeBase. A data record is defined as a set of data points. Data points can include

probe P1’s temperature, P2’s temperature, calculated winding temperature, andload. All temperatures are stored as a single byte. Load is stored as a two bytequantity. There are two additional bytes per record to assist the firmware instoring and retrieving the data log. A record can be anywhere from 3 bytes to 7bytes in length. The following table summarizes the available data points and themaximum number of records that can be stored:

Points Recorded Bytes/Record Max Records

P1, or P2, or Calculated Winding 3 10,837

Any two temperatures 4 8,128

Any one temperature and Load 5 6,502

P1 and P2 and Calculated Winding 6 5,418

Any two temperatures and Load 6 5,418

All three temperatures and Load 7 4,644

Table 10. 1: Maximum Records

After selecting the data points to log, it is simple to figure out the length of timedata can be recorded. For example if 30 minutes time stamping is required, TimeBase=1800, and all four points (P1, P2, Winding & Load) are required, themaximum time that data can be recorded in days is equal to 4,644 divided by 48records per day or 96 days. This can be extended to up to 1254 days if only onetemperature is recorded every 9999 seconds or ~2.75 hours. Practicallyspeaking, a temperature and load will be logged every hour or 3600 seconds. Inthis case the log will hold 270 days of data.

There is one limitation, in the event that power is interrupted, the time stamp isstored as a data record. Time stamp records consume a total of 8 bytes. This is a

Page 111: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008104

non-factor if power is never interrupted, but if the device is AC powered, it couldreduce the number of records by a small amount.

10.2 Data Points

Data recorded can be selected for logging. For P1 or P2, the data recorded takesthe name chosen for the specific temperature probe. If P1 or P2 is chosen asLTCDIFF, the data recorded is the differential between the LTC tank temperatureand the Top Oil probe. All other temperature points are recorded as the absolutevalue of the measured temperature.

The load current reported is the average or demand logged for the periodbetween samples. If a Time Base of 15 minutes is selected, the load current isthe average value over 15 minutes. For Time Base settings less than 16seconds, the load current reported will be the actual load current.

10.3 Setting the Time Base

Time Base can be entered from 0 to 9999 seconds. Setting the Time Base tozero will reset the log and no records will be logged. Changing the Time Base willerase the log and commence recording with the new Time Base.

To change this setting, enter PROGRAM mode from the front panel as discussedin Section 4.1. To set the time base from the front panel, press the or arrowbutton until the setting 090 is displayed:

Press the YES button. The first digit will flash. Use the or arrow buttons toscroll through the digits 0 – 9. Use the orbuttons to scroll between thedigits. The currently active digit will flash. Press YES after you have entered allfour digits.

For programming from a PC, enter PROGRAM through the main menu asdiscussed in Section 4.2. Once in PROGRAM, type the setting for the time baseon the “Enter:” line as follows:

Enter:90/3600

This will set the Time Base to 3600 seconds.

10.4 Selecting Data Points

Any or all of the data points can be selected for logging. Change the number ofpoints or the points recorded will erase the log. If no points are selected the logwill be erased and no data logged. There are four points that can be added to the

PRGM SETTING 090TIMEBASE=0000sec

Page 112: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008105

log: P1, P2, Calculated Winding, and Load. The heading names for probes P1and P2.in the data log will be as displayed on the front panel.

10.4.1 Add or Delete P1 From Log

To change this setting, enter PROGRAM mode from the front panel as discussedin Section 4.1. To set the P1 RECORD from the front panel, press the orarrow button until the setting 091 is displayed:

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between YES and NO.

For programming from a PC, enter PROGRAM through the main menu asdiscussed in Section 4.2. Once in PROGRAM, type the setting for P1 RECORDon the “Enter:” line as follows:

Enter:91/1

This will add P1 to the log. Type 0 to remove from the log.

10.4.2 Add or Delete P2 From Log

To change this setting, enter PROGRAM mode from the front panel as discussedin Section 4.1. To set the P2 RECORD from the front panel, press the orarrow button until the setting 092 is displayed:

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between YES and NO.

For programming from a PC, enter PROGRAM through the main menu asdiscussed in Section 4.2. Once in PROGRAM, type the setting for P2 RECORDon the “Enter:” line as follows:

Enter:92/1

This will add P2 to the log. Type 0 to remove from the log.

PRGM SETTING 091P1 RECORD =NO

PRGM SETTING 092P2 RECORD =NO

Page 113: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008106

10.4.3 Add or Delete Calculated Winding From Log

To change this setting, enter PROGRAM mode from the front panel as discussedin Section 4.1. To set the WNDGRECORD from the front panel, press the orarrow button until the setting 093 is displayed:

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between YES and NO.

For programming from a PC, enter PROGRAM through the main menu asdiscussed in Section 4.2. Once in PROGRAM, type the setting for CalculatedWinding Record on the “Enter:” line as follows:

Enter:93/1

This will add Calculated Winding to the log. Type 0 to remove from the log.

10.4.4 Add or Delete Load From Log

To change this setting, enter PROGRAM mode from the front panel as discussedin Section 4.1. To set the LOAD RECORD from the front panel, press the orarrow button until the setting 094 is displayed:

Press the YES button. The first character will flash. Use the or arrow buttonsto scroll between YES and NO.

For programming from a PC, enter PROGRAM through the main menu asdiscussed in Section 4.2. Once in PROGRAM, type the setting for LOADRECORD on the “Enter:” line as follows:

Enter:94/1

This will add Load to the log. Type 0 to remove from the log.

PRGM SETTING 093WNDGRECORD =NO

PRGM SETTING 094LOADRECORD =NO

Page 114: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008107

10.5 Viewing the Data Log

The data log can be viewed on a PC through the RS-232 interface. Downloadingthe data log does not erase the log. The data log is received as a commadelimited ASCII data. It can be captured for use in other programs as shown inthe next section.

To view the log via a PC, open the terminal emulation program with the settingsused to access the main TTC-1000 menu.

First press the Enter key to display the Main Menu:

Advanced Power Technologies, LLC; (C) 2001-2008Transformer Temperature Controller V4.410

Select:

1. VIEW

2. PROGRAM (2/XXXX)

3. STATUS

4. SEND SETTINGS TO COMPUTER

5. SEND SETTINGS TO UNIT (5/XXXX)

6. SEND CSV SETTINGS TO UNIT (6/XXXX)

7. DOWNLOAD DATA LOG

8. UPLOAD SOFTWARE PATCH, DATA LOG WILL BE ERASED (8/XXXX)

9. LOG OFF

Enter Code:

Enter menu option 7 and press Enter, the data log will be sent to the PC.

If no data is logged the data reported through the terminal emulation program willshow:

NO DATAEND OF REPORT. STOP TEXT CAPTURE & PRESS 'Enter'

Should the log contain data, the terminal emulation program will show:

DATE,TIME,TOP OIL,WINDING,LOAD07/31/03,08:46:03,49 ,49 ,93007/31/03,08:36:03,49 ,49 ,93107/31/03,08:26:03,49 ,49 ,93207/31/03,08:16:03,49 ,49 ,93407/31/03,08:06:03,49 ,49 ,93707/31/03,07:56:03,49 ,49 ,940END OF REPORT. STOP TEXT CAPTURE & PRESS 'Enter'

The first line is the header for the data reported. The last character is a carriagereturn (CR) character, hex 013, and line feed (LF), hex 011. Each subsequentline is the comma delimited data followed by a CR and LF characters.

Page 115: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008108

10.6 Saving the Data Log as a Text File Using HyperTerminal

To capture the text using HyperTerminal, do the following:

1. Press 7 but DO NOT press Enter yet.

2. From the toolbar, select Transfer

3. Select Capture Text from the drop down menu, a dialog box will open

4. From the dialog box, browse to the location the file is to be saved andprovide a file name. The program will automatically add .TXT to the end ofthe name.

5. Click on Save and the Capture Text dialog box will re-appear.

6. Click on Start

7. Press Enter, the data will now scroll through the screen and be recordedwith the file name supplied.

10.7 Import Data Log as a Comma Delimited Text Using HyperAccess

To capture the text using HyperAccess, do the following:

1. Press 7 but DO NOT press Enter yet.

2. From the toolbar, select File

3. Select Capture to File from the drop down menu, and then select Startfrom the next menu

4. A dialog box will open

5. From the dialog box, browse to the location the file is to be saved andprovide a file name. The program will automatically add .TXT to the end ofthe name.

6. Click on Start

7. Press Enter, the data will now scroll through the screen and be recordedwith the file name supplied.

8. Once the data has stopped scrolling, again select File from the toolbarand then Capture to File from the drop down menu.

9. Select Stop from the next menu, the file is now saved and closed.

Page 116: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008109

10.8 Import to Excel

The text file captured can be imported into excel for plotting and sorting. It is agood idea to open the text file in Notepad to delete any extra characters beforetrying to import the file into excel.

1. Open Excel. Click on File and click on Open:

Page 117: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008110

2. Go to the Path where the text file is stored and select Files of Type: TextFiles, Double Click the file name and Click Open:

3. Click the Delimited button and click Next:

Page 118: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008111

4. Check the Comma box in Delimiters. Make sure all other boxes areunchecked:

5. Click the General button in the Column data format and click Finish:

Page 119: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008112

6. After closing the import wizard, the text data will display:

The data is now ready for graphing.

Page 120: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008113

11 DOWNLOAD PROGRAM UPDATES

The TTC-1000 firmware contains a boot loader that allows the user to downloadnew firmware. Downloading firmware will erase the data log. Firmware can bedownloaded to a PC through the RS-232 interface. Firmware patches must beobtained from Advanced Power Technologies and are only available for unitswith TTMV4.XX firmware.

To download firmware via a PC, open your terminal emulation program.. It isrecommended that the terminal emulation be set for either ANSI or TTY. The pinout of this port is designed to use a 9 pin female to 9 pin male null modem cable.You will need to configure your terminal emulation program before you getstarted.

First press the Enter key to display the Main Menu:

Advanced Power Technologies, LLC; (C) 2001-2008Transformer Temperature Controller V4.410

Select:

1. VIEW

2. PROGRAM (2/XXXX)

3. STATUS

4. SEND SETTINGS TO COMPUTER

5. SEND SETTINGS TO UNIT (5/XXXX)

6. SEND CSV SETTINGS TO UNIT (6/XXXX)

7. DOWNLOAD DATA LOG

8. UPLOAD SOFTWARE PATCH, DATA LOG WILL BE ERASED (8/XXXX)

9. LOG OFF

Enter Code:

Type 8/ followed by the password programmed or the super user password.Press the Enter key. If the terminal emulation screen clears, you have entered anincorrect password. Otherwise the screen will display:

FIRMWARE FILE TRANSFER IN PROGRESS. PRESS Any KEY TO ABORT.

§§§§

Also, the front panel display will show:

PLEASE WAITLOADING FIRMWARE

Page 121: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008114

The user has approximately 90 seconds to find the file and start the downloadprocess. The user will see the following message on the PC if they are unable tolocate the file in the allotted time:

FIRMWARE FILE TRANSFER IN PROGRESS. PRESS Any KEY TO ABORT.

§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§DOWNLOAD Not SUCCESSFUL. PRESS 'Enter' KEY

11.1 Download Firmware Using HyperTerminal

To download firmware using HyperTerminal:

1. Click Transfer on the toolbar and click Send File:

2. A dialog box will open

a. Click on the Browse button and navigate to the file to be sent.

b. Make sure that Xmodem is selected for the Protocol.

c. Click on Send, the dialog box will close.

3. A new dialog box will open to show the file download progress.

4. Once the file is downloaded, the dialog box will close.

4. If the transfer is successful, a message will appear in the terminal windowthat the transfer was successful and to wait 15 seconds. During this time,the new firmware is loaded into program memory and the controller isrestarted

5. Press enter after about 15 seconds to re-display the main menu.:

6. If the Main Menu does not appear, check the front panel display to see ifthe display is scrolling. If not de-energize the unit and re-energize. Wait 15seconds. If the unit does not respond after 15 seconds call the factory at(866) 563-6600 for assistance.

11.2 Download Firmware HyperAccess

To download firmware using HyperTerminal

1. Click Transfer on the toolbar and click Send File(s):

2. A dialog box will open

a. Click on the Browse button and navigate to the file to be sent.

b. Make sure that Xmodem is selected for the Protocol.

c. Click on Send, the dialog box will close.

3. A new dialog box will open to show the file download progress.

4. Once the file is downloaded, the dialog box will close.

7. If the transfer is successful, a message will appear in the terminal windowthat the transfer was successful and to wait 15 seconds. During this time,

Page 122: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008115

the new firmware is loaded into program memory and the controller isrestarted

8. Press enter after about 15 seconds to re-display the main menu.:

9. If the Main Menu does not appear, check the front panel display to see ifthe display is scrolling. If not de-energize the unit and re-energize. Wait 15seconds. If the unit does not respond after 15 seconds call the factory at(866) 563-6600 for assistance.

Page 123: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008116

12 Front Panel Setting Sheets

The following worksheet is a comprehensive list of all the settings programmablethrough the Front Panel interface and possible settings. A blank space isprovided to write-in the desired setting:

Setting

#

Setting Purpose Setting Range or

Values Factory Default

Program to

001 SP11PICKUP Probe #1 pickup

temperature

-35 to 160 C 0

002 SP11DRPOUT Probe #1 dropout

temperature

-35 to 160 C 0

003 SP12PICKUP Probe #1 pickup

temperature

-35 to 160 C 0

004 SP12DRPOUT Probe #1 dropout

temperature

-35 to 160 C 0

005 SP13PICKUP Probe #1 pickup

temperature

-35 to 160 C 0

006 SP13DRPOUT Probe #1 dropout

temperature

-35 to 160 C 0

007 SP14PICKUP Probe #1 pickup

temperature

-35 to 160 C 0

008 SP14DRPOUT Probe #1 dropout

temperature

-35 to 160 C 0

009 SP21PICKUP Probe #2 pickup

temperature

-35 to 160 C 0

010 SP21DRPOUT Probe #2 dropout

temperature

-35 to 160 C 0

011 SP22PICKUP Probe #2 pickup

temperature

-35 to 160 C 0

012 SP22DRPOUT Probe #2 dropout

temperature

-35 to 160 C 0

013 SP23PICKUP Probe #2 pickup

temperature

-35 to 160 C 0

Page 124: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008117

Setting

#

Setting Purpose Setting Range or

Values Factory Default

Program to

014 SP23DRPOUT Probe #2 dropout

temperature

-35 to 160 C 0

015 SP24PICKUP Probe #2 pickup

temperature

-35 to 160 C 0

016 SP24DRPOUT Probe #2 dropout

temperature

-35 to 160 C 0

017 WSP1PICKUP Calculated winding set

point pickup temperature

-35 to 180 C 0

018 WSP1DRPOUT Calculated winding set

point dropout

temperature

-35 to 180 C 0

019 WSP2PICKUP Calculated winding set

point pickup temperature

-35 to 180 C 0

020 WSP2DRPOUT Calculated winding set

point dropout

temperature

-35 to 180 C 0

021 WSP3PICKUP Calculated winding set

point pickup temperature

-35 to 180 C 0

022 WSP3DRPOUT Calculated winding set

point dropout

temperature

-35 to 180 C 0

023 WSP4PICKUP Calculated winding set

point pickup temperature

-35 to 180 C 0

024 WSP4DRPOUT Calculated winding set

point dropout

temperature

-35 to 180 C 0

025 LTCDIFF PU (Not

functional in

single probe

units)

LTC Differential pickup

temperature

-20 to 20 C 0

026 LTCDIFF DO

(Not functional in

single probe

units)

LTC Differential drop out

temperature

-20 to 20 C 0

Page 125: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008118

Setting

#

Setting Purpose Setting Range or

Values Factory Default

Program to

027 LTCPUTMR (Not

functional in

single probe

units)

LTC Differential pickup

timer supervises

LTCDIFF pickup

0 to 999 Minutes 0

028 LOADPUSP1

(functional only in

units equipped

with aux CT)

Load pickup set point 0.0 to 9.9 Amps 0.0

029 LOADDOSP1

(functional only in

units equipped

with aux CT)

Load dropout set point 0.0 to 9.9 Amps 0.0

030 LOADPUSP2

(functional only in

units equipped

with aux CT)

Load pickup set point 0.0 to 9.9 Amps 0.0

031 LOADDOSP2

(functional only in

units equipped

with aux CT)

Load dropout set point 0.0 to 9.9 Amps 0.0

032 LSP1PUTMR

(functional only in

units equipped

with aux CT)

Load pickup timer 0 to 255 seconds 0

033 LSP2PUTMR

(functional only in

units equipped

with aux CT)

Load pickup timer 0 to 255 seconds 0

034 IN1=LEVEL or

PULSE

(functional only in

units equipped

with optically

isolated inputs)

Allows input to handle

pulses

LEVEL or PULSE LEVEL

Page 126: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008119

Setting

#

Setting Purpose Setting Range or

Values Factory Default

Program to

035 IN2=LEVEL or

PULSE

(functional only in

units equipped

with optically

isolated inputs)

Allows input to handle

pulses

LEVEL or PULSE LEVEL

036 OUT1PUTMR Delays activation of an

output

0 to 255 seconds

(Note: a 0 setting

results in a 32msec

delay)

0

037 OUT1CTRL Permits manual control

of OUT1

AUTO, MAN OFF,

MAN ON

AUTO

038 OUT1(Action)

w/ALRM

Action: UNCHG,

PCKUP,SUPV

Allows OUT1 to default

when a DEVICE or

TPROBE alarm

OUT1UNCHGw/ALRM

does not allow OUT1

to change state when

alarm

OUT1PCKUPw/ALRM

causes OUT1 to

pickup when alarm

OUT1SUPVw/ALRM

drops out OUT1 when

alarm

OUT1

UNCHGw/ALRM

039 OUT2PUTMR Delays activation of an

output

0 to 255 seconds

(Note: a 0 setting

results in a 32msec

delay)

0

040 OUT2CTRL Permits manual control

of OUT2

AUTO, MAN OFF,

MAN ON

AUTO

Page 127: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008120

Setting

#

Setting Purpose Setting Range or

Values Factory Default

Program to

041 OUT2 (Action)

w/ALRM

Action: UNCHG,

PCKUP, SUPV

Allows OUT2 to default

when a DEVICE or

TPROBE alarm

OUT2UNCHGw/ALRM

does not allow OUT2

to change state when

alarm

OUT2PCKUPw/ALRM

causes OUT2 to

pickup when alarm

OUT2SUPVw/ALRM

drops out OUT2 when

alarm

OUT2

UNCHGw/ALRM

042 OUT3PUTMR Delays activation of an

output

0 to 255 seconds

(Note: a 0 setting

results in a 32msec

delay)

0

043 OUT3CTRL Permits manual control

of OUT3

AUTO, MAN OFF,

MAN ON

AUTO

044 OUT3(Action)

w/ALRM

Action: UNCHG,

PCKUP,SUPV

Allows OUT3 to default

when a DEVICE or

TPROBE alarm

OUT3UNCHGw/ALRM

does not allow OUT3

to change state when

alarm

OUT3PCKUPw/ALRM

causes OUT3 to

pickup when alarm

OUT3SUPVw/ALRM

drops out OUT3 when

alarm

OUT3

UNCHGw/ALRM

045 OUT4PUTMR Delays activation of an

output

0 to 255 seconds

(Note: a 0 setting

results in a 32msec

delay)

0

046 OUT4CTRL Permits manual control

of OUT4

AUTO, MAN OFF,

MAN ON

AUTO

Page 128: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008121

Setting

#

Setting Purpose Setting Range or

Values Factory Default

Program to

047 OUT4 (Action)

w/ALRM

Action: UNCHG,

PCKUP, SUPV

Allows OUT4 default

when a DEVICE or

TPROBE alarm

OUT4UNCHGw/ALRM

does not allow OUT4

to change state when

alarm

OUT4PCKUPw/ALRM

causes OUT4 to

pickup when alarm

OUT4SUPVw/ALRM

drops out OUT4 when

alarm

OUT4

UNCHGw/ALRM

048 (!) SP11 (*/+) TO

OUTn

Assigns probe #1 set

point to a specific output

using a defined AND or

OR logic operator

SP11 * OUT n

! SP11 * OUT n

SP11 + OUT n

! SP11 + OUT n

where n=1,2,3,4

SP11 * OUT0

049 (!) SP12 (*/+) TO

OUTn

Assigns probe #1 set

point to a specific output

using a defined AND or

OR logic operator

SP12 * OUT n

! SP12 * OUT n

SP12 + OUT n

! SP12 + OUT n

where n=1,2,3,4

SP12 * OUT0

050 (!) SP13 (*/+) TO

OUTn

Assigns probe #1 set

point to a specific output

using a defined AND or

OR logic operator

SP13 * OUT n

! SP13 * OUT n

SP13 + OUT n

! SP13 + OUT n

where n=1,2,3,4

SP13 * OUT0

051 (!) SP14 (*/+) TO

OUTn

Assigns probe #1 set

point to a specific output

using a defined AND or

OR logic operator

SP14 * OUT n

! SP14 * OUT n

SP14 + OUT n

! SP14 + OUT n

where n=1,2,3,4

SP14 * OUT0

Page 129: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008122

Setting

#

Setting Purpose Setting Range or

Values Factory Default

Program to

052 (!) SP21 (*/+) TO

OUTn

(Not functional in

single probe

units)

Assigns probe #2 set

point to a specific output

using a defined AND or

OR logic operator

SP21 * OUT n

! SP21 * OUT n

SP21 + OUT n

! SP21 + OUT n

where n=1,2,3,4

SP21 * OUT0

053 (!) SP22 (*/+) TO

OUTn

(Not functional in

single probe

units)

Assigns probe #2 set

point to a specific output

using a defined AND or

OR logic operator

SP22 * OUT n

! SP22 * OUT n

SP22 + OUT n

! SP22 + OUT n

where n=1,2,3,4

SP22 * OUT0

054 (!) SP23 (*/+) TO

OUTn

(Not functional in

single probe

units)

Assigns probe #2 set

point to a specific output

using a defined AND or

OR logic operator

SP23 * OUT n

! SP23 * OUT n

SP23 + OUT n

! SP23 + OUT n

where n=1,2,3,4

SP23 * OUT0

055 (!) SP24 (*/+) TO

OUTn

(Not functional in

single probe

units)

Assigns probe #2 set

point to a specific output

using a defined AND or

OR logic operator

SP24 * OUT n

! SP24 * OUT n

SP24 + OUT n

! SP24 + OUT n

where n=1,2,3,4

SP24 * OUT0

056 (!) LTC (*/+) TO

OUTn

(Not functional in

single probe

units)

Assigns the LTC

differential SP to a

specific output using a

defined AND or OR logic

operator

LTC * OUT n

! LTC * OUT n

LTC + OUT n

! LTC + OUT n

where n=1,2,3,4

LTC * OUT0

Page 130: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008123

Setting

#

Setting Purpose Setting Range or

Values Factory Default

Program to

057 (!) WSP1 (*/+)

TO OUTn

(functional only in

units equipped

with aux CT)

Assigns calculated

winding set points to a

specific output using a

defined AND or OR logic

operator

WSP1 * OUT n

! WSP1 * OUT n

WSP1 + OUT n

! WSP1 + OUT n

where n=1,2,3,4

WSP1 * OUT0

058 (!) WSP2 (*/+)

TO OUTn

(functional only in

units equipped

with aux CT)

Assigns calculated

winding set points to a

specific output using a

defined AND or OR logic

operator

WSP2 * OUT n

! WSP2 * OUT n

WSP2 + OUT n

! WSP2 + OUT n

where n=1,2,3,4

WSP2 * OUT0

059 (!) WSP3 (*/+)

TO OUTn

(functional only in

units equipped

with aux CT)

Assigns calculated

winding set points to a

specific output using a

defined AND or OR logic

operator

WSP3 * OUT n

! WSP3 * OUT n

WSP3 + OUT n

! WSP3 + OUT n

where n=1,2,3,4

WSP3 * OUT0

060 (!) WSP4 (*/+)

TO OUTn

(functional only in

units equipped

with aux CT)

Assigns calculated

winding set points to a

specific output using a

defined AND or OR logic

operator

WSP4 * OUT n

! WSP4 * OUT n

WSP4 + OUT n

! WSP4 + OUT n

where n= 1,2,3,4

WSP4 * OUT0

061 (!) LSP1 (*/+) TO

OUTn

(functional only in

units equipped

with aux CT)

Assigns load set points

to a specific output using

a defined AND or OR

logic operator

LSP1 * OUT n

! LSP1 * OUT n

LSP1 + OUT n

! LSP1 + OUT n

where n=1,2,3,4

LSP1 * OUT0

Page 131: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008124

Setting

#

Setting Purpose Setting Range or

Values Factory Default

Program to

062 (!) LSP2 (*/+) TO

OUTn

(functional only in

units equipped

with aux CT)

Assigns load set points

to a specific output using

a defined AND or OR

logic operator

LSP2 * OUT n

! LSP2 * OUT n

LSP2 + OUT n

! LSP2 + OUT n

where n=1,2,3,4

LSP2 * OUT0

063 (!) OUT1 (*/+)

TO OUTn

Assigns an output to a

specific output using a

defined AND or OR logic

operator

OUT1 * OUT n

! OUT1 * OUT n

OUT1 + OUT n

! OUT1 + OUT n

where n=1,2,3,4

OUT1 * OUT0

064 (!) OUT2 (*/+)

TO OUTn

Assigns an output to a

specific output using a

defined AND or OR logic

operator

OUT2 * OUT n

! OUT2 * OUT n

OUT2 + OUT n

! OUT2 + OUT n

where n=1,2,3,4

OUT2 * OUT0

065 (!) OUT3 (*/+)

TO OUTn

Assigns an output to a

specific output using a

defined AND or OR logic

operator

OUT3 * OUT n

! OUT3 * OUT n

OUT3 + OUT n

! OUT3 + OUT n

where n=1,2,3,4

OUT3 * OUT0

066 (!) OUT4 (*/+)

TO OUTn

Assigns an output to a

specific output using a

defined AND or OR logic

operator

OUT4 * OUT n

! OUT4 * OUT n

OUT4 + OUT n

! OUT4 + OUT n

where n=1,2,3,4

OUT4 * OUT0

Page 132: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008125

Setting

#

Setting Purpose Setting Range or

Values Factory Default

Program to

067 (!) IN1 (*/+) TO

OUTn

(functional only in

units equipped

with optically

isolated inputs)

Assigns optically isolated

input to a specific output

using a defined AND or

OR logic operator

IN1 * OUT n

! IN1 * OUT n

IN1 + OUT n

! IN1 + OUT n

where n=1,2,3,4

IN1 * OUT0

068 (!) IN2 (*/+) TO

OUTn

(functional only in

units equipped

with optically

isolated inputs)

Assigns optically isolated

input to a specific output

using a defined AND or

OR logic operator

IN2 * OUT n

! IN2 * OUT n

IN2 + OUT n

! IN2 + OUT n

where n=1,2,3,4

IN2 * OUT0

069 TIMESETPOINT1

00:00-00:00 >

OUT0,1,2,3,4

OR's a time range to a

specific output

Pickup and Dropout

range: 00:00 to 23:59

(Military time)

00:00-00:00>

OUT0

070 TIMESETPOINT2

00:00-00:00 >

OUT0,1,2,3,4

OR's a time range to a

specific output

Pickup and Dropout

range: 00:00 to 23:59

(Military time)

00:00-00:00>

OUT0

071 TIMESETPOINT3

00:00-00:00 >

OUT0,1,2,3,4

OR's a time range to a

specific output

Pickup and Dropout

range: 00:00 to 23:59

(Military time)

00:00-00:00>

OUT0

072 INVERT OUT1 Master output inversion OFF, ON OFF

073 INVERT OUT2 Master output inversion OFF, ON OFF

074 INVERT OUT3 Master output inversion OFF, ON OFF

075 INVERT OUT4 Master output inversion OFF, ON OFF

076 CT RATIO Sets Primary CT ratio 0 to 9999 0

077 RATED LOAD

(functional only in

units equipped

with aux CT)

Sets rated load current 0 to 65535 Amps 0

Page 133: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008126

Setting

#

Setting Purpose Setting Range or

Values Factory Default

Program to

078 WINDINGRISE

(functional only in

units equipped

with aux CT)

Set hotspot rise above

top oil temperature at

rated load from

manufacturer's heat run

data

0 to 99 C 0

079 WINDINGTC

(functional only in

units equipped

with aux CT)

Sets winding time

constant from

manufacturer's heat run

data

0 to 999 minutes 0

080 DIRECTED FOA

(functional only in

units equipped

with CT)

Sets cooling type to

direct FOA/FOW

YES, NO NO

081 P1 NAME Probe #1 name TOP OIL, WINDING,

AMBIENT, LTCDIFF,

BOTMOIL, LTCTANK,

DIVTANK, SELTANK

TOP OIL

082 P2 NAME Probe #2 name

(optional)

TOP OIL, WINDING,

AMBIENT, LTCDIFF,

BOTMOIL, LTCTANK,

DIVTANK, SELTANK

TOP OIL (only in

dual probe)

083 ALTERNATE Selects an output pair to

alternate between to

exercise fans

DSABL, 1-2, 1-3, 1-4,

2-3, 2-4, 3-4

DSABL

084 ANALGOUT Current loop current

range

0to1mA or 4to20mA 0to1mA

085 A1 SOURCE Sets source for analog

output A1

P1 (probe1), P2

(probe 2), WINDING

(calculated)

P1

086 A2 SOURCE Sets source for analog

output A2

P1 (probe1), P2

(probe2), WINDING

(calculated)

P1

087 BAUD RATE Sets baud rate for RS-

485 interface

1200, 2400, 9600,

19200

1200

Page 134: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008127

Setting

#

Setting Purpose Setting Range or

Values Factory Default

Program to

088 NODE ADDR Sets the node address

for DNP3.0

0 – 65535 0

089 REMOTE BLK Blocks remote control

command

ENABL to block

remote control or

DSABL to allow

remote control

DSBL

090 TIMEBASE Sets record time for data

log

0 - 9999 0

091 P1 RECORD Sets P1 for data log YES, NO NO

092 P2 RECORD Sets P2 for data log YES, NO NO

093 WNDGRECORD

(functional only in

units equipped

with aux CT)

Sets Calculated Winding

Temperature for data log

YES, NO NO

094 LOADRECORD

(functional only in

units equipped

with aux CT)

Sets LOAD for data log YES, NO NO

095 TIME Sets military time HH:MM 00:00

096 DATE Sets date MM/DD/YY 00/00/00

097 WNDCKTALARM Winding circuitry alarm

enable

ENABL for enabled or

DSABL for disabled

ENABL

098 DEVICEALRM Processor alarm enable ENABL for enabled or

DSABL for disabled

ENABL

099 TPROBEALRM Temperature

measurement alarm

enable

ENABL for enabled or

DSABL for disabled

ENABL

100 MANALRM Manual mode alarm

enable

ENABL for enabled or

DSABL for disabled

ENABL

101 TIME SP CNTR Sets time counter for

Time Setpoints operation

0 to 255 0

102 UNIT ID A six character name for

unit

Any six alphanumeric

characters

Blank

Page 135: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008128

Setting

#

Setting Purpose Setting Range or

Values Factory Default

Program to

103 NEG ANALGOUT Enables scaling of

analog outputs for

negative temperatures

YES, NO NO

104 LTCDIFF RISE Maximum LTCDIFF rise

in time period LTCDIFF

RATE

5 to 40 ºC

(recommended)

0

105 LTCDIFF RATE Time period in which

LTCDIFF is examined

1 to 255 minutes 0

106 REPEAT Fiber Optic repeat mode ON for repeat on

OFF for repeat off

OFF

107 PASSWORD Allows access to 4 digits 0000

Page 136: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008129

13 PC Setting Sheets

The following worksheet is a comprehensive list of all the settings programmablethrough the RS-232 interface and possible settings. A blank space is provided towrite-in the desired setting:

Setting # Setting Purpose Setting Range or Values Program to

01 SP11 PICKUP Probe #1 set point

#1 pickup

temperature

1/nnn

where nnn=-35 to 160

02 SP11 DRPOUT Probe#1 set point#1

dropout temperature

2/nnn

where nnn=-35 to 160

03 SP12 PICKUP Probe #1, set point

#2 pickup

temperature

3/nnn

where nnn=-35 to 160

04 SP12 DRPOUT Probe #1 set point

#2 dropout

temperature

4/nnn

where nnn=-35 to 160

05 SP13 PICKUP Probe #1, set point

#3 pickup

temperature

5/nnn

where nnn=-35 to 160

06 SP13 DRPOUT Probe #1 set point

#3 dropout

temperature

6/nnn

where nnn=-35 to 160

07 SP14 PICKUP Probe #1, set point

#4 pickup

temperature

7/nnn

where nnn=-35 to 160

08 SP14 DRPOUT Probe #1 set point

#4 dropout

temperature

8/nnn

where nnn=-35 to 160

Page 137: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008130

Setting # Setting Purpose Setting Range or Values Program to

09 SP21 PICKUP Probe #2, set point

#1 pickup

temperature

9/nnn

where nnn=-35 to 160

DO NOT SET IF SINGLE

PROBE

10 SP21 DRPOUT Probe #2 set point

#1 dropout

temperature

10/nnn

where nnn=-35 to 160

DO NOT SET IF SINGLE

PROBE

11 SP22 PICKUP Probe #2, set point

#2 pickup

temperature

11/nnn

where nnn=-35 to 160

DO NOT SET IF SINGLE

PROBE

12 SP22 DRPOUT Probe #2 set point

#2 dropout

temperature

12/nnn

where nnn=-35 to 160

DO NOT SET IF SINGLE

PROBE

13 SP23 PICKUP Probe #2, set point

#3 pickup

temperature

13/nnn

where nnn=-35 to 160

DO NOT SET IF SINGLE

PROBE

14 SP23 DRPOUT Probe #2 set point

#3 dropout

temperature

14/nnn

where nnn=-35 to 160

DO NOT SET IF SINGLE

PROBE

15 SP24 PICKUP Probe #2, set point

#4 pickup

temperature

15/nnn

where nnn=-35 to 160

DO NOT SET IF SINGLE

PROBE

16 SP24 DRPOUT Probe #2 set point

#4 dropout

temperature

16/nnn

where nnn=-35 to 160

DO NOT SET IF SINGLE

PROBE

Page 138: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008131

Setting # Setting Purpose Setting Range or Values Program to

17 WSP1 PICKUP Calculated winding

pickup temperature

17/nnn

where nnn=-35 to 180

SET ONLY IF Aux CT avail.

18 WSP1 DRPOUT Calculated winding

dropout temperature

18/nnn

where nnn=-35 to 180

SET ONLY IF Aux CT avail.

19 WSP2 PICKUP Calculated winding

pickup temperature

19/nnn

where nnn=-35 to 180

SET ONLY IF Aux CT avail.

20 WSP2 DRPOUT Calculated winding

dropout temperature

20/nnn

where nnn=-35 to 180

SET ONLY IF Aux CT avail.

21 WSP3 PICKUP Calculated winding

pickup temperature

21/nnn

where nnn=-35 to 180

SET ONLY IF Aux CT avail.

22 WSP3 DRPOUT Calculated winding

dropout temperature

22/nnn

where nnn=-35 to 180

SET ONLY IF Aux CT avail.

23 WSP4 PICKUP Calculated winding

pickup temperature

23/nnn

where nnn=-35 to 180

SET ONLY IF Aux CT avail.

24 WSP4 DRPOUT Calculated winding

dropout temperature

24/nnn

where nnn=-35 to 180

SET ONLY IF Aux CT avail.

25 LTCDIFF PICKUP LTC Differential

pickup temperature

25/-nn or 25/nn

where nn=0 to 20

DO NOT SET IF SINGLE

PROBE

Page 139: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008132

Setting # Setting Purpose Setting Range or Values Program to

26 LTCDIFF

DRPOUT

LTC Differential drop

out temperature

26/-nn or 26/nn

where nn=0 to 20

DO NOT SET IF SINGLE

PROBE

27 LTCDIFF

PICKUPTMR

LTC Pickup Timer in

minutes

27/nnn

where nnn=0 to 999

DO NOT SET IF SINGLE

PROBE

28 LSP1 PICKUP Load pickup current 28/n.n

where n.n=0.0 to 9.9

SET ONLY IF Aux CT avail.

29 LSP1 DRPOUT Load dropout

current

29/n.n

where n.n=0.0 to 9.9

SET ONLY IF Aux CT avail.

30 LSP2 PICKUP Load pickup current 30/n.n

where n.n=0.0 to 9.9

SET ONLY IF Aux CT avail.

31 LSP2 DRPOUT Load dropout

current

31/n.n

where n.n=0.0 to 9.9

SET ONLY IF Aux CT avail.

32 LOAD PICKUP

TMR1

Load pickup timer

for LSP1

32/nnn

where n=0 to 255 seconds

SET ONLY IF Aux CT avail.

33 LOAD PICKUP

TMR2

Load pickup timer

for LSP2

33/nnn

where n=0 to 255 seconds

SET ONLY IF Aux CT avail.

34 IN1 CTRL Allows the input to

handle pulses

34/0: LEVEL

34/1: PULSE

SET ONLY IF Optically

Isolated Inputs avail.

Page 140: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008133

Setting # Setting Purpose Setting Range or Values Program to

35 IN2 CTRL Allows the input to

handle pulses

35/0: LEVEL

35/1: PULSE

SET ONLY IF Optically

Isolated Inputs avail.

36 OUT1 PICKUP

TMR

Delays activation of

an output

36/nnn

where n=0 to 255 seconds

37 OUT1

AUTO/MANUAL

Operate Output in

AUTO or MANUAL

control

37/0: AUTO (uses

programmable logic

37/1: MANUAL (control

through front panel)

38 OUT1 xxxxx (n)

w/ALRM

Controls Behavior of

output when Device

or Temp Alarm

38/0: OUT1 UNCHG (0)

w/ALRM

38/1: OUT1 PCKUP (1)

w/ALRM

38/2: OUT1 SUPVS (2)

w/ALRM

39 OUT2 PICKUP

TMR

Delays activation of

an output

39/nnn

where n=0 to 255 seconds

40 OUT2

AUTO/MANUAL

Operate Output in

AUTO or MANUAL

control

40/0: AUTO (uses

programmable logic

40/1: MANUAL (control

through front panel)

41 OUT2 xxxxx (n)

w/ALRM

Controls Behavior of

output when Device

or Temp Alarm

41/0: OUT2 UNCHG (0)

w/ALRM

41/1: OUT2 PCKUP (1)

w/ALRM

41/2: OUT2 SUPVS (2)

w/ALRM

42 OUT3 PICKUP

TMR

Delays activation of

an output

42/nnn

where n=0 to 255 seconds

Page 141: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008134

Setting # Setting Purpose Setting Range or Values Program to

43 OUT3

AUTO/MANUAL

Operate Output in

AUTO or MANUAL

control

43/0: AUTO (uses

programmable logic

43/1: MANUAL (control

through front panel)

44 OUT3 xxxxx (n)

w/ALRM

Controls Behavior of

output when Device

or Temp Alarm

44/0: OUT3 UNCHG (0)

w/ALRM

44/1: OUT3 PCKUP (1)

w/ALRM

44/2: OUT3 SUPVS (2)

w/ALRM

45 OUT4 PICKUP

TMR

Delays activation of

an output

45/nnn

where n=0 to 255 seconds

46 OUT4

AUTO/MANUAL

Operate Output in

AUTO or MANUAL

control

46/0: AUTO (uses

programmable logic

46/1: MANUAL (control

through front panel)

47 OUT4 xxxxx (n)

w/ALRM

Controls Behavior of

output when Device

or Temp Alarm

47/0: OUT4 UNCHG (0)

w/ALRM

47/1: OUT4 PCKUP (1)

w/ALRM

47/2: OUT4 SUPVS (2)

w/ALRM

48 (!) SP11 (*/+) TO

OUTn

Programmable logic

for SP11

48/0/0/0: SP11 not assigned

48/0/0/n: SP11 * to OUTn

48/1/0/n: !SP11 * to OUTn

48/0/1/n: SP11 + to OUTn

48/1/1/n: !SP11 + to OUTn

where n=1,2,3,4

Page 142: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008135

Setting # Setting Purpose Setting Range or Values Program to

49 (!) SP12 (*/+) TO

OUTn

Programmable logic

for SP12

49/0/0/0: SP12 not assigned

49/0/0/n: SP12 * to OUTn

49/1/0/n: !SP12 * to OUTn

49/0/1/n: SP12 + to OUTn

49/1/1/n: !SP12 + to OUTn

where n=1,2,3,4

50 (!) SP13 (*/+) TO

OUTn

Programmable logic

for SP13

50/0/0/0: SP13 not assigned

50/0/0/n: SP13 * to OUTn

50/1/0/n: !SP13 * to OUTn

50/0/1/n: SP13 + to OUTn

50/1/1/n: !SP13 + to OUTn

where n=1,2,3,4

51 (!) SP14 (*/+) TO

OUTn

Programmable logic

for SP14

51/0/0/0: SP14 not assigned

51/0/0/n: SP14 * to OUTn

51/1/0/n: !SP14 * to OUTn

51/0/1/n: SP14 + to OUTn

51/1/1/n: !SP14 + to OUTn

where n=1,2,3,4

52 (!) SP21 (*/+) TO

OUTn

Programmable logic

for SP21

DO NOT USE FOR

SINGLE PROBE

52/0/0/0: SP21 not assigned

52/0/0/n: SP21 * to OUTn

52/1/0/n: !SP21 * to OUTn

52/0/1/n: SP21 + to OUTn

52/1/1/n: !SP21 + to OUTn

where n=1,2,3,4

53 (!) SP22 (*/+) TO

OUTn

Programmable logic

for SP22

DO NOT USE FOR

SINGLE PROBE

53/0/0/0: SP22 not assigned

53/0/0/n: SP22 * to OUTn

53/1/0/n: !SP22 * to OUTn

53/0/1/n: SP22 + to OUTn

53/1/1/n: !SP22 + to OUTn

where n=1,2,3,4

Page 143: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008136

Setting # Setting Purpose Setting Range or Values Program to

54 (!) SP23 (*/+) TO

OUTn

Programmable logic

for SP23

DO NOT USE FOR

SINGLE PROBE

54/0/0/0: SP23 not assigned

54/0/0/n: SP23 * to OUTn

54/1/0/n: !SP23 * to OUTn

54/0/1/n: SP23 + to OUTn

54/1/1/n: !SP23 + to OUTn

where n=1,2,3,4

55 (!) SP24 (*/+) TO

OUTn

Programmable logic

for SP24

DO NOT USE FOR

SINGLE PROBE

55/0/0/0: SP24 not assigned

55/0/0/n: SP24 * to OUTn

55/1/0/n: !SP24 * to OUTn

55/0/1/n: SP24 + to OUTn

55/1/1/n: !SP24 + to OUTn

where n=1,2,3,4

56 (!) LTCDIFF (*/+)

TO OUTn

Programmable logic

for LTCDIFF

DO NOT USE FOR

SINGLE PROBE

56/0/0/0: LTCDIFF not

assigned

56/0/0/n: LTCDIFF * to OUTn

56/1/0/n: !LTCDIFF * to OUTn

56/0/1/n: LTCDIFF + to OUTn

56/1/1/n: !LTCDIFF + to OUTn

where n=1,2,3,4

57 (!) WSP1 (*/+) TO

OUTn

Programmable logic

for WSP1

SET ONLY IF Aux

CT avail.

57/0/0/0: WSP1 not assigned

57/0/0/n: WSP1 * to OUTn

57/1/0/n: !WSP1 * to OUTn

57/0/1/n: WSP1 + to OUTn

57/1/1/n: !SP23 + to OUTn

where n=1,2,3,4

58 (!) WSP2 (*/+) TO

OUTn

Programmable logic

for WSP2

SET ONLY IF Aux

CT avail.

58/0/0/0: WSP2 not assigned

58/0/0/n: WSP2 * to OUTn

58/1/0/n: !WSP2 * to OUTn

58/0/1/n: WSP2 + to OUTn

58/1/1/n: !WSP2 + to OUTn

where n=1,2,3,4

Page 144: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008137

Setting # Setting Purpose Setting Range or Values Program to

59 (!) WSP3 (*/+) TO

OUTn

Programmable logic

for SP3

SET ONLY IF Aux

CT avail.

59/0/0/0: WSP3 not assigned

59/0/0/n: WSP3 * to OUTn

59/1/0/n: !WSP3 * to OUTn

59/0/1/n: WSP3 + to OUTn

59/1/1/n: !WSP3 + to OUTn

where n=1,2,3,4

60 (!) WSP4 (*/+) TO

OUTn

Programmable logic

for SP3

SET ONLY IF Aux

CT avail.

60/0/0/0: WSP4 not assigned

60/0/0/n: WSP4 * to OUTn

60/1/0/n: !WSP4 * to OUTn

60/0/1/n: WSP4 + to OUTn

60/1/1/n: !WSP4 + to OUTn

where n=1,2,3,4

61 (!) LSP1 (*/+) TO

OUTn

Programmable logic

for LSP1

SET ONLY IF Aux

CT avail.

61/0/0/0: LSP1 not assigned

61/0/0/n: LSP1 * to OUTn

61/1/0/n: !LSP1 * to OUTn

61/0/1/n: LSP1 + to OUTn

61/1/1/n: !LP1 + to OUTn

where n=1,2,3,4

62 (!) LSP2 (*/+) TO

OUTn

Programmable logic

for LSP2

SET ONLY IF Aux

CT avail.

62/0/0/0: LSP2 not assigned

62/0/0/n: LSP2 * to OUTn

62/1/0/n: !LSP2 * to OUTn

62/0/1/n: LSP2 + to OUTn

62/1/1/n: !LP2 + to OUTn

where n=1,2,3,4

63 (!) OUT1 (*/+) TO

OUTn

Programmable logic

for OUT1

63/0/0/0: OUT1 not assigned

63/0/0/n: OUT1 * to OUTn

63/1/0/n: !OUT1 * to OUTn

63/0/1/n: OUT1 + to OUTn

63/1/1/n: !OUT1 + to OUTn

where n=1,2,3,4

Page 145: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008138

Setting # Setting Purpose Setting Range or Values Program to

64 (!) OUT2 (*/+) TO

OUTn

Programmable logic

for OUT2

64/0/0/0: OUT2 not assigned

64/0/0/n: OUT2 * to OUTn

64/1/0/n: !OUT2 * to OUTn

64/0/1/n: OUT2 + to OUTn

64/0/1/n: !OUT2 + to OUTn

where n=1,2,3,4

65 (!) OUT3 (*/+) TO

OUTn

Programmable logic

for OUT3

65/0/0/0: OUT3 not assigned

65/0/0/n: OUT3 * to OUTn

65/1/0/n: !OUT3 * to OUTn

65/0/1/n: OUT3 + to OUTn

65/1/1/n: !OUT3 + to OUTn

where n=1,2,3,4

66 (!) OUT4 (*/+) TO

OUTn

Programmable logic

for OUT4

66/0/0/0: OUT4 not assigned

66/0/0/n: OUT4 * to OUTn

66/1/0/n: !OUT4 * to OUTn

66/0/1/n: OUT4 + to OUTn

66/1/1/n: !OUT4 + to OUTn

where n=1,2,3,4

67 (!) IN1 (*/+) TO

OUTn

Programmable logic

for IN1

SET ONLY IF

Optically Isolated

Input avail.

67/0/0/0: IN1 not assigned

67/0/0/n: IN1 * to OUTn

67/1/0/n: !IN1 * to OUTn

67/0/1/n: IN1 + to OUTn

67/1/1/n: !IN1 + to OUTn

where n=1,2,3,4

68 (!) IN2 (*/+) TO

OUTn

Programmable logic

for IN2

SET ONLY IF

Optically Isolated

Input avail.

68/0/0/0: IN2 not assigned

68/0/0/n: IN2 * to OUTn

68/1/0/n: !IN2 * to OUTn

68/0/1/n: IN2 + to OUTn

68/1/1/n: !IN2 + to OUTn

where n=1,2,3,4

Page 146: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008139

Setting # Setting Purpose Setting Range or Values Program to

69 TIME1 xx:xx TO

yy:yy Assigned TO

OUTn

Assigns TIME1

setpoint to OUTn

69/xx:xx/yy:yy/n

where xx:xx= pickup time

yy:yy=dropout time

n=0,1,2,3,4

70 TIME2 xx:xx TO

yy:yy Assigned TO

OUTn

Assigns TIME2

setpoint to OUTn

70/xx:xx/yy:yy/n

where xx:xx= pickup time

yy:yy=dropout time

n=0,1,2,3,4

71 TIME3 xx:xx TO

yy:yy Assigned TO

OUTn

Assigns TIME3

setpoint to OUTn

71/xx:xx/yy:yy/n

where xx:xx= pickup time

yy:yy=dropout time

n=0,1,2,3,4

72 OUT1 INVERT Inverts OUT1 72/0: Not INVERT

72/1: INVERT

73 OUT2 INVERT Inverts OUT2 73/0: Not INVERT

73/1: INVERT

74 OUT3 INVERT Inverts OUT3 74/0: Not INVERT

74/1: INVERT

75 OUT4 INVERT Inverts OUT4 75/0: Not INVERT

75/1: INVERT

76 CT RATIO Sets ratio of primary

CT

76/nnnn

where nnnn= 0 to 6000

77 RATED LOAD Sets rated load in

amps based on

mfg’s data

77/nnnnn

where nnnnn=0 to 65535

78 WINDING RISE @

RATED LOAD

Sets hotspot rise in

C over top oil at

rated load based on

mfg’s data

78/nn

where nn=0 to 99

79 WINDING TC Sets winding time

constant in minutes

based on mfg’s data

79/nnn

where nnn=0 to 999

Page 147: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008140

Setting # Setting Purpose Setting Range or Values Program to

80 COOLING TYPE Sets cooling type 80/0: Not directed FOA/FOW

80/1: Directed FOA/FOW

81 TPROBE1 NAME Names PROBE1 81/0: TOP OIL

81/1: WINDING

81/2: AMBIENT

81/3: LTCDIFF (dual probe)

81/4: BOTMOIL

81/5: LTCTANK

81/6: DIVTANK

81/7: SELTANK

82 TPROBE2 NAME Names PROBE2 82/0: TOP OIL

82/1: WINDING

82/2: AMBIENT

82/3: LTCDIFF

82/4: BOTMOIL

82/5: LTCTANK

82/6: DIVTANK

82/7: SELTANK

83 ALTERNATE Alternate output

control

83/0: DSBL

83/1: 1 – 2

83/2: 1 – 3

83/3: 1 – 4

83/4: 2 –3

83/5: 2 – 4

83/6: 3 - 4

84 ANALGOUT Sets scaling of

Analog output

84/0: 0 to 1 mA

84/1: 4 to 20 mA

85 A1 SOURCE Selects data source

for analog output A1

85/0: P1 (probe #1)

85/1: P2 (probe #2)

85/2: Calc winding temp.

Page 148: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008141

Setting # Setting Purpose Setting Range or Values Program to

86 A2 SOURCE Selects data source

for analog output A2

86/0: P1 (probe #1)

86/1: P2 (probe #2)

86/2: Calc winding temp.

87 BAUD RATE Sets baud rate for

RS-485 interface

87/0: 1200 baud

87/1: 2400 baud

87/2: 9600 baud

87/3: 19200 baud

88 NODE ADDR Sets the node

address for DNP3.0

communications

88/xxxxx

where xxxxx=0 to 65535

89 REMOTE BLK Enables blocking of

remote control

commands through

DNP3.0

89/0: Disables remote block

89/1: Enables remote block

90 TIMEBASE Sets record time fordata log

90/nnnn

where nnnn=0 to 9999

91 INCLUDE P1

IN LOG

Sets P1 for data log 91/0: NO

91/1: YES

92 INCLUDE P2

IN LOG

Sets P2 for data log 92/0: NO

92/1: YES

93 INCLUDE

WINDING IN LOG

Sets Calculated

Winding Temp. for

data log

93/0: NO

93/1: YES

SET ONLY IF Aux CT avail.

94 INCLUDE LOAD

IN LOG

Sets LOAD for data

log

94/0: NO

94/1: YES

SET ONLY IF Aux CT avail.

95 TIME Sets time of day 95/xx:xx

where xx:xx= 00:00 to 23:59

Page 149: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008142

Setting # Setting Purpose Setting Range or Values Program to

96 DATE Sets date 96/mm/dd/yr

where mm=01-12

dd=01-31

yr=00 to 99

97 WNDCKT ALRM Enables or disables

winding circuit alarm

97/0: Enabled

97/1: Disabled

98 DEVICE ALRM Enables or disables

device alarm

98/0: Enabled

98/1: Disabled

99 TEMPERATURE

ALRM

Enables or disablestemperaturemeasurement alarm

99/0: Enabled

99/1: Disabled

100 MANUAL ALRM Enables or disables

Manual Mode alarm

100/0: Enabled

100/1: Disabled

101 TIME SP CNTR Sets Time Setpoints

Counter

101/nnn

where nnn=0 to 255

102 UNIT ID A six character

name for unit

102/XXXXX

where X=any printable

character

103 NEG ANALGOUT

SCALING

Enables scaling of

analog outputs for

negative

temperatures

103/0: NO

103/1: YES

104 LTCDIFF RISE Maximum LTCDIFF

rise in time period

LTCDIFF RATE

104/nn

where nn=0 to 40

105 LTCDIFF RATE Time period in which

LTCDIFF is

examined

105/nnn

where nnn=0 to 255 minutes

106 REPEAT Fiber Optic Repeat

Mode

106/n

Where n=0 (OFF) or 1 (ON)

107 PASSWORD Sets password 107/xxxx

where xxxx=0000 to 9999

Page 150: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008143

14 DNP3.0 PROFILE DOCUMENT

DNP V3.00

DEVICE PROFILE DOCUMENT

Vendor Name: Advanced Power Technologies, LLC

Device Name: TTC-1000, Transformer Temperature Controller

Highest DNP Level Supported:

For Requests: Level 1

For Responses: Level 1

Device Function:

Master

Slave

Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP

Levels Supported (the complete list is described in the attached table):

See attached table.

Maximum Data Link Frame Size(octets):

Transmitted: 70

Received 37

Maximum Application Fragment Size (octets):

Transmitted: 51

Received: 22

Maximum Data Link Re-tries:

None

Fixed at ____

Configurable from ___ to ____

Maximum Application Layer Re-tries:

None

Configurable

Requires Data Link Layer Confirmation:

Never

Always

Sometimes

Configurable as: Never

Page 151: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008144

DNP V3.00

DEVICE PROFILE DOCUMENT

Requires Application Layer Confirmation:

Never

Always

When reporting Event Data

When sending multi-fragment responses

Sometimes

Configurable

Timeouts while waiting for:

Data Link Confirm: None Fixed at ____ Variable Configurable

Complete Appl. Fragment: None Fixed at ____ VariableConfigurable

Application Confirm: None Fixed at ____ Variable Configurable

Complete Appl. Response: None Fixed at ____ VariableConfigurable

Others:__________________________________________________

Sends/Executes Control Operations:

WRITE Binary Outputs Never Always Sometimes Configurable

SELECT/OPERATE Never Always Sometimes Configurable

DIRECT OPERATE Never Always Sometimes Configurable

DIRECT OPERATE – NO ACK Never Always Sometimes

Configurable

Count > 1 Never Always Sometimes Configurable

Pulse On Never Always Sometimes Configurable

Pulse Off Never Always Sometimes Configurable

Latch On Never Always Sometimes Configurable

Latch Off Never Always Sometimes Configurable

Queue Never Always Sometimes Configurable

Clear Queue Never Always Sometimes Configurable

Page 152: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008145

DNP V3.00

DEVICE PROFILE DOCUMENT

Reports Binary Input Change Eventswhen no specific variation requested:

Never

Only time-tagged

Only non-time-tagged

Configurable

Reports time-tagged Binary Input ChangeEvents when no specific variation requested:

Never

Binary Input Change With Time

Binary Input Change With Relative Time

Configurable (attach explanation)

Sends Unsolicited Responses:

Never

Configurable

Only certain objects

Sometimes (attach explanation)

ENABLE/DISABLEUNSOLICITED Function codessupported

Sends Static Data in Unsolicited Responses:

Never

When Device Restarts

When Status Flags Change

No other options are permitted.

Default Counter Object/Variation:

No Counters Reported

Configurable

Default Object: 20 and 21

Default Variation:

Point-by-point list attached

Counters Roll Over at:

No Counters Reported

Configurable (attach explanation)

16 Bits

32 Bits

Other Value: _____

Point-by-point list attached

Sends Multi-Fragment Responses:

Yes

No

Page 153: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008146

DNP V3.00

DEVICE PROFILE DOCUMENT

Sequential File Transfer Support:

Append File Mode Yes No

Custom Status Code Strings Yes No

Permissions Field Yes No

File Events Assigned to Class Yes No

File Events Poll Specifically Yes No

File Events Send Immediately Yes No

Multiple Blocks in a Fragment Yes No

Max Number of Files Open 0

IMPLEMENTATION TABLE

OBJECTREQUEST

(supported)

RESPONSE

(may generate)

Object

Number

Variation

NumberDescription

Function

Codes (dec)

Qualifier Codes

(hex)

Function

Codes (dec)

Qualifier Codes

(hex)

10 0 Binary Output Status (Variation 0 is

used to request default variation)

1 (read) 06 (no range, or all)

12 1 Control Relay Output Block 3 (select)

4 (operate)

5 (direct op)

6 (dir. op, noack)

17, 28 129 (response) echo of request

60 1 Class 0 Data 1 (read) 06

80 1 Internal Indications 2 00 (start-stop)

Page 154: TTC-1000 One or Two Probe - Advanced Power Technologies · One or Two Probe Four Output Firmware version 4.41x 215 State Route 10, Building 2 Randolph, NJ 07869 Phone: (973) 328-3300

V4.41x, May 22, 2008147

TTC-1000 Data Map

Index # DNP ObjectGroup,Variation

Description

00 01,02 State of Set Point SP11 (Probe 1, Set Point 1), 0-Dropped Out, 1-Picked Up01 01,02 State of Set Point SP12 (Probe 1, Set Point 2), 0-Dropped Out, 1-Picked Up02 01,02 State of Set Point SP13 (Probe 1, Set Point 3), 0-Dropped Out, 1-Picked Up03 01,02 State of Set Point SP14 (Probe 1, Set Point 4), 0-Dropped Out, 1-Picked Up04 01,02 State of Set Point SP21 (Probe 2, Set Point 1), 0-Dropped Out, 1-Picked Up05 01,02 State of Set Point SP22 (Probe 2, Set Point 2), 0-Dropped Out, 1-Picked Up06 01,02 State of Set Point SP23 (Probe 2, Set Point 3), 0-Dropped Out, 1-Picked Up07 01,02 State of Set Point SP24 (Probe 2, Set Point 4), 0-Dropped Out, 1-Picked Up08 01,02 State of Set Point WSP1 (Winding Set Point 1), 0-Dropped Out, 1-Picked Up09 01,02 State of Set Point WSP2 (Winding Set Point 2), 0-Dropped Out, 1-Picked Up10 01,02 State of Set Point WSP3 (Winding Set Point 3), 0-Dropped Out, 1-Picked Up11 01,02 State of Set Point WSP4 (Winding Set Point 4), 0-Dropped Out, 1-Picked Up12 01,02 State of Set Point LSP1 (Load Set Point 1), 0-Dropped Out, 1-Picked Up13 01,02 State of Set Point LSP2 (Load Set Point 2), 0-Dropped Out, 1-Picked Up14 01,02 State of Set Point LTCDIFF (LTC Set Point ), 0-Dropped Out, 1-Picked Up15 01,02 State of Output #1 (OUT1), 0-Dropped Out, 1-Picked Up16 01,02 State of Output #2 (OUT2), 0-Dropped Out, 1-Picked Up17 01,02 State of Output #3 (OUT3), 0-Dropped Out, 1-Picked Up18 01,02 State of Output #4 (OUT4), 0-Dropped Out, 1-Picked Up19 01,02 State of Set Point TIME1 (Time Set Point 1), 0-Dropped Out, 1-Picked Up20 01,02 State of Set Point TIME2 (Time Set Point 2), 0-Dropped Out, 1-Picked Up21 01,02 State of Set Point TIME3 (Time Set Point 3), 0-Dropped Out, 1-Picked Up22 01,02 State of Device Alarm, 0-No Alarm, 1-Alarm23 01,02 State of Temperature Probe Alarm, 0-No Alarm, 1-Alarm24 01,02 State of Remote Block, 0-Remote Block Disabled, 1-Remote Block Enabled25 01,02 State of Optically Isolated Input, IN1, 0-Dropped Out, 1-Picked Up26 01,02 State of Optically Isolated Input, IN2, 0-Dropped Out, 1-Picked Up27 01,02 State of Winding Circuit Alarm, 0-No Alarm, 1-Alarm

00 12,01 OUT1 Control, 1-remote on, 0-local control01 12,01 OUT2 Control, 1-remote on, 0-local control02 12,01 OUT3 Control, 1-remote on, 0-local control03 12,01 OUT4 Control, 1-remote on, 0-local control

00 30,04 Probe 1 Temperature01 30,04 Probe 2 Temperature02 30,04 Calculated Winding Hotspot Temperature03 30,04 Measured Load Current04 30,04 Probe 1 Name, 0-Top Oil, 1-Winding, 2-Ambient, 3-LTCDIFF, 4-BOTMOIL05 30,04 Probe 2 Name, 0-Top Oil, 1-Winding, 2-Ambient, 3-LTCDIFF, 4-BOTMOIL


Recommended